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Global existence analysis of
energy-reaction-diffusion systems

Julian Fischer, Katharina Hopf, Michael Kniely, Alexander Mielke

ABSTRACT. We establish global-in-time existence results for thermodynamically consistent reaction-
(cross-)diffusion systems coupled to an equation describing heat transfer. Our main interest is to model
species-dependent diffusivities, while at the same time ensuring thermodynamic consistency. A key
difficulty of the non-isothermal case lies in the intrinsic presence of cross-diffusion type phenomena
like the Soret and the Dufour effect: due to the temperature/energy dependence of the thermodynamic
equilibria, a nonvanishing temperature gradient may drive a concentration flux even in a situation with
constant concentrations; likewise, a nonvanishing concentration gradient may drive a heat flux even in
a case of spatially constant temperature. We use time discretisation and regularisation techniques and
derive a priori estimates based on a suitable entropy and the associated entropy production. Renor-
malised solutions are used in cases where non-integrable diffusion fluxes or reaction terms appear.

1. INTRODUCTION

The purpose of this paper is to establish global-in-time existence results for a class of reaction-diffusion
systems arising in the modelling of non-isothermal chemical reactions. We consider thermodynami-
cally consistent models that are based on the total entropy

S(c, u) :=

ˆ
Ω

S(c(x), u(x)) dx (1.1)

as a Lyapunov functional. The point here is that the entropy density S is given in terms of the vector
c(x) ∈ [0,∞)I of the concentrations and the internal energy density u(x) rather than the more
commonly used temperature θ(x). Hence, we will be able to rely on concavity of S in (c, u), while
concavity in (c, θ) does not hold in general, cf. e.g. [1]. Even more, following [42, 49, 50] the total
energy-reaction-diffusion system may be written as a gradient-flow equation for −S . For details on
the derivation of our models, see Section 1.1.

Even without accounting for temperature dependence, developing an existence theory for solutions
to entropy-driven reaction-diffusion systems has proven challenging: for instance, even for the simple
example of a reaction-diffusion system with Fick-law diffusion

ċi = ai∆ci +Ri(c) (1.2)

(with ai > 0) and entropy-producing chemical reactions Ri(c), the global-in-time existence of gener-
alised solutions has only been shown rather recently [34] and relies on the concept of renormalised
solutions; weak (or even strong) solutions are only known to exist under more restrictive assumptions
on the reactions [51, 9].

The existence analysis for thermodynamically realistic non-isothermal reaction-diffusion systems in-
volves further challenges: due to the temperature-dependence of the thermodynamic equilibrium, a
nonvanishing temperature gradient may drive a concentration flux even in situations with a vanishing
concentration gradient, a phenomenon known as the Soret effect. Similarly, a nonvanishing concentra-
tion gradient may drive a heat flux even if the temperature is spatially constant (the Dufour effect). Ther-
modynamically realistic models for reaction-diffusion systems must therefore allow for cross-diffusion
effects between internal energy density u and the concentrations ci. The methods in [34] (respec-
tively [13]) rely heavily on the diagonal structure (respectively the dominantly diagonal structure) of the
diffusion; without substantial new ideas, they do not apply to a setting with strong cross-diffusion.
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In the present work, we resolve these mathematical difficulties and provide an existence analysis
for generalised solutions to a nontrival class of reaction-(cross-)diffusion systems modelling non-
isothermal chemical reactions. Our class of thermodynamically consistent models is derived as a
gradient flow in Onsager form (see Section 1.1 below); the resulting equations are typically of the form

ċi = div
(
mi(c, u)∇ log

ci
wi(u)

+ a(c, u)ci
w′i(u)

wi(u)
∇u
)

+Ri(c, u), (1.3a)

u̇ = div
(
a(c, u)∇u

)
, (1.3b)

where a(c, u) = −π1(c, u)
(
σ̂′′(u) +

I∑
i=1

ci
w′′i (u)

wi(u)

)
> 0.

Here, wi(u) denotes the equilibrium concentration of the chemical speciesAi (which may depend on
the internal energy density u), the function mi(c, u) ≥ 0 describes the diffusive mobility of Ai, the
function π1(c, u) describes the heat conductivity, and σ̂(u) is related to the thermal part of the entropy
density.

It is rather immediate that the system (1.3a)–(1.3b) accounts for the Soret effect: a nonvanishing
temperature gradient may drive a concentration flux even for spatially constant concentrations ci. At
first glance, the Dufour effect may appear to not be accounted for by the model, as a vanishing internal
energy gradient∇u ≡ 0 entails the absence of a heat flux. However, even for a constant temperature
θ the internal energy density u may be non-constant, as the thermodynamic relation of temperature
and internal energy density 1

θ
= ∂uS(c, u) also involves the concentrations.

1.1. Modelling. Following [49, 42, 50], we consider energy-reaction-diffusion systems that are moti-
vated by the thermodynamically consistent models that are obtained as gradient-flow equations written
in Onsager form. Given a state space Q as a convex subset of a Banach spaceX with states Z ∈ Q,
an Onsager operator K = K(Z) is a possibly unbounded, symmetric and positive semi-definite oper-
ator, which may be seen as a generalisation of the inverse of the Riemannian metric tensor in a smooth
manifold Q. With a differentiable driving functional −S : Q → R (typically a convex functional on
X), the associated evolution problem reads

Ż = K(Z)DS(Z), (1.4)

where hereDS denotes the Fréchet derivative of the entropy functional S , and Ż is the time derivative
of the state variable Z = Z(t).

In this framework, different physical phenomena can easily be coupled by taking K as a sum of oper-
ators corresponding to individual processes. In this paper, we let K := Kdiff + Kreact, where Kdiff

accounts for diffusion and Kreact for the reactions. In our application, the vector Z of state variables
consists of the concentrations (ci)

I
i=1 of the I species Ai diffusing and reacting on the bounded Lip-

schitz domain Ω ⊂ Rd and another suitable variable modelling variations in temperature. The latter
could be temperature θ(t, x) itself, the internal energy density u(t, x) or some other suitable scalar
quantity [47]. As in [50, 42] we model changes in temperature using the internal energy density u ≥ 0
(see also [1, 48, 49]). The major advantage of this choice is that the entropy density S(c, u) deter-
mining the entropy functional (1.1) is concave in (c, u), wich is a vector of extensive variables, see
[46, 1]. Also note that the total energy E(c, u) =

´
Ω
u(x) dx takes the most simple form, and while

chemical reactions typically induce changes in temperature, the internal energy is left invariant and
the total energy is a conserved quantity along solutions of (1.3). This also means that the Onsager
operator Kreact(c, u) has a nontrivial kernel, namely span{(0, 1)T}.
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Existence for ERDS 3

The basis of our model are entropy densities S(c, u) of the form (cf. [42, 50])

S(c, u) = σ(u)−B(c|w(u)) =: σ̂(u) +
I∑
i=1

(
ci logwi(u)− λ(ci)

)
, (1.5)

where we continue to use the Boltzmann function

λ(s) := s log(s)− s+ 1, (1.6)

the relative Boltzmann entropy B(c|w) :=
∑I

i=1 wiλ(ci/wi), and the thermal part σ(u) of the en-
tropy density when the concentrations c = (ci)

I
i=1 are in equilibrium. From the formula

DcS(c, u) =
(

logwi(u)− λ′(ci)
)
i

= −
(

log
ci

wi(u)

)
i

we see that the vector w(u) = (wi(u))i defines the thermodynamic equilibria w = (wi)
I
i=1 of the

concentrations as function of the internal energy u. We generally assume that wi ∈ C([0,∞)) ∩
C2((0,∞)) are positive, non-decreasing and concave. Moreover, the C2 function σ̂(s) := σ(s) −∑I

i=1wi(s) + I is supposed to be strictly concave and increasing. These properties ensure that S is
strictly concave and that u 7→ S(c, u) is increasing (see the proof of [50, Prop. 2.1]). The temperature
θ can then be recovered via θ = 1

∂uS(c,u)
and is per se non-negative.

The diffusive part Kdiff(Z) with Z = (c, u) of the Onsager operator is assumed to be of the form

Kdiff(Z)W := − div
(
M(Z)∇W

)
, W (x) ∈ RI+1,

for a symmetric and positive semi-definite matrix M(Z) ∈ R(I+1)×(I+1), the so-called mobility matrix,
satisfying suitable additional conditions. Here and below, ∇ = ∇x denotes the gradient with respect
to x ∈ Ω. The operator Kdiff will be complemented with the no-flux boundary condition (M(Z)∇W ) ·
ν = 0 on ∂Ω, where ν denotes the outer unit normal to ∂Ω. The precise structure of the reactive part

Kreact(Z) =

(
L(Z) 0

0 0

)
∈ R(I+1)×(I+1)

will be less relevant in this work, the main hypothesis being that it leaves the energy equation un-
changed. We will therefore directly formulate our hypotheses in terms of R(Z) = (Ri(Z))Ii=1, where
Ri(Z) = (L(Z)DcS(Z))i for i ∈ {1, . . . , I}. The positive semi-definiteness of Kreact then means
that DcS(Z) · R(Z) ≥ 0 (see condition (R1) below). We refer to [48, 49] for concrete choices of L
for realising reactions following mass-action kinetics as in (1.11).

The above choices for Kdiff and Kreact of the Onsager operators encode conservation of the total
energy E(c, u) =

´
Ω
u(x) dx since DE(c, u) ≡ 1, hence K(Z)DE(Z) ≡ 0 and thus, thanks to

symmetry, d
dt
E(Z) ≡ 0 along any curve Z = Z(t) satisfying (1.4). For more information on the

(modelling) background of such ERDS, we refer to [49, 50, 42].

Thus, letting A(Z) := −M(Z)D2S(Z) and R◦(Z) := (R(Z), 0)T , the energy-reaction-diffusion
system (ERDS) we consider takes the form

Ż = div
(
A(Z)∇Z

)
+R◦(Z), t > 0, x ∈ Ω, (1.7a)

0 = ν · A(Z)∇Z, t > 0, x ∈ ∂Ω. (1.7b)

This system will be supplemented with suitable initial conditions

Z|t=0 = Z0 in Ω.

Without loss of generality, we assume that the bounded Lipschitz domain Ω ⊂ Rd has unit volume,
i.e. |Ω| = 1.

The analytical results in the references [50, 42] primarily concern entropy-entropy production inequal-
ities and address the question of decay rates to equilibrium assuming the existence of suitably regular
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global-in-time solutions. To the authors’ knowledge, the only global existence result for an ERDS of the
form (1.7a)–(1.7b) (with semiconductor-like reactions) appears in [42, Section 6] for the special choice
M(c, u) = −k(D2S(c, u))−1, where k > 0 is a positive constant, and under the assumption of
bounded initial data (c0, u0) with inf u0 > 0. In this case, species’ diffusivities are all equal allowing
the authors to infer global existence from maximum type principles.

Mobility matrix. Let us note that owing to the entropic coupling between ci and u, the Hessian of the
entropy density is non-diagonal and takes the form

D2S(c, u) =


. . .

...

− 1
ci

w′i
wi

. . .
...

. . .
w′i
wi

. . . ∂2
uS

 ,

where we abbreviated wi = wi(u) and

∂2
uS(c, u) = σ̂′′(u) +

I∑
i=1

ci
w′′i (u)

wi(u)
−

I∑
i=1

ci

(
w′i(u)

wi(u)

)2

< 0,

because of the concavity of σ̂ and wi.

Except for the restrictive case M(c, u) = −k(D2S(c, u))−1 considered in [42], the matrixA(c, u) =
−M(c, u)D2S(c, u) is not diagonal, usually not symmetric, and positive semi-definiteness cannot be
expected. However, thanks to the formal entropy structure and the concavity of S, problem (1.7) is
still parabolic in a certain sense (cf. Section 2.1). In our approach, control of the solution is obtained
via entropy estimates, coercivity bounds for the entropy production and an L2-energy estimate for the
thermal part, where we also exploit the absence of source terms in the energy equation (see page 11
for more details on our strategy.)

Our existence analysis focuses on mobility matrices of the form

M(c, u) := diag
(
m1, . . . ,mI ,mI+1

)
+ π1(c, u)µ⊗ µ (1.8a)

with µI+1(c, u) = 1 and µi(c, u) := ci
w′i(u)

wi(u)
for {1, . . . , I}, (1.8b)

where the mobilities mi(c, u) ≥ 0, i ∈ {1, . . . , I}, and the coupling coefficient π1(c, u) ≥ 0 are
specified below, whereas mI+1 ≡ 0 throughout (but see Remark 1.4). This choice of M leads to
equations of the form (1.3) (see also (1.10)).

Loosely speaking, this ansatz for M can be seen as a thermodynamically consistent generalisation of
the above-mentioned choice M(c, u) = −k(D2S(c, u))−1 to allow for species-dependent diffusivi-
ties. In fact, when choosing mi := ci and π1(c, u) := 1/γ(c, u) with

γ(c, u) := −∂2
uS(c, u)−

I∑
i=1

ci
(w′i(u)

wi(u)

)2
= −σ̂′′(u)−

I∑
i=1

ci
w′′i (u)

wi(u)
, (1.9)

then M(c, u) becomes the inverse Hessian of S(c, u) (see [50, p. 777]). We would like to emphasize
that a diagonal diffusion matrix A = diag(. . . ) ∈ R(I+1)×(I+1) cannot be produced in a thermody-
namically consistent setting unless its entries on the diagonal are all equal, since otherwise M lacks
symmetry.

In this paper, mi(c, u) is assumed to take the form
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Existence for ERDS 5

(M1) mi(c, u) = ciai(c, u) for i ∈ {1, . . . , I}, mI+1 ≡ 0, where the functions ai ∈ C([0,∞)I+1)
satisfy for certain constants κ1,i, κ0,i ≥ 0

ai(c, u) ∼ κ0,i + κ1,ici for (c, u) ∈ [0,∞)I+1.

(See Notations on page 12 for the meaning of the symbol∼ .) Here, κ0,i is typically called the diffusion
coefficient of the species Ai, while the κ1,i are sometimes referred to as self-diffusion coefficients.
The motivation for this choice of ai(c, u) comes from the observation that, to some extent, models
with positive coefficients κ1,i, κ0,i > 0 may be seen as a regularisation of the model where κ1,i = 0
and κ0,i > 0 for all i since then entropy estimates may allow to control not only ∇√ci but also ∇ci
in L2, which via Sobolev embeddings leads to better integrability properties of ci. One should caveat
though that, owing to the entropic coupling, the problem is more complex and a positive κ1,i does
not necessarily ensure an L2 a priori bound of ∇ci by entropy production estimates. In fact, for the
special choice π1 ∼ 1/γ such a regularisation is neither needed nor helpful, and we will construct
global-in-time weak solutions provided that κ1,i = 0 for all i.

However, we are interested in more general choices of coefficients π1 in (1.8a) allowing for strong
cross-diffusion due to energy gradients, as alluded to in the beginning. Here, strong cross-diffusion
manifests itself in the fact that the flux terms generated by off-diagonal entries in the diffusion matrix
A(Z) cannot be controlled in L1

t,x by means of natural entropy estimates associated with the system.
Surprisingly (when compared to existing literature), for such problems, we are still able to show an
existence result: we will first construct global-in-time weak solutions for a family of ‘regularised’ models
with κ1,i > 0 for all i ∈ {1, . . . , I}. These approximate solutions will then enable an existence
analysis in the case of strong cross-diffusion (arising due to vanishing self-diffusion) on the basis of
the concept of renormalised solutions, as carried out in Sections 5–6.

Observe that, by the choice of µi in (1.8b), cross-diffusion between ci and cj, i 6= j, does not arise in
our models. More precisely, our definition A(c, u) := −M(c, u)D2S(c, u) and the fact that− 1

ci
µi +

w′i
wi
µI+1 ≡ 0 for i ∈ {1, . . . , I} imply that the submatrix (Aij)

1≤i≤I+1
1≤j≤I only depends on the diagonal

part diag(mi) of M. We would like to note that in the self-diffusive case with κ1,i > 0 for all i, our
methods extend to situations modelling cross-diffusion between species, see Remark 1.3.

For the above choice of M, a direct computation of A yields the coefficients

Aii(c, u) = mi(c,u)
ci

=: ai(c, u) for i = 1, . . . , I,

Ai,j(c, u) = 0 for i 6= j and i, j ∈ {1, . . . , I},

Ai,I+1(c, u) = −mi
w′i
wi
− π1ci

w′i
wi

(
σ̂′′(u) +

I∑
j=1

cj
w′′j (u)

wj(u)

)
=
(
−ai(c, u) + π1(c, u)γ(c, u)

)
ci

w′i(u)

wi(u)
for i = 1, . . . , I,

AI+1,I+1(c, u) = −π1

(
σ̂′′(u) +

I∑
i=1

ci
w′′i (u)

wi(u)

)
= π1(c, u)γ(c, u) =: a(c, u).

(1.10)

In particular,
∑

j Aij(Z)∇Zj = ai(c, u)∇ci + Ai,I+1(c, u)∇u if i 6= I + 1, and AI+1,j(Z) =

a(c, u)δI+1,j .

Reactions. For reaction-diffusion equations with physically realistic reaction rates, the available global
existence results in the literature often rely on renormalised solutions. To illustrate the underlying
reason, consider for example a single reversible chemical reaction of the form

α1A1 + . . .+ αIAI 
 β1A1 + . . .+ βIAI .
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The reaction rates according to mass-action kinetics are then given by

Ri(c, u) = κ(c, u)

( I∏
j=1

( cj
wj(u)

)αj
−

I∏
k=1

( ck
wk(u)

)βk)
(βi − αi), (1.11)

for some non-negative reaction coefficient κ(c, u) ≥ 0. At the same time, the only known energy esti-
mate for the basic reaction-diffusion system (1.2) is the entropy estimate; it merely provides control of
quantities of the form supt

´
Ω
ci log ci dx or

´ T
0

´
Ω
|∇√ci|2 dxdt. Thus, without unphysically strong

assumptions on the coefficient κ(c, u), the available energy estimates are not sufficient to ensure
L1([0, T ] × Ω) integrability of the reaction terms (1.11), which would be required for standard weak
solutions concepts.

Nevertheless, reactions of the type (1.11) satisfy the entropy inequality

DcS(c, u) ·R(c, u) = κ(c, u)
(
cαw − cβw

) I∑
i=1

(βi−αi) log
(wi(u)

ci

)
= κ(c, u)

(
cαw − cβw

)(
log cαw − log cβw

)
≥ 0,

where cαw =
∏I

j=1

( cj
wj(u)

)αj and similarly for cβw. Thus, it is reasonable to impose the entropy in-
equality

DcS(c, u) ·R(c, u) ≥ 0 for all (c, u) ∈ (0,∞)I+1.(R1)

This condition together with M = MT ≥ 0 ensure that, formally, the entropy functional S(c, u) is
non-decreasing along trajectories of system (1.7). We note that, since ∂ciS(c, u) = − log

(
ci

wi(u)

)
,

the condition [ci = 0 =⇒ Ri ≥ 0], which is necessary for the positivity of ci, is implicitly contained
in hypothesis (R1). For more background, applications and specific examples for admissible choices
of R(c, u) we refer to [50, Sec. 2.3] and [42, Sec. 3.2] and references therein.

1.2. Main results.

General Hypotheses. In all of our results, the entropy function S0 is assumed to have the form

S0(c, u) = σ̂0(u) +
I∑
i=1

(
ci logwi(u)− λ(ci)

)
,

where λ is as in (1.6), and M(c, u) is supposed to be given by (1.8a)–(1.8b) with (M1) being satisfied.
Regarding the coefficient functions σ̂0, wi, π1, the following basic regularity and qualitative properties
will be supposed:

(B1) Suppose that σ̂0 ∈ C2((0,∞)) is a strictly concave, non-decreasing function.
(B2) Let wi ∈ C([0,∞)) ∩ C2((0,∞)) with wi(0) > 0 for i ∈ {1, . . . , I} be concave and

non-decreasing functions.
(B3) Assume that π1 ∈ C([0,∞)I+1, [0,∞)) with

√
π1(u, c)w′i(u) ∈ C([0,∞)I+1) for all i.

(B4) limu↓0 σ̂
′
0(u) = +∞, limu↑∞ σ̂

′
0(u) = 0

(B5) ∃β ∈ (0, 1) such that wi(u) . (1+u)β for all i ∈ {1, . . . , I}
(B6) 0 ≤ π

1
2
1 (c, u) . 1 + u.

Finally, we generally assume the reaction ratesR ∈ C([0,∞)I+1,RI) to be continuous and to satisfy
the entropic production estimate (R1).

The above collection of assumptions will be referred to below as General Hypotheses.

DOI 10.20347/WIAS.PREPRINT.2807 Berlin 2021
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The two models (H) and (H’). In our analysis, we consider two ‘models’, which mainly differ in the
choice of the coefficient function π1 of the rank-one part of M. The first model is determined by the
collection of hypotheses (H) consisting of the following three conditions (H1)–(H3)

(H1) π1γ & 1 (with γ given by (1.9) for S = S0, i.e. γ = −σ̂′′0(u)−
∑I

i=1 ci
w′′i (u)

wi(u)
> 0)

(H2) w′i(u) . −w′′i (u)π
1
2
1 (c, u)

(H3) π
1
2
1 (c, u)

w′i
wi
. 1.

The second model is determined by hypotheses (H’) consisting of the following two conditions

(H1’) π1γ ∼ 1
(H2’) (w′i)

2 . −w′′i wi.

Let us briefly comment on the hypotheses concerning σ̂0, wi and π1 formulated in the last two para-
graphs. The assumptions on the concave functions σ̂0 and wi are not very restrictive and allow
to include essentially all examples typically used in the modelling such as σ̂0(s) = b log(s) or
σ̂0(s) = bsα for α ∈ (0, 1), where b > 0 is a positive constant. Typical admissible choices of
wi are wi(u) = b0,i + b1,iu

βi or wi(u) = b0,i(1 + b1,iu)βi for βi ∈ (0, 1) and b0,i > 0, b1,i ≥ 0, in

which case one can choose π
1
2
1 ∼ u and π

1
2
1 ∼ 1 + u respectively, when assuming (H). When con-

sidering (H’) instead, we should note the compatibility of hypotheses (B6) and (H1’) for any power-law
ansatz of σ̂0. Indeed, we then have γ(c, u) ≥ −σ̂′′0(u) & uα−2 and hence π

1
2 . u + 1 when-

ever α ∈ [0, 1) (with α = 0 corresponding to σ̂0(u) = log(u)). Hypotheses (H2) of (H) and (H2’)
of (H’) can be regarded as concavity conditions on the equilibria wi and rule out, for instance, that
wi(u) = b1u + b0 for b1 > 0, b0 ≥ 0 for some i ∈ {1, . . . , I}. In view of (B2) and (B6), Hypothe-
sis (H3) can be shown to be always fulfilled if u ≥ 1, and should thus be understood as a condition
for small arguments u close to zero.

Our first main result assumes the following hypotheses.

Hypotheses 1.1. Let the General Hypotheses be satisfied and assume that either hypotheses (H) or
hypotheses (H’) are fulfilled.

In case (H), we additionally assume that κ1,i > 0 for all i ∈ {1, . . . , I} and that there exists 0 ≤
q1 < 2 + 2

d
and 0 ≤ q2 < 2 + 4

d
such that |R(c, u)| . 1 + |c|q1 + |u|q2 .

Under hypotheses (H’), we assume that κ1,i = 0 and κ0,i > 0 for all i ∈ {1, . . . , I}, and impose, for
simplicity, a suboptimal growth condition of the form |R(c, u)| . 1 + |c|+ |u|2.

The proof of the following main result will be completed in Section 4.2.

Theorem 1.2 (Global existence of weak solutions). Let Hypotheses 1.1 hold true. Let Z0 = (c0, u0)
have non-negative components satisfying c0

i ∈ L logL(Ω), i ∈ {1, . . . , I}, u0 ∈ L2(Ω) and
σ̂0,−(u0) ∈ L1(Ω). Then there exist non-negative functions

ci ∈ L∞(0,∞;L logL(Ω)), i ∈ {1, . . . , I},
u ∈ L∞(0,∞;L2(Ω))

such that Z := (c1, . . . , cI , u) has the regularity

M(Z)D2S0(Z)∇Z ∈ Lsloc([0,∞)×Ω)d(I+1), where s = 2d+2
2d+1

, (1.12)

∂tZi ∈ Lrloc(0,∞;W 1,r′(Ω)∗), where r := min
{
d+2
dq1
, 2d+4
dq2

, s
}
, 1
r′

+ 1
r

= 1,
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and satisfies for all T > 0 and all φ = (φ′, φI+1) ∈ L∞(0, T ;W 1,∞(Ω))I+1 the equationˆ T

0

〈∂tZ, φ〉 dt−
ˆ T

0

ˆ
Ω

(M(Z)D2S0(Z)∇Z) :∇φ dxdt

=

ˆ T

0

ˆ
Ω

R(Z) · φ′ dxdt

(1.13)

and the identity Z(t = 0, ·) = (c0, u0) as an equality in (W 1,∞(Ω)∗)I+1.

Furthermore, the internal energy is conserved, i.e. for all t > 0,ˆ
Ω

u(t, x) dx =

ˆ
Ω

u0(x) dx,

and the solution satisfies the bound
‖c‖L∞(L logL) + ‖u‖L∞L2 + ‖σ̂0,−(u)‖L∞L1

+

ˆ ∞
0

ˆ
Ω

π1γ|∇u|2 dxdt+

ˆ ∞
0

ˆ
Ω

P (c, u) dxdt

≤ C(‖c0‖L logL, ‖u0‖L2 , ‖σ̂0,−(u0)‖L1)

for P (c, u) given by formula (2.5).

We note that, by density, the equation (1.13) holds true for a somewhat larger set of test functions φ,
and in case (H’) the regularity of ∂tZ can be slightly improved. We should further note that in this work
we have not aimed at optimising the regularity of the initial energy density u0. The choice u0 ∈ L2

has been made for simplicity.

At this stage we can comment on the major interplay between the choice of the entropy density S in
(1.5) and the mobility matrix M in (1.8). At a formal level, we obtain along solutions the conservation
of energy and the entropy entropy-production balance:

E(c(t), u(t) =

ˆ
Ω

u(t, x) dx =

ˆ
Ω

u0(x) dx = E(c0, u0),

S(c(t), u(t)) = S(c0, u0) +

ˆ t

0

(
Pdiff(c(r), u(r)) + Preact(c(r), u(r))

)
dr

withPdiff(Z) =
´

Ω
∇Z : D2S(Z)M(Z)D2S(Z)∇Z dx and Preact(c, u) =

´
Ω
DcS(c, u)·R(c, u) dx.

Using Pdiff(Z) ≥ 0 and Preact(Z) ≥ 0 we conclude S(Z(t)) ≥ S(Z0). Combining the trivial bound
of u(t) in L1(Ω) with the bounds (B5) on wi, this implies a uniform a priori bound for

´
Ω
λ(ci(t)) dx,

see Lemma 2.2. However, the main difficulty in justifying eq. (1.13) is to show that the flux A(Z)∇Z
lies in L1

loc([0,∞)×Ω), based on the fact that the entropy production
´∞

0
Pdiff(Z(r))dr is finite.

Because of A(Z) = −M(Z)D2S(Z), this means that a bound of the form

|A(Z)∇Z|s̃ ≤ C
(

1 + |Z|+ |u|ν +∇Z : D2S(Z)M(Z)D2S(Z)∇Z
)

would be desirable for some s̃ ≥ 1. The trivial case would be ν = 1; however, using the special
structure (1.3b) allows us to derive simple a priori bounds in Lν(Ω), ν > 1, as well. We refer to the
estimates (2.10) and (2.11) in Lemma 2.3. At the end, the situation is somewhat more involved and
we can exploit Galiardo–Nirenberg estimates as well, which will lead us to the dimension-dependent
exponent s = 1 + 1/(2d+1) in (1.12).

Remark 1.3 (Cross-diffusion between species). In case (H), where κ1,i > 0 for all i, Theorem 1.2
can be extended to a situation where cross-diffusion between species does occur. Indeed, in this
case the coercivity estimate for the entropy production in Lemma 2.1 remains valid when replacing the
Onsager matrix M by M + µ̃ ⊗ µ̃, where the continuous function µ̃ = (µ̃1, . . . , µ̃I , 0) is supposed
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to satisfy |µ̃i(c, u)| . ci for all i. In this case, Aij = δij
mi
ci

+ µ̃i
µ̃j
cj
, i, j ∈ {1, . . . , I}, implying

that |Aij| . ci. The additional thermodiffusion-type coefficient in front of∇u in the i-th component is

given by −µ̃i
∑I

j=1 µ̃j
w′j(u)

wj(u)
. One can now see that, under the assumption κ1,i & 1, a flux bound of

the form (2.11) can still be guaranteed.

Remark 1.4 (Cross terms in the energy equation). It is possible in Theorem 1.2 to allow for non-trivial,
non-negative continuous coefficients mI+1(Z) in the definition of M (cf. (1.8)) satisfying suitable
growth conditions. Note that while non-trivial coefficients mI+1 may alter heat conductivity, the Dufour
coefficients remain unchanged since ∂uS(Z) = 1/θ. For general mI+1, the energy equation in the
Z-variables takes the form

u̇ = div

((
a(Z)−mI+1∂

2
uS(Z)

)
∇u+

I∑
j=1

dj(Z)∇cj
)
,

where dj(Z) = −mI+1
w′j
wj

. The non-negativity of mI+1 ensures that the coercivity bounds for the
entropy production are preserved. Besides the entropy production estimate, the main a priori estimate
for u is the energy estimate (3.10) in Lemma 3.4. As will become clear in the proof of Theorem 1.2,
our analysis can deal with generalisations of estimate (3.10) of the form

ε1τ

ˆ
Ω

aδ(Z)|∇u|2dx+

ˆ
Ω

u2 dx ≤
ˆ

Ω

(uk−1)2 dx+ Cτ

ˆ
Ω

P (Z) dx, (1.14)

provided ε1 > 0. For instance, under the assumptions of Theorem 1.2, in case (H) an a priori estimate

of the form (1.14) can be obtained if mI+1(Z) ≥ 0 satisfies the bound
w′j
wj
mI+1 .

√
π1γ +

√
π1γ.

For the case (H’) the corresponding inequality (1.14) can be obtained if mI+1 . 1. (Some additional
conditions may have to be imposed to make the full construction work.)

Remark 1.5. The hypothesis κ1,i > 0 for all i ∈ {1, . . . , I} in case (H) is essential in our proof of
Theorem 1.2. If κ1,i = 0, entropy production bounds and Sobolev type estimates do not generally
provide L2-integrability of the concentrations, which we need in case (H) in order to ensure at least
L1-integrability of the flux term associated with thermodiffusion (see Lemmas 2.1 and 2.3).

Our second result is motivated by the question of global existence in the absence of self-diffusion,
i.e. in the case when κ1,i = 0 for all i ∈ {1, . . . , I}. In the setting of (H), choosing κ1,i = 0
leads to strong cross-diffusion effects and is not covered by Theorem 1.2. Here, entropy (and energy)
estimates in general fail to ensure integrability of the thermodiffusive flux terms. We therefore use a
weaker concept of solution similar to the notion of renormalised solutions introduced in [34], which
allows us at the same time to drop the growth condition on the reaction rates in Theorem 1.2. Weak or
no growth restrictions on |Ri(·)| are often desirable when interested in physically realistic reactions.
The concept of renormalised solutions utilized in [34] originates from the studies of DiPerna and Lions
on the global existence of solutions to Boltzmann and transport equations [27, 28, 29]. During the
last decades, various notions of renormalised solutions have been employed in the literature; see e.g.
[17, 23, 53]. In [23] the authors present some classes of mass-action kinetics models which admit
global weak solutions for reaction rates with at most quadratic growth and which allow for global
renormalised solutions with defect measure for at most quartic growth.

As pointed out in Remark 1.5, we are generally lacking an L2 a priori bound on ci in the case κ1,i = 0.
For certain classes of models, L2 bounds for the species can be obtained using duality estimates.
See, e.g., the references [51, 25, 8, 22, 45], which include cross-diffusive models. However, without
very specific assumptions on the structure of the diffusion operator such duality arguments are not
applicable in our setting.

Our definition of renormalised solutions adapts [34, 13].
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Definition 1.6 (Renormalised solution). Let J = (0,∞) and let Z0 = (c0, u0) : Ω → RI+1
≥0 be

measurable. We call a function Z = (c, u) with non-negative components a (global) renormalised
solution of (1.7) with initial data Z0 if Zi ∈ L2

loc(J ;H1(Ω)) or
√
Zi ∈ L2

loc(J ;H1(Ω)) for each
i ∈ {1, . . . , I + 1}, if furthermore

χ{|Z|≤E}A(Z)∇Z ∈ L2
loc(J ;L2(Ω))

for all E ≥ 1, and if for every ξ ∈ C∞([0,∞)I+1) with compactly supported derivative Dξ, every
T > 0, and every ψ ∈ C∞([0, T ]× Ω) with ψ(·, T ) = 0 the following identity is satisfied:

−
ˆ

Ω

ξ(Z0)ψ(·, 0) dx−
ˆ T

0

ˆ
Ω

ξ(Z)
d

dt
ψ dxdt

= −
I+1∑

i,j,k=1

ˆ T

0

ˆ
Ω

ψ ∂i∂kξ(Z)Aij(Z)∇Zj · ∇Zk dxdt

−
I+1∑
i,j=1

ˆ T

0

ˆ
Ω

∂iξ(Z)Aij(Z)∇Zj · ∇ψ dxdt+
I∑
i=1

ˆ T

0

ˆ
Ω

ψ ∂iξ(Z)Ri(Z) dxdt.

Our second main result assumes the following conditions.

Hypotheses 1.7. Let the General Hypotheses be satisfied and assume hypotheses (H). Further sup-
pose that κ1,i = 0 and κ0,i > 0 for all i ∈ {1, . . . , I}.

Note that Hypotheses 1.7 do not impose any growth conditions on R(c, u). Let us further point out
that while the restriction to the (arguably more interesting) case κ1,i = 0 for all i is not necessary and
we could have equally treated Onsager matrices of the form considered in Theorem 1.2, our second
result appears to require that either κ1,i > 0 for all i or κ1,i = 0 for all i if one wants to admit reactions
with arbitrarily fast growth.

Theorem 1.8 (Global existence of renormalised solutions). Let Hypotheses 1.7 hold true. Let Z0 =
(c0, u0) have non-negative components satisfying c0

i ∈ L logL(Ω), i ∈ {1, . . . , I}, u0 ∈ L2(Ω)
and σ̂0,−(u0) ∈ L1(Ω). Then, there exists a global renormalised solution Z = (c, u) to (1.7) with
initial data Z0 having the additional regularity

ci ∈ L∞(0,∞;L logL(Ω)), i ∈ {1, . . . , I},
u ∈ L∞(0,∞;L2(Ω)).

For all T > 0, u satisfies ∂tu ∈ Ls(0, T ;W 1,s′(Ω)∗) (with s = 2d+2
2d+1

, s′ = 2d+ 2) and
ˆ T

0

〈
∂tu, φ

〉
dt+

ˆ T

0

ˆ
Ω

a(c, u)∇u · ∇φ dxdt = 0

for all φ ∈ L∞(0, T ;W 1,∞(Ω)). Moreover, the internal energy is conserved, i.e. for all t > 0,ˆ
Ω

u(t, x) dx =

ˆ
Ω

u0(x) dx,

and the following bounds are valid:

‖c‖L∞(0,∞;L logL) + ‖u‖L∞(0,∞;L2) +

ˆ ∞
0

ˆ
Ω

P (c, u) dxdt+

ˆ ∞
0

ˆ
Ω

π1γ|∇u|2 dxdt ≤ C(data),

where P (c, u) is given by (2.5) and data = (‖c0‖L logL, ‖u0‖L2 , ‖σ̂0,−(u0)‖L1).

DOI 10.20347/WIAS.PREPRINT.2807 Berlin 2021



Existence for ERDS 11

For results on the global existence and the asymptotic behaviour of reaction–diffusion systems coupled
to Poisson’s equation, which is the typical setting for semiconductor models, we refer to [37, 40, 41].
While uniqueness is in general a difficult question for coupled systems, weak-strong uniqueness of
renormalised solutions to entropy-dissipating reaction-diffusion systems has been established in [35]
in the weakly coupled case, and in [14] for a class of population models featuring weak cross-diffusion.
Within the last couple of years, various kinds of entropy estimates have been successfully applied for
studying the long-time behavior of reaction–diffusion equations and to typically obtain exponential
convergence to equilibrium [3, 19, 20, 21, 26]. Finally, we point out that exponential convergence to
equilibrium has also been shown for renormalised solutions in the framework of detailed and complex-
balanced chemical reaction networks [24, 32, 33].

Strategy of the proof. The main mathematical difficulty of the problem lies in the fact that the equilibria
wi of the concentrations ci depend on the internal energy leading to a strong coupling in the entropy
and in the associated evolution system. Let us point out that for strongly coupled systems the design
of suitable (structure-preserving) approximation schemes may in general be quite tricky, even if suit-
able formal a priori estimates are available. Our main a priori estimates are obtained from the entropy
structure of the coupled system together with the scalar-like structure of the heat equation (we choose
L2 for simplicity). Our approximation scheme for Theorem 1.2 adapts ideas developed in [44, 12] and
references therein for reaction-diffusion systems with cross-diffusion. A key aspect of this scheme lies
in a transformation to the so-called entropy variables, upon which the semi-definiteness of the mobil-
ity matrix M is exploited to construct approximate solutions to an elliptically regularised problem. In
our case, a slight complication arises due to the circumstance that regularisations in the entropy vari-
ables interfere with the L2-structure of the heat equation. We by-pass this issue by suitable additional
approximation/regularisation procedures.

The proof of Theorem 1.8 uses the global weak solutions obtained in Theorem 1.2 as approximate so-
lutions and adapts the construction of renormalised solutions to entropy-dissipating reaction-diffusion
systems in [34, 13]. In these two references, the main difficulty comes from the lack of control of the
reaction rates, whereas in our situation new difficulties arise owing to thermodiffusive cross effects.
While the article [13] does consider cross-diffusion, it strongly relies on the presence of self-diffusion,
and for suitably controlled reaction rates the existence of global-in-time weak solutions has previously
been established in [12]. In contrast, in our situation a mere regularisation of the reaction rates is insuf-
ficient for constructing approximate weak solutions, which was one of our motivations for establishing
Theorem 1.2, case (H).

A new aspect of our approximation scheme is the idea of approximating the problem with vanishing
self-diffusion and uncontrolled flux (treated in Theorem 1.8) by (thermodynamically consistent) mod-
els featuring self-diffusion (as considered in case (H) of Theorem 1.2). This construction relies on a
second key ingredient: a stability result for the thermal part, namely the strong convergence of the
gradient in L2. Such stability results for elliptic and parabolic equations are classical, and have been
used, for instance, in the existence analysis of elliptic equations with measure data [5, 6, 4, 17].

Outline and notations. The remaining part of this paper is devoted to the proofs of Theorems 1.2
and 1.8. In Section 2 we introduce the transformation to the entropy variables and a regularised entropy
(Sec. 2.1), establish formal coercivity bounds for the entropy production as well as an estimate on the
flux term. In Section 3 we use elliptic methods and a fixed point theorem to construct a solution to a
time-discrete nonlinear regularised system, remove the elliptic regularisation (Prop. 3.3) and perform
an L2 estimate at the level of u (Lemma 3.4). In Section 4 we construct a global weak solution to the
time-continuous problem.

DOI 10.20347/WIAS.PREPRINT.2807 Berlin 2021



J. Fischer, K. Hopf, M. Kniely, A. Mielke 12

Some preliminary tools for proving Theorem 1.8 are gathered in Section 5. In particular, we provide
a weak chain rule for the time derivative of truncated solutions. The construction of a global renor-
malised solution is carried out in Section 6 by first proving some compactness properties to obtain a
limiting candidate. This limit is then shown to be a global renormalised solution by deriving an approx-
imate equation for appropriately truncated solutions and subsequently passing to the limit of infinite
truncation height. Some auxiliary results from the literature are recalled in the appendix (see page 39).

Notations. We use the following notations and conventions.

• For s ∈ R, we use the convention s+ = max{s, 0} and s− = min{s, 0} so that s = s+ + s−.
• In the notation of Lp and Sobolev spaces we usually do not explicitly state the underlying domain Ω. For

a Banach space X , we sometimes write Lp(X) to denote the Bochner space Lp(0, T ;X).
• We abbreviate ΩT := (0, T )× Ω.
• Unless otherwise stated, ∇ denotes the gradient with respect to the space variable x ∈ Ω, while for a

general function F (ai, . . . , aN ) (in several variables) we denote by DF its total derivative.
• The notation A . B for non-negative quantities A,B means that there exists a constant C ∈ (0,∞)

(only depending on fixed parameters) such thatA ≤ CB;A & B is defined asB . A, and byA ∼ B
we mean that both A . B and A & B hold true.
• Unless specified otherwise, C denotes a positive constant that may change from line to line.
• We usually neither indicate nor mention the dependence of constants on fixed parameters such as the

number I of species or the space dimension.
• (u, v)L2(Ω) =

´
Ω uv dx denotes the standard L2(Ω) inner product of u, v ∈ L2(Ω).

• Given a Banach space V , V ∗ denotes its topological dual and 〈u, v〉V ∗,V the dual pairing between
u ∈ V ∗ and v ∈ V .
• For real matrices A,B ∈ Rk×l we let A : B =

∑k
i=1

∑l
j=1AijBij .

• For a vector φ = (φ1, . . . , φI , φI+1) ∈ RI+1 we let φ′ = (φ1, . . . , φI).
• Abbreviate κ := maxi,j κj,i ∈ (0,∞). The dependence of our estimates on κ is typically not indicated

since κ remains uniformly bounded throughout our analysis. To indicate this, we occasionally also write
κj,i . 1.

2. ENTROPY TOOLS

2.1. Entropy variables. Here, we consider entropies of the form (1.5), where the equilibria wi, i ∈
{1, . . . , I}, are as specified in (B2), and σ̂ ∈ C2((0,∞)) is supposed to satisfy σ̂′′(s) < 0 for all
s > 0. This property ensures that the matrix D2S(Z) is negative definite for all Z ∈ (R>0)I+1, see
the proof of [50, Prop. 2.1]. We can then define a change of variables to the so-called entropy variables

W :=

(
y
v

)
:= −

(
DcS
∂uS

)
|(c,u)

= −DS(Z). (2.1)

The regularity and strict concavity property of the entropy density S ensure that the transformation

−DS : U := (R>0)I+1 → −DS(U), Z 7→ −DS(Z) = W

is well-defined and invertible. The choice of this transformation is motivated by the fact that it allows
us to rewrite the system Ż = − div(M(Z)D2S(Z)∇Z) as

Ż = div
(
M(Z)∇W

)
,

where here (c, u) = (−DS)−1(y, v) is to be understood as a function of (y, v). Such a transforma-
tion has proved useful in the construction of solutions to cross-diffusion systems with a formal entropy
structure (see e.g. [38, 10, 11, 30, 25, 44, 12, 13]). The main motivation for this transformation lies
in the fact that, thanks to the positivity of (−D2S) and the semi-positivity of M, the system in the
entropy variables is parabolic (in the sense of [2]): lettingH = H(W ) denote the Legendre transform
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of the convex function −S, we have Z = DH(W ), and hence the above system can be written as
d
dt

(DH(W )) = div(M(Z)∇W ) with convex H .

Definition (2.1) can be written more explicitly as

yi = log
(

ci
wi(u)

)
, v = −σ̂′(u)−

I∑
i=1

ci
w′i(u)

wi(u)
.

If the range of −DS equals RI+1, we can compute for any given W ∈ RI+1

Z = Z(W ) = (−DS)−1(W ).

In fact, the densities ci, u can be recovered from yi, v fairly explicitly: substituting ci
wi(u)

for exp(yi) =
ci

wi(u)
, we deduce v = −σ̂′(u) −

∑I
i=1 exp(yi)w

′
i(u). Thanks to strict concavity, for given y ∈ RI

the function

(0,∞) 3 s 7→ Ψ(s, y) := −σ̂′(s)−
I∑
i=1

exp(yi)w
′
i(s)

is strictly increasing. Denoting by Φ(·, y) its inverse, we have u = Φ(v, y) and

ci = wi(u) exp(yi) = wi(Φ(v, y)) exp(yi).

In our application (where S = S0 as in General Hypotheses), the range of −DS0 equals RI × R<0

(cf. (B4)) and thus fails to coincide with RI+1. To circumvent this issue we introduce an approximation
Sδ of S0 such that im(DSδ) = RI+1. This can be achieved by setting

Sδ(c, u) = S0(c, u)− δλ(u) δ ∈ (0, 1], (2.2)

where λ ≥ 0 is as in (1.6). Since im(λ′) = R, −DSδ : RI+1
>0 7→ RI+1 is indeed onto. Similar

approximations have been used in the analysis of population models [25, 44, 12] to deal with sublinear
transition rates. For the choice (2.2) of the entropy, the associated function Φ = Φδ is locally bounded,
i.e. (0 ≤)Φδ(v, y) ≤ C(|(v, y)|) for suitable C = Cδ and hence

0 ≤ Zi(W ) ≤ C(|W |) (2.3)

for all i ∈ {1, . . . , I+1}. Here, we can see another advantage of this approach: non-negativity of the
original variables is guaranteed by construction. Finally, note that since DcS0 = DcSδ, the Lyapunov
type hypothesis (R1) is preserved

DcSδ(c, u) ·R(c, u) ≥ 0 for all (c, u) ∈ (0,∞)I+1.

2.2. A priori estimates. Here, we gather a class of a priori estimates fundamental to our problem.
Since we want to apply these estimates also to certain regularised models to gain control on our
approximate solutions, the results will be stated in a somewhat more general form.

2.2.1. Entropy production estimates.

Lemma 2.1. Let S be of the form (1.5) for some strictly concave function σ̂ ∈ C2((0,∞)) and
equilibrium functions wi as in hp. (B2). Let M be given by (1.8) and fulfill (M1) and (B3). Further
suppose hypotheses (H) or, alternatively, suppose hypothesis (H’) with κ1,i = 0 for all i. Abbreviate
M(Z) := D2S(Z)M(Z)D2S(Z). There exists ε > 0 depending only on fixed parameters such
that for all ζ := (ξ, η) ∈ RI+1 and all (c, u) ∈ RI+1

≥0

ζTM(c, u)ζ ≥ ε
[ I∑
i=1

(
κ1,i|ξi|2 + κ0,i| 1√

ci
ξi|2
)

+ π1γ
2|η|2

]
,
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where, as before, γ(c, u) := −
(
σ̂′′(u) +

∑I
l=1

w′′l
wl
cl
)
.

Proof. We compute

ζTM(c, u)ζ =
I∑
i=1

mi| 1ci ξi −
w′i
wi
η|2 + π1

(
σ̂′′(u) +

I∑
i=1

w′′i
wi
ci

)2

|η|2,

where wi = wi(u), π1 = π1(c, u).

Using the bound |n+ ñ|2 ≥ 1
2
|n|2 − |ñ|2, we estimate

mi| 1ci ξi −
w′i
wi
η|2 ≥ 1

2
mi| 1ci ξi|

2 −mi|w
′
i

wi
η|2.

By (M1), we have on the one hand

mi| 1ci ξi|
2 & κ1,i|ξ1|2 + κ0,i| 1√

ci
ξi|2.

On the other hand, supposing (H’) with κ1,i = 0 for all i allows us to estimate

I∑
i=1

mi|w
′
i

wi
η|2 . −

I∑
i=1

κ0,i
w′′i
wi
ci|η|2 . π1γ

2|η|2 ≤ ζTM(c, u)ζ,

while under Hypotheses (H) we find using (H2) resp. (H3) and (H1)

|ci w
′
i

wi
η|2 . |π

1
2
1
w′′i
wi
ciη|2,

|
√
ci
w′i
wi
η|2 . |π

1
2
1
w′′i
wi
ciη|2 + |π

1
2
1 γη|2,

where the right-hand sides of the last two estimates are bounded above by |π
1
2
1 γη|2.

By our convention that maxj,i κj,i = κ . 1, this completes the proof of the assertion.

Let us now suppose that Z = (c1, . . . , cI , u) is a measurable function and that the gradients ∇Z
and∇W are defined in a suitable sense, where W = −DS(c, u). Then, defining (formally)

Q(c, u) := ∇W : (M(Z)∇W ), where W = −DS(c, u),

Q(c, u) :=

ˆ
Ω

Q(c, u) dx,
(2.4)

and

P (c, u) :=
I∑
i=1

(
κ1,i|∇ci|2 + κ0,i|∇

√
ci|2
)

+ π1γ
2|∇u|2,

P(c, u) :=

ˆ
Ω

P (c, u) dx,

(2.5)

Lemma 2.1 implies the existence of ε∗ > 0 such that

ε∗P(c, u) ≤ Q(c, u). (2.6)

(Observe thatQ agrees with Pdiff on page 8.)
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2.2.2. Entropy and flux bounds. To derive an upper bound for ci using the total entropy S(c, u) =´
Ω
S(c, u) dx, it is convenient to use the entropy relative-entropy estimate derived in [36, App. A.2].

For p > 1 we define the p-entropy function Up(w) = 1
p(p−1)

(
wp − pw + p − 1

)
≥ 0, which

is characterised by U ′′p (w) = wp−2 and Up(1) = U ′p(1) = 1. Recalling the Boltzmann function
λ(z) = z log z − z + 1, we have, for all p > 1 and c, w ≥ 0,

w λ
(
c
w

)
≥ p−1

p
λ(c)− (p−1)Up(w) ≥ p−1

p
λ(c)− 1

p
wp − 1. (2.7)

Lemma 2.2 (Upper and lower entropy bounds). Let S = S(c, u) have the form (1.5) and satisfy
Hypotheses 1.1 with S = S0, σ̂ = σ̂0, and 0 < w0 ≤ wi(u) ≤ Cβ

w(1+u)β , where β ∈ (0, 1) is
from (B5). Then, for all (c, u) ∈ [0,∞)I+1,

S(c, u) ≤ σ̂(u) + 2IβCwu+ I(2βCw+1)− (1−β)
I∑
i=1

λ(ci), (2.8)

S(c, u) ≥ σ̂(u) + I − I

min{w0, 1}
− 2

I∑
i=1

λ(ci). (2.9)

Proof. The upper estimate follows by applying (2.7) with p = 1/β > 1 and adding over i = 1, . . . , I ,
namely

S(c, u) ≤ σ(u)−
∑I

1

(
p−1
p
λ(ci)− (p−1)Up(wi(u))

)
≤ σ̂(u)− I +

∑I

1
wi(u)−

I∑
1

(
(1−β)λ(ci)− βCw(1+u)− 1

)
,

which gives (2.8) if we invoke wi(u) ≤ βCw(1+u) + 1− β.

The lower estimate (2.9) is obtained by using wi(u) ≥ w0 > 0, which leads to

S(c, u) ≥ σ̂(u) +
∑I

1

(
ci logw0 − λ(ci)

)
.

For w0 ≥ 1 we may simply drop the term ci logw0 ≥ 0 and obtain (2.9). For w0 ∈ (0, 1) we use the
the Young–Fenchel inequality

−ci logw0 = ci log
(

1
w0

)
≤ λ(ci) + λ∗

(
log
(

1
w0

))
= λ(ci) + 1

w0
− 1,

where λ∗ denotes the Legendre transform of λ. Estimate (2.9) now easily follows.

Estimates qualitatively equivalent to (2.8), (2.9) can also easily be obtained elementarily.

In the following lemma, we establish general bounds on the flux term. Before stating the assertion, let
us recall our convention that 0 ≤ κj,i . 1 for all j, i.

Lemma 2.3 (Control of the flux). LetA(Z) := −M(Z)D2S(Z), where S is of the general form (1.5)
for some strictly concave function σ̂ ∈ C2((0,∞)) and equilibrium functions wi as in hp. (B2). Let
M have the form (1.8) with (M1), (B3) and (B6), and assume that Z = (c, u) has non-negative
components and is such that P (c, u) given by (2.5) is a well-defined function.

If (H’) holds true and κ1,i = 0 for all i, then

|A(Z)∇Z| . max
i=1,...,I

(√
ci +

√
π1(Z)

)
P

1
2 (Z). (2.10)

If instead hypotheses (H) are fulfilled, then

|A(Z)∇Z| . max
i=1,...,I

(
ci + κ0,i +

√
π1(Z)

)
P

1
2 (Z). (2.11)
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Thus, in both cases, for any ξ ∈ C([0,∞)I+1) with supp ξ ⊆ {|Z| ≤ E}

|ξ(Z)A(Z)∇Z| . (E + 1)P
1
2 (Z). (2.12)

Proof. We first note that

|Aii(c, u)∇ci| . κ1,ici|∇ci|+ κ0,i

√
ci|∇
√
ci|

.
(
κ

1
2
1,ici + κ

1
2
0,i

√
ci
)
P

1
2 (Z).

(2.13)

Let us next turn to the coefficientsAi,I+1(Z) (given by (1.10)). Supposing (H’), we recall that κ1,i = 0
in this case, and estimate using (H2’) and (H1’)

|Ai,I+1(Z)| . κ0,i

√
ci
(w′′i
wi
ci
) 1

2 +
√
ci
(w′′i
wi
ci
) 1

2

. (κ0,i + 1)
√
ciπ

1
2
1 γ

and hence

|Ai,I+1(Z)∇u| . (κ0,i + 1)
√
ciP

1
2 (Z).

By our convention that κj,i . 1 for all j, i, we see that the RHS is bounded above by the RHS of (2.10).

Supposing instead (H), we estimate using (H2), (H3)

|Ai,I+1(Z)| . −aiπ
1
2
1
w′′i
wi
ci + π

1
2
1 γci

. (ai(c, u) + ci)π
1
2
1 γ

and deduce

|Ai,I+1(Z)∇u| . ((κ1,i + 1)ci + κ0,i)P
1
2 (Z).

Finally, we recall (cf. eq. (1.10)) that 0 ≤ AI+1,I+1(Z) = π1γ to infer

|AI+1,I+1(Z)∇u| . π
1
2
1 (Z)P

1
2 (Z). (2.14)

Put together, we obtain estimate (2.10) resp. (2.11).

3. APPROXIMATION SCHEME

In this and the subsequent section (Sections 3–4), we assume that all hypotheses of Theorem 1.2
hold true, and the main purpose of these sections is to prove Theorem 1.2. In the current section, we
construct solutions to an approximate time-discrete, regularised problem. In our approximate equa-
tions we replace the time derivative by a backward difference quotient Ż ≈ τ−1(Z − Zk−1) with
0 < τ � 1 denoting the size of the time step and Zk−1 corresponding to the solution at the previous
time step, and introduce an elliptic regularisation at the level of the entropy variables. Schemes of that
type have been proposed in [44] (see also [7, 43, 18] for a selection of earlier works).

Throughout this section, δ > 0 is kept fixed and we assume that S = Sδ is given by (2.2). Then,
the associated γ = γδ (see def. (1.9)) depends on δ, and we have γδ ≥ γ. To obtain good a priori
estimates, we will also consider a modified coefficient π1,δ converging, as δ → 0, to the function π1

considered in Theorem 1.2. The specific choice of π1,δ depends on whether (H’) or (H) are considered:

• Under assumption (H’), we choose π1,δ = π1γ
1
γδ

, which ensures that (H1’) is preserved for the
δ-model. Condition (H2’) remains obviously valid.
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• Let us now instead suppose (H). In this case, we simply let π1,δ(c, u) = π1(c, u) + δu2.

This ensures that π
1
2
1,δ(c, u)λ′′(u) &δ 1, where λ denotes the Boltzmann function (so that

λ′′(u) = 1
u

). Here, we need to point out that hp. (H3) remains true since uw
′
i(u)

wi(u)
. 1 as a

consequence of hp. (B2). (Indeed, wi(u) ≥ wi(u) − wi(0) =
´ u

0
w′i(v) dv ≥ uw′i(u) since

wi is concave.) The bounds (H1), (H2) for the corresponding δ-quantities are obvious.

Of course, the δ-dependence of π1 = π1,δ implies that M = Mδ is also δ-dependent. Crucial for
our subsequent analysis is the observation that thanks to the properties listed above, hypotheses (H)
resp. (H’) and thus the a priori estimates in Lemma 2.1 and Lemma 2.3 are equally true for the δ-
regularised model. The δ-dependencies will therefore not be explicitly indicated in the current section.
We also assume, in this section, that the reaction rates R = (Ri(Z))Ii=1 are globally bounded.
Possible dependencies on ‖Ri‖L∞ will always be indicated. These hypotheses regarding S and R
will be removed in Section 4 by approximation.

Given an approximate solution Zk−1 = (ck−1, uk−1) (at the previous time step) we are concerned
with constructing a solution at the subsequent time step. This amounts to solving a problem of elliptic
type obtained by the backward time discretisation. We therefore suppose in this section that

Zk−1 = (ck−1, uk−1) ∈ (L logL(Ω))I × L2(Ω)

is a given vector-valued function with non-negative components. We will further require the hypothesis

σ̂−(uk−1) ∈ L1(Ω),

which is non-redundant if σ̂(0+) = −∞. It ensures that the entropy
´

Ω
S(Zk−1) dx is finite (see

Lemma 2.2).

To construct a solution to the nonlinear elliptic problem in the entropy variables, it is convenient to
introduce a higher order regularisation of order m > d

2
, so that Hm(Ω)

c
↪→ Cb(Ω). The associated

regularisation parameter is denoted by ε > 0. To simplify notation we will often drop superscripts like
(·)I+1 etc. when denoting spaces of vector-valued functions.

Lemma 3.1. Given W̃ ∈ L∞ and letting Z̃ := (−DS)−1(W̃ ), there exists a unique W = (y, v) ∈
(Hm)I+1 satisfying for all φ = (φ′, φI+1) ∈ (Hm)I+1

τ

ˆ
Ω

(M(Z̃)∇W ) : ∇φ dx+ τε

∑
|α|=m

ˆ
Ω

∂αW · ∂αφ dx+

ˆ
Ω

W · φ dx


= −
ˆ

Ω

(Z̃ − Zk−1) · φ dx+ τ

ˆ
Ω

R(Z̃) · φ′ dx.

Proof. This follows from the Lax–Milgram theorem using the local boundedness of the functions M(·)
andR(·), and the fact that by (2.3), ‖Z̃‖L∞ ≤ Cδ(‖W̃‖L∞). (See e.g. [44, 13] for the proofs of rather
similar assertions).

We now construct a solution to the nonlinear problem.

Lemma 3.2. There exists W ∈ Hm such that for all φ ∈ Hm :

τ

ˆ
Ω

(M(Z)∇W ) : ∇φ dx+ τε
( ∑
|α|=m

ˆ
Ω

∂αW · ∂αφ dx+

ˆ
Ω

W · φ dx
)

= −
ˆ

Ω

(Z − Zk−1) · φ dx+ τ

ˆ
Ω

R(Z) · φ′ dx.
(3.1)

Here Z = (−DS)−1(W ).
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Proof. We want to apply the Leray–Schauder theorem (see [39, Theorem 11.3]). For this purpose, we
define a fixed point map

Γ : L∞ → L∞, W̃ 7→ W,

where W ∈ Hm c
↪→ L∞ denotes the solution obtained in Lemma 3.1.

We proceed in three steps.

Step 1: Γ is a continuous operator. Suppose that W̃j → W̃ in L∞ and let Wj = Γ(W̃j) and

Z̃j := (−DS)−1(W̃j). Then L := supj ‖W̃j‖L∞ <∞ and hence

‖Z̃j‖L∞ ≤ C(L).

Choosing φ = Wj in the equation for Wj we therefore get for θ > 0

τε‖Wj‖2
Hm ≤ C(L, θ, ‖Zk−1‖L1) + θ‖Wj‖2

L∞ . (3.2)

Using the embedding Hm ↪→ L∞, an absorption argument gives

‖Wj‖2
Hm ≤ C(L, τ, ε, ‖Zk−1‖L1).

Hence, there exists W∞ ∈ Hm such that, along a subsequence, Wj ⇀ W∞ in Hm, Wj → W∞ in
Cb(Ω). Observe that, after possibly passing to a subsequence, we can assume that Z̃j → Z̃ a.e. in
Ω and, by dominated convergence, also Z̃j → Z̃ in Lp for any p ∈ [1,∞). It is now easy to see that
W∞ satisfies for all φ ∈ Hm

τ

ˆ
Ω

(M(Z̃)∇W∞) : ∇φ dx+ τε

∑
|α|=m

ˆ
Ω

∂αW∞ · ∂αφ′ dx+

ˆ
Ω

W∞ · φ dx


= −
ˆ

Ω

(Z̃ − Zk−1) · φ dx+ τ

ˆ
Ω

R(Z̃) · φ′ dx.

By the uniqueness of solutions to the linear equation, we infer that W∞ = Γ(W̃ ).

The above reasoning shows that any subsequence of (W̃j) has a subsequence along which Γ con-
verges to Γ(W̃ ) in L∞. This implies that Γ(W̃j)→ Γ(W̃ ) in L∞. Hence Γ is continuous.

Step 2: Γ is a compact operator. Arguments similar to the proof of Step 1 show that the image of
any bounded set in L∞ under the map Γ is bounded in Hm (cf. (3.2)). Taking also into account the
compactness of the embedding Hm ↪→ L∞, we infer that the operator Γ is compact.

Step 3: A priori bound. Suppose thatW = γ1Γ(W ) for some γ1 ∈ (0, 1]. By hypothesis,W satisfies
for all φ ∈ Hm the equation

τ

ˆ
Ω

(M(Z)∇W ) : ∇φ dx+ τε

( ∑
|α|=m

ˆ
Ω

∂αW · ∂αφ dx+

ˆ
Ω

W · φ dx

)
= −γ1

ˆ
Ω

(Z − Zk−1) · φ dx+ γ1τ

ˆ
Ω

R(Z) · φ′ dx.

Choosing φ = W = −DS(Z) we obtain

τ

ˆ
Ω

(M(Z)∇W ) : ∇W dx+ τε

( ∑
|α|=m

ˆ
Ω

|∂αW |2 dx+

ˆ
Ω

|W |2 dx

)
= γ1

ˆ
Ω

(Z − Zk−1) ·DS(Z) dx− γ1τ

ˆ
Ω

R(Z) ·DcS(Z) dx

≤ γ1(S(Z)− S(Zk−1)).

(3.3)
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Choosing φ = (0, . . . , 0, 1)T further yields

γ1

ˆ
Ω

u dx = γ1

ˆ
Ω

uk−1 dx− ετ
ˆ

Ω

v dx ≤
ˆ

Ω

uk−1 dx+ ετC + 1
2
ετ‖v‖2

L2 .

Adding the last inequality to (3.3) yields upon absorption

γ1

ˆ
u dx+ τQ(c, u) + 1

2
τε
( ∑
|α|=m

‖∂αW‖2 + ‖W‖2
L2

)
≤ γ1

(
S(Z)− S(Zk−1)

)
+

ˆ
Ω

uk−1 dx+ ετC,

where Q(c, u) is defined in (2.4). Using Lemma 2.2 to estimate the RHS and applying standard
Hölder’s and Young’s inequality (to deal with integrals of sublinear functions of u), we can infer after
absorption (possibly increasing β < 1 in Lemma 2.2)

γ1cβ

I∑
i=1

ˆ
Ω

ci log+(ci) dx+ γ1
2

ˆ
Ω

u dx+ γ1‖σ̂−(u)‖L1 + τQ(c, u)

+ 1
2
τε

∑
|α|=m

‖∂αW‖2
L2 + ‖W‖2

L2


≤ ‖σ̂−(uk−1)‖L1+C

I∑
i=1

ˆ
Ω

ck−1
i log+(ck−1

i ) dx+ ‖uk−1‖2
L2 + C.

(3.4)

Here, we used the rough estimate δ‖λ(uk−1)‖L1 . ‖uk−1‖2
L2 + 1.

In particular, we have obtained the bound

‖W‖L∞ ≤ C‖W‖Hm ≤ C(‖ck−1‖L logL, ‖uk−1‖L2 , ‖σ̂−(uk−1)‖L1 , τ, ε).

Theorem 11.3 in [39] now yields the existence of a fixed point W = Γ(W ).

Letting γ1 = 1 in Step 3 of the proof Lemma 3.2 (see (3.3), (3.4)), we infer using the entropy production
estimate (2.6)

ε∗τP(c, u) + τε
( ∑
|α|=m

‖∂αW‖2
L2 + ‖W‖2

L2

)
≤ S(Z)− S(Zk−1), (3.5)

and

‖(c, u)‖L1 + ‖σ̂−(u)‖L1 + ε∗τP(c, u) + τε
( ∑
|α|=m

‖∂αW‖2
L2 + ‖W‖2

L2

)
≤ C(‖ck−1‖L logL, ‖uk−1‖L2 , ‖σ̂−(uk−1)‖L1). (3.6)

To proceed, we need to distinguish the cases (H) and (H’).

Let us first assume that hypotheses (H) hold true. Then, by the Sobolev embedding, the fact that

π
1
2
1 = π

1
2
1,δ &δ u, γδ &δ 1

u
and the definition (2.5) of P(c, u) = Pδ(c, u), we have

‖u‖L2 .δ ‖∇u‖L2 + ‖u‖L1 (3.7)

. C(‖ck−1‖L logL, ‖uk−1‖L2 , ‖σ̂−(uk−1)‖L1 , τ, ε∗, δ).

Under hypotheses (H’) it suffices to note that

|∇
√
u| .δ

√
γδ|∇u| . P

1
2
δ (c, u). (3.7’)
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We are now in a position to pass to the limit ε→ 0 in problem (3.1).

Proposition 3.3. Let A(Z) = −M(Z)D2S(Z). There exists Z = (c1, . . . , cI , u) with ci, u ≥ 0,
κ0,i
√
ci ∈ H1(Ω), κ1,ici ∈ H1(Ω) and u ∈ H1(Ω) in case (H),

√
u ∈ H1(Ω) in case (H’) such

that for all φ = (φ′, φI+1) ∈ W 1,∞(Ω)I+1

τ

ˆ
Ω

A(Z)∇Z : ∇φ dx = −
ˆ

Ω

(Z − Zk−1) · φ dx+ τ

ˆ
Ω

R(Z) · φ′ dx. (3.8)

Furthermore,

τε∗P(Z) ≤ S(Z)− S(Zk−1). (3.9)

Proof. By (3.6), (3.7) resp. (3.7’), and Sobolev embeddings there exists a (non-negative) vector-valued
function Z = (c, u) and a sequence εj ↘ 0 such that the associated solutions Wj = −DS(Zj) =
−DS(cj, uj) of Lemma 3.2 (with ε = εj) satisfy for suitable ε̃ = ε̃(d) > 0 :

(i) cj,i ⇀ ci in H1(Ω), cj,i → ci in L2+ε̃(Ω) and a.e. in Ω provided κ1,i > 0
(ii)
√
cj,i ⇀

√
ci in H1(Ω),

√
cj,i →

√
ci in L2+ε̃(Ω) and a.e. in Ω if κ0,i > 0

(iii) ∇uj ⇀ ∇u in L2(Ω), uj → u in L2+ε̃(Ω) and a.e. in Ω under hp. (H)

(iv) ∇√uj ⇀ ∇
√
u in L2(Ω),

√
uj →

√
u in L2+ε̃(Ω) and a.e. in Ω under hp. (H’).

Thanks to Lemma 2.3, hp. (B6) and the above convergence results (using in case (H) also the ele-
mentary Lemma 6.6), we further deduce

Aεj(Zj)∇Zj ⇀ A(Z)∇Z in L1+ε(Ω)

for some ε = ε(d) > 0. Observe that in case (H), owing to estimate (2.11), we here require the
hypothesis that κ1,i > 0 for all i to ensure L2+ε̃(Ω)-integrability of ci (and not only of

√
ci). By

boundedness and continuity, the passage to the limit in the reaction rates is immediate. The fact that

εj
(∑

|α|=m ‖∂αW‖L2 + ‖W‖L2

)
. ε

1
2
j and the above convergence results allow us to pass to the

limit in eq. (3.1) to obtain (3.8) for all φ ∈ Hm(Ω)I+1. A density argument then allows to extend this
identity in particular to all φ ∈ W 1,∞(Ω)I+1.

Inequality (3.5) and weak lower semi-continuity in L2 yield (3.9). Here, we also used the fact that
lim supj→∞ S(cj, uj) ≤ S(c, u), which follows from (i)–(iv)) and Fatou’s lemma applied to σ̂−(uj)

giving lim supj→∞
´

Ω
σ̂−(uj) dx ≤

´
Ω
σ̂−(u) dx.

Having removed the regularisation in the entropy variables, we derive an L2-energy estimate to up-
grade the regularity of u.

Lemma 3.4 (Energy estimate). The solution Z = (c, u) obtained in Prop. 3.3 satisfies the bound

2τ

ˆ
Ω

a(c, u)|∇u|2dx+

ˆ
Ω

u2 dx ≤
ˆ

Ω

(uk−1)2 dx. (3.10)

Proof. It follows from (3.8) that for all ψ ∈ W 1,∞(Ω)

τ

ˆ
Ω

a(c, u)∇u · ∇ψ dx = −
ˆ

Ω

(u− uk−1)ψ dx.

For L ∈ N consider uL := min{u, L}. Then, in view of estimate (2.14), (3.9) and hp. (B6), we have´
Ω
a(c, u)|∇uL|2dx < ∞, both in case (H) and in case (H’). Using an approximation argument,

one can now show that the above identity also holds for ψ = uL. (See for instance the proof of the
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L2-energy identity (6.6) for a detailed argument in a related, but somewhat more complex situation.)
Thus,

τ

ˆ
Ω

a(c, u)|∇uL|2dx+

ˆ
Ω

uuL dx =

ˆ
Ω

uk−1uL dx.

Sending L→∞, we infer

τ
∥∥a 1

2 (c, u)∇u
∥∥2

L2 + ‖u‖2
L2 ≤

ˆ
Ω

uk−1u dx ≤ 1
2
‖uk−1‖2

L2 + 1
2
‖u‖2

L2 ,

which yields the asserted bound (3.10).

4. GLOBAL WEAK SOLUTIONS

We recall that S = Sδ (see eq. (2.2)), P = Pδ, M = Mδ etc. (see the second paragraph of the
introductory part in Section 3), and apply Proposition 3.3 with R = R% defined by

R%(Z) =
R(Z)

%|R(Z)|+ 1
. (4.1)

In order to emphasise the δ-dependence of quantities like S(Z),P(Z), we will add the subscript (·)δ
and write Sδ(Z),Pδ(Z) etc.

Given a vector Zk−1 = (ck−1, uk−1) ∈ (L logL)I × L2, k ∈ N, with non-negative components
and such that ‖σ̂0,−(uk−1)‖L1 < ∞, we let (ck, uk) = Zk denote the solution Z of eq. (3.8) (with
S = Sδ, R = R%) obtained in Prop. 3.3. We also use the notation W k = (yk, vk) = −DSδ(ck, uk).
By construction and Lemma 3.4, we have (ck, uk) ∈ (L logL)I×L2 with non-negative components.
As a consequence of estimate (3.9), we further have ‖σ̂0,−(uk)‖L1 < ∞. Hence, given an initial
datum Z0 ∈ (L logL)I × L2 with ‖σ̂0,−(u0)‖L1 < ∞ and a time step size τ > 0, this allows us
to iteratively construct a sequence (Zk)k∈N, where Zk

i ≥ 0 for all i and Zk ∈ (L logL)I × L2 with
‖σ̂0,−(uk)‖L1 <∞ for all k ∈ N. Our goal is now to send τ, %, δ → 0 in order to construct a solution
to the original time-continuous problem.

4.1. Uniform estimates. Summing estimate (3.9) over the time steps from k = 1 to k = n ∈ N
yields

ε∗τ

n∑
k=1

Pδ(Zk) ≤ Sδ(Zn)− Sδ(Z0).

By estimate (3.10) we further have

2τ
n∑
k=1

ˆ
Ω

aδ(c
k, uk)|∇uk|2dx+

ˆ
Ω

(un)2 dx ≤
ˆ

Ω

(u0)2 dx.

Adding the previous two inequalities and recalling estimates (2.8), (2.9) (with S = S0, treating
δλ(u0) . 1 + (u0)2 separately), we deduce upon absorption

sup
n∈N

( I∑
i=1

ˆ
Ω

cni log cni dx+ ‖un‖2
L2 + ‖σ̂0,−(un)‖L1

)
+ ε∗τ

∞∑
k=1

Pδ(Zk)

+ τ
∞∑
k=1

ˆ
Ω

aδ(c
k, uk)|∇uk|2dx ≤ C

( I∑
i=1

‖c0‖L logL, ‖u0‖L2 , ‖σ̂0,−(u0)‖L1

)
.

(4.2)
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To simplify notation, we henceforth abbreviate

N (Z0) :=
I∑
i=1

‖c0
i ‖L logL + ‖u0‖L2 + ‖σ̂0,−(u0)‖L1 .

Lemma 4.1. Given T ∈ (0,∞) and N ∈ N suppose that τ = T/N . Let further δ ∈ (0, 1] and
s = 2d+2

2d+1
. Then there exists a finite constant C = C(N (Z0)) (depending also on ε∗ and κj,i) such

that

τ
N∑
k=1

‖Aδ(Zk)∇Zk‖sLs(Ω) ≤ C(N (Z0))(1 + T ). (4.3)

Proof. Below we abbreviate 1
s′

+ 1
s

= 1, q = 2s
2−s , θ =

1− 1
q

1
2

+ 1
d

. By Lemma 2.3 (with A = Aδ),

hp. (B6), estimate (4.2) and the Gagliardo–Nirenberg inequality (Lemma 6.4 with q, θ as defined here
and p = 1),

‖Aδ(Zk)∇Zk‖Ls(Ω) ≤ (Pδ)
1
2 (ck, uk)

(
(Pδ)

θ
2 (ck, uk) + ‖∇uk‖θL2 + 1

)
C
(
N (Z0)

)
.

When considering (H’), GNS will be applied to
√
ci instead of ci, and thanks to the time-uniformL1(Ω)

control of ci we could have chosen p = 2 in Lemma 6.4, thus somewhat improving the last estimate.
Since this would only lead to a minor improvement of the integrability of the flux term in case (H’), we
content ourselves with this somewhat suboptimal bound.
Since s(1+θ)

2
= 1, the previous estimate yields

‖Aδ(Zk)∇Zk‖sLs(Ω) ≤ C(N (Z0))

(
Pδ(ck, uk) + ‖∇uk‖2

L2 + 1

)
.

Taking the discrete time integral up to time T and using once more (4.2), we infer (4.3).

4.2. Limit (τ, %, δ)→ 0.

Proof of Theorem 1.2. To pass to the limit τ → 0 we can follow the approach in [16, 44, 12, 13]. Given
the sequence (Zk)k∈N constructed above, we define the piecewise constant interpolant function

Z(τ)(t, ·) = Zk if t ∈ ((k − 1)τ, kτ ].

We further let (c(τ), u(τ)) := Z(τ), W (τ) = −DS(Z(τ)) and define the discrete time derivative

∂
(τ)
t Z(τ)(t, ·) = 1

τ
(Zk − Zk−1) if t ∈ ((k − 1)τ, kτ ].

Let now T ∈ (0,∞) be fixed but arbitrary. Then, by (4.2),

‖c(τ)‖L∞(0,T ;L logL) + ‖u(τ)‖L∞(0,T ;L2) + ‖σ̂0,−(u(τ))‖L∞(0,T ;L1)

+

ˆ
(0,T )

Pδ(Z(τ)(t, ·)) dt+ ‖
√
aδ(Z(τ))∇u(τ)‖2

L2(ΩT ) ≤ C(N (Z0)).
(4.4)

Observe that since aδ & 1 (cf. (H1) resp. (H1’)), estimate (4.4) implies the bound

‖∇u(τ)‖2
L2(ΩT ) ≤ C(N (Z0)).

Next, for s as in Lemma 4.1, we have by (4.3)

‖Aδ(Z(τ))∇Z(τ)‖Ls(ΩT ) ≤ C(N (Z0), T ). (4.5)

In the remaining reasoning, we need to distinguish the cases (H) and (H’). We provide the details only
in the case (H), and then briefly describe how to modify the arguments to deal with case (H’). Thus,
let us first suppose (H).
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In order to control the reaction term, we need to upgrade the space-time integrability of (c, u). By the
Gagliardo–Nirenberg inequality (Lemma 6.4 with p = 1, q1 = 2 + 2

d
, θ as in (6.16) q1θ = 2), we

have for c = c(τ)

‖c‖q1Lq1 (ΩT ) ≤ C1

ˆ T

0

‖∇c‖q1θL2(Ω)‖c‖
q1(1−θ)
L1(Ω) dt+ C2T‖c‖q1L∞(L1)

≤ C(N (Z0), T ).

(4.6)

Similarly, applying Lemma 6.4 with p = 2, q2 = 2 + 4
d
, θ as in (6.16) (so that again q2θ = 2), we find

for u = u(τ)

‖u‖q2Lq2 (ΩT ) ≤ C1

ˆ T

0

‖∇u‖q2θL2(Ω)‖u‖
q2(1−θ)
L2(Ω) dt+ C2T‖u‖q2L∞(L1)

≤ C(N (Z0), T ).

(4.7)

We next assert that for r := min
{

2+ 2
d

q1
,

2+ 4
d

q2
, s
}
> 1 and r′ given by 1

r′
+ 1

r
= 1,

‖∂(τ)
t Z(τ)‖Lr(0,T ;(W 1,r′ (Ω))∗) ≤ C(N (Z0), T ). (4.8)

To show (4.8), we take φ ∈ W 1,r′(Ω) with ‖φ‖W 1,r′ (Ω) ≤ 1. The choice of r implies that r′ > d and

hence W 1,r′(Ω) ↪→ L∞(Ω). Thus, for any k ∈ N,∣∣ˆ
Ω

τ−1(Zk − Zk−1) · φ dx
∣∣ . ‖Aδ(Zk)∇Zk‖Ls(Ω) + ‖R%(Z

k)‖L1(Ω)

and hence ‖∂(τ)
t Z(τ)‖(W 1,r′ (Ω))∗ . ‖Aδ(Z(τ))∇Z(τ)‖Ls(Ω) +‖R%(Z

(τ))‖L1(Ω). Estimate (4.8) then
follows upon taking the Lrt norm and recalling (4.5), (4.6) and (4.7).

We can therefore apply the Aubin–Lions lemma in the version of [31, Theorem 1] for any T < ∞.
Choosing a sequence T →∞ and using a diagonal argument, then allows one to infer the existence
of a sequence (τ, %, δ)→ 0 and

c ∈ L∞(0,∞;L logL) with∇c ∈ L2((0,∞)× Ω),

u ∈ L∞(0,∞;L2) with∇u ∈ L2((0,∞)× Ω)

such that for any T > 0

(c(τ), u(τ))→ (c, u) in L2(ΩT ), (4.9)

(∇c(τ),∇u(τ)) ⇀ (∇c,∇u) in L2(ΩT ),

(c(τ), u(τ))→ (c, u) a.e. in ΩT , (4.10)

lim
τ→0

ˆ T

0

ˆ
Ω

∂
(τ)
t Z(τ) · φ dx dt = −

ˆ T

0

ˆ
Ω

Z · ∂tφ dx dt−
ˆ

Ω

Z0 · φ(0, ·) dx (4.11)

for any φ ∈ C∞c ([0, T )× Ω̄), and

∂
(τ)
t Z(τ) ∗⇀ ∂tZ in Lr(0, T ; (W 1,r′)∗), (4.12)

where the last two assertions are obtained as in [16, p. 2792f.].

Arguing as in the proof of Prop. 3.3 (using in addition (4.5)), one further has

Aδ(Z
(τ))∇Z(τ) ⇀ A(Z)∇Z in Ls(ΩT ). (4.13)

Also, by (4.4) and (4.9),∇
√
c

(τ)
i ⇀ ∇√ci in L2(ΩT ) for all i ∈ {1, . . . , I} with κ0,i > 0, and (using

also (4.13) and Lemma 6.5)
√
aδ(Z(τ))∇u(τ) ⇀

√
a(Z)∇u in L2(ΩT ).
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By (4.4), the above convergence results, and weak(-star) lower semi-continuity, we obtain in the limit
(τ, %, δ)→ 0

‖c‖L∞(0,T ;L logL) + ‖u‖L∞(0,T ;L2) + ‖σ̂0,−(u)‖L∞(0,T ;L1)

+ ‖a
1
2 (c, u)∇u‖2

L2(ΩT ) +

ˆ T

0

P(Z) dt ≤ C(N (Z0)).

Here, the bound for ‖c‖L∞(0,T ;L logL) and ‖σ̂0,−(u)‖L∞(0,T ;L1) was obtained using (4.10) and Fatou’s
lemma.

To infer equation (1.13), we sum eq. (3.8) (with Z = Zk, S = Sδ andR = R%) from k = 1 to k = N
(where τN = T ). The resulting equation can be written in the formˆ T

0

ˆ
Ω

Aδ(Z
(τ))∇Z(τ) : ∇φ dxdt = −

ˆ T

0

ˆ
Ω

∂
(τ)
t Z(τ) · φ dxdt

+

ˆ T

0

ˆ
Ω

R%(Z
(τ)) · φ′ dxdt.

(4.14)

Since this equation holds true for any T ′ ∈ (0, T ], the density of functions in Lr
′
(0, T ;W 1,r′(Ω))

which are piecewise constant in time (see [52, Prop. 1.36]) allows us to extend eq. (4.14) to time-
dependent test functions φ = (φ′, φI+1) ∈ Lr′(0, T ;W 1,r′(Ω))I+1. We then obtain in particularˆ T

0

〈∂tZ, φ〉 dt+

ˆ T

0

ˆ
Ω

A(Z)∇Z : ∇φ dxdt =

ˆ T

0

ˆ
Ω

R(Z) · φ′ dxdt (4.15)

for all φ ∈ L∞(0, T ;W 1,∞(Ω))I+1. Since W 1,r(0, T ; (W 1,r′)∗) ↪→ C([0, T ]; (W 1,r′)∗), we have
Z ∈ C([0, T ]; (W 1,r′)∗) and (4.11), (4.12) then imply that Z(t = 0, ·) = Z0 in (W 1,r′(Ω))∗ and
thus in particular in the (W 1,∞(Ω))∗-sense.

It remains to prove the conservation of the internal energy. Set V := W 1,r′(Ω) and let T < ∞
be arbitrary. The fact that ∂tu ∈ Lr(0, T ;V ∗) (where ∂tu is understood as the distributional deriv-
ative of the Bochner function u) implies that for any ψ ∈ V the function t 7→ (u(t, ·), ψ)L2(Ω) =
〈u(t, ·), ψ〉V ∗,V is absolutely continuous and for all 0 ≤ t1 ≤ t2 ≤ T

(u(t2, ·), ψ)L2(Ω) − (u(t1, ·), ψ)L2(Ω) =

ˆ t2

t1

〈∂tu(t, ·), ψ〉V ∗,V dt. (4.16)

On the other hand, choosing φ = (0, . . . , 0, φI+1) with φI+1(t, ·) ≡ χ[t1,t2](t) in equation (4.15)
shows that the RHS of (4.16) vanishes for ψ ≡ 1. Hence, for any t2 > 0 (u(t2, ·), 1)L2(Ω) =
(u(0, ·), 1)L2(Ω), which concludes the proof of Theorem 1.2 under hypotheses (H).

Let us now sketch the necessary modification under hypotheses (H’). Since κ1,i = 0, only ∇
√
c

(τ)
i

(but not ∇c(τ)
i ) is controlled in L2(ΩT ). In order to obtain compactness, we therefore have to apply

a nonlinear version of the Aubin–Lions lemma. Such a result covering our situation has been pro-
vided in [15]. Under the (suboptimal) growth hypotheses on the reactions for model (H’) and the flux
bound (4.5), we easily obtain a (τ, %, δ)-uniform bound of the form

‖
√
c

(τ)
i ‖L2(0,T ;H1(Ω)) + ‖∂tc(τ)

i ‖L1(0,T ;Hn(Ω)∗) ≤ C(data)

for sufficiently large n ∈ N (using the embedding W 1,s′(Ω)∗ ↪→ Hn(Ω)∗, which holds true e.g.

for n > d
2

+ 1). Applying [15, Theorem 3], we deduce that, along a subsequence, c(τ)
i → ci in

L1(0, T ;L1+ε(Ω)) for any ε ∈ [0, 1
(1− 2

d
)+

) and a.e. in ΩT . The remaining arguments are as before.
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5. PRELIMINARIES FOR THEOREM 1.8

From now on, we suppose Hypotheses 1.7 (in place of Hypotheses 1.1). We then let ε, % > 0 denote
small positive parameters, consider the Onsager matrix

Mε(c, u) := diag
(
mε

1, . . . ,m
ε
I , 0
)

+ π1(Z)µ⊗ µ,

where mε
i = cia

ε
i (c, u), aεi (c, u) ∼ εci + κ0,i, satisfy (M1) with κ1,i = ε > 0 for all i ∈ {1, . . . , I},

and choose the regularised reactionsR%(Z) = 1
1+%|R(Z)|R(Z) (cf. (4.1)). Since the choice M = Mε,

R = R% clearly satisfies Hypotheses 1.1 (with q1 = q2 = 0), Theorem 1.2 provides us with a family
of functions Z = (c, u) (depending on ε, % > 0) with the regularity

Aε(Z)∇Z ∈ Ls((0,∞)× Ω) for s := 2d+2
2d+1

, where Aε := −MεD2S0,

∂tZ ∈ Lsloc(0,∞;W 1,s′(Ω)∗) for s′ := 2d+ 2

emanating from the initial datum Z0 (in the W 1,∞(Ω)∗ sense) that satisfy for all T > 0 the weak
formulationˆ T

0

〈∂tZ, φ〉 dt−
ˆ T

0

ˆ
Ω

(Mε(Z)D2S0(Z)∇Z) :∇φ dxdt

=

ˆ T

0

ˆ
Ω

R%(Z) · φ′ dxdt

(5.1)

for any φ = (φ′, φI+1) ∈ L∞(0, T ;W 1,∞(Ω))I+1, enjoy the %-independent bound

‖c‖L∞(0,∞;L logL) + ‖u‖L∞(0,∞;L2)

+

ˆ T

0

ˆ
Ω

Pε(Z) dxdt+

ˆ T

0

ˆ
Ω

a(Z)|∇u|2 dxdt ≤ C(data),
(5.2)

where data := (‖c0‖L logL, ‖u0‖L2 , ‖σ̂(u0)‖L1), and where Pε(Z) denotes the quantity P (Z) de-
fined (2.5) with κ1,i = ε. These solutions conserve the internal energy, i.e.

´
u(t, x) dx =

´
u0(x) dx

for any t > 0, and for later usage, we further note the (ε, %)-uniform bound

‖∂tu‖Ls(0,T ;W 1,s′ (Ω)∗) ≤ C(data), (5.3)

which is a consequence of (5.2) and the bound (2.14) on the heat flux. The functions Z = Zε,% now
serve as approximate solutions to the model considered in Theorem 1.8.

In this section, we gather some technical tools and derive a renormalised formulation for the weak
solutions Z = (c, u). Throughout this section, ε, % > 0 will be kept fixed, and the dependence of Z
on ε and % will not be explicitly indicated.

As in [13] and [34], we employ the family of special cut-off functions

ϕEi (Z) := Ziφ

(∑I+1
k=1 Zk − E

E

)
+ 3E

(
1− φ

(∑I+1
k=1 Zk − E

E

))
for i ∈ {1, . . . , I} and Z ∈ RI+1 where φ ∈ C∞(R, [0, 1]) is a fixed non-increasing function with
the property φ = 1 on (−∞, 0] and φ = 0 on [1,∞).

The following properties of ϕEi are easily verified.

Lemma 5.1. The truncations ϕEi (Z) fulfill the following conditions.

(C1) ϕEi ∈ C∞((R+
0 )I+1).

(C2) There exists a constant K1 > 0 such that for all E > 0 and Z ∈ (R+
0 )I+1

|Z||D2ϕE(Z)| ≤ K1.
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(C3) For all E > 0, the set suppDϕEi is compact. More specifically, (DϕEi )(Z) = 0 for all Z ∈
RI+1 satisfying

∑I+1
j=1 Zj ≥ 2E.

(C4) For all j ∈ {1, . . . , I + 1} and Z ∈ (R+
0 )I+1, we have limE→∞ ∂jϕ

E
i (Z) = δij .

(C5) There exists a constant K2 > 0 such that |DϕEi (Z)| ≤ K2 holds true for all E > 0 and
Z ∈ (R+

0 )I+1.
(C6) For all Z ∈ (R+

0 )I+1 with
∑I+1

j=1 Zj < E, we have ϕEi (Z) = Zi.
(C7) For all j, k ∈ {1, . . . , I + 1} and K > 0, we have

lim
E→∞

sup
|Z|≤K

|∂j∂kϕEi (Z)| = 0.

(C8) For all Z ∈ (R+
0 )I+1, and E ∈ N, we have

ϕEi (Z) ≤ Zi + 3
I+1∑
j=1

Zj.

(C9) For all E ≥ E0 ≥ 0 and Z ∈ (R+
0 )I+1, we have

I∑
i=1

Zi ≥ E0 ⇒
I∑
i=1

ϕEi (Z) ≥ E0.

5.1. A weak chain rule for truncated solutions. The remaining part of this section is devoted to
deriving an evolution equation for ϕEi (Z), as asserted in the following lemma.

Lemma 5.2. For all T > 0, E ∈ N, i ∈ {1, . . . , I}, and ψ ∈ C∞([0, T ]×Ω) with ψ(T, ·) = 0, the
weak solution Z = (c, u) of eq. (5.1) satisfies the following equation:

−
ˆ

Ω

ϕEi (Z0)ψ(0, ·) dx−
ˆ T

0

ˆ
Ω

ϕEi (Z)
d

dt
ψ dxdt (5.4)

=−
I+1∑
j,k,l=1

ˆ T

0

ˆ
Ω

ψ ∂j∂kϕ
E
i (Z)Aεjl(Z)∇Zl · ∇Zk dxdt

−
I+1∑
j=1

ˆ T

0

ˆ
Ω

∂jϕ
E
i (Z)Aεjl(Z)∇Zl · ∇ψ dxdt

+
I∑
j=1

ˆ T

0

ˆ
Ω

ψ ∂jϕ
E
i (Z)R%,j(Z) dxdt.

The proof of this lemma is based on the techniques used in the proof of [13, Lemmas 11 and 12]. It
makes use of the mollifier ρη defined as follows.

Definition 5.3. Denote by ρ̃η the standard mollifier, i.e.

ρ̃η(x) := Cη−d exp

(
1

η−2|x|2 − 1

)
(5.5)

for |x| < η, ρ̃η(x) := 0 for |x| ≥ η, which satisfies ρ̃η ∈ C∞cpt(Rd) and
´
Rd ρ̃η(x) dx = 1, and set

ρη := ρ̃η ∗ ρ̃η. Further define Ωϑ := {x ∈ Ω | dist(x, ∂Ω) > ϑ} for ϑ > 0.

We will make use of the following basic properties satisfied by ρη and ρ̃η.
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Lemma 5.4 ([13], Lemma 10). Let ρη for η > 0 be the special mollifier from Definition 5.3, let u, v be
locally integrable functions on Ω where suppu ⊂ Ω4η, and let x ∈ Ω3η and x̃ ∈ B(x, η). Then,

ˆ
Ω

u ρη ∗ v dx =

ˆ
Ω3η

(
ρ̃η ∗ u

)(
ρ̃η ∗ v

)
dx, (5.6)

ˆ
B(x,3η)

ρη(x̃− y)u(y) dy =
(
ρη ∗ u

)
(x̃),

ˆ
B(x,3η)

ρη(x̃− y) dy = 1.

We can now turn to the proof of Lemma 5.2.

Proof of Lemma 5.2. As in [13] we first observe that for any i ∈ {1, . . . , I + 1} the expression´ T
0
〈∂tZi, ψ〉 dt in (5.1) (with φi = ψ vanishing at t = T ) can be rewritten in the distributional

form −
´ T

0

´
Ω
Zi

d
dt
ψ dxdt −

´
Ω
Z0,iψ(0, ·) dx. We next specify for i ∈ {1, . . . , I} in Lemma 6.3

(Lemma 4 of [34]) the variables vi := ci ∈ L2(0, T ;H1(Ω)) (which follows together with Lemma
6.4), vI+1 := u ∈ L2(0, T ;H1(Ω)), (v0)i := c0,i ∈ L1(Ω), (v0)I+1 := u0 ∈ L1(Ω), ξ := ϕEi ,
νi := 0, wi := R%,i(Z) ∈ L1(0, T ;L1(Ω)), wI+1 := 0,

zi := −
I+1∑
j=1

Aεij(Z)∇Zj ∈ Ls(0, T ;Ls(Ω,Rd)),

and zI+1 := −AεI+1,I+1∇ZI+1 ∈ Ls(0, T ;Ls(Ω,Rd)).
In the case of the better regularity z ∈ L2(0, T ;L2(Ω,Rd))I+1, we directly arrive at (5.4) by applying
L. 6.3.

In the general case, we proceed as in [13] and follow the steps in the proof of Lemma 4 on page 579
in [34]. In our situation this amounts to selecting a smooth ψ compactly supported in [0, T ) × Ω4η,
taking ρη ∗ ψ as a test function in (6.15), and integrating by parts the last term on the right-hand side.
This enables us to apply Lemma 5 in [34] with the choices

vi := ρη ∗ c, vI+1 := ρη ∗ u,

wi := ρη ∗R%,i(Z) + div
(
ρη ∗

I+1∑
j=1

Aεij(Z)∇Zj
)
,

wI+1 := div
(
ρη ∗ (AεI+1,I+1(Z)∇ZI+1)

)
.

As a consequence, we may replace the second line on page 580 in [34] by

−
I+1∑
j,k,l=1

ˆ T

0

ˆ
Ω

ψ ∂j∂kϕ
E
i (ρη ∗ Z) ρη ∗

(
Aεjl(Z)∇Zl

)
· ∇(ρη ∗ Zk) dxdt. (5.7)

This expression converges for η → 0 to the first line on the right-hand side of (5.4), which is proven
in Lemma 5.5 below and which concludes the proof for the case of test functions ψ being compactly
supported in [0, T ) × Ω. The corresponding situation (involving the fifth line on page 582 in [34]) of
test functions ψ being compactly supported in [0, T ) × U where U is a coordinate patch of Ω at the
boundary ∂Ω is treated similarly.

Lemma 5.5. The expression (5.7) converges for η → 0 to the first line on the right-hand side of (5.4).
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Proof. We start by rewriting (5.7) using (5.6) as

I+1∑
j=1

ˆ T

0

ˆ
Ω

ψ∇
(
∂jϕ

E
i (ρη ∗ Z)

)
·
(
ρη ∗

I+1∑
l=1

Aεjl(Z)∇Zl
)

dxdt

=
I+1∑
j=1

ˆ T

0

ˆ
Ω3η

J jη(t, x) ·Kj
η(t, x) dxdt

where

J jη(t, x) := ρ̃η ∗
(
ψ∇

(
∂jϕ

E
i (ρη ∗ Z)

))
, Kj

η(t, x) := ρ̃η ∗
I+1∑
l=1

Aεjl(Z)∇Zl.

The limit η → 0 is now performed by following the steps in [13].

Step 1: Bound onKj
η . We first calculate for (t, x) ∈ [0, T )×Ω3η by using Lemma 2.3, the hypothesis

(B6), and the Cauchy–Schwarz inequality

|Kj
η(t, x)| =

∣∣∣∣ ˆ
B(x,η)

ρ̃η(x− y)
( I+1∑
l=1

Aεjl(Z)∇Zl
)

(y) dy

∣∣∣∣
≤

I∑
i=1

ˆ
B(x,η)

ρ̃η(x− ·)
(
1 + u+ ci

)
P

1
2 (Z) dy

≤ Cη−d
[(ˆ

B(x,η)

(1 + u)2 dy

) 1
2

+
I∑
i=1

( ˆ
B(x,η)

c2
i dy

) 1
2
]

×
(ˆ

B(x,η)

P (Z) dy

) 1
2

.

By reusing the arguments on page 5921 in [13], we obtain

η−
d
2

( ˆ
B(x,η)

(1 + u)2 dy

) 1
2

≤ Cη1− d
2

(ˆ
B(x,3η)

|∇u|2 dy

) 1
2

+ C inf
x̃∈B(x,η)

|(ρη ∗ (1 + u))(x̃)|,

and an analogous relation involving ck. In particular,

|Kj
η(t, x)| ≤ Cη1−d

ˆ
B(x,3η)

(
|∇u|2 + P (Z)

)
dy

+ Cη−
d
2

(ˆ
B(x,3η)

(
|∇u|2 + P (Z)

)
dy
) 1

2
inf

x̃∈B(x,η)
|(ρη ∗ (1 + Z))(x̃)|

Step 2: Bound on J jη . The estimate on J jη can be inferred in the same way as in [13]; in particular, the
bound on page 5923 therein entails:

|J jη(t, x)| ≤ C min

{
η−1, η−

d
2

(ˆ
B(x,3η)

(
|∇u|2 + P (Z)

)
dy
) 1

2

}
.

Step 3: Bound on J jη · Kj
η . For (t, x) ∈ [0, T ) × Ω3η, we first consider the case that

∑I+1
k=1(ρη ∗

Zk)(x̃) ≥ 2E holds true for all x̃ ∈ B(x, η). Then, ∂jϕEi (ρη ∗ Z) = 0 on B(x, η) and, hence,
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J jη(t, x) = 0 = J jη(t, x)Kj
η(t, x). In the opposite case, there exists some x∗ ∈ B(x, η) with∑I+1

k=1(ρη ∗ Zk)(x∗) < 2E. As a result, we deduce

inf
x̃∈B(x,η)

|(ρη ∗ Z)(x̃)| ≤ |(ρη ∗ Z)(x∗)| < 2E.

The estimates on J jη(t, x) and Kj
η(t, x) now lead to

|J jη(t, x) ·Kj
η(t, x)| ≤ CEη−d

ˆ
B(x,3η)

(
|∇u|2 + P (Z)

)
dy. (5.8)

Step 4: Bound on J j0 ·K
j
0 . The pointwise limits of J jη and Kj

η read as follows:

J j0(t, x) := ψ∇
(
∂jϕ

E
i (Z)

)
,

Kj
0(t, x) :=

I+1∑
l=1

Aεjl(Z)∇Zl.

We infer from Lemma 2.3 that for all (t, x) ∈ [0, T )× Ω3η,

|J I+1
0 (t, x) ·KI+1

0 (t, x)| ≤
∣∣∣∣ψ I+1∑

k=1

∂j∂kϕ
E
i (Z)∇Zk

∣∣∣∣ I∑
i=1

(1 + u+ ci)P
1
2 (Z)

≤ C(E)
(
|∇u|2 + P (Z)

)
,

where theE-dependence of the constant C(E) arises from estimating 1 +u+ ci ≤ C(E) (note that
∂j∂kϕ

E
i (Z) is nonzero only for |Z| . E).

Step 5: Limit η → 0. We are now able to prove that

ˆ T

0

ˆ
Ω3η

(
J jη ·Kj

η − J
j
0 ·K

j
0

)
(t, x) dxdt→ 0

for all j ∈ {1, . . . , I + 1} as η → 0. Following [13], we decompose the domain of integration into the
sets {|Jη ·Kη − J0 ·K0| > ϑ} and {|Jη ·Kη − J0 ·K0| ≤ ϑ} for arbitrary ϑ > 0. We then infer
from (5.8) the bound

ˆ T

0

ˆ
Ω3η

|J jη(t, x) ·Kj
η(t, x)|χ{|Jη ·Kη−J0·K0|>ϑ}(t, x) dxdt

≤ CE

ˆ T

0

ˆ
Ω

gη
(
|∇u|2 + P (Z)

)
dydt

after defining gη(t, y) := η−d
´

Ω
χΩ3η(x)χB(x,3η)(y)χ{|Jη ·Kη−J0·K0|>ϑ}(t, x) dx. Next, we calculate

ˆ T

0

ˆ
Ω

|gη(t, y)| dydt ≤ CLd+1
(
{|Jη ·Kη − J0 ·K0| > ϑ}

)
.

As the right-hand side tends to zero for η → 0 (since J jη · Kj
η → J j0 · K

j
0 a.e. in (0, T ) × Ω), we

know that gη → 0 in L1((0, T )× Ω) and, hence, (up to a subsequence) gη → 0 a.e. in (0, T )× Ω.
We further have

gη
(
|∇u|2 + P (Z)

)
≤ C

(
|∇u|2 + P (Z)

)
∈ L1((0, T )× Ω)
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due to the uniform bounds (5.2). Lebesgue’s dominated convergence theorem now guarantees that
for η → 0,

ˆ T

0

ˆ
Ω3η

|J jη(t, x) ·Kj
η(t, x)|χ{|Jη ·Kη−J0·K0|>ϑ}(t, x) dxdt

≤ CE

ˆ T

0

ˆ
Ω

gη
(
|∇u|2 + P (Z)

)
dydt→ 0.

We now apply Lebesgue’s dominated convergence theorem to the parallel situation involving J j0 ·K
j
0

for any j ∈ {1, . . . , I + 1}. To this end, we use the convergence |(J j0 ·K
j
0)|χ{|Jη ·Kη−J0·K0|>ϑ} → 0

a.e. in (0, T )×Ω for η → 0 and the uniform bound |(J j0 ·K
j
0)|χ{|Jη ·Kη−J0·K0|>ϑ} ≤ C(E)

(
|∇u|2 +

P (Z)
)
∈ L1((0, T )× Ω). This yields

ˆ T

0

ˆ
Ω3η

|J j0(t, x) ·Kj
0(t, x)|χ{|Jη ·Kη−J0·K0|>ϑ}(t, x) dxdt→ 0

for η → 0. Finally, we conclude that∣∣∣∣ ˆ T

0

ˆ
Ω3η

(
J jη ·Kj

η − J
j
0 ·K

j
0

)
(t, x) dxdt

∣∣∣∣
≤
ˆ T

0

ˆ
Ω3η

|(J jη ·Kj
η − J

j
0 ·K

j
0)(t, x)|χ{|Jη ·Kη−J0·K0|>ϑ}(t, x) dxdt+ Cϑ

→ Cϑ

for η → 0. This completes the proof since ϑ > 0 can be chosen arbitrarily small.

6. CONSTRUCTION OF RENORMALISED SOLUTIONS

To simplify notation, we henceforth let % = ε, where we recall that by % > 0 we have denoted
the regularisation parameter associated with the reaction rates. The global weak solutions of Ż =
div(Aε(Z)∇Z) +R◦ε , where R◦ε := (Rε, 0)T , introduced in Section 5 will henceforth be denoted by
Zε, and in this section we aim to study the limit ε→ 0.

6.1. Convergence of a subsequence. In the following lemma, we establish a fundamental compact-
ness result, allowing to deduce weak and pointwise convergence of (cε, uε) along a subsequence. As
in [34, Lemma 2], pointwise convergence of cε is obtained by applying a version of the Aubin–Lions
lemma to (ϕEi (Zε))ε, i = 1, . . . , I , for everyE ∈ N. In contrast to [34], this is, however, not sufficient
to deduce the renormalised formulation for the limiting candidate obtained upon ε → 0. This issue
is due to the strong cross-diffusion effects driven by gradients of the internal energy density, which
result in a lack of a priori estimates of the first term on the RHS of eq. (5.4) that are uniform in ε > 0
and E ∈ N. The key to resolve this problem lies in a stability result, namely the strong convergence
of ∇uε in L2(ΩT ), which will be deduced from L2-energy identities for the internal energy density
(cf. (6.5) and (6.6) below).

Lemma 6.1. Let Hypotheses 1.7 hold true and denote byZε = (cε, uε) the global solution of eq. (5.1)
introduced above. Then, along a sequence ε↘ 0,Zε converges a.e. on [0,∞)×Ω to some limitZ =
(c, u) with ci log ci ∈ L∞(0,∞;L1(Ω)) for all i ∈ {1, . . . , I} and u ∈ L∞(0,∞;L2(Ω)). Further-
more, the weak convergence

√
cεi ⇀

√
ci and the strong convergence uε → u in L2(0, T ;H1(Ω))

hold true for all T > 0.
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Proof. In a first step, we recall that due to (5.2)–(5.3), uε is uniformly bounded in L2(0, T ;H1(Ω)),
while ∂tuε is uniformly bounded in Ls(0, T ;W 1,s′(Ω)∗). Employing the Aubin–Lions Lemma then
gives rise to a subsequence (uε)ε converging strongly in L2(0, T ;L2(Ω)) and pointwise a.e. in ΩT

to some u ∈ L2(0, T ;H1(Ω)). The additional regularity u ∈ L∞(0,∞;L2(Ω)) follows with Fatou’s
Lemma.

We now keep E fixed and aim to apply the Aubin–Lions Lemma as stated in [52, Corollary 7.9] for
proving the existence of a subsequence (ϕEi (Zε))ε converging strongly in L2(0, T ;L2(Ω)). To this
end, we will verify that ϕEi (Zε) is ε-uniformly bounded in the Bochner space L2(0, T ;H1(Ω)) and
that the distributional time derivative d

dt
ϕEi (Zε) is ε-uniformly bounded in the space of Radon mea-

suresM([0, T ], Hp(Ω)∗) if p > d/2 + 1.

The uniform boundedness of ϕEi (Zε) in L2(0, T ;H1(Ω)) follows from the boundedness of ϕEi itself,
the ε-uniform bound on∇

√
cεi in L2(ΩT ) and the identity

∇
(
ϕEi (Zε)

)
=

I+1∑
j=1

∂jϕ
E
i (Zε)∇Zε

j .

In fact, keeping in mind that suppDϕEi is a compact subset of RI+1, we see that ϕEi (Zε) is uniformly
bounded w.r.t. ε in L2(0, T ;H1(Ω)) for all fixed T > 0, E > 0, and i ∈ {1, . . . , I}.
We are left to establish an ε-uniform bound on the time derivative of ϕEi (Zε) inM([0, T ], Hp(Ω)∗),
the topological dual space of C0([0, T ], Hp(Ω)). For this purpose, we first extend (5.4) in Lemma 5.2
to allow for test functions ψ ∈ C∞([0, T ]× Ω), which do not necessarily vanish at time t = T . This
is achieved by a standard approximation procedure carried out on pages 5926–5927 in [13] and leads
toˆ

Ω

ϕEi (Zε(T, ·))ψ(T, ·) dx−
ˆ

Ω

ϕEi (Z0)ψ(0, ·) dx−
ˆ T

0

ˆ
Ω

ϕEi (Zε) d
dt
ψ dxdt (6.1)

=−
I+1∑
j,k,l=1

ˆ T

0

ˆ
Ω

ψ ∂j∂kϕ
E
i (Zε)Aεjl(Z

ε)∇Zε
l · ∇Zε

k dxdt

−
I+1∑
j,l=1

ˆ T

0

ˆ
Ω

∂jϕ
E
i (Zε)Aεjl(Z

ε)∇Zε
l · ∇ψ dxdt+

I∑
j=1

ˆ T

0

ˆ
Ω

ψ ∂jϕ
E
i (Zε)Rε,j(Z

ε) dxdt.

Observe that the LHS of eq. (6.1) is just the action of the distribution d
dt
ϕEi (Zε) on ψ ∈ C∞([0, T ]×

Ω). On the other hand, thanks to Lemma 2.3 (and in particular (2.12)), the compactness of suppDϕEi
and the continuous embeddingHp(Ω) ↪→ W 1,∞(Ω) for p > d

2
+1, the RHS of (6.1) can be bounded

above in modulus by

C(E)

(
1 +

ˆ T

0

ˆ
Ω

Pε(Z
ε) dxdt

)
‖ψ‖C([0,T ],Hp(Ω)),

where the first term is controlled by the initial data (cf. (5.2)). Since C∞([0, T ] × Ω) is dense in
C0([0, T ], Hp(Ω)), this implies the asserted ε-uniform bound for

∥∥ d
dt
ϕEi (Zε)

∥∥
M([0,T ],(Hp)∗)

.

Having proven the existence of a subsequence ϕEi (Zε) converging in L2(0, T ; L2(Ω)) (for bothE ∈
N and T > 0 fixed), there exists a further subsequence converging pointwise a.e. to a measurable
function vEi for all i ∈ {1, . . . , I} and allE ∈ N. This can be shown by applying a diagonal sequence
argument.

We can now follow the reasoning in [34]. Thanks to the uniform bounds on
∑I

j=1 c
ε
j log cεj inL∞(0,∞;L1(Ω))

as well as (C5) and (C6), the functionsϕEi (Zε) logϕEi (Zε) are uniformly bounded inL∞(0,∞;L1(Ω))
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w.r.t. ε > 0 and E ∈ N. The pointwise a.e. convergence of ϕEi (Zε) to vEi and Fatou’s Lemma now
entail an E-uniform bound on vEi log vEi in L∞(0,∞;L1(Ω)). We further proceed as in [34] to es-
tablish the pointwise a.e. convergence of vE = (vEi )i to some measurable c = (ci)i for E → ∞
satisfying ci log ci ∈ L∞(0,∞;L1(Ω)). We start with the elementary observation

I∑
j=1

ϕEj (Zε) + uε < E ⇒
I∑
j=1

Zε
j + uε < E ⇒ ϕEj (Zε) = Zε

j = ϕẼj (Zε)

for all j ∈ {1, . . . , I} and Ẽ > E, which follows from (C9) and (C6). Moreover, if
∑I

j=1 v
E
j + u =

limε→0

∑I
j=1 ϕ

E
j (Zε) + uε < E, then

∑I
j=1 ϕ

E
j (Zε) + uε < E for ε sufficiently small, and hence,

vEj = vẼj for all Ẽ > E. By the uniform bound on
∑I

j=1 v
E
j + u in L1([0, T ] × Ω) for arbitrary but

fixed T > 0 we know that
∑I

j=1 v
E
j + u ≥ E can hold true only on a set of points with vanishing

measure in the limit E →∞. As a consequence, vE = (vEi )i converges a.e. in ΩT to a measurable
function c = (ci)i satisfying, thanks to Fatou’s lemma, ci log ci ∈ L∞(0,∞;L1(Ω)).

Next, we prove that a subsequence cεi pointwise a.e. converges to ci for ε→ 0. The uniform bound on∑I+1
j=1 Z

ε
j in L1([0, T ]× Ω) guarantees that the measure of the subset of ΩT where

∑I+1
j=1 Z

ε
j ≥ E

holds true tends to zero for E → ∞, uniformly in ε. Therefore, ϕEi (Zε) 6= cεi can be true only on a
set of points with vanishing measure in the limit E →∞, uniformly in ε. For any ϑ > 0 we now find

Ld+1

({
(t, x) ∈ ΩT : |cεi (t, x)− ci(t, x)| > ϑ

})
≤ Ld+1

({
(t, x) ∈ ΩT : cεi (t, x) 6= ϕEi (Zε)(t, x)

})
+ Ld+1

({
(t, x) ∈ ΩT : |ϕEi (Zε)(t, x)− vEi (t, x)| > ϑ

2

})
+ Ld+1

({
(t, x) ∈ ΩT : |vEi (t, x)− ci(t, x)| > ϑ

2

})
.

The first term on the right-hand side tends to zero for E → ∞ as discussed just before. The sec-
ond term tends to zero for fixed E and ε → 0 due to the definition of vEi , whereas the last term
converges to zero for E → ∞ by the definition of ci. This ensures the convergence of cε to c in
measure and, hence, convergence a.e. for another subsequence. Combined with the uniform bound-
edness of cεi log cεi in L∞(0, T ;L1(Ω)) for every T > 0, this implies that cεi converges strongly to
ci in Lp(0, T ;L1(Ω)) for any p ∈ [1,∞) and i ∈ {1, . . . , I}. As a result of the strong conver-
gence of cεi to ci in L1(0, T ;L1(Ω)), we also obtain the distributional convergence of

√
cεi to
√
ci. In

combination with the uniform L2(0, T ;H1(Ω)) bound on
√
cεi , we deduce that a subsequence

√
cεi

weakly converges to
√
ci in L2(0, T ;H1(Ω)). Employing the convergence uε → u in the distribu-

tional sense and the uniform bound (5.3) on ∂tuε in Ls(0, T ;W 1,s′(Ω)∗), where s = 2d+2
2d+1

, we infer

that ∂tuε
∗
⇀ ∂tu in Ls(0, T ;W 1,s′(Ω)∗) with the limit ∂tu again satisfying (5.3) by weak-∗ lower

semi-continuity. The convergence results derived above are sufficient to pass to the limit ε→ 0 in the
equation for uε to infer

ˆ T

0

ˆ
Ω

a(c, u)∇u · ∇φ dxdt+

ˆ T

0

〈
∂tu, φ

〉
dt = 0, (6.2)

where the distributional convergence of a(cε, uε)∇uε to a(c, u)∇u can be obtained as before us-
ing Lemma 6.6. Using lower semi-continuity arguments and the above convergence results, we infer
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from (5.2) in particular the bounds

‖∇
√
c‖L2(ΩT ) +

∥∥∥√a∇u∥∥∥
L2(ΩT )

+
∥∥∥π 1

2
1 (σ̂′′ +

∑
i

ci
w′′i
wi

)∇u
∥∥∥
L2(ΩT )

≤ C(data). (6.3)

It remains to prove the strong convergence

∇uε → ∇u in L2(ΩT ). (6.4)

The key ingredient are the following L2-energy identities, valid for a.e. T > 0,

1

2

ˆ
Ω

uε(T, ·)2 dxdt− 1

2

ˆ
Ω

u2
0 dx+

ˆ T

0

ˆ
Ω

a(cε, uε)|∇uε|2 dxdt = 0, (6.5)

1

2

ˆ
Ω

u(T, ·)2 dx− 1

2

ˆ
Ω

u2
0 dx+

ˆ T

0

ˆ
Ω

a(c, u)|∇u|2 dxdt = 0. (6.6)

Let us first assume the validity of these equations and show how they entail (6.4).

Since for a.e. T > 0 the first term on the LHS of (6.5) converges to the corresponding term in (6.6),
the above identities imply thatˆ T

0

ˆ
Ω

a(cε, uε)|∇uε|2 dxdt→
ˆ T

0

ˆ
Ω

a(c, u)|∇u|2 dxdt.

Thanks to the weak convergence
√
a(cε, uε)∇uε ⇀

√
a(c, u)∇u in L2(ΩT ), we thus deduce

ˆ T

0

ˆ
Ω

∣∣∣√a(cε, uε)∇uε −
√
a(c, u)∇u

∣∣∣2 dxdt =

ˆ T

0

ˆ
Ω

a(cε, uε)|∇uε|2 dxdt

−
ˆ T

0

ˆ
Ω

(
2
√
a(cε, uε)

√
a(c, u)∇uε · ∇u−

∣∣√a(c, u)∇u
∣∣2) dxdt

−→ 0 as ε→ 0.

Since
√
a & 1 and (cε, uε)→ (c, u) a.e., this easily implies (6.4).

Proof of identities (6.5) and (6.6): we confine ourselves to the proof of (6.6), since (6.5) can be shown

along the same lines. Recall that s = 2d+2
2d+1

along with the conjugate exponent s′ = 2d + 2. The
function u is then known to satisfyˆ T

0

〈du
dt
, φ〉X∗×X dt+

ˆ T

0

ˆ
Ω

a(c, u)∇u · ∇φ dxdt = 0 (6.7)

for all φ ∈ Ls′(0, T ;X) where X := W 1,s′(Ω).

In order to prove identity (6.6), we use again the radially symmetric spatial mollifier ρ̃η from (5.5) and
let ρη = ρ̃η ∗ ρ̃η. We further take ζ ∈ C∞c ([0,∞)) such that ζ(z) = 1

2
z2 if z ∈ [0, 1] and ζ(z) = 0

if z ≥ 2, and then define ζE(z) = E2ζ( z
E

) for E ≥ 1. Observe that ζ ′′E(z) = ζ ′′( z
E

) and, hence,
supE,z |ζ ′′E(z)| = ‖ζ ′′‖C([0,∞)) < ∞. As in the proof of [34, Lemma 4], we make use of a partition

of unity χk on Ω, i.e. we consider functions χk ∈ C∞(Ω) satisfying
∑K

k=1 χk = 1 on Ω such that
each χ = χk is either compactly supported in Ω, or supported in some coordinate chart U ⊂ Ω that
is relatively open in Ω and has the property that U ∩ ∂Ω can be written as the graph of a suitable
Lipschitz function τ .

In the first situation, we have suppχ ⊂ Ω4η for η > 0 sufficiently small. We then choose the test
function

φEη := ρη ∗
(
ζ ′E(ρη ∗ u)χ

)
∈ L∞(0, T ;W 1,∞(Ω)) ⊂ Ls

′
(0, T ;X)
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in equation (6.7) with η ∈ (0, η). Since χ and φEη are compactly supported in Ω, we have
ˆ T

0

〈
d
dt
u, φEη

〉
X∗×X

dt =

ˆ T

0

ˆ
Ω

d
dt

(ρη ∗ u)ζ ′E(ρη ∗ u)χ dxdt

=

ˆ
Ω

ζE(ρη ∗ u(T, ·))χ dx−
ˆ

Ω

ζE(ρη ∗ u0)χ dx.

(6.8)

Notice that the equation for u (i.e. (6.7)) ensures sufficient (time) regularity of ρη ∗u to justify the above
lines. Hence, by dominated convergence,ˆ T

0

〈
d
dt
u, φEη

〉
X∗×X

dt→
ˆ

Ω

ζE(u(T, ·))χ dx−
ˆ

Ω

ζE(u0)χ dx (6.9)

as η → 0.

On the other hand, we assert thatˆ T

0

ˆ
Ω

a(c, u)∇u · ∇φEη dxdt→
ˆ T

0

ˆ
Ω

a(c, u)∇u · ∇
(
ζ ′E(u)χ

)
dxdt (6.10)

as η → 0. Reformulating the LHS asˆ T

0

ˆ
Ω

a(c, u)∇u · ∇φEη dxdt =

ˆ T

0

ˆ
Ω3η

Jη(t, x) ·Kη(t, x) dxdt

with Jη(t, x) := ρ̃η∗∇
(
ζ ′E(ρη∗u)χ

)
andKη(t, x) := ρ̃η∗(a(c, u)∇u) for all (t, x) ∈ (0, T )×Ω3η,

we can verify (6.10) by using the same arguments as in the proof of Lemma 5.5: in the current situation,
Step 1 reads

|Kη(t, x)| ≤ Cη1−d
ˆ
B(x,3η)

(
|∇u|2 + P (Z)

)
dy

+ Cη−
d
2

(ˆ
B(x,3η)

(
|∇u|2 + P (Z)

)
dy
) 1

2
inf

x̃∈B(x,η)
|(ρη ∗ (1 + u))(x̃)|.

Step 2 is slightly more complex. Here, we estimate

|Jη(t, x)| ≤
∣∣ρ̃η ∗ (χ∇ζ ′E(ρη ∗ u)

)∣∣+
∣∣ρ̃η ∗ (ζ ′E(ρη ∗ u)∇χ

)∣∣
≤ C min

{
η−1, 1 + η−

d
2

(ˆ
B(x,3η)

|∇u|2 dy
) 1

2
}
,

where the first part of the estimate follows as in [13], while the second part is trivially bounded in terms
of a constant that can be controlled by the last line. The upper bound from Step 3 is then given by

|Jη(t, x) ·Kη(t, x)| ≤ CEη−d
ˆ
B(x,3η)

(
1 + |∇u|2 + P (Z)

)
dy

for all (t, x) ∈ (0, T ) × Ω3η. Defining J0(t, x) := ∇
(
ζ ′E(u)χ

)
and K0(t, x) := a(c, u)∇u, Step

4 reduces to |J0(t, x)K0(t, x)| ≤ C(1 + |∇u|)a(c, u)|∇u| ∈ L1((0, T ) × Ω) for all (t, x) ∈
(0, T )× Ω3η and Step 5 can be reused in a one-to-one fashion to establish (6.10).

We are left to deal with the case that suppχ ⊂ U for some coordinate chart U ⊂ Ω as above that
satisfies U ∩ ∂Ω 6= ∅. Employing the notation of [34, Proof of Lemma 4] and using the fact that Ω is a
Lipschitz domain, there exist a set V ⊂ R+

0 ×Rd−1 (relatively open in R+
0 ×Rd−1) and a bi-Lipschitz

homeomorphism θ : V → U with the property that after appropriate rotations and translations of Ω
one has

θ(y) = (y1 + τ(y2, . . . , yd), y2, . . . , yd) (6.11)
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for some suitable Lipschitz function τ : Rd−1 → R and all y ∈ V . Note that detDτ = 1 a.e. in
Ω. We then let Θ : [0, T ] × V → [0, T ] × U , Θ(t, y) := (t, θ(y)), and introduce the transformed
variables

ĉ := c ◦Θ, û := u ◦Θ, χ̂ := χ ◦ θ.

We now extend these transformed variables by mirroring to [0, T ] × Va and Va, respectively, where
Va := V ∪ Vm and Vm := {y ∈ Rd | (−y1, y

′) ∈ V } using the short hand notation y′ :=
(y2, . . . , yd). More precisely,

ĉ(t, y1, y
′) := ĉ(t,−y1, y

′), û(t, y1, y
′) := û(t,−y1, y

′), χ̂(y1, y
′) := χ̂(−y1, y

′)

for all (y1, y
′) ∈ Vm. Furthermore, we extend θ to Va by imposing the same formula as in (6.11) but

now valid for all (y1, y
′) ∈ Va. Observe that for φ̂ := φ ◦Θ

ˆ T

0

ˆ
U

a(c, u)∇u · ∇φ dxdt =

ˆ T

0

ˆ
V

a(ĉ, û)
(
(Dθ)−T∇û

)
·
(
(Dθ)−T∇φ̂

)
dydt,

and a similar expression holds for the integral involving the time derivative. We will now show that an
identity analogous to (6.7) holds true for the extended quantities on Va in order to essentially reduce
the problem to the first situation where suppχ ⊂⊂ Ω. While on the set V one has

Dθ =


1 ∂2τ . . . ∂dτ

1
. . .

1

 , (Dθ)−T =


1
−∂2τ 1

...
. . .

−∂dτ 1

 ,

the corresponding matrices on Vm read

Dθ =


−1 ∂2τ . . . ∂dτ

1
. . .

1

 , (Dθ)−T =


−1
∂2τ 1

...
. . .

∂dτ 1

 .

As a consequence, we findˆ T

0

ˆ
U

a(c, u)∇u · ∇φ dxdt =
1

2

ˆ T

0

ˆ
Va

a(ĉ, û)
(
(Dθ)−T∇û

)
·
(
(Dθ)−T∇φ̂

)
dydt,

by using the symmetry w.r.t. y1 of the terms inside the gradients and the structure of the first column
of (Dθ)−T on V and Vm, respectively. Using similar (but simpler) symmetry properties for the integral
involving the time derivative, this allows us to inferˆ T

0

〈 d
dt
û, φ̂〉 dt =

ˆ T

0

ˆ
Va

a(ĉ, û)
(
(Dθ)−T∇û

)
·
(
(Dθ)−T∇φ̂

)
dydt,

where 〈 d
dt
û, φ̂〉 := 〈 d

dt
u, φ̂(t, (θ|V )−1)〉 + 〈 d

dt
u, φ̂(t, O ◦ (θ|V )−1)〉, where O(y) = (−y1, y

′). We
now choose the (symmetric) test function

φ̂ := φ̂Eη := ρη ∗ (ζ ′E(ρη ∗ û)χ̂),

where ρη, 0 < η � 1, and ζE , E � 1, are as before. The symmetry of φ̂Eη follows from the radial
symmetry of ρ̃η. Moreover, we have supp χ̂ ⊂⊂ Va. We can therefore argue essentially as in the first
situation (derivation of (6.9) and (6.10)), the main difference being the appearance of the pull-backs
of the gradients in the integral on the RHS, which are, however, harmless thanks to the boundedness
of (Dθ)−T . Concerning the term involving d

dt
û, we omit here a standard approximation procedure to
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justify the chain rule argument for the time derivative analogous to (6.8) (one can use e.g. the methods
in [52, Chapter 7]). In the limit η → 0, we then obtain
ˆ
Va

ζE(û(T, ·))χ̂ dy −
ˆ
Va

ζE(û0)χ̂ dy

=

ˆ T

0

ˆ
Va

a(ĉ, û)
(
(Dθ)−T∇û

)
· (Dθ)−T∇

(
ζ ′E(û)χ̂

)
dydt

or equivalentlyˆ
Ω

ζE(u(T, ·))χ dx−
ˆ

Ω

ζE(u0)χ dx =

ˆ T

0

ˆ
U

a(c, u)∇u · ∇
(
ζ ′E(u)χ

)
dxdt.

In combination, we infer thatˆ
Ω

ζE(u(T, ·))χk dx−
ˆ

Ω

ζE(u0)χk dx+

ˆ T

0

ˆ
Ω

a(c, u)∇u · ∇
(
ζ ′E(u)χk

)
dxdt = 0

for a.e. T > 0 and all k = 1, . . . , K , and thus, upon summation over k,ˆ
Ω

ζE(u(T, ·)) dx−
ˆ

Ω

ζE(u0) dx+

ˆ T

0

ˆ
Ω

a(c, u)|∇u|2ζ ′′E(u) dxdt = 0.

Lebesgue’s dominated convergence theorem finally allows us to pass to the limit E → ∞ for a.e.
T > 0 to establish (6.6).

6.2. Preliminary PDE for ϕEi (Z). As it is generally not possible to directly obtain the desired equa-
tion for ξ(Z) by passing to the limit ε → 0 in the equation for ξ(Zε), where ξ ∈ C∞([0,∞)I+1)
has compactly supported derivatives, we first pass to the limit ε → 0 in (6.1). Thanks in particular to
the strong convergence of ∇uε, this leads to an equation for the truncations ϕEi (Z) involving signed
Radon measures µEi that vanish in the limitE →∞. The Radon measures µEi arise due to the terms
in eq. (6.1) involving squared gradients of the form ∇cl · ∇ck and the lack of strong convergence in
L2 of∇√ci for all i.

Lemma 6.2. Let Z be the limiting function obtained in Lemma 6.1. Then, for all E, T > 0 and
ψ ∈ C∞([0, T ]× Ω) with ψ(T, ·) = 0 the function ϕEi (Z) satisfies the identity

−
ˆ

Ω

ϕEi (Z0)ψ(0, ·) dx−
ˆ T

0

ˆ
Ω

ϕEi (Z) d
dt
ψ dxdt (6.12)

=−
ˆ T

0

ˆ
Ω

ψ dµEi (t, x)

−
I+1∑
j,k=1

ˆ T

0

ˆ
Ω

ψ ∂j∂kϕ
E
i (Z)Aj,I+1(Z)∇u · ∇Zk dxdt

−
I+1∑
j,l=1

ˆ T

0

ˆ
Ω

∂jϕ
E
i (Z)Ajl(Z)∇Zl · ∇ψ dxdt

+
I∑
j=1

ˆ T

0

ˆ
Ω

ψ ∂jϕ
E
i (Z)Rj(Z) dxdt,

where µEi is a sequence of signed Radon measures with the property that

lim
E→∞

|µEi |([0, T )× Ω) = 0 (6.13)
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for all T > 0 and every i ∈ {1, . . . , I}. Moreover, under the same hypotheses we have

−
ˆ

Ω

Z0
I+1ψ(0, ·) dx−

ˆ T

0

ˆ
Ω

ZI+1
d
dt
ψ dxdt

= −
ˆ T

0

ˆ
Ω

AI+1,I+1(Z)∇ZI+1 · ∇ψ dxdt. (6.14)

Proof. We stress that (6.14) is a reformulation of (6.2), which serves as the analogue of (6.12) for the
internal energy but without the need for the functions ϕEi .

For proving (6.12), we aim to pass to the limit ε→ 0 in (6.1) (or equivalently in (5.4) with % = ε) using
the convergence properties of Zε to Z established in Lemma 6.1. The terms on the LHS converge
to the LHS of (6.12) thanks to dominated convergence. This argument also applies to the last term
on the RHS involving the reactions. Next, we make the crucial observation that, thanks to the strong
convergence of∇uε → ∇u inL2(ΩT ), the first terms on the RHS of (6.1) with l = I+1 (involving the
thermodiffusive cross terms) converge to the second term on the RHS of (6.12). Here, one also uses
the weak convergence ∇

√
cεj ⇀ ∇

√
cj in L2(0, T ;L2(Ω)), Lemma 2.3, the uniform bounds (5.2),

Lemma 6.5 and the fact that DϕEi is compactly supported. A similar (but simpler) reasoning allows
to pass to the limit in the penultimate line. Regarding the remaining terms in the first line of the RHS
of (6.1), we need to take more care since they involve products∇cεj ·∇cεk of merely weakly converging
functions. To treat these terms we define the signed Radon measures

µε,Ei :=
I+1∑
k=1

I∑
j=1

∂j∂kϕ
E
i (Zε)Aεjj(Z

ε)∇cεj · ∇Zk dxdt,

which are easily seen to be uniformly bounded in ε ∈ (0, 1] as long as E > 0 is kept fixed. A key
property is the fact that the measures µε,Ei can also be controlled uniformly in E, which will allow us
to infer (6.13). To see this, we note that thanks to the properties (C2) and (C3) of ϕEi , the pointwise

estimate (2.13) of Aεjj(Z
ε)∇cεj , the fact that P

1
2
ε (Zε) controls ε

1
2 |∇ck|+ |∇

√
ck| and the ε-uniform

control of∇uε in L2(ΩT ) (due to (5.2) and (H1)), we have

|µε,Ei |([0, T )× Ω) .
ˆ T

0

ˆ
Ω

(
Pε(Z

ε) + |∇uε|2
)

dxdt ≤ C(data).

By the weak-∗ compactness of Radon measures, there exists a subsequence µε,Ei that converges
weak-∗ in measure to some Radon measure µEi as ε→ 0.

For proving that µEi vanishes in the limit E →∞, we introduce the non-negative measures

νε,L := χ{|(cε,uε)|∈[L−1,L)}
(
Pε(Z

ε) + |∇uε|2
)
dxdt, L ∈ N,

which satisfy the bound
∑∞

L=1 ν
ε,L([0, T )× Ω) . C(data).

As before, we employ (C2) to estimate

|µε,Ei |([0, T )× Ω) .
∞∑
L=1

ˆ T

0

ˆ
Ω

χ{|(cε,uε)|∈[L−1,L)}|Zε||D2ϕEi (Zε)|
(
Pε(Z

ε) + |∇uε|2
)

dxdt

.
∞∑
L=1

νε,L([0, T )× Ω) sup
|Z̃|∈[L−1,L)

|Z̃||D2ϕEi (Z̃)|.
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Observe that since D2ϕEi is compactly supported, for fixed E ∈ N only finitely many terms on the
RHS are non-zero. This allows us to estimate

|µEi |([0, T )× Ω) ≤ lim inf
ε→0

|µε,Ei |([0, T )× Ω)

.
∞∑
L=1

lim inf
ε→0

νε,L([0, T )× Ω) sup
|Z̃|∈[L−1,L)

|Z̃||D2ϕEi (Z̃)|,

where the first inequality is due to the weak-∗ lower semi-continuity of the total variation of Radon
measures on an open set.

Next, applying Fatou’s Lemma (for the counting measure on N), we find

∞∑
L=1

lim inf
ε→0

νε,L([0, T )× Ω) ≤ lim inf
ε→0

∞∑
L=1

νε,L([0, T )× Ω) ≤ C(data).

By using (C2), (C7), the previous estimate, and the dominated convergence theorem (for the counting
measure on N), we are led to

lim sup
E→∞

|µEi |([0, T )× Ω) .
∞∑
L=1

lim inf
ε→0

νε,L([0, T )× Ω) lim
E→∞

sup
|Z̃|∈[L−1,L)

|Z̃||D2ϕEi (Z̃)|

.
∞∑
L=1

lim inf
ε→0

νε,L([0, T )× Ω) · 0 = 0.

This concludes the proof.

6.3. Proof of the existence of global renormalised solutions. We are now in a position to deduce
the equation for ξ(Z) as stated in Definition 1.6. In fact, we derive an approximate expression for
the weak time derivative of ξ(ϕE(Z), ZI+1) from which the equation for ξ(Z) then emerges when
passing to the limit E →∞.

Proof of Theorem 1.8. In order to prove that Z is a global renormalised solution of (1.7), let T ∈
(0,∞) be arbitrary. Keeping in mind that Z satisfies (6.12) and (6.14), the hypotheses of Lemma 6.3
are fulfilled if we define

vi := ϕEi (Z), (v0)i := ϕEi (Z0), vI+1 := ZI+1, (v0)I+1 := Z0
I+1,

νi :=− µEi , νI+1 := 0,

wi :=−
I+1∑
j,k=1

∂j∂kϕ
E
i (Z)Aj,I+1(Z)∇u · ∇Zk +

I∑
j=1

∂jϕ
E
i (Z)Rj(Z),

wI+1 := 0,

zi :=−
I+1∑
j,l=1

∂jϕ
E
i (Z)Ajl(Z)∇Zl, zI+1 := −AI+1,I+1(Z)∇ZI+1.
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As a consequence, the function ξ(ϕE(Z), ZI+1) satisfies for all ψ ∈ C∞([0, T ]×Ω) with ψ(T, ·) =
0 the estimate∣∣∣∣− ˆ T

0

ˆ
Ω

ξ(ϕE(Z), ZI+1) d
dt
ψ dxdt−

ˆ
Ω

ξ(ϕE(Z0), Z0
I+1)ψ(0, ·) dx

+
I+1∑

i,k,j,l=1

ˆ T

0

ˆ
Ω

ψ∂i∂kξ(ϕ
E(Z), ZI+1)∂jϕ

E
i (Z)Ajl(Z)∇Zl · ∇ϕEk (Z) dxdt

+
I+1∑
k,l=1

ˆ T

0

ˆ
Ω

ψ∂I+1∂kξ(ϕ
E(Z), ZI+1)AI+1,I+1(Z)∇ZI+1 · ∇ϕEk (Z) dxdt

+
I+1∑
i,j,l=1

ˆ T

0

ˆ
Ω

∂iξ(ϕ
E(Z), ZI+1)∂jϕ

E
i (Z)Ajl(Z)∇Zl · ∇ψ dxdt

+
I+1∑
l=1

ˆ T

0

ˆ
Ω

∂I+1ξ(ϕ
E(Z), ZI+1)AI+1,I+1(Z)∇ZI+1 · ∇ψ dxdt

+
I+1∑

i,j,k=1

ˆ T

0

ˆ
Ω

ψ∂iξ(ϕ
E(Z), ZI+1)∂j∂kϕ

E
i (Z)Aj,I+1(Z)∇u · ∇Zk dxdt

−
I+1∑
i=1

I∑
j=1

ˆ T

0

ˆ
Ω

ψ∂iξ(ϕ
E(Z), ZI+1)∂jϕ

E
i (Z)Rj(Z) dxdt

∣∣∣∣
≤ C‖ψ‖L∞ sup

ṽ∈RI
|Dξ(ṽ)|

I+1∑
i=1

‖µEi ‖M([0,T )×Ω).

In view of (6.13), the RHS converges to zero as E → ∞. To establish the convergence of the LHS,
we employ the pointwise a.e. convergence of ϕEi (Z) to Zi, the boundedness of DϕEi (cf. (C5)), the
compact support of Dξ, the regularity ∇√cj,∇u ∈ L2((0, T ) × Ω), Lemma 2.3 and the uniform
bounds (5.2). As in [34] and [13], we utilize the following auxiliary result: there exists a constantE0 > 0
such that for all E > E0 the relation

∑I+1
i=1 Zi ≥ E0 implies Dξ(ϕE(Z), ZI+1) = Dξ(Z) = 0 and

D2ξ(ϕE(Z), ZI+1) = D2ξ(Z) = 0. This result ensures that all terms involving derivatives of ξ are
zero if maxi Zi is larger than E0.

This auxiliary result is easily proven by choosing E0 > 0 such that suppDξ ⊂ BE0/
√
I+1(0). For

E > E0 and
∑I+1

i=1 Zi ≥ E0, we then get
∑I

i=1 ϕ
E
i (Z)+ZI+1 ≥ E0 from (C9). As a consequence,

Z, (ϕE(Z), ZI+1) /∈ BE0/
√
I+1(0) and the claim follows.

As T > 0 was chosen arbitrarily, we have thus shown that Z = (c, u) is a global renormalised
solution. The weak formulation of the equation for u already appeared in (6.2), while the conservation
of the energy results from the energy conservation of uε and the convergence uε → u in L2([0, T ]×
Ω). Finally, the bounds on the solution follow from Lemma 6.1 and (6.3).

APPENDIX

The following lemma recalls the approximate chain rule established in [34].

Lemma 6.3 ([34, L. 4]). Let Ω ⊂ Rd be a bounded domain with Lipschitz boundary. Let T > 0,
v ∈ L2(0, T ;H1(Ω)I+1), and v0 ∈ L1(Ω)I+1. Moreover, let νi ∈ M([0, T ) × Ω) be a Radon
measure, wi ∈ L1(0, T ;L1(Ω)), and zi ∈ L2(0, T ;L2(Ω)d) for i ∈ {1, . . . , I + 1}.
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Suppose that v solves for any ψ ∈ C∞([0, T ]× Ω) with ψ(T, ·) = 0 the identity

−
ˆ T

0

ˆ
Ω

vi(t, ·)
d

dt
ψ(t, ·) dxdt−

ˆ
Ω

(v0)iψ(0, ·) dx

=

ˆ
Ω×[0,T )

ψ dνi +

ˆ T

0

ˆ
Ω

ψ wi dxdt+

ˆ T

0

ˆ
Ω

zi · ∇ψ dxdt. (6.15)

Let ξ : RI+1 → R be a smooth function with compactly supported first derivatives. Then, there exists
a constant C(Ω) > 0 such that for all ψ ∈ C∞([0, T ]× Ω) with ψ(T, ·) = 0,∣∣∣∣− ˆ T

0

ˆ
Ω

ξ(v)
d

dt
ψ dxdt−

ˆ
Ω

ξ(v0(·))ψ(0, ·) dx−
I+1∑
i=1

I+1∑
j=1

ˆ T

0

ˆ
Ω

ψ∂i∂jξ(v)zi · ∇vj dxdt

−
I+1∑
i=1

ˆ T

0

ˆ
Ω

∂iξ(v)zi · ∇ψ dxdt−
I+1∑
i=1

ˆ T

0

ˆ
Ω

ψ∂iξ(v)wi dxdt

∣∣∣∣
≤ C(Ω)‖ψ‖L∞ sup

ṽ∈RI+1

|Dξ(ṽ)|
I+1∑
i=1

‖νi‖M([0,T )×Ω).

For the reader’s convenience, we further recall some classical results frequently used in this paper.

Lemma 6.4 (Gagliardo–Nirenberg inequality). Let 1 ≤ p < q, define

θ =

1
p
− 1

q

1
p

+ 1
d
− 1

2

, (6.16)

and suppose that θ ∈ (0, 1). There exists C1 ∈ (0,∞) such that for all z ∈ H1(Ω)

‖z‖Lq(Ω) ≤ C1‖∇z‖θL2(Ω)‖z‖1−θ
Lp(Ω) + C2‖z‖L1(Ω).

The following lemma is a corollary of the Dunford–Pettis theorem if p = 1. In fact, we only need the
simpler version for p ∈ (1,∞), which follows from standard results on weak convergence.

Lemma 6.5. Let p ∈ [1,∞) and suppose that fj, f : Ω → R are measurable functions and
gj, g ∈ Lp(Ω). If fj → f a.e. in Ω, supj ‖fj‖L∞(Ω) <∞ and gj ⇀ g in Lp(Ω), then

fjgj ⇀ fg in Lp(Ω).

The next observation allows us to deal with coefficients in our system that are singular near u = 0,
which may arise in the case of model (H).

Lemma 6.6. Suppose that aj, Vj, j ∈ N, are measurable functions on a bounded domain Ω satisfying

• Vj ⇀ V in L1(Ω)
• aj → a a.e. in Ω (and |aj| & 1 for all j)
• supj ‖ajVj‖L1+ε <∞ for some ε > 0.

Then ajVj ⇀ aV in L1+ε(Ω).

We remark that the hypothesis |aj| & 1 can be removed by writing ajVj = aj(χΩ̃j
Vj) + (1 −

χΩ̃j
)ajVj , where Ω̃j = {aj ≥ 1} a.e.

Proof. By weak compactness, there existsX ∈ L1+ε(Ω) such that, along a subsequence, ajVj ⇀ X
in L1+ε(Ω). Assuming |aj| & 1 a.e., we can invoke Lemma 6.5 to deduce that Vj ⇀

1
a
X in L1+ε(Ω)

and hence X = aV . The conclusion now follows from the observation that this argument applies to
any subsequence.
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[52] T. Roubíček. Nonlinear partial differential equations with applications, volume 153 of International Series of Numerical

Mathematics. Birkhäuser/Springer Basel AG, Basel, second edition, 2013.

DOI 10.20347/WIAS.PREPRINT.2807 Berlin 2021



Existence for ERDS 43

[53] C. Villani. On the Cauchy problem for Landau equation: sequential stability, global existence. Adv. Differential Equa-
tions, 1(5):793–816, 1996.

DOI 10.20347/WIAS.PREPRINT.2807 Berlin 2021


	1. Introduction
	1.1. Modelling
	1.2. Main results

	2. Entropy tools
	2.1. Entropy variables
	2.2. A priori estimates

	3. Approximation scheme
	4. Global weak solutions
	4.1. Uniform estimates
	4.2. Limit 

	5. Preliminaries for Theorem 1.8
	5.1. A weak chain rule for truncated solutions

	6. Construction of renormalised solutions
	6.1. Convergence of a subsequence
	6.2. Preliminary PDE for iE(Z)
	6.3. Proof of the existence of global renormalised solutions

	Appendix
	References

