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Abstract

The paper is devoted to the scattering of a plane wave obliquely illuminating a periodic surface. Integral
equation methods lead to a system of singular integral equations over the profile. Using boundary integral
techniques we study the equivalence of these equations to the electromagnetic formulation, the existence and
uniqueness of solutions under general assumptions on the permittivity and permeability of the materials. In
particular, new results for materials with negative permittivity or permeability are established.

1 Introduction

We study the scattering of time-harmonic plane waves by a surface, which in Cartesian coordinates (x, y, z) is
periodic in x- and invariant in z-direction and separates two different materials. This is the simplest model of
diffraction gratings, which have found several applications in micro-optics, where tools from the semiconductor
industry are used to fabricate optical devices with complicated structural features within the length-scale of
optical waves. Such diffractive elements have many technological advantages and can be designed to perform
functions unattainable with traditional optical elements.

The electromagnetic formulation of the scattering by gratings, which are modeled as infinite periodic
structures, can be reduced to a system of Helmholtz equations for the z-components of the electric and
magnetic fields in R

2, where the solutions have to be quasiperiodic in one variable, subject to radiation
conditions with respect to the other and satisfy certain jump conditions at the interfaces between different
materials of the diffraction grating. In the case of classical diffraction, when the incident wave is orthogonal to
the z-direction, the system degenerates to independent transmission problems for the two basic polarizations
of the incident wave, whereas for the so called conical diffraction the boundary values of the z-components as
well as their normal and tangential derivatives at the interfaces are coupled.

The electromagnetic theory of gratings has been studied since Rayleigh’s time. For an introduction to this
problem along with some numerical methods see the collection of articles in [12]. By far the largest number of
papers in the literature has come from the optics and engineering community, whereas rigorous mathematical
results have been obtained only during the last 15 years.

In the case of classical diffraction existence and uniqueness results are based on the observation that the
weak form of corresponding boundary value problems in a periodic cell satisfies a Gårding inequality if the
argument of the in general complex permittivity ε of the non-magnetic grating materials satisfies 0 ≤ arg ε < π
(see [5, 6] and the references contained therein). Here the radiation condition is reformulated as a nonlocal
boundary condition imposed on one part of the boundary of the periodic cell. The reduction of conical
diffraction to a transmission problem for the system of Helmholtz equations in R

2 goes back to [18] (in the
case of one interface) and [4], where results, similar to classical diffraction, have been established by extending
the variational approach.

The variational formulation is also used for the numerical solution of periodic diffraction problems with
the Finite-Element-Method, which is now accepted also in the optics community. But the most popular
numerical methods for grating problems are methods based on Rayleigh or eigenmode expansions, differential
and integral methods, which have been developed since 1970. Especially integral equation methods are
very efficient for solving the classical diffraction problems in certain scenarios with large ratio period over
wavelength, profile curves with corners and gratings with thin coated layers. Various integral formulations
have been proposed and implemented, e.g. [10, 13, 14, 7, 15], but a rigorous mathematical and numerical
analysis of these methods can not be found in the literature. The mathematical papers dealing with integral
formulations of grating problems are mainly concerned with perfectly reflecting gratings or the study of the
fundamental solution and radiation conditions.

Recently in [16] an integral equation approach from [10, 13] was extended to conical diffraction, resulting in
a system of integral equations over the interface, which contains besides the single and double layer potentials
of periodic diffraction also the integral operator with the tangential derivative of the fundamental solution as
kernel. It was shown in particular, that this system of singular integral equations generates a strongly elliptic
operator if the materials satisfy the assumptions of the variational approach. For the analysis the interface is
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conformly mapped to a close curve, such that the transformed integral operators are compact perturbations
of boundary integral operators for the Laplacian on that curve.

This allows to apply techniques from the method of boundary integral equations to study conical diffraction
with quite general assumptions on the permittivity and permeability of the materials. Motivated by recent
proposals for the design of optical metamaterials we allow magnetic materials with complex permeability µ,
argµ ∈ [0, π), and consider also the case that either ε or µ are negative. Then the variational formulation
does not satisfy a Gårding type inequality and strong ellipticity principles do not work. However, the integral
formulation can be analyzed by using some more or less standard techniques from singular and second kind
integral equations with double layer potentials. We find conditions for the existence and uniqueness of solutions
of the integral equation system and for its equivalence to the transmission problem for the Helmholtz equations.

To give an example. Let the profile of the surface in the (x, y)-plane be given by a smooth periodic function
y = f(x) and denote the permittivities and permeabilities of the materials above and below the surface by ε±
and µ±, respectively. Then the integral formulation is solvable if ε− 6= −ε+ and µ− 6= −µ+, and its solution
generates a solution of the conical diffraction problem. Moreover, the solution is unique except for certain
real ε− and µ−, where resonances or so called trapped modes can occur.

In the case of profiles with corners the existence of solutions can be guaranteed if the ratios

ε+ + ε−
ε+ − ε−

and
µ+ + µ−

µ+ − µ−

belong to the essential spectrum of the double layer logarithmic potential in the Sobolev space H1/2 on the
associated closed curve.

The outline of the paper is as follows. Section 2 is devoted to the conical diffraction by periodic structures
and the formulation by partial differential equations. Quasiperiodic potentials for Helmholtz equations and
integral operators of periodic diffraction are discussed in Section 3. In Section 4 we derive the system of singular
integral equations for conical diffraction and study its equivalence to the differential equations. Conditions for
the existence and uniqueness of solutions are obtained in Section 5. In the final Section 6 we briefly discuss
the singularities of the solution of the integral equation system.

2 Conical Diffraction

Let Σ be a non self-intersecting curve in the (x, y)-plane which is d-periodic in x-direction. The surface Σ×R

separates two regions G± × R ⊂ R
3 filled with materials of constant electric permittivity ε± and magnetic

permeability µ±, see Fig. 1.
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Figure 1: Schematic presentation of a simple grating

The surface is illuminated from G+ × R, where ε+, µ+ > 0, by a electromagnetic plane wave at oblique
incidence

E
i = p e i(αx−βy+γz) e−iωt , H

i = s e i(αx−βy+γz) e−iωt , (2.1)

which due to the periodicity of Σ is scattered into a finite number of plane waves in G+ × R and possibly
in G− × R. The wave vectors of these outgoing modes lie on the surface of a cone whose axis is parallel to
the z–axis. Therefore in optics one speaks of conical diffraction, which occurs in a variety of technological
applications.
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2.1 Maxwell equations

The wave (Ei,Hi) is scattered by the surface, and the total fields will be given by

E+ = E
i + E

refl , H+ = H
i + H

refl in the region G+ × R ,

E− = E
tran , H− = H

tran in the region G− × R .

Dropping the factor e−iωt, the incident, diffracted, and total fields satisfy the time–harmonic Maxwell equa-
tions

∇ × E = iωµH and ∇ × H = −iωεE , (2.2)

with piecewise constant functions ε(x, y) = ε±, µ(x, y) = µ± for (x, y) ∈ G±. The components of the wave
vector k+ = (α,−β, γ) of the incoming field satisfy

β > 0 and α2 + β2 + γ2 = ω2ε+µ+ ,

and they are expressed using the incidence angles |θ|, |φ| < π/2

(α,−β, γ) = ω
q
ε+µ+ (sin θ cosφ,− cos θ cosφ, sinφ) .

If the angle φ = 0, then one speaks of classical periodic diffraction, whereas φ 6= 0 characterizes conical
diffraction. To be a solution of Maxwell’s system above the surface the coefficient vectors p, s, which determine
the polarization of the incident light (2.1), and the wave vector k+ are connected by certain compatibility
relations.

When crossing the surface the tangential components of the total fields are continuous

n × (E+ − E−) = 0 and n × (H+ − H−) = 0 on Σ × R , (2.3)

where n is the unit normal to the interface Σ × R. Taking the divergence of (2.2) leads to

∇ · (εE) = 0 and ∇ · (µH) = 0 . (2.4)

We look for vector fields E,H satisfying (2.2) and (2.3) such that

E , H , ∇ ×E , ∇ × H ∈
`
L2

loc(R
3)
´3
, (2.5)

i.e. possessing locally a finite energy.

2.2 Helmholtz equations

Since the geometry is invariant with respect to any translation parallel to the z–axis, we make the ansatz for
the total field

(E,H)(x, y, z) = (E,H)(x, y) eiγz (2.6)

with E,H : R
2 → C

3. This transforms the equations in R
3 into a two-dimensional problem. Maxwell’s

equations (2.2) provide

E = (Ex, Ey, Ez) =
i

ωε

`
∂yHz − iγHy , iγHx − ∂xHz, ∂xHy − ∂yHx

´
,

H = (Hx,Hy,Hz) =
1

iωµ

`
∂yEz − iγEy , iγEx − ∂xEz, ∂xEy − ∂yEx

´
.

(2.7)

Hence if (2.6) holds, then the condition of locally finite energy (2.5) is satisfied only if the z-components of
E,H are H1- regular, since

∂xEz = iγEx − iωµHy , ∂yEz = iγEy + iωµHx ,

∂xHz = iγHx + iωεEy , ∂yHz = iγHy − iωεEx .

Moreover, from (2.7) we derive

Ex =
i

ωε

`
∂yHz − iγHy

´
=

i

ωε
∂yHz +

iγ

ω2εµ
∂xEz +

γ2

ω2εµ
Ex ,
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implying

ω2εµ− γ2

ω2εµ
Ex =

i

ωε
∂yHz +

iγ

ω2εµ
∂xEz, (2.8)

and similar relations for Ey, Hx and Hy. Noting γ = ω
p
ε+µ+ sinφ, we introduce the piecewise constant

function

κ(x, y) =

( p
ε+µ+ − ε+µ+ sin2 φ = κ+ , (x, y) ∈ G+ ,p
ε−µ− − ε+µ+ sin2 φ = κ− , (x, y) ∈ G− ,

(2.9)

where we choose the square root
√
z =

√
r e iϕ/2 for z = r e iϕ, 0 ≤ ϕ < 2π. Thus (2.8) and the other relations

give

ω2κ2Ex = iγ∂xEz + iωµ∂yHz, ω2κ2Ey = iγ∂yEz − iωµ∂xHz,

ω2κ2Hx = iγ∂xHz − iωε∂yEz, ω2κ2Hy = iγ∂yHz + iωε∂xEz,
(2.10)

implying that under the condition κ 6= 0, which will be assumed throughout, the components Ez, Hz of the
electric and the magnetic field determine the other components, which in general belong only to L2.

It follows from (2.7) and (2.4) that the Maxwell equations (2.2) can be replaced by Helmholtz equations

(∆ + ω2κ2)Ez = (∆ + ω2κ2)Hz = 0 (2.11)

in G±. The continuity conditions (2.3) on the surface take the form

ˆ
(n, 0) × E

˜
Σ×R

=
ˆ
(n, 0) ×H

˜
Σ×R

= 0 ,

where (n, 0) = (nx, ny , 0) is the normal vector and
ˆ
(n, 0)×E

˜
Σ×R

denotes the jump of the function (n, 0)×E
across the interface Σ × R. Since

(n, 0) ×E =
`
nyEz,−nxEz, nxEy − nyEx)

we conclude that

ˆ
Ez

˜
Σ

=
ˆ
Hz

˜
Σ

= 0 .

Furthermore, because of κ 6= 0 relations (2.10) give

nxEy − nyEx =
1

ω2κ2

“
iγ(nx∂yEz − ny∂xEz) − iωµ(nx∂xHz + ny∂yHz)

”
,

nxHy − nyHx =
1

ω2κ2

“
iγ(nx∂yHz − ny∂xHz) + iωε(nx∂xEz + ny∂yEz)

”
,

which implies the jump conditions

h γ

ω2κ2
∂tHz +

ωε

ω2κ2
∂nEz

i
Σ

=
h γ

ω2κ2
∂tEz − ωµ

ω2κ2
∂nHz

i
Σ

= 0 .

Here ∂n = nx∂x + ny∂y and ∂t = −ny∂x + nx∂y are the normal resp. tangential derivatives on Σ. Introduce

Bz =
p
µ+/ε+Hz and use γ = ω

p
ε+µ+ sinφ to rewrite the jump conditions in the form

hε ∂nEz

κ2

i

Σ
= −ε+ sinφ

h∂tBz

κ2

i

Σ
,
hµ∂nBz

κ2

i

Σ
= µ+ sinφ

h∂tEz

κ2

i

Σ
. (2.12)

In addition, the z-components of the incoming field

Ei
z(x, y) = pz ei(αx−βy) , Bi

z(x, y) = qz ei(αx−βy) , (2.13)

are α-quasiperiodic in x of period d, i.e. satisfy the relation

u(x+ d, y) = eidα u(x, y) .

The periodicity of ε and µ, together with the form of the incident wave, motivates to seek for solutions Ez,
Bz which are α-quasiperiodic, too. Because the domain is unbounded, a radiation condition on the scattering
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problem must be imposed at infinity, namely that the diffracted fields remain bounded. This implies the so
called outgoing wave condition

(Ez, Bz)(x, y) = (Ei
z, B

i
z) +

X

n∈Z

(E+
n , B

+
n ) e i(αnx+β+

n
y), y ≥ H,

(Ez, Bz)(x, y) =
X

n∈Z

(E−
n , B

−
n ) e i(αnx−β−

n
y), y ≤ −H,

(2.14)

where Σ ⊂ {(x, y) : |y| < H}, and αn, β±
n are given by

αn = α+
2πn

d
, β±

n =
q
ω2κ2

± − α2
n with 0 ≤ arg β±

n < π . (2.15)

The Rayleigh coefficients E±
n , B

±
n ∈ C are the main characteristics of diffraction gratings. In particular,

if β±
n ∈ R (which is possible only for a finite number of indices), then the Rayleigh coefficients indicate the

energy and the phase shift of the propagating modes, i.e. of the outgoing plane waves with the wave vectors

(αn, β
+
n , γ) in G+ and (αn,−β−

n , γ) in G− .

In view of (2.15) we have to specify the assumptions for the material parameters ε− and µ−. In the
following it is always assumed that

Im ε−, Imµ− ≥ 0 unless ε− and µ− < 0 , (2.16)

which holds for all existing optical (meta)materials.
We will not consider the case ε−, µ− < 0, which corresponds to negative refraction index materials,

proposed in [17]. Then ω2κ2
− − α2

n = ω2ε−µ− − γ2 − α2
n can be positive and one has to choose β−

n =

−
q
ω2κ2

− − α2
n < 0.

3 Potential methods

Here we describe some potential-theoretic methods for quasiperiodic Helmholtz equations in R
2 and the

mapping properties of the resulting integral operators which have been studied in [16]. They are consequences
of well-known properties of the classical logarithmic potentials on closed curves.

3.1 Potentials of periodic diffraction

We assume that Σ is non self-intersecting and given by a piecewise C2 parametrization

σ(t) = (X(t), Y (t)), X(t+ 1) = X(t) + d, Y (t+ 1) = Y (t) , t ∈ R ,

i.e. the continuous functions X, Y are piecewise C2 with

|σ′(t)| =
p

(X ′(t))2 + (Y ′(t))2 > 0 ,

and σ(t1) 6= σ(t2) if t1 6= t2. Suppose additionally that if Σ has corners, then the angles between adjacent
tangents at the corners are strictly between 0 and 2π.

The potentials which provide α-quasiperiodic solutions of the Helmholtz equation

∆u+ k2u = 0 (3.1)

are based on the quasiperiodic fundamental solution of period d

Ψk,α(P ) =
i

4

X

n∈Z

H
(1)
0

“
k
p

(X − nd)2 + Y 2
”

eindα , P = (X,Y ) , (3.2)

with the Hankel function of the first kind H
(1)
0 for arg k ∈ (−π, π). The single and double layer potentials are

defined by

Sk,αϕ(P ) = 2

Z

Γ

ϕ(Q)Ψk,α(P −Q) dσQ ,

Dk,αϕ(P ) = 2

Z

Γ

ϕ(Q)∂n(Q)Ψk,α(P −Q) dσQ ,

(3.3)
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where Γ is one period of the interface Σ, i.e. Γ = {σ(t) : t ∈ [t0, t0 + 1]} for some t0. In (3.3) dσQ denotes the
integration with respect to the arc length and n(Q), Q ∈ Σ, is the normal to Σ pointing into G−. Obviously,
for α-quasiperiodic densities ϕ on Σ the value of the potentials does not depend on the choice of Γ.

The series (3.2) converges uniformly over compact sets in R
2 \ S

n∈Z

{(nd, 0)} if

k2 6= α2
n =

“
α+

2πn

d

”2

for all n ∈ Z . (3.4)

Moreover, setting βn =
√
k2 − α2

n (recall that Im βn ≥ 0) Poisson’s summation formula leads to the represen-
tation

Ψk,α(P ) = lim
N→∞

i

2d

NX

n=−N

e iαnX+iβn|Y |

βn
. (3.5)

Define the function spaces

Hs
α(Γ) =

n
e iαX ϕ ◦ σ : ϕ ◦ σ ∈ Hs

p(0, 1)
o
, (3.6)

where Hs
p(0, 1), s ∈ R, denotes the Sobolev space of 1-periodic functions on the real line and suppose (3.4).

For ϕ ∈ H
−1/2
α (Γ) and ψ ∈ H

1/2
α (Γ) the potentials u = VΓϕ(P ) resp. u = KΓψ(P ), P /∈ Σ, are H1-regular

and α-quasiperiodic solutions of the Helmholtz equation (3.1) which satisfy the radiation condition

u(x, y) =

∞X

n=−∞

un e iαnx+iβn|y| , |y| ≥ H . (3.7)

The potentials provide also the usual representation formulas. Suppose that the α-quasiperiodic function u
given in G+ is locally H1 such that ∆u ∈ L2

loc(G+), satisfies the Helmholtz equation (3.1) almost everywhere
and the radiation condition (3.7). Then

1

2

`
Sk,α∂nu−Dk,αu

´
=


u in G+,
0 in G−,

, (3.8)

where the normal n points into G−. Under the same assumptions for a function u in G− the representation

1

2

`
Dk,αu− Sk,α∂nu

´
=


0 in G+,
u in G−,

(3.9)

is valid.

3.2 Boundary integrals for periodic diffraction

Boundary integral operators are restriction of Sk,α and Dk,α to the profile curve Σ. The potentials provide
the usual jump relations of classical potential theory. The single layer potential is continuous across Σ

(Sk,αϕ)+(P ) = (Sk,αϕ)−(P ) = Vk,αϕ(P ) ,

where the upper sign + resp. − denotes the limits of the potentials for points in G± tending in non-tangential
direction to P ∈ Σ, and

Vk,αϕ(P ) = 2

Z

Γ

Ψk,α(P −Q)ϕ(Q) dσQ , P ∈ Σ . (3.10)

The double layer potential has a jump if crossing Γ:

`
Dk,αϕ

´+
= Kk,αϕ− ϕ,

`
Dk,αϕ

´−
= Kk,αϕ+ ϕ (3.11)

with the boundary double layer potential

Kk,αϕ(P ) = 2

Z

Γ

ϕ(Q)∂n(Q)Ψk,α(P −Q) dσQ + (δ(P ) − 1)ϕ(P ) . (3.12)

Here δ(P ) ∈ (0, 2), P ∈ Σ, denotes the ratio of the angle in G+ at P and π, i.e. δ(P ) = 1 outside corner
points of Σ. The normal derivative of Sk,αϕ at Σ exists outside corners and has the limits

`
∂nSk,αϕ

´+
= Lk,αϕ+ ϕ,

`
∂nSk,αϕ

´−
= Lk,αϕ− ϕ, (3.13)
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where we denote

Lk,αϕ(P ) = 2

Z

Γ

ϕ(Q)∂n(P )Ψk,α(P −Q) dσQ , P ∈ Σ . (3.14)

In the following we consider also operators of the form

2

Z

Γ

ϕ(Q)∂t(Q)Ψk,α(P −Q) dσQ = −2

Z

Γ

Ψk,α(P −Q) ∂tϕ(Q) dσQ , (3.15)

where ϕ has a α-quasiperiodic extension to Σ. If P /∈ Σ, then equality (3.15) follows from integration by parts
and the quasi-periodicity

ϕ(σ(t0 + 1)) = e idαϕ(σ(t0)) , Ψk,α(P − σ(t0 + 1)) = e−idαΨk,α(P − σ(t0))

at the end points of Γ. If P ∈ Σ, then the integral on the left of (3.15) is defined as the principal value integral

Hk,αϕ(P ) = 2 lim
δ→0

Z

Γ\Γ(P,δ)

ϕ(Q)∂t(Q)Ψk,α(P −Q) dσQ , (3.16)

where Γ(P, δ) is the subarc of Γ of length 2δ with the mid point P . Let us denote the integral operator

Hk,αϕ(P ) = 2

Z

Γ

ϕ(Q)∂t(Q)Ψk,α(P −Q) dσQ = −Sk,α

`
∂tϕ
´
(P ) , P /∈ Σ ,

which satisfies for P ∈ Σ the relation

(Hk,αϕ)+(P ) = (Hk,αϕ)−(P ) = Hk,αϕ(P ) = −Vk,α

`
∂tϕ
´
(P ) , (3.17)

with the singular integral operator Hk,α defined by (3.16). Finally, for P ∈ Σ we also define the singular
integral operator

Jk,αϕ(P ) = 2

Z

Γ

ϕ(Q)∂t(P )Ψk,α(P −Q) dσQ = ∂t

`
Vk,αϕ

´
(P ) . (3.18)

Mapping properties of the boundary integral operators for the quasiperiodic Helmholtz equation in the
function spaces Hs

α(Γ) have been studied in [16]. In particular, the operators

Vk,α : H−1/2
α (Γ) → H1/2

α (Γ), Hk,α, Kk,α : H1/2
α (Γ) → H1/2

α (Γ), Jk,α, Lk,α : H−1/2
α (Γ) → H−1/2

α (Γ)

are bounded, and Vk,α, Hk,α and Jk,α are Fredholm operators with index 0.
The single layer potential operator Vk,α is invertible if and only if the homogeneous Dirichlet problems in

the domains G+ and G−

∆u+ k2u = 0 , u|Σ = 0 and u satisfies (3.7) , (3.19)

have only the trivial solution.

Remark 3.1. Well-known sufficient conditions for the unique solvability of (3.19) in G+ (and consequently
in G−) are

– Im k2 > 0 or Rek2 < 0;
– the profile curve Σ is non-overhanging, i.e. ny(Q) ≤ 0 for all Q ∈ Σ.

In the following we consider also equations with transposed operators. For the physical interpretation we
need that their kernel functions satisfy a radiation condition similar to (3.7). To this end we introduce the
bilinear form

ˆ
ϕ, ψ

˜
Γ

=

Z

Γ

ϕψ dσ , (3.20)

which extends to a duality between the spaces Hs
α(Γ) and H−s

−α(Γ), see (3.6). Then, for bounded A : Hs
α(Γ) →

Ht
α(Γ) the transposed A′ with respect to (3.20) maps H−t

−α(Γ) into H−s
−α(Γ). From the relation

Ψk,−α(P ) = Ψk,α(−P ) for all P ∈ R
2

one easily concludes that the integral operators associated with Ψk,α and Ψk,−α are connected by
`
Vk,α

´′
= Vk,−α ,

`
Kk,α

´′
= Lk,−α ,

`
Hk,α

´′
= Jk,−α . (3.21)
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3.3 Boundary integrals for the Laplacian

The mapping properties mentioned above follow from the close connection of the boundary integral operators
on Γ with corresponding operators for the Laplacian on the simple closed curve

eΓ =
˘

e−Y (t)
`
cosX(t), sinX(t)

´
: t ∈ [0, 1]

¯
, (3.22)

which is the image of Γ under the conformal mapping e iζ , ζ ∈ C. Note that eΓ has the same smoothness as
Γ and additionally, if Σ has corners, then the angles at corner points of Σ in G+ and interior angles at the
corresponding corner points of eΓ coincide.

On eΓ we consider boundary integral operators corresponding to the fundamental solution of the Laplacian
γ(x) = − log |x|/2π. The operators eV , eK, eL, eH, and eJ are defined as in (3.10), (3.12), (3.14) (3.16), and

(3.18) with Γ and Ψk,α replaced by eΓ and γ, and n is the exterior normal to eΓ.

For completeness we give some properties of the operators in the energy spaces H±1/2(eΓ), where Hs(eΓ)

denotes the usual Sobolev space over the close curve eΓ (cf. [8]): The operators eV : H−1/2(eΓ) → H1/2(eΓ),

and eK, eH : H1/2(eΓ) → H1/2(eΓ) are bounded. With respect to the L2-duality the operators eL and eJ are

the adjoints of eK and eH , respectively, i.e. eL = eK′, eJ = eH ′, whereas eV is symmetric. Denote by C the set
of constant functions and by eI the identity operator on eΓ. Then ker(eI + eK) = kerH = C. Moreover, the

operator eI − eK is invertible, eV and eH = −eV ∂t are Fredholm operators with index 0. Among the interesting
relations between the integral operators we mention

eV eK′ = eK eV , eH eV = −eV eH ′ , eH eK = − eK eH , eK2 − eH2 = eI . (3.23)

The last two equations follow from the representation

1

πi

Z

eΓ

ϕ(t)dt

t− (x+ iy)
= − eKϕ(x, y) + i eHϕ(x, y) for (x, y) ∈ eΓ ,

of the Cauchy singular integral, see [11].

Defining the isomorphisms M : Hs
α(Γ) → Hs

α(Γ) and ϑ∗
α : Hs(eΓ) → Hs

α(Γ) by

Mϕ(P ) = eY ϕ(P ) , ϑ∗
αϕ(P ) = e iαX ϕ(ϑ(P )) , P = (X,Y ) ∈ Γ

where ϑ : Γ ∋ P = (X,Y ) → e−Y (cosX, sinX) ∈ eΓ, one can show by using the asymptotics of the fundamental
solution Ψk,α that the differences

Vk,α − ϑ∗
α
eV (ϑ∗

α)−1M : H−1/2
α (Γ) → H1/2

α (Γ) ,

Xk,α − ϑ∗
α
eX(ϑ∗

α)−1 : H1/2
α (Γ) → H1/2

α (Γ) ,

Yk,α −M−1ϑ∗
α
eY (ϑ∗

α)−1M : H−1/2
α (Γ) → H−1/2

α (Γ) ,

(3.24)

are compact operators, where X stands for K or H and Y for L or J .

4 Integral formulation

Here we derive the system of integral equations for conical diffraction in the case of one surface and study the
equivalence to the electromagnetic formulation.

4.1 Integral equation

Denoting the components of the total fields

Ez =


u+ + Ei

z

u−
, Bz =


v+ +Bi

z in G+,
v− in G− .

the transmission problem described in Subsection 2.2 can be formulated as follows. We seek H1-regular
α-quasiperiodic functions u±, v± such that

∆u± + ω2κ2
±u± = ∆v± + ω2κ2

±v± = 0 in G±, (4.1)

8



subject to the transmission conditions on Σ

u− = u+ + Ei
z,

ε− ∂nu−

κ2
−

− ε+∂n(u+ + Ei
z)

κ2
+

= ε+ sinφ
“ 1

κ2
+

− 1

κ2
−

”
∂tv−,

v− = v+ +Bi
z,

µ−∂nv−
κ2
−

− µ+∂n(v+ +Bi
z)

κ2
+

= −µ+ sinφ
“ 1

κ2
+

− 1

κ2
−

”
∂tu−,

(4.2)

and satisfying the outgoing wave condition

(u+, v+)(x, y) =
∞X

n=−∞

(u+
n , v

+
n ) e i(αnx+β+

n
y) for y ≥ H,

(u−, v−)(x, y) =

∞X

n=−∞

(u−
n , v

−
n ) e i(αnx−β−

n
y) for y ≤ −H,

(4.3)

with αn and β±
n given in (2.15) and u±

n , v
±
n ∈ C.

There exist different ways to transform (4.1) - (4.3) to integral equations. We combine here the direct and
indirect approach as proposed in [10, 13] for the case of classical diffraction (φ = 0).

In order to represent u± and v± as layer potentials we assume in what follows that the parameters are
such that β±

n 6= 0 for all n. Since arg κ− ∈ [0, π) (see (2.16)) the boundary integral operators corresponding
to the fundamental solution Ψωκ±,α are well defined and by (3.8), (3.9) we can write

u+ =
1

2

`
S+

α ∂nu+ −D+
αu+

´
, v+ =

1

2

`
S+

α ∂nv+ −D+
α v+

´
in G+ ,

Ei
z =

1

2

`
D+

αE
i
z − S+

α ∂nE
i
z

´
, Bi

z =
1

2

`
D+

αB
i
z − S+

α ∂nB
i
z

´
in G− .

Here we denote by S±
α the single layer potential defined on Γ with the fundamental solution Ψωκ±,α. Corre-

spondingly D±
α is the double layer potential over Γ with the normal derivative of Ψωκ±,α as kernel function.

Taking the limits on Σ the jump relations (3.11) lead to

V +
α ∂n(u+ + Ei

z) −
`
I +K+

α

´
(u+ +Ei

z) = 2Ei
z|Σ ,

V +
α ∂n(v+ +Bi

z) −
`
I +K+

α

´
(v+ +Bi

z) = 2Bi
z |Σ ,

(4.4)

where V ±
α denote the single layer potential operators

V ±
α ϕ(P ) = 2

Z

Γ

ϕ(Q)Ψωκ±,α(P −Q) dσQ , P ∈ Σ , (4.5)

and the operators K±
α and L±

α are defined analogously.

The solutions in G− are sought as single layer potentials

u− = S−
α w , v− = S−

α τ (4.6)

with certain auxiliary densities w, τ ∈ H
−1/2
α (Γ). Since by (3.13)

u−|Σ = V −
α w, ∂nu−|Σ = (L−

α − I)w, v−|Σ = V −
α τ, ∂nv−|Σ = (L−

α − I)τ,

we see from (4.4) that the transmission conditions (4.2) are valid, when the unknows w, τ satisfy the equations

ε−κ
2
+

ε+κ2
−

V +
α (L−

α − I)w −
`
I +K+

α

´
V −

α w − sinφ
“
1 − κ2

+

κ2
−

”
V +

α ∂tV
−

α τ = 2Ei
z,

µ−κ
2
+

µ+κ2
−

V +
α (L−

α − I)τ −
`
I +K+

α

´
V −

α τ + sinφ
“
1 − κ2

+

κ2
−

”
V +

α ∂tV
−

α w = 2Bi
z.

Noting V +
α ∂t = −H+

α (see (3.17)) and introducing the coefficients

a =
ε−κ

2
+

ε+κ2
−

, b =
µ−κ

2
+

µ+κ2
−

, c = sinφ
“
1 − κ2

+

κ2
−

”
, (4.7)
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we obtain the system of singular integral equations on Γ

A
 
w

τ

!
= −2

 
Ei

z

Bi
z

!
(4.8)

with the operator matrix

A =

 `
I +K+

α

´
V −

α + aV +
α

`
I − L−

α

´
−cH+

α V
−

α

cH+
α V

−
α

`
I +K+

α

´
V −

α + b V +
α

`
I − L−

α

´
!
. (4.9)

Recall that we have assumed (2.16), κ2
− 6= 0 and ω2κ2

± − α2
n 6= 0 for all n, which implies that A maps`

H
−1/2
α (Γ)

´2
boundedly into

`
H

1/2
α (Γ)

´2
.

4.2 Equivalence

It is evident from (4.6) that any solution of (4.1) - (4.3) provides a solution of the integral equations (4.8) if
the operator V −

α is invertible.

Lemma 4.1. Let w, τ ∈ H
−1/2
α (Γ) be a solution of (4.8) and assume kerV +

α = {0}. Then the functions

u+ =
1

2

`
aS+

α (L−
α − I)w −D+

αV
−

α w + cH+
αV

−
α τ
´
,

v+ = −1

2

`
cH+

αV
−

α w + bS+
α (L−

α − I)τ + D+
αV

−
α τ
´
,

(4.10)

with the coefficients a, b, c given by (4.7) and

u− = S−
α w , v− = S−

α τ , (4.11)

are a solution of the transmission problem (4.1) - (4.3).

Proof. For any densities w, τ ∈ H
−1/2
α (Γ) the single layer potentials u−, v− are quasi-periodic solutions of

∆u+ω2κ2
−u = 0 in G− and satisfy the outgoing wave condition (4.3). Moreover, since u−|Γ, v−|Γ ∈ H

1/2
α (Γ),

∂nu−, ∂nv− ∈ H
−1/2
α (Γ), the functions

u+ =
1

2

“
S+

α

“
a ∂nu− − c ∂tv−

”
−D+

αu−

”
,

v+ =
1

2

“
S+

α

“
b ∂nv− + c ∂tu−

”
−D+

α v−
” (4.12)

are H1 regular solutions of ∆u+ ω2κ2
+u = 0 in G+, satisfy (4.3) and have the boundary values

u+|Γ =
1

2

“
V +

α

“
a ∂nu− − c ∂tv−

”
+ (I −K+

α )u−

”
,

v+|Γ =
1

2

“
V +

α

“
b ∂nv− + c ∂tu−

”
+ (I −K+

α )v−
”
.

Since ∂nu−|Γ = (L+
α − I)w, H+

α V
−

α w = −V +
α ∂tu−, and w, τ satisfy (4.8), it follows that

a V +
α ∂nu− + (I −K+

α )u− − c V +
α ∂tv− = 2(u− − Ei

z)|Γ .
b V +

α ∂nv− − (I −K+
α )v− + c V +

α ∂tu− = 2(v− −Bi
z)|Γ .

This gives u+ + Ei
z = u− and v+ +Bi

z = v− on Σ. Since by (3.8)

D+
αE

i
z = S+

α ∂nE
i
z , D+

αB
i
z = S+

α ∂nB
i
z in G+ ,

formulas (4.12) transform to

u+ =
1

2

“
S+

α

“
a ∂nu− − c ∂tv−

”
−D+

α u+ − S+
α ∂nE

i
z

”
,

v+ =
1

2

“
S+

α

“
b ∂nv− + c ∂tu−

”
−D+

α v+ − S+
α ∂nB

i
z

”
.

Again by (3.8) we obtain that in G+

S+
α

“
a ∂nu− − c ∂tv−

”
= S+

α ∂n(u+ + Ei
z).

S+
α

“
b ∂nv− + c ∂tu−

”
= S+

α ∂n(v+ +Bi
z) ,

which shows that conditions (4.2) are satisfied if kerV +
α = {0}.
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5 Existence and Uniqueness of Solutions

Here we obtain conditions that the operator matrix A defined by (4.9) is a Fredholm mapping with index 0.
Then we show that the system (4.8) is always solvable and describe cases where the solution is unique. For
the following we denote by Φ0(X) the set of bounded Fredholm operators of index 0 in the space X.

5.1 Fredholmness

Theorem 5.1. The matrix A :
`
H

−1/2
α (Γ)

´2 →
`
H

1/2
α (Γ)

´2
is a Fredholm operator with index 0 if

(ε+ + ε−)eI + (ε+ − ε−) eK , (µ+ + µ−)eI + (µ+ − µ−) eK ∈ Φ0

`
H1/2(eΓ)

´
. (5.1)

Here eK is the double layer logarithmic potential on the closed curve eΓ introduced in 3.3. Note that for
sufficiently smooth eΓ, for example C2, the operator eK is compact in H1/2(eΓ). Hence, if the profile curve Σ is
sufficiently smooth, then the operator matrix A is Fredholm with index 0 if ε− 6= −ε+ and µ− 6= −µ+.

The study of Fredholm properties of the operator λeI + eK on non-smooth curves eΓ has a long history.
A excellent overview is given in [9, §4.1], where also higher dimensional cases and double layer potentials of
other equations are discussed. Unfortunately, the results on the essential spectrum and Fredholm domain of
double layer potentials cannot be applied directly, since they were obtained mainly for (weighted) spaces of
continuous and Hölder-continuous functions and Lp spaces. But due to the relations (3.23) it is simple to get

conditions in the “energy” space H1/2(eΓ), which are sufficient for the Fredholmness of A.

Lemma 5.1. For any λ /∈ (−1, 1) the operator λeI + eK ∈ Φ0

`
H1/2(eΓ)

´
.

This result for space dimension n ≥ 3 and Lipschitz domains was proved in [3]. For n = 2 one needs a
slight modification of the proof due to the fact that the gradient of the single layer logarithmic potential does
not belong to L2(R

2). This holds however for the gradient of the double layer logarithmic potential, which
gives together with the application of Thm. 12 in [9, Chapter 1] that in the quotient space over the constants

H1/2(eΓ) / C the induced operator λeI + eK is invertible if λ /∈ [−1, 1].

Thus, if the grating profile Σ has corners, then by Lemma 5.1 the matrix A is Fredholm with index 0 for
ε−, µ− /∈ (−∞, 0]. It should be noted however, that for piecewise C2 curves one could expect the existence

of ρ < 1 depending on the angles of eΓ, such that λeI + eK ∈ Φ0

`
H1/2(eΓ)

´
if λ /∈ (−ρ, ρ). For example, in the

space C(eΓ) the parameter ρ is equal to max |π − αs|/π, where the maximum is taken over all interior angles

αs of eΓ, but for Sobolev spaces the answer is unknown.

The proof of Theorem 5.1 follows from Lemmas 5.2, 5.3 and 5.4 given below. As in 3.3 we associate to A
boundary integral operators for the Laplacian, more precisely, we consider the 2 × 2 matrix

eA =

 `eI + eK
´eV + aeV

`eI − eL
´

−c eH eV
c eH eV

`eI + eK
´eV + b eV

`eI − eL
´
!

with the coefficients a, b and c given by (4.7). From (3.24) and (4.9) it follows immediately that the difference

A−
„
ϑ∗

α 0
0 ϑ∗

α

«
eA
„

(ϑ∗
α)−1M 0

0 (ϑ∗
α)−1M

«
:
`
H−1/2

α (Γ)
´2 →

`
H1/2

α (Γ)
´2

is compact, which provides

Lemma 5.2. A :
`
H

−1/2
α (Γ)

´2 →
`
H

1/2
α (Γ)

´2
is Fredholm if and only if eA :

`
H−1/2(eΓ)

´2 →
`
H1/2(eΓ)

´2
is

Fredholm and indA = ind eA.

By using the relation eK eV = eV eL we can write

eA = eA0

 
eV 0

0 eV

!
with eA0 =

 
(1 + a)eI + (1 − a) eK −c eH

c eH (1 + b)eI + (1 − b) eK

!
.

The single layer logarithmic potential eV : H−1/2(eΓ) → H1/2(eΓ) is Fredholm with index 0, hence it remains

to study Fredholm properties of eA0.

Lemma 5.3. Let c = sinφ (1 − κ2
+/κ

2
−) = 0. Then eA0 ∈ Φ0

``
H1/2(eΓ)

´2´
if condition (5.1) holds.
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Proof. eA0 is diagonal and therefore Fredholm with index 0 if and only if

(1 + a)eI + (1 − a) eK , (1 + b)eI + (1 − b) eK ∈ Φ0

`
H1/2(eΓ)

´
.

This is (5.1) when κ2
+ = κ2

−. If otherwise φ = 0, then

a =
µ+

µ−
, b =

ε+
ε−

,

and (5.1) follows from the simple observation that eI + λ eK ∈ Φ0

`
H1/2(eΓ)

´
implies eI − λ eK ∈ Φ0

`
H1/2(eΓ)

´
,

which is due to eK eH = − eH eK, see (3.23).

Lemma 5.4. The assertion of Lemma 5.3 is also valid in the case c 6= 0.

Proof. Since the relation A ∈ Φ0(X) is equivalent to the existence of a compact perturbation T such that
A+ T is invertible in X, we can apply a method to check the invertibility of operator matrices.

It is easy to see that the operator eH1 = eH + j with the rank 1 operator

ju = (u, e)L2(eΓ) e , e = 1 ∈ C ,

is invertible in H1/2(eΓ). Instead of eA0 we consider the perturbed matrix

eA1 =

 
(1 + a)eI + (1 − a) eK −c eH1

c eH1 (1 + b)eI + (1 − b) eK

!
.

with invertible off-diagonal elements. Using the abbreviation

A± = (1 + a)eI ± (1 − a) eK , B± = (1 + b)eI ± (1 − b) eK ,

we transform

eA1 =

 
A+ −c eH1

c eH1 B+

! 
−(c eH1)

−1B+
eI

eI 0

! 
0 eI
I (c eH1)

−1B+

!

=

 
−A+(c eH1)

−1B+ − c eH1 A+

0 c eH1

! 
0 eI
eI (c eH1)

−1B+

!
.

Now the relation eH eK = − eK eH implies

eH1A+ = A−
eH1 + (1 − a) j ( eK − eI) ,

and therefore we get

eA1 =

 
−(c eH1)

−1
`
A−B+ + (c eH1)

2
´

+ j1 A+

0 c eH1

! 
0 eI
eI (c eH1)

−1B+

!

with another rank 1 operator j1. Hence, eA1 is Fredholm with index 0 if this is true for A−B+ + (c eH1)
2, and

consequently for

A−B+ + c2 eH2 =
`
(1 + a)(1 + b) − c2

´eI + 2(a− b) eK −
`
(1 − a)(1 − b) − c2

´ eK2 ,

where we make use of eH2 = eK2 − eI. Now (4.7), (2.9) and simple computations give

(1 + a)(1 + b) − c2 =
1

ε+µ+κ4
−

“
κ2

+κ
2
−(ε+µ− + ε−µ+ + 2ε+µ+ sin2 φ)

+ (ε+µ+ − ε+µ+ sin2 φ)κ4
− + (ε−µ− − ε+µ+ sin2 φ)κ4

+

”

=
κ2

+

ε+µ+κ2
−

`
ε+ + ε−

´`
µ+ + µ−

´
,

(1 − a)(1 − b) − c2 =
κ2

+

ε+µ+κ2
−

`
ε+ − ε−

´`
µ+ − µ−

´
,

a− b =
κ2

+

ε+µ+κ2
−

`
ε−µ+ − ε+µ−

´
.

Thus we get the explicit representation

A−B+ + c2 eH2 =
κ2

+

ε+µ+κ2
−

`
(ε+ + ε−)eI − (ε+ − ε−) eK

´̀
(µ+ + µ−)eI + (µ+ − µ+) eK

´
,

which completes the proof.
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5.2 Uniqueness

Theorem 5.2. Assume Im ε− ≥ 0 and Imµ− ≥ 0 with Im(ε− +µ−) > 0, which implies that arg κ2
− ∈ (0, 2π).

If kerV +
α = {0} and arg κ2

− ∈ (0, 3π/2), then the system (4.8) has at most one solution. The assertion is
valid also in the case arg κ2

− ∈ [3π/2, 2π) if additionally kerV −
α = {0}.

Proof. Let w, τ be a solution of (4.8) with the right-hand side Ei
z = Bi

z = 0. Then in view of Lemma 4.1
the functions u = u±|G±

and v = v±|G±
, given by (4.10) and (4.11), satisfy (4.1), (4.3) and the transmission

condition
h ε

ε+κ2
∂nu+

sinφ

κ2
∂tv
i
Σ

=
h µ

µ+κ2
∂nv − sin φ

κ2
∂tu
i
Σ

= 0 . (5.2)

Our aim is to obtain a variational equality for u and v in a periodic cell ΩH , which has in x-direction the
width d, is bounded by the straight lines {y = ±H} and contains Γ. We multiply the Helmholtz equations
(4.1) respectively with

ε

ε+κ2
u and

µ

µ+κ2
v ,

and apply Green’s formula in the subdomains ΩH ∩G±. Then by using (5.2)
Z

ΩH

ε

ε+

“ 1

κ2
|∇u|2 − ω2 |u|2

”
+ sinφ

“ 1

κ2
+

− 1

κ2
−

”Z

Γ

∂tv u− 1

κ2
+

Z

Γ(H)

∂nuu− ε−
ε+κ2

−

Z

Γ(−H)

∂nuu = 0 , (5.3)

Z

ΩH

µ

µ+

“ 1

κ2
|∇v|2 − ω2 |v|2

”
− sinφ

“ 1

κ2
+

− 1

κ2
−

”Z

Γ

∂tu v − 1

κ2
+

Z

Γ(H)

∂nv v − µ−

µ+κ2
−

Z

Γ(−H)

∂nv v = 0 , (5.4)

where Γ(±H) denotes the upper resp. lower straight boundary of ΩH . Using the notation ∇⊥ = (∂y,−∂x)
and Green’s formula the integral over Γ equals

Z

Γ

∂tv u =

Z

Γ(±H)

∂xv u ∓
Z

ΩH∩G±

∇v · ∇⊥u ,

and (4.3) gives
Z

Γ(±H)

∂nuu = i
X

n∈Z

β±
n |u±

n |2 e−2H Im β±
n ,

Z

Γ(±H)

∂xv u = i
X

n∈Z

αnv
±
n u±

n e−2H Im β±
n .

Hence (5.3) and (5.4) can be rewritten in the form

Z

ΩH

“ ε

ε+κ2
|∇u|2 − sinφ

κ2
∇v · ∇⊥u− ω2ε

ε+
|u|2
”

=
i

κ2
+

X

n∈Z

“
β+

n u
+
n − αnsinφv+

n

”
u+

n e−2H Im β+
n +

i

κ2
−

X

n∈Z

“ε−β−
n

ε+
u−

n − αnsinφv−n

”
u−

n e−2H Im β−
n ,

Z

ΩH

“ µ

µ+κ2
|∇v|2 +

sin φ

κ2
∇u · ∇⊥v − ω2µ

µ+
|v|2
”

=
i

κ2
+

X

n∈Z

“
β+

n v
+
n + αnsinφu+

n

”
v+

n e−2H Im β+
n +

i

κ2
−

X

n∈Z

“µ−β
−
n

µ+
v−n + αnsinφu−

n

”
v−n e−2H Im β−

n .

(5.5)

To write the quadratic forms in (5.5) more compactly we introduce the 4 × 4 matrix B and the vector U

B =
1

κ2

0
BB@

ε/ε+ 0 0 − sinφ
0 µ/µ+ sinφ 0
0 sinφ ε/ε+ 0

− sinφ 0 0 µ/µ+

1
CCA , U =

0
BB@

∂xu
∂xv
∂yu
∂yv

1
CCA ,

which allow to write the left of (5.5) in the form

Z

ΩH

“
BU · U − ω2ε

ε+
|u|2 − ω2µ

µ+
|v|2
”
.
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Noting that Imβ−
n > 0 for all n and Imβ+

n > 0 for almost all n we see that, if H → ∞, then the right-hand
side of (5.5) tends to

X

β
+
n ≥0

Mn

 
u+

n

v+
n

!
·
 
u+

n

v+
n

!
, where Mn =

i

κ2
+

„
β+

n −αnsinφ
αnsinφ β+

n

«
.

Hence (5.5) states that

Z

ΩH

“
BU · U − ω2ε

ε+
|u|2 − ω2µ

µ+
|v|2
”
−→

X

β+
n ≥0

Mn

 
u+

n

v+
n

!
·
 
u+

n

v+
n

!

when H → ∞. Obviously, if β+
n ≥ 0, then Re(iMn) ≤ 0. On the other side, the assumption Im ε−, Imµ− ≥ 0

implies

Re

„
− i

Z

ΩH

“ω2ε

ε+
|u|2 +

ω2µ

µ+
|v|2
”«

= ω2

Z

ΩH∩G−

“ Im ε−
ε+

|u|2 +
Imµ−

µ+
|v|2
”
≥ 0 ,

and in addition

Re

Z

ΩH

i BU · U ≥ 0 , (5.6)

which can be shown similar to [4]. Taking the unitary matrix

U =
1√
2

„
I iI
iI I

«
with U∗ = U−1 =

1√
2

„
I −iI

−iI I

«
,

where I denotes the 2 × 2 identity matrix, we obtain

iU−1B U =

„
N+ 0
0 N−

«
, where N± =

1

κ2

„
iε/ε+ ± sinφ
∓ sinφ iµ/µ+

«
.

Introducing the differential operators

∂+ =
1√
2

(∂x − i∂y) , ∂− =
1√
2

(∂y − i∂x) ,

we get

Z

ΩH

i BU · U =

Z

ΩH

0
@N+∂+

 
u

v

!
· ∂+

 
u

v

!
+N−∂−

 
u

v

!
· ∂−

 
u

v

!1
A .

Note that ReN± = 0 in ΩH ∩G+. Thus it remains to consider the real part of the matrices in G−

ReN± =

0
BB@

− Im
ε−
ε+κ2

−

± i Im
sinφ

κ2
−

∓ i Im
sinφ

κ2
−

− Im
µ−

µ+κ2
−

1
CCA ,

which is nonnegative if and only if the inequalities

− Im
ε−
κ2
−

≥ 0 and Im
ε−
κ2
−

Im
µ−

κ2
−

− ε+µ+ sin2 φ
“

Im
1

κ2
−

”2

≥ 0 (5.7)

are valid. Let us denote φε = arg ε−, φµ = arg µ−, φκ = arg κ2
−. The assumptions

φε, φµ ∈ [0, π] and φκ ∈ (0, 2π) ,

together with κ2
− = ε−µ− − ε+µ+ sin2 φ lead to 0 < φκ − φε, φκ − φµ ≤ π, which gives

− Im
ε−
κ2
−

=
˛̨
˛ ε−
κ2
−

˛̨
˛ sin(φκ − φε) ≥ 0.
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Using

Im
ε+µ+ sin2 φ

κ2
−

= Im
ε−µ−

κ2
−

,

the second inequality in (5.7) is equivalent to

sin(φε − φκ) sin(φµ − φκ) + sin(φε + φµ − φκ) sinφκ = sinφε sinφµ ≥ 0 ,

which establishes (5.6).
Hence the solution u, v of the homogeneous problem satisfies

Z

ΩH∩G−

“ Im ε−
ε+

|u|2 +
Imµ−

µ+
|v|2
”

= 0 ,

Z

ΩH∩G−

0
@ReN+∂+

 
u

v

!
· ∂+

 
u

v

!
+ ReN−∂−

 
u

v

!
· ∂−

 
u

v

!1
A = 0.

If Im ε−, Imµ− > 0, then u− = v− = 0 in G−. If otherwise, for example, Im ε− = 0, then sinφκ 6= 0 and
v− = 0. Hence

Z

ΩH∩G−

0
@ReN+∂+

 
u

0

!
· ∂+

 
u

0

!
+ ReN−∂−

 
u

0

!
· ∂−

 
u

0

!1
A

= −2 Im
ε−
ε+κ2

−

Z

ΩH∩G−

|∇u|2 =
2ε− sin φκ

ε+|κ2
−|

Z

ΩH∩G−

|∇u|2 = 0 ,

and together with ∆u− + κ2
−u− = 0 this implies u− = 0. By (4.11) we get w = τ = 0 if the single layer

potential V −
α with the fundamental solution Ψωκ−,α is invertible. Due to Remark 3.1 this is always true if

arg κ2
− ∈ (0, 3π/2).

5.3 Existence of solutions

It follows from Theorem 5.1 that under (5.1) and the conditions of Theorem 5.2 the integral equation system

(4.8) has a unique solution w, τ ∈ H
−1/2
α (Γ). Moreover, due to Lemma 4.1 the functions u± and v± from

(4.10), (4.11) are a solution of the diffraction problem (4.1) - (4.3), which is unique if V −
α = {0} is invertible.

Let us consider the remaining case of real ε− and µ−, where A can possess a nontrivial kernel. To show
that the right-hand side of (4.8) is in the range of A we define in accordance with (3.20) the bilinear form

ˆ
W,Φ

˜
=
ˆ
w,ϕ

˜
Γ

+
ˆ
τ, ψ

˜
Γ

(5.8)

for W = (w, τ ) ∈
`
Hs

α(Γ)
´2

, Φ = (ϕ,ψ) ∈
`
H−s

−α(Γ)
´2

. In view of (3.21) the operator matrix transposed to A
is given by

A′ =

 
V −
−α

`
I + L+

−α

´
+ a
`
I −K−

−α

´
V +
−α c V −

−αJ
+
−α

−c V −
−αJ

+
−α V −

−α

`
I + L+

−α

´
+ b

`
I −K−

−α

´
V +
−α

!

(see (4.5) for the definition of the integral operators, corresponding now to the fundamental solution Ψωκ±,−α).
Note that the range of A is orthogonal to the kernel of A′ with respect to (5.8).

Theorem 5.3. Suppose (5.1) and let the material parameters ε− and µ− be real and at least one of them be

positive. If V −
α is invertible, then there exists a solution w, τ ∈ H

−1/2
α (Γ) of the system (4.8).

Proof. The range of A is closed, hence it suffices to show that
ˆ
Ei

z, ϕ
˜
Γ

+
ˆ
Bi

z, ψ
˜
Γ

= 0 for all Φ = (ϕ,ψ) ∈
`
H

−1/2
−α (Γ)

´2
with A′Φ = 0 .

The functions u+ = S+
−αϕ, v+ = S+

−αψ in G+ and

u− = −1

2

„
S−
−α

“1

a
(I + L+

−α)ϕ+
c

a
J+
−αψ

”
−D−

−αV
+
−αϕ

«
,

v− = −1

2

„
S−
−α

“1

b
(I + L+

−α)ψ − c

b
J+
−αϕ

”
−D−

−αV
+
−αψ

« (5.9)
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in G− are −α-quasiperiodic of period d, satisfy the Helmholtz equations (4.1) and the outgoing wave condition
(4.3) with α replaced by −α:

(u+, v+)(x, y) =

∞X

n=−∞

(u+
n , v

+
n ) e i(−αnx+β+

n
y) for y ≥ H,

(u−, v−)(x, y) =

∞X

n=−∞

(u−
n , v

−
n ) e i(−αnx−β−

n
y) for y ≤ −H,

(5.10)

the numbers αn and β±
n are given in (2.15). The functions u−, v− have the boundary values

u−|Γ = −1

2

„
V −
−α

“1

a
(I + L+

−α)ϕ+
c

a
J+
−αψ

”
− (I +K−

−α)V +
−αϕ

«
,

v−|Γ = −1

2

„
V −
−α

“1

b
(I + L+

−α)ψ − c

b
J+
−αϕ

”
− (I +K−

−α)V +
−αψ

«
,

by using A′Φ = 0 we get

u−|Γ = V +
−αϕ = u+|Γ , v−|Γ = V +

−αψ = v+|Γ .
Now (5.9) and (3.8) imply that

S−
−α

“1

a
(I + L+

−α)ϕ+
c

a
J+
−αψ

”
= S−

−α∂nu− ,

S−
−α

“1

b
(I + L+

−α)ψ − c

b
J+
−αϕ

”
= S−

−α∂nv− ,

and since V −
−α = (V −

α )′ is invertible, this gives the jump relations
h ε
κ2
∂nu+

ε+ sinφ

κ2
∂tv
i

Σ
=
h µ
κ2
∂nv − µ+ sin φ

κ2
∂tu
i

Σ
= 0 . (5.11)

We proceed as in the proof of Lemma 5.2 and obtain the same variational equalities (5.3), (5.4) over the
periodic cell ΩH , but now for the −α-quasiperiodic functions u and v. Since ε−, µ− ∈ R and Reβ±

n = 0 for
almost all n, the imaginary parts of (5.3), (5.4) are equal to

sinφ
“ 1

κ2
+

− 1

κ2
−

”
Im

Z

Γ

∂tv u− 1

κ2
+

X

β+
n >0

β+
n |u+

n |2 − ε−
ε+κ2

−

X

β−
n >0

β−
n |u−

n |2 = 0,

− sinφ
“ 1

κ2
+

− 1

κ2
−

”
Im

Z

Γ

∂tu v − 1

κ2
+

X

β
+
n >0

β+
n |v+

n |2 − µ−

µ+κ2
−

X

β
−
n >0

β−
n |v−n |2 = 0.

Note that if ε− and µ− have different signs, then κ2
− < 0 and Reβ−

n = 0 for all n. Because of

Im

Z

Γ

∂tv u = Im

Z

Γ

∂tu v

we derive u+
n = v+

n = 0 if β+
n > 0 and u−

n = v−n = 0 if β−
n > 0. The Rayleigh coefficients u+

n , v
+
n can be

computed by the formula

u+
n =

1

d

dZ

0

u+(X,H) eiαnX−iβ+
n

H dX =
2

d

Z

Γ

ϕ(Q) dσQ

dZ

0

Ψωκ+,−α((X,H) −Q) e iαnX−iβ+
n

H dX .

From (3.5) we obtain for Q = (x, y)

dZ

0

Ψωκ+,−α((X,H) −Q) eiαnX−iβ+
n

H dX =
i

2β+
n

eiαnx−iβ+
n

y ,

which gives for n = 0

u+
0 =

i

dβ

Z

Γ

ϕ(Q) e iαx−βy dσQ , v+
0 =

i

dβ

Z

Γ

ψ(Q) e iαx−βy dσQ .

By (2.13) the components of the incoming field Ei
z and Bi

z are multiples of e iαx−βy, hence
ˆ
Ei

z, ϕ
˜
Γ

=
ˆ
Bi

z, ψ
˜
Γ

= 0

because of u+
0 = v+

0 = 0.
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6 Singularities of Solutions to the Diffraction Problem

We are interested in the leading singularities of the solution w, τ ∈ H
−1/2
α (Γ) of the integral equation system

(4.8) in the case when Σ is a curved polygon, i.e. Σ is smooth with the exception of a finite number of corner
points. It is well known that w and τ in a neighborhood ω of a corner point P of Σ allow decompositions of
the type

f(Q)χ(Q) = χ(Q)
X

0<Re λ<1

kλ−1X

l=0

cλl|Q− P |λ−1 logl |Q− P | + f0(Q) , Q ∈ Σ , (6.1)

where χ is a cut-off function with support in ω, f0 ∈ H1/2(Σ∩ω), the exponents λ are roots of multiplicity kλ

of certain transcendental equations and cλl ∈ C, see [2]. Denote by Λρ, 0 < ρ ≤ 1, the strip { 0 < Re z < ρ}
in the complex plane. To determine the exponents λ ∈ Λ1 we assume without loss of generality that G+

coincides with a sector S with angle δ ∈ (0, 2π)\{π} in a neighborhood of this point. Let S = {(r, ξ) :
0 < r < ∞, |ξ| < δ/2}, where (r, ξ) denote polar coordinates centered at P , and Σ is locally given by
∂S = {ξ = −δ/2} ∪ {ξ = δ/2}.

Since by (4.11)

w = (V −
α )−1u−|Γ , τ = (V −

α )−1v−|Γ , (6.2)

the exponents λ at corner points are determined from the behavior of u−|Γ, v−|Γ and from the singularity of
solutions of the integral equation

V −
α ϕ = ψ (6.3)

at this point. The solution of (6.3) has even for smooth ψ in the neighborhood of P one exponent in the strip
Λ1 given by λ = min(π/δ, π/(2π− δ)). This result was obtained in [2] based on Mellin symbol calculus of the
localized integral operator. The same technique applied to the localized operator matrix A should provide
the other exponents in Λ1 caused by the singularity of u−|Γ, v−|Γ.

Here we follow the method from [4] to study directly the singularities of the solution Ez, Bz of the
Helmholtz system (2.11) with the transmission conditions (2.12) near the corner point P . To determine the
corner singularities at P with Kondratiev’s method, one considers the model problem

∆u = ∆v = 0 in R
2\∂S ,

ˆ
u
˜
∂S

=
ˆ
v
˜
∂S

= 0 ,
h ε
κ2

∂nu+
ε+ sinφ

κ2
∂tu
i

∂S
=
h µ
κ2

∂nv −
µ+ sinφ

κ2
∂tu
i

∂S
= 0.

which results from (4.1), (4.2) by neglecting all lower order terms, and seeks solutions of the form u = rλU(ξ),
v = rλV (ξ). Since ∂n = ±r−1∂/∂ξ, ∂t = ∓∂/∂r on {ξ = ±δ/2}, we arrive at the following eigenvalue problem
for a system of two ordinary differential equations:

U ′′ + λ2U = V ′′ + λ2V = 0, ξ ∈ (−δ/2, δ/2) ∪ (δ/2, 2π − δ/2) , (6.4)

ˆ
U
˜
ξ=±δ/2

=
ˆ
V
˜
ξ=±δ/2

=
h ε
κ2

U ′ − ε+ sinφ

κ2
λV
i

ξ=±δ/2
=
h µ
κ2

V ′ +
µ+ sinφ

κ2
λU
i

ξ=±δ/2
= 0. (6.5)

We are looking for complex numbers λ ∈ Λ1 such that this problem has a non–trivial solution (U(ξ), V (ξ)).
Obviously, the general solution of (6.4) takes the form

(U, V ) =


A+ cos λξ +B+ sin λξ , ξ ∈ (−δ/2, δ/2) ,
A− cos λ(ξ − π) +B− sin λ(ξ − π) , ξ ∈ (δ/2, 2π − δ/2) ,

where the vectors A± = (A±
1 , A

±
2 ), B± = (B±

1 , B
±
2 ) are to be determined from the transmission conditions

(6.5). This leads to an 8 × 8 linear system in the unknowns A±
j , B

±
j , j = 1, 2. The following observation

reduces its dimension by half. Introduce

(Ue, Ve) =


A+ cos λξ , ξ ∈ (−δ/2, δ/2) ,
A− cos λ(ξ − π) , ξ ∈ (δ/2, 2π − δ/2)

and (Uo, Vo) = (U, V ) − (Ue, Ve), which are even and odd functions, respectively, about ξ = 0 and ξ = π.

Lemma 6.1. ([4]) If (U, V ) is a solution of problem (6.4), (6.5), then both the pairs (Uo, Ve) and (Ue, Vo)
solve this problem.
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Suppose that (Uo, Ve) is a non-trivial solution of (6.4), (6.5) corresponding to the eigenvalue λ. Then we
obtain the linear system

A+
2 cos

λδ

2
− A−

2 cosλ
`
π − δ

2

´
= 0

B+
1 sin

λδ

2
+B−

1 sinλ(π − δ

2
) = 0

ε+ sinφA+
2 − ε+B

+
1

κ2
+

cos
λδ

2
− ε+ sin φA−

2 − ε−B
−
1

κ2
−

cosλ
`
π − δ

2

´
= 0

µ+ sinφB+
1 − µ+A

+
2

κ2
+

sin
λδ

2
+
µ+ sinφB−

1 − µ−A
−
2

κ2
−

sinλ
`
π − δ

2

´
= 0

(6.6)

We may assume that

sin
λδ

2
cos

λδ

2
sin λ

`
π − δ

2

´
cos λ

`
π − δ

2

´
6= 0,

since otherwise it can easily be checked that (6.6) admits only the trivial solution if λ /∈ Z. Then (6.6) is
equivalent to the 2 × 2 system

ε+ sinφ
“ 1

κ2
+

− 1

κ2
−

”
A−

2 +
“

cot
λδ

2
tanλ

`
π − δ

2

´ ε+
κ2

+

+
ε−
κ2
−

”
B−

1 = 0 ,

“
tan

λδ

2
cot λ

`
π − δ

2

´ µ+

κ2
+

+
µ−

κ2
−

”
A−

2 + µ+ sinφ
“ 1

κ2
+

− 1

κ2
−

”
B−

1 = 0 .

(6.7)

With the abbreviation

η = cot
λδ

2
tanλ

`
π − δ

2

´
(6.8)

the determinant Do of the matrix of (6.7) takes the form

Do =
ε+µ+ sin2 φ− ε+µ+

κ4
+

+
ε+µ+ sin2 φ− ε−µ−

κ4
−

− 2ε+µ+ sin2 φ+ η ε+µ− + η−1 ε−µ+

κ2
+κ

2
−

= −κ
2
+ + κ2

− + 2ε+µ+ sin2 φ+ η ε+µ− + η−1 ε−µ+

κ2
+κ

2
−

= − (ε+ + η−1 ε−)(µ+ + η µ−)

κ2
+κ

2
−

.

Thus a nontrivial solution of (6.6) exists if

(η ε+ + ε−)(µ+ + η µ−) = 0 .

Note that the cases ε− = ± ε+, µ− = ±µ+ can be excluded, since they are not of interest. Indeed, from
η = ±1 and (6.8) we see that η = 1 implies sinλπ = 0, whereas η = −1 implies sinλ(π + δ) = 0 and hence
the corresponding roots λ do not belong to the strip Λ1.

In the other case, if (Ue, Vo) is a non-trivial solution of (6.4), (6.5) for an eigenvalue λ ∈ Λ1, then analogous
considerations lead to the equivalent equation

(ε+ + η ε−)(η µ+ + µ−) = 0 .

Hence a non-trivial solution (U, V ) of (6.4), (6.5) exists, if

(ε+ + η ε−)(η ε+ + ε−)(µ+ + η µ−)(η µ+ + µ−) = 0 ,

which by (6.8) leads to the two transcendental equations

“ sinλ(π − δ)

sinλπ

”2

=
“1 + ζ

1 − ζ

”2

, with ζ =
ε−
ε+

,
µ−

µ+
. (6.9)

Recall that we seek solutions λ ∈ Λ1 and that we have to consider the equation only if ζ 6= ±1.
Equations with the function

gδ(λ) =
sinλ(π − δ)

sinλπ
(6.10)
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occurs already at different places where transmission problems for scalar Laplace and Helmholtz equations
are studied. It was shown in [1] that the function

(gδ(λ))2 − C (6.11)

with C > 0 has a unique root in Λ1, which is real, simple and greater than 1/2. The case δ = π/2, 3π/2
was studied in [5], where the existence of a unique simple root in Λ1 for any fixed C ∈ C, ReC 6= 0, was
established. Moreover, it was shown that for any ǫ > 0 one can find C such that the corresponding root of
(6.11) belongs to Λǫ. In the following we correct a statement of [4] where it was erroneously claimed that the
same result is valid also for all other angles δ ∈ (0, 2π)\{π}.

Obviously, in order to study the solutions of (6.9) we can restrict to the case 0 < δ < π. Then gδ maps
rectangles of the form Rǫ,N = (ǫ, 1 − ǫ) × (−iN, iN) conformly onto simply connected domains, which are
symmetric with respect to the x-axis and are contained in the unbounded domain

Ωδ = gδ(Λ1) =
n
x+ iy : x > cos δ

sinh ξ(π − δ)

sinh ξπ
, y = sin δ

cosh ξ(π − δ)

sinh ξπ
, ξ ∈ (−∞,∞)

o
.

Moreover, gδ

`
Rǫ,N

´
approach Ωδ as N → ∞ and ǫ→ 0. Thus, if z ∈ Ωδ, then due to the Argument Principle

the equation gδ(λ) = z has a unique simple root λ ∈ Λ1.
Hence, in order to determine the number of solutions of the equation

(gδ(λ))2 − z2 = 0 , z 6= 0 , (6.12)

in the strip Λ1, we have to decide whether for given δ ∈ (0, π) the points ±z ∈ Ωδ.

Lemma 6.2. Any root λ ∈ Λ1 of (6.12) is simple. If 0 < δ ≤ π/2, then (6.12) has a unique solution if

z ∈ Ωδ ∪ (−Ωδ) =
n
x+ iy : |x| > cos δ

sinh ξ(π − δ)

sinh ξπ
, y = sin δ

cosh ξ(π − δ)

sinh ξπ
, ξ ∈ (−∞,∞)

o
, (6.13)

otherwise there is no solution in Λ1. In the case π/2 < δ ≤ π the equation (6.12) is always solvable in Λ1,
the solution is unique if

z ∈
n
x+ iy : |x| ≥ − cos δ

sinh ξ(π − δ)

sinh ξπ
, y = sin δ

cosh ξ(π − δ)

sinh ξπ
, ξ ∈ (−∞,∞)

o
, (6.14)

otherwise there exist two solutions in Λ1.

Remark 6.1. If π < δ < 2π, then the assertion of Lemma 6.2 holds with δ replaced by δ1 = 2π − δ.

Ω0 Ω2

Figure 2: Exceptional domains for δ = π/3 and δ = 2π/3. If ζ = ε−/ε+ or µ−/µ+ belongs
to Ω0 or Ω2, then there exists correspondingly 0 or 2 eigenvalues in Λ1

In order to determine the eigenvalues λ ∈ Λ1 of (6.4), (6.5) we have to apply Lemma 6.2 with

z =
1 + ζ

1 − ζ
,

where ζ takes the values ε−/ε+ and µ−/µ+ if they are different from ±1. It can be easily checked that the
fractional-linear transformation ζ = (z − 1)/(z + 1) maps ∂Ωδ ∪ ∂(−Ωδ) to the closed curves Σ± given by

ζ =

`
sin δ + i sinh ξ(2π − δ)

´`
sin δ + i sinh ξδ

´
`
cosh ξ(2π − δ) ± cos δ

´`
cosh ξδ ∓ cos δ

´ , ξ ∈ (−∞,∞) .
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The curves intersect the real axis at the points x = ±1 and the domain enclosed by them corresponds to the
exceptional domain mentioned in Lemma 6.2, i.e. the domain with no eigenvalues in Λ1 if 0 < δ ≤ π/2 or
with two eigenvalues when π/2 < δ < π. In Figure 2 these domains with Im ζ ≥ 0 are shown for the angles
δ = π/3 and δ = 2π/3. Note that for δ = π/2 both curves coincide with |ζ| = 1.

Similarly one can study the existence of eigenvalues λ ∈ Λ1/2 of (6.4), (6.5), which implies that the
solutions of (4.8) w, τ /∈ L2(Σ) as well as the gradients ∇Ez|Σ,∇Bz|Σ /∈ L2(Σ) for the solution of (2.11),
(2.12). We have

gδ(1/2 + iξ) = cos δ/2
cosh ξ(π − δ)

cosh ξπ
+ i sin δ/2

sinh ξ(π − δ)

cosh ξπ
, ξ ∈ (−∞,∞) ,

which shows that the transcendental equation (6.12) can have at most one solution λ ∈ Λ1/2. Because of

gδ(1/2 + iξ) − 1

gδ(1/2 + iξ) + 1
= − (sin δ/2 − i sinh ξ(2π − δ))(sin δ/2 + i sinh ξδ)

(cos δ/2 + cosh ξ(2π − δ))(cos δ/2 + cosh ξδ)

and

−gδ(1/2 + iξ) − 1

−gδ(1/2 + iξ) + 1
= − (sin δ/2 + i sinh ξ(2π − δ))(sin δ/2 − i sinh ξδ)

(cos δ/2 − cosh ξ(2π − δ))(cos δ/2 − cosh ξδ)

the fractional-linear function (z − 1)/(z + 1) maps the graphs of gδ(1/2 + iξ) and −gδ(1/2 + iξ) into a closed
curve in the halfplane Re ζ < 0, and its interior determines the values of ζ such than an eigenvalue λ ∈ Λ1/2

of (6.4), (6.5) exists. The curves with Im ζ ≥ 0 are shown for the angles δ = π/3 and δ = 2π/3 in Fig. 3.

Figure 3: If ζ = ε−/ε+ or µ−/µ+ is below the curves corresponding to δ = π/3 (left) and
δ = 2π/3 (right), then w, τ /∈ L2(Σ)
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