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Abstract: We systematically investigate the generation of optical chirality patterns by applying
the superposition of two waves in three scenarios, namely free-space plane waves, evanescent
waves of totally reflected light at dielectric interface and propagating surface plasmon waves on a
metallic surface. In each scenario, the general analytical solution of the optical chirality pattern is
derived for different polarization states and propagating directions of the twowaves. The analytical
solutions are verified by numerical simulations. Spatially structured optical chirality patterns
can be generated in all scenarios if the incident polarization states and propagation directions
are correctly chosen. Optical chirality enhancement can be obtained from the constructive
interference of free-space circularly polarized light or enhanced evanescent waves of totally
reflected light. Surface plasmon waves do not provide enhanced optical chirality unless the
near-field intensity enhancement is sufficiently high. The structured optical chirality patterns
may find applications in chirality sorting, chiral imaging and circular dichroism spectroscopy.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

A chiral object can exist in two different forms that are non-superposable mirror images of each
other. This asymmetry, called chirality, can be found at scales ranging from a tiny molecule to a
giant galaxy. Similarly, an optical field can also be chiral. For example, circularly polarized light
(CPL) and elliptically polarized light (EPL) are chiral and possess different handedness. The
chirality of an optical field can be quantified by a conservative quantity called “optical chirality
(OC)” [1,2]

C ≡
ε0
2

E · ∇ × E + 1
2µ0

B · ∇ × B = −ε0ω
2

Im(Ẽ∗ · B̃), (1)

where ε0 and µ0 are the permittivity and permeability of free space, respectively, and ω is the
angular frequency of light. E and B are the real parts of the complex local electric Ẽ and magnetic
field B̃. This quantity has been linked to the characterization of dissymmetry of chiral molecules
[2]. This has led to great research interest in OC engineering for the enhancement of chiral
light-matter interaction. For instance, engineered “superchiral” fields [3–5] with larger OC than
that of CPL can enhance the chiroptical response of chiral molecules. In this context, various
OC engineering approaches using plasmonic nanostructures [6–23], dielectric nanostructures
[24–28] and one-dimensional photonic crystals [29,30] have been proposed to obtain enhanced
chiral optical fields.
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Apart from enhancing OC, spatially structuring OC has been shown promising for chirality
sorting [31–41], circular dichroism (CD) measurement [42] and super-resolution chiral imaging
[43]. For example, an optical field can induce a time-averaged optical force on chiral objects with
a reactive and a dissipative component, where the reactive one Fr.

χ = Re[cχ] cω∇C (c is speed of
light in vacuum, χ is mixed electric-magnetic dipole polarizability, i.e., chiral polarizability) is
proportional to the spatial gradient of OC patterns (∇C) and dependent on the enantiomeric form
of the chiral object (the sign of χ), indicating that spatially structured OC patterns will lead to
optical chiral forces. These chirality-dependent optical forces can potentially be used in sorting or
separating chiral objects [31]. Spatially modulated OC patterns with uniform intensity have also
been applied to acquire CD spectrum within a single camera snapshot [42]. Another example is
the recent theoretical demonstration of chiral structured illumination microscopy, where spatially
structured OC patterns are employed to form moiré patterns with chiral samples and thereby
obtain images of chiral domains at sub-wavelength resolution [43]. In addition, inhomogeneous
OC can be used to imprint chiral patterns in materials, e.g., liquid crystal polymers, which may
find applications in imaging the helicity of light [44].
According to Eq. (1), a chiral optical field can be obtained only when its electric field has

components which are parallel to and not in phase with its magnetic field. In the far-field region,
linearly polarized light (LPL) has no OC, whereas CPL has non-zero and spatially uniform OC.
Similar to the generation of light intensity patterns by the superposition of coherent waves, it’s
also possible to generate structured OC patterns using wave superposition [34,44,45]. In this
work, we comprehensively investigate the generation of OC patterns by the superposition of
(i) two free-space plane waves, (ii) the near field of two total internal reflection (TIR)-based
evanescent waves (EWs) and (iii) the near field of two propagating surface plasmon waves
(SPWs). Different polarization states and incident directions of the two waves are considered in
the three scenarios. Analytical solutions of the produced OC patterns for each scenario have
been derived and verified by numerical simulations. The results show that spatially structured
OC patterns can be generated in both far field and near field. OC enhancement can be obtained
in three conditions, namely the constructive interference of free-space CPL, enhanced near field
of TIR-based EWs, and SPWs with sufficiently high near-field intensity enhancement. This work
provides a guideline for generating OC patterns by the superposition of two waves.

2. Optical chirality generated by two-wave-superposition

2.1. Superposition of two plane waves

Cohen and co-workers studied the response of molecules to arbitrary geometry of electromagnetic
fields [46]. However, it was not mentioned how the required field for a certain light-matter
interaction can be generated. Here, we investigate the generation of OC patterns by the
superposition of two free-space plane waves which can be easily realized in common laboratories.
The wave vectors can be described as k1,2 = k0(sinα1,2 cos φ1,2x̂ + sinα1,2 sin φ1,2ŷ + cosα1,2ẑ),
where k0 is the wavenumber of light in vacuum, α1,2 is the incident angle, and φ1,2 is the
orientation angle respect to the +x axis, as depicted in Fig. 1. Here, the numbers “1” and “2”
denote the first and the second wave, respectively. The superposition of the two plane waves
creates an overlapping volume. In this work, we focus on the OC patterns on the xy plane with
the largest cross section. In principle, the polarization state of a plane wave can be described by
any arbitrary set of two orthogonal polarization components. For simplicity, we have chosen to
use the s-polarized (s-pol.) and p-polarized (p-pol.) components relative to the incident plane
to define the polarization state of each wave. The s-pol. component has a phase difference
∆θ1,2 with respect to the p-pol. one. When ∆θ1,2 = 0, the plane wave represents LPL. When
∆θ1,2 = ±π/2 with the equal amplitude of the s-pol. and p-pol. component, the plane wave
will be CPL. Other arbitrary ∆θ1,2 corresponds to EPL. The complex electric field of the s-pol.
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component for each plane wave is

Ẽ1s,2s = E1s,2seik1,2 ·r+i(−ωt+ϕ1,2)ei∆θ1,2 (− sin φ1,2x̂ + cos φ1,2ŷ), (2)

where r = xx̂ + yŷ + zẑ is the spatial coordinate, E1s,2s is the amplitude of the s-pol. component
and ϕ1,2 is the initial phase of each plane wave. Accordingly, the complex magnetic field of the
s-pol. component can be expressed as

B̃1s,2s =
k0
ω
E1s,2seik1,2 ·r+i(−ωt+ϕ1,2)ei∆θ1,2 (− cosα1,2 cos φ1,2x̂ − cosα1,2 sin φ1,2ŷ + sinα1,2ẑ).

(3)

Fig. 1. Schematic of two free-space plane waves at the same wavelength propagating along
the z axis at incident angle α1,2 and orientation angle φ1,2 respect to the +x axis.

For the p-pol. component, the complex magnetic and electric field are given by

B̃1p,2p = B1p,2peik1,2 ·r+i(−ωt+ϕ1,2)(− sin φ1,2x̂ + cos φ1,2ŷ), (4)

Ẽ1p,2p = −
c2k0
ω

B1p,2peik1,2 ·r+i(−ωt+ϕ1,2)(− cosα1,2 cos φ1,2x̂ − cosα1,2 sin φ1,2ŷ + sinα1,2ẑ), (5)

where B1p,2p is the magnetic field amplitude. Upon superposition, the total electric and magnetic
field are Ẽ =

∑
j Ẽj and B̃ =

∑
j B̃j (j= 1s, 2s, 1p, 2p), respectively. Taking k0 = ω/c and

Bj = Ej/c, the OC distribution of the superimposed plane waves calculated by Eq. (1) is

C = − ε0k02 Im{E1sE1pe−i∆θ1 − E1sE1pei∆θ1 + E2sE2pe−i∆θ2 − E2sE2pei∆θ2

+eiΦ[cos(φ1 − φ2) (E1sE2pe−i∆θ1 − cosα1 cosα2E1pE2sei∆θ2 )

+ sin(φ1 − φ2)(cosα2E1sE2se−i(∆θ1−∆θ2) + cosα1E1pE2p) − sinα1 sinα2E1pE2sei∆θ2 ],

+e−iΦ[cos(φ1 − φ2)(E1pE2se−i∆θ2 − cosα1 cosα2E1sE2pei∆θ1 )

− sin(φ1 − φ2)(cosα1E1sE2sei(∆θ1−∆θ2) + cosα2E1pE2p) − sinα1 sinα2E1sE2pei∆θ1 ]}
(6a)

Φ = k0[x(sinα2 cos φ2 − sinα1 cos φ1) + y(sinα2 sin φ2 − sinα1 sin φ1)

+z(cosα2 − cosα1)] + ϕ2 − ϕ1
. (6b)

From Eq. (6), one can get the analytical solution of OC for a specific case by setting the
corresponding quantities Ej, α1,2, φ1,2, ∆θ1,2 and ϕ1,2. In this work, we focus on two representative
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configurations of the two propagating plane waves, i.e., the cross-propagation (φ1 = 0, φ2 = π/2)
and the counter-propagation configuration (φ1 = 0, φ2 = π).

To characterize the OC enhancement, we set the amplitude of each electric field component Ej
to be the same and the intensity of the superimposed field to be the same as that of free-space
CPL. The normalized OC (noted as Ĉ) is then obtained by calculating the ratio C/CCPL, where
CCPL is the magnitude of the OC of CPL. Here, we show the results of some commonly used
cases where the two plane waves are LPL or CPL (∆θ1,2 = 0 or ±π/2) at the same incident angle
(α1 = α2 = α). The analytical solutions of the normalized OC for several exemplary cases are
calculated and listed in the second and the third column of Table 1. The results show that chiral
optical fields can be generated even with achiral LPL beams and the OC patterns are spatially
structured, as indicated by the position-dependent term sinΦ or cosΦ. On the other hand, using
CPL beams does not guarantee non-zero OC. For example, the superimposed field is achiral
(Ĉ = 0) if two CPL beams with the opposite handedness are applied.

Table 1. Analytical solutions of the normalized OC generated by the superposition of two
free-space plane waves cross-propagating (second column) and counter-propagating (third column)

at incident angles of α.

Finite-difference time-domain method (FDTD Solutions, Lumerical) has been applied to
numerically simulate the analytically predicted OC patterns in Table 1. The wavelength of
405 nm and incident angles of the plane waves α1 = α2 = 41◦ were used in the simulations. The
OC distribution of a left-handed CPL beam propagating in free space is also simulated in order to
provide the value of CCPL for normalization. Details of the simulations are in Appendix, Section
1. The analytically calculated patterns are well reproduced in the FDTD simulations (Figs.
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2(a)–2(j)). With LPL beams, OC patterns with spatially alternating handedness can be generated
(Figs. 2(a), 2(b) and 2(f)), except for the case of two counter-propagating p-pol. or s-pol. light
beams (Fig. 2(g)). The exception comes from the fact that there is no electric field component
parallel to the magnetic field component in the superimposed field. The amplitude of the OC
patterns generated by the superposition of two LPL beams is always smaller than CCPL. Noted
here that the OC in Figs. 2(b) and 2(f) will be zero when the incident angles α1 = α2 = 90◦,
as can be concluded from the analytical solutions in Table 1. If two CPL beams with the same
handedness are superimposed, structured and enhanced OC patterns with a single handedness
can be generated (Figs. 2(c) and 2(h)). The enhancement in OC is due to the constructive
interference of the electromagnetic fields. However, if two CPL beams possess the opposite
handedness, the superimposed field would exhibit zero OC (Figs. 2(d) and 2(i)). Finally, the
superposition of a LPL and a CPL beam can also lead to structured OC patterns possessing the
handedness determined by the incident CPL beam (Figs. 2(e) and 2(j)). In this case, the OC
enhancement is relatively lower compared to Figs. 2(c) and 2(h). For the cross-propagation and
counter-propagation configuration listed in the second and the third column of Table 1, the spatial
frequency of the structured OC patterns is kC =

√
2k0 sinα and kC = 2k0 sinα, respectively.

Basically, the spatial frequency increases with the increase of wavenumber k0, incident angle α
and orientation angle difference |φ1 − φ2 | of the two plane waves.

Fig. 2. Numerically simulated normalized OC patterns generated by the superposition of
(a,f) a s- and a p-pol. light beam; (b,g) two p- or s-pol. light beams; (c,h) two same-handed
CPL beams (e.g., left-handed); (d,i) two opposite-handed CPL beams and (e,j) a p-pol. and
a left-handed CPL beam. The two beams are (a-e) cross-propagating and (f-j) counter-
propagating at an incident angle of α1 = α2 = 41◦. The insets indicate the polarization
states of the two beams and the projection of the incident directions on the xy plane. Scale
bars: 2π/k0.

2.2. Superposition of two evanescent waves

Previously, it has been demonstrated two cross-propagating EWs with transverse electric
modes in TIR can generate patterns of local circular polarization in the optical near field
[47]. In this section, we derive the general solution of OC for the superposition of two
EWs in TIR. As depicted in Fig. 3, two incident plane waves with wave vectors k1,2 =
nk0(sinα1,2 cos φ1,2x̂ + sinα1,2 sin φ1,2ŷ + cosα1,2ẑ) are totally reflected at the prism-air interface
when the incident angle α1,2 is larger than the critical angle of TIR αc = sin−1(1/n), where n is the
refractive index of the prism. The superimposed near field is investigated within the overlapping
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area of the two EWs on the prism surface (xy plane, Fig. 3). Similar to the previous scenario,
each incident plane wave is defined by the s- and p-pol. component with a phase difference of
∆θ1,2. The incident angles are set to be the same, i.e., α1 = α2 = α. Under these conditions, the
complex electric and magnetic field of the EWs excited by the s- and p-pol. component of each
incident beam are

Ẽ1s,2s = ts(α)E1s,2se−κ(α)zeink0(x sinα cosφ1,2+y sinα sinφ1,2)+i(−ωt+ϕ1,2)ei∆θ1,2 (− sin φ1,2x̂ + cos φ1,2ŷ),
(7)

B̃1s,2s =
ts(α)
iω E1s,2se−κ(α)zeink0(x sinα cosφ1,2+y sinα sinφ1,2)+i(−ωt+ϕ1,2)ei∆θ1,2

[κ(α) cos φ1,2x̂ + κ(α) sin φ1,2ŷ + ink0 sinαẑ]
; (8)

B̃1p,2p = tp(α)B1p,2pe−κ(α)zeink0(x sinα cosφ1,2+y sinα sinφ1,2)+i(−ωt+ϕ1,2)(− sin φ1,2x̂ + cos φ1,2ŷ), (9)

Ẽ1p,2p = −
c2tp(α)
iω B1p,2pe−κ(α)zeink0(x sinα cosφ1,2+y sinα sinφ1,2)+i(−ωt+ϕ1,2)

[κ(α) cos φ1,2x̂ + κ(α) sin φ1,2ŷ + ink0 sinαẑ]
. (10)

Here, κ(α) = k0
√
(n sinα)2 − 1 determines the penetration depth of the EW, ts(α) = 2n cosα

n cosα+i κ(α)k0

and tp(α) = 2n cosα
cosα+in κ(α)k0

is the complex transmission coefficient determined by Fresnel equations

for the s- and p-pol. component, respectively [48]. E1s,2s is the electric field amplitude of
each incident s-pol. component, B1p,2p is the magnetic field amplitude of each incident p-pol.
component, and ϕ1,2 is the initial phase of each incident light beam. By taking into account all
the electric and magnetic field components from the two incident beams, the OC distribution of
the superimposed EWs is

C = −
ε0k0e−2κ(α)z

2
Im{−t(α)(2n2sin2α − 1)(E1sE1pei∆θ1 + E2sE2pei∆θ2 )

+ t∗(α)(E1sE1pe−i∆θ1 + E2sE2pe−i∆θ2 )

+ t∗(α) cos(φ1 − φ2)(E1sE2pe−i∆θ1eiΦ + E1pE2se−i∆θ2e−iΦ)

−t(α)[(n2sin2α − 1) cos(φ1 − φ2) + n2sin2α](E1pE2sei∆θ2eiΦ + E1sE2pei∆θ1e−iΦ)}

, (11a)

Φ = nk0 sinα[x(cos φ2 − cos φ1) + y(sin φ2 − sinφ1)] + ϕ2 − ϕ1. (11b)

Here, t(α) = ts(α)tp∗(α) = T(α)eiδ(α) with T(α) being the modulus and δ(α) the phase of t(α).
T(α) and δ(α) originally come from the transmittance and the transmission phase shift of the s-
and p-pol. component of the incident light in TIR. Once Ej, φ1,2, ∆θ1,2, and ϕ1,2 are chosen, the
analytical solution of OC can be obtained from Eq. (11). Again, for a fair comparison, we set
the amplitude of each incident electric field component Ej to be the same and the total intensity
of the incident light beams to be the same as that of free-space CPL and the OC values are
normalized to CCPL. The results of several cases for the cross-propagating (φ1 = 0, φ2 = π/2)
and counter-propagating (φ1 = 0, φ2 = π) EWs are listed in Table 2.

To verify the validity of the analytical solutions, we performed FDTD simulations on several
configurations of the incident beams. In the simulations, plane waves with wavelength of 405 nm
and incident angles α1 = α2 = 41◦ were totally reflected by a glass substrate with refractive index
of 1.5396. The theoretically predicted OC patterns are all well reproduced by FDTD simulations
(Figs. 4(a)–4(j)). Compared to the superposition of two free-space plane waves, the OC patterns
generated here are in the near field region bounded to the prism surface. The amplitude of the OC
patterns is influenced by the refractive index of the prism n (n>1) and the value of T(α), which is
about 6 when α is very close to the critical angle αc (see Appendix, Section 2). Therefore, the
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Fig. 3. Schematic of two incident plane waves totally reflected at the prism-air interface.
The incident angle is α1,2 and the orientation angle is φ1,2 respect to the +x axis.

Table 2. Analytical solutions of the normalized OC generated by the superposition of two
TIR-based EWs excited by two incident plane waves cross-propagating (second column) and

counter-propagating (third column) at incident angles of α.
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near-field OC can be enhanced by applying the TIR-based EWs. For example, the superposition
of the EWs of two cross-propagating totally reflected beams with orthogonal polarization state,
e.g., s-pol. and p-pol., yields a pattern with enhanced OC (Fig. 4(a)) compared to the pattern
obtained with two far-field cross-polarized beams (Fig. 2(a)). However, no OC can be generated
by using other configurations of two incident LPL beams (Figs. 4(b), 4(f) and 4(g)). Even
higher enhancement in the OC with spatially invariant handedness (Fig. 4(c)) can be generated
by the interference of the EWs of two totally reflected CPL beams with the same handedness.
Interestingly, the superposition of two cross-propagating EWs excited by two incident CPL beams
with the opposite handedness can lead to a non-zero structured OC pattern (Fig. 4(d)). This is
very different from the superposition of two far-field CPL beams with the opposite handedness,
which results in zero OC (Fig. 2(d)). By analyzing the corresponding solution in Table 2, we
found that the non-zero OC comes from the term δ(α), which is related to the transmission phase
shift of the s- and p-component induced in TIR. By applying two totally reflected CPL beams
with the opposite handedness in counter-propagation configuration, the OC of the superimposed
EWs remains zero (Fig. 4(i)). This is similar to the case of two counter-propagating far-field CPL
beams with the opposite handedness (Fig. 2(i)). Finally, the superposition of the EW of a LPL
beam and that of a CPL beam in cross-propagation configuration (Fig. 4(e)) leads to a structured
OC pattern with relatively lower OC enhancement compared to Fig. 4(c). If enhanced OC with
uniform spatial distribution is needed, one may employ two counter-propagating CPL beams
with the same handedness (Fig. 4(h)) or counter-propagating CPL and LPL beam (Fig. 4(j)).

Fig. 4. Numerically simulated normalized OC patterns generated by the superposition of
two TIR-based EWs excited by (a,f) a s- and a p-pol. light beam; (b,g) two p- or s-pol. light
beams; (c,h) two same-handed CPL beams (e.g., left-handed); (d,i) two opposite-handed
CPL beams and (e,j) a p-pol. and a left-handed CPL beam. The two incident beams are (a-e)
cross-propagating and (f-j) counter-propagating at an incident angle of α1 = α2 = 41◦. The
insets indicate the polarization states of the two incident beams and the projection of the
incident directions on the xy plane. Scale bars: 2π/k0.

Another important feature of the OC pattern generated by the TIR-based EWs is that, with the
same orientation angle difference |φ1 − φ2 |, the spatial frequency is n times larger than that in
the scenario of far-field plane waves. This can be easily confirmed by identifying the finer OC
stripes in Figs. 4(a), 4(c) and 4(e) compared to those in Figs. 2(a), 2(c) and 2(e). It is a direct
consequence of the larger wave vector of EWs compared to that of the free-space plane waves.
For trapping and sorting applications, enhanced OC with higher spatial frequency provides larger
spatial gradient of the OC and thus a larger reactive component of the chiral optical force [31].
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For high resolution chiral domain imaging [43], higher spatial frequency of the OC pattern
promises higher spatial resolution.

2.3. Superposition of two surface plasmon waves

To further increase the spatial frequency of the OC pattern, onemay exploit surface plasmonwaves.
In this section, we derive the general analytical solution of OC generated by the superposition of
two SPWs propagating in arbitrary in-plane (xy plane) directions φ1,2 respect to the +x axis (Fig.
5(a)). Considering the transverse magnetic nature of the SPWs, the magnetic field of each SPW
is described by

B̃1,2 = BSPeiqzeikSP(x cosφ1,2+y sinφ1,2)+i(−ωt+ϕ1,2)(− sin φ1,2x̂ + cos φ1,2ŷ) , (12)

where BSP is the magnetic field amplitude and ϕ1,2 is the initial phase of each SPW. kSP =
kSP ′ + ikSP ′′ and q = q′ + iq′′ are the in-plane and out-of-plane (along z axis) complex wave
vectors satisfying the relationship kSP2 + q2 = (ω/c)2. Accordingly, the electric field of each
SPW can be expressed as

Ẽ1,2 = −
c2

iω
BSPeiqzeikSP(x cosφ1,2+y sinφ1,2)+i(−ωt+ϕ1,2)(−iq cos φ1,2x̂ − iq sin φ1,2ŷ + ikSPẑ) , (13)

and the OC distribution of the superimposed SPWs is

C = −ε0q′ESP
2e−2q

′′ze−kSP
′′[x(cosφ1+cosφ2)+y(sinφ1+sinφ2)] sin(φ1 − φ2) sinΦ, (14a)

Φ = kSP ′[x(cos φ2 − cos φ1) + y(sin φ2 − sinφ1)] + ϕ2 − ϕ1, (14b)

where ESP is the electric field amplitude of each SPW, and the two exponential terms denote the
out-of-plane and in-plane damping factors, respectively. Equation (14) indicates that the OC
of the superimposed SPWs is proportional to q′, the real part of the out-of-plane wave vector
of the SPWs. It is worth noting that the out-of-plane wave vector of SPWs possesses a small
but non-zero real part (see Appendix, Section 3), whereas that of the EWs in TIR is purely
imaginary. This is an important difference between these two near fields and is the reason why the
superposition of the EWs excited by two totally reflected p-pol. light beams is achiral (Figs. 4(b)
and 4(g)). Equation (14) also suggests that a near-field OC pattern can be generated as long as
the propagating directions of the two SPWs are not parallel to each other, i.e., sin(φ1 − φ2) , 0.

Fig. 5. Generation of OC patterns by the superposition of two SPWs. (a) Schematic of two
SPWs propagating in arbitrary in-plane directions φ1,2 respect to the +x axis. Numerically
simulated normalized OC patterns generated by (b) two cross-propagating SPWs and (c)
two counter-propagating SPWs. The insets in (b) and (c) show the top views of the SPWs.

To verify the analytical prediction, the near-field OC patterns are numerically simulated using
the FDTD method. Mode sources with wavelength of 405 nm have been used to launch the SPWs
on a 57 nm silver film coated on a glass substrate with refractive index of 1.5396. The orientation
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angles of the SPWs are set to φ1 = 0, φ2 = π/2 for cross-propagation and φ1 = 0, φ2 = π
for counter-propagation configuration. The superposition of two propagating SPWs results in
non-zero OC (Fig. 5(b)), except for the case of counter-propagation configuration (Fig. 5(c)).
The magnitude of the OC pattern in Fig. 5(b) decreases along the propagating directions of the
SPWs because of the plasmon damping. To quantify the OC enhancement relative to free-space
CPL, a factor m which describes the field intensity enhancement between the excitation light
and the excited SPWs should be considered. This factor depends on the methods used for
photon-to-plasmon coupling, e.g., Kretschmann configuration at the best coupling angle yields
m ∼ 102 [49]. According to the simulated OC values normalized to CCPL (Fig. 5(b)), an OC
enhancement larger than 1 requires m to be at least 50. From Eq. (14), the amplitude of the OC
on the metal surface (z ∼ 0) depends on the real part of the out-of-plane wave vector q′ and the
near-field intensity. For SPWs, the quantity q′ is about two orders of magnitude smaller than
the wavenumber of the light in vacuum k0 (see Appendix, Section 3). Therefore, within the
interference area, the enhancement of OC is always smaller than that of the near-field intensity.
Nevertheless, the spatial frequency of the structured OC pattern generated here is higher than the
corresponding cases in the previous two scenarios owing to the relatively large wave vector of
the SPWs.

3. Conclusion

We have theoretically investigated the generation of OC patterns by the superposition of two
waves in three scenarios, namely free-space plane waves, TIR-based EWs and propagating SPWs.
In each scenario, the general analytical solution of OC is derived and several practically realizable
configurations are discussed. The analytically predicted OC patterns are all well reproduced by
FDTD numerical simulations. The results show that spatially structured OC patterns can be
generated with far-field waves as well as near-field EWs and SPWs. Enhancement in OC can be
obtained from the constructive interference of free-space CPL, the enhanced EWs in TIR, and
the SPWs with sufficiently high intensity enhancement. This work may serve as a guideline for
generating OC patterns by two-wave-superposition for applications in chirality sorting, chiral
imaging and snapshot CD measurement.

Appendix

1. Method for the numerical simulation

To verify the analytical predictions, three-dimensional full-wave FDTDmethod (FDTD Solutions,
Lumerical) has been employed to simulate the OC patterns. The left-handed CPL was simulated
by superposing two plane waves at orthogonal polarization state with a phase difference of π/2.
The electric field amplitude of each plane wave was set to 1V/m and the simulated magnitude of
OC was 1.3× 10−4 J/m4. In the first two scenarios, plane wave sources were used. In the scenario
of SPWs, mode sources were used to inject the propagating SPWs. The amplitude of each mode
source was set to 1V/m, and the simulated OC was multiplied by the intensity enhancement factor
m. The refractive index of the glass substrate in the scenarios of TIR-based EWs and SPWs has
been set to 1.5396. For the scenario of SPWs, silver with permittivity εAg = −4.7149 + i0.2170
at 405 nm has been used as the material of the metallic film. For all simulations, a 2D xy plane
monitor was employed to record the electromagnetic field. To measure the near field, the monitor
was positioned 5 nm above the glass and metal surface. In the first two scenarios, the simulation
region was set as 2 µm (x) × 2 µm (y) × 2 µm (z) with Bloch boundaries in x and y directions and
perfectly matched layer (PML) boundaries in z directions. Uniform spatial discretization of 5 nm
has been applied to x, y and z directions within a mesh override region of 2 µm (x) × 2 µm (y) ×
0.4 µm (z) at the center of the simulation box. In the scenario of SPWs, the simulation region
was set to 10 µm (x) × 10 µm (y) × 2 µm (z) with metal boundaries in the propagating direction of
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the SPW, periodic boundaries in the orthogonal direction of the propagation direction on the
xy plane and PML boundaries in z directions. Here, a large xy simulation plane was used to
visualize the propagation damping of the SPWs. Spatial discretization of 25 nm in x, y directions
and 5 nm in z direction has been applied within a mesh override region of 10 µm (x) × 10 µm (y)
× 0.4 µm (z) at the center of the simulation box.

2. Transmittance of the incident light in total internal reflection

The confined evanescent wave in TIR possesses an enhanced electric field compared to the
incident light beam. The enhancement is determined by the transmission coefficient calculated by
Fresnel equations. The relationship between the transmittance and the incident angle is plotted in
Fig. 6. The calculation parameters are consistent with those in the numerical simulations.

Fig. 6. Transmittance of the s- (|ts(α)|) and p-pol. component (|tp(α)|) of the incident light,
and T(α) change with the incident angle α.

3. Calculation parameters for the surface plasmon wave

Table 3 summarizes the data of a SPW excited at 405 nm. The real part of the out-of-plane wave
vector q′ (= 2.3454 × 105m−1) is about 100 times smaller than k0 (= 1.5514 × 107m−1).

Table 3. Calculation parameters for the SPW

λ 405 nm

k0 1.5514 × 107m−1

εAg −4.7149 + i0.2170

εAir 1

kSP = 2π
λ

√
εAgεair
εAg+εair

1.7472 × 107 + i1.0791 × 105m−1

q =
√
k02 − kSP2 2.3454 × 105 − i8.0389 × 106m−1
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