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Abstra
tAn existen
e result for energeti
 solutions of rate-independent damagepro
esses is established. We 
onsider a body 
onsisting of a physi
ally lin-early elasti
 material undergoing in�nitesimally small deformations and par-tial damage. In [TM10℄ an existen
e result in the small strain setting was ob-tained under the assumption that the damage variable z satis�es z ∈ W 1,r(Ω)with r ∈ (1,∞) for Ω ⊂ Rd. We now 
over the 
ase r = 1. The la
k of 
om-pa
tness in W 1,1(Ω) requires to do the analysis in BV (Ω). This setting allowsit to 
onsider damage variables with values in {0, 1}. We show that su
h a brit-tle damage model is obtained as the Γ-limit of fun
tionals of Modi
a-Mortolatype.1 Introdu
tionDamage means the 
reation and growth of 
ra
ks and voids on the mi
ro-level of asolid material. Based on the method of Continuum Damage Me
hani
s this pro
essis modeled by an internal variable, the damage variable z : [0, T ]×Ω→ [0, 1], whi
his in
orporated to the 
onstitutive law in order to re�e
t the 
hanges of the elasti
behavior due to damage. As in [MR06, TM10℄ z(t, x) = 1 stands for no damageand z(t, x) = 0 for maximal damage in the material point x of the body Ω ⊂ Rd attime t ∈ [0, T ].The damage pro
ess is treated within the so-
alled energeti
 formulation. Thisansatz solely uses an energy fun
tional E : [0, T ]×Q → R ∪ {∞} and a dissipationpotential R : Z → [0,∞]. Here, Z denotes the set of damage variables and togetherwith the set of displa
ements U it de�nes the state spa
e Q := U × Z, whi
h hereis a Bana
h spa
e. The triple (Q, E ,R) is 
alled a (rate-independent) system. Therate-independen
e of (Q, E ,R) is re�e
ted by the positive-1-homogeneity of R, i.e.
R(0) = 0 and R(αv) = αR(v) for all α > 0 and all v ∈ Z. Moreover, the damagepro
ess is assumed to be unidire
tional. With a 
onstant ̺ > 0 this is modeled by
R being of the following form:

R(v) :=

∫

Ω

R(v(x)) dx , where R(v) :=

{
̺|v| if v ∈ (−∞, 0],
+∞ if v > 0.

(1)With v = ż as the partial time derivative of z, the dissipation potential a

ounts forthe evolution of the damage pro
ess. Moreover, due to its positive-1-homogeneitythe 
onvex potential R generates a dissipation distan
e between all z1, z2 ∈ Z,whi
h is given by R(v) from (1) with v = z2 − z1, i.e. R(z2 − z1) for all z1, z2 ∈ Z;see e.g. [Mie05℄ for more details. This fa
t is used within the energeti
 approa
h tode�ne a 
on
ept of solution that does not involve the partial time derivative of z.These are the so-
alled energeti
 solutions:De�nition 1.1 (Energeti
 solution) A fun
tion q = (u, z) : [0, T ] → Q is 
alledan energeti
 solution for the system (Q, E ,R), if t 7→ ∂tE(t, q) ∈ L1((0, T )) and iffor all s, t ∈ [0, T ] we have E(t, q(t)) < ∞, global stability (2(S)) and global energybalan
e (2(E)):for all q̃ = (ũ, z̃) ∈ Q holds : E(t, q(t)) ≤ E(t, q̃) +R(z̃−z(t)) , (2(S))
E(t, q(t)) + DissR(z, [s, t]) = E(s, q(s)) +

∫ t

s
∂ξE(ξ, q(ξ)) dξ (2(E))with DissR(z, [s, t]) := sup

{∑N
j=1R(z(ξj)−z(ξj−1)) | s = ξ0 <. . .<ξN = t, N ∈N

}
.1



In the style of [FN96℄ the energy fun
tional for our setting is set up as follows:
E(t, u, z) :=

∫

Ω

f(z)e(u+g(t)) :C :e(u+g(t)) dx + G(z) +

∫

Ω

δ[0,1](z) dx . (3)Here, u : Ω → Rd denotes the displa
ement and e(u) := 1
2 (∇u+∇u⊤) the linearizedstrain tensor. The �rst term in (3) represents the stored elasti
 energy with thetensor C ∈ R(d×d)×(d×d) being symmetri
 and positive de�nite. We assume that

f : [0, 1] → [a, b] for 
onstants 0<a<bis 
ontinuous and monotonously in
reasing on [0, 1].
(4)Moreover, δ[0,1] is the 
hara
teristi
 fun
tion of the interval [0, 1], i.e. δ[0,1](z) = 0,if z ∈ [0, 1] and δ[0,1](z) = ∞, if z 6∈ [0, 1]. Although z = 0 is allowed, (3) onlymodels partial damage, sin
e we assume 0 < a < b in (4). Hen
e, the 
oer
ivityof the energy fun
tional is ensured, so that, in validity of Korn's inequality, thedispla
ements are well-de�ned allover in Ω. The damage pro
ess is driven by thetime-dependent external loadings g : [0, T ]×Ω → Rd modeled by a given extensionof time-dependent Diri
hlet data. Finally, the term G(z) has regularizing e�e
ts. Itis used in mathemati
al literature, see e.g. [FN96℄, but also in engineering 
ontri-butions [HS03℄, where it is 
onsidered to a

ount for mi
ros
opi
 intera
tions. In[MR06℄ the existen
e of energeti
 solutions for the system (Q, E ,R) was proven for

G(z) :=
∫
Ω

κ
r |∇z|r dx with r>d. This restri
tion was ne
essary in an essential stepof the proof, namely for the 
onstru
tion of a so-
alled mutual re
overy sequen
e(MRS), where the 
ompa
t embedding W 1,r(Ω) ⋐ C(Ω) was exploited. More pre-
isely, the existen
e of a MRS is used to verify (2(S)) for an energeti
 solution, seeDef. 2.2. The di�
ulties in the 
onstru
tion lie in the dis
ontinuity of R and thegradient term G. In [Tho10, TM10℄ the existen
e result was extended to r∈(1,∞)by introdu
ing a new te
hnique for the 
onstru
tion of the MRS, whi
h does notuse the 
ompa
t embedding. Instead, the 
onstru
tion is based on the 
hain rule for

W 1,r-fun
tions 
omposed with Lips
hitz fun
tions and on a 
an
ellation argumentfor the resulting terms. Moreover, a model for partial damage without regulariza-tion is treated in [FKS10℄. The absen
e of the gradient 
auses a la
k of 
ompa
tness,so that one resorts to the framework of Young measures.In this 
ontribution we fo
us on the limit 
ase r = 1. In 
ontrast to r ∈ (1,∞)the spa
e W 1,1(Ω) la
ks sequential 
ompa
tness. For this reason we extend thefun
tionals to the spa
e BV (Ω) of fun
tions with bounded variation, whi
h 
onsistsof all the fun
tions z∈L1(Ω), whose distributional derivatives Diz, i=1, . . . , d, 
anbe represented by a �nite Radon measure in Ω. Hen
e, with Dz as the distributionalgradient and |Dz|(Ω) as the variation of z in Ω (see e.g. [AFP05, Def. 3.4℄), we set
G(z) := |Dz|(Ω) for all z ∈ BV (Ω) . (5)This 
overs the intermediate 
ase inbetween damage evolution in Sobolev spa
es[MR06, TM10℄ and the mu
h weaker 
ase of damage evolution in terms of Youngmeasures [FKS10℄.In Se
tion 2 the proof of the existen
e result in the BV -setting will be 
arriedout and the MRS will be 
onstru
ted in detail by transferring the arguments ofthe 
ase r ∈ (1,∞) to the BV-setting. This involves results from the theory of

BV-spa
es, whi
h are provided in Se
tion 2.1. The most important tool is thede
omposability of BV-fun
tions, see Lemma 2.12 and [AFP05, Th. 3.84℄, whi
h2



allows it to 
ompose the elements of the re
overy sequen
e ẑk pie
ewise in Ω by theelements of the stable sequen
e zk and a testfun
tion ẑ using indi
ator fun
tionsof suitable level sets in order to ensure that R(ẑk−zk) < ∞. This 
onstru
tionrepla
es the 
hain rule for the 
omposition of W 1,r-fun
tions with the Lips
hitz-fun
tion min : [0, 1]× [0, 1] → [0, 1] used in the setting of Sobolev spa
es.In Se
tion 3 we treat a so-
alled brittle damage model, whi
h a

ounts for twomaterial states only, the undamaged and a damaged one. This is mathemati
allymodeled by 
onsidering the damage variable as an indi
ator fun
tion of a set with�nite perimeter. Due to this assumption the BV-regularization is given by theperimeter P (E, Ω), whi
h is the variation of the indi
ator fun
tion:
P (E, Ω) := |DIE |(Ω) < ∞ . (6)This regularization is 
oupled to a stored energy whi
h 
an be used for the modelingof 
on
rete, see (51). In Se
tion 3.1 it will be shown that the rate-independentbrittle damage model 
an be approximated by fun
tionals of Modi
a-Mortola type.Having in mind the works [Alb98, MM77℄, where 
lassi
al Γ-
onvergen
e of thestati
 Modi
a-Mortola energy to the stati
 perimeter energy term was proven in the
ontext of phase transitions, this 
onvergen
e seems to be obvious on the �rst glan
e.But one must be aware that the present work deals with Γ-
onvergen
e of rate-independent systems, where the energy fun
tionals and the dissipation potentialinterplay be
ause of the 
onditions (2). In parti
ular, the proof of the upper Γ-limit gets more involved due to the unidire
tionality of the dissipation potential,see Se
tion 3.2.2.2 Existen
e of energeti
 solutions for the BV-modelThe aim of this se
tion is to prove the existen
e of energeti
 solutions for the rate-independent system (Q, E ,R) given by (1), (3) with the regularization (5) in thestate spa
e

Q = U ×Z with U :=
{
v ∈ H1(Ω, Rd) , v = 0 on ΓD} and Z := BV(Ω) . (7)The pro
edure to prove our main result is based on the abstra
t theory developedin [MM05, Mie05, FM06, MRS08℄. In parti
ular, the proof 
an be 
arried out byverifying the 
onditions of [Mie09, Th. 3.4℄. Moreover, most of the steps to do aresimilar to the ones in [TM10, Se
t. 3℄, sin
e the stored energy density f(z)e : C : e
onsidered here is a spe
ial 
ase of [TM10℄. The main di�eren
e arises from the

BV-regularization. Of 
ourse, G de�ned as the variation of BV-fun
tions is lowersemi
ontinuous and guarantees sequential 
ompa
tness in BV(Ω) with respe
t tostrong L1(Ω)-
onvergen
e, i.e. there holds
sup
k∈N

(
‖zk‖L1(Ω)+G(zk)

)
≤ c ⇒ ∃ subseq. zk → z in L1(Ω) and z∈BV(Ω) , (8a)

zk → z in L1(Ω) ⇒ G(z) ≤ lim inf
k→∞

G(zk) , (8b)see [AFP05, Rem. 3.5, Th. 3.23℄. The 
onvergen
e zk → z in L1(Ω) with G(zk) ≤ cfor all k ∈ N is equivalent to weak∗-
onvergen
e in BV(Ω), denoted by zk
∗
⇀ zin BV(Ω) [AFP05, Prop. 3.13℄. Be
ause of this, the topology of 
onvergen
e is3



spe
i�ed as follows
(uk, zk)

T
→ (u, z) ⇔

{
uk ⇀ u in H1(Ω, Rd) ,

zk
∗
⇀ z in BV(Ω) .

(9)Properties (8) help to ensure the existen
e of minimizers at ea
h time step. Themain di�
ulty arises when passing from the time-dis
retized model to the time-
ontinuous one, in parti
ular, when proving the 
losedness of stable sets. Similarlyto [TM10, Se
t. 3.4℄ we thereto 
onstru
t a MRS, whi
h requires to transfer theansatz used for the W 1,r-regularization for r ∈ (1, d] to the BV-setting. In thefollowing we present the existen
e result and we brie�y address the nonproblemati
steps of the proof. As it is the main issue of the proof, the fo
us of this se
tion liesin the 
onstru
tion of the MRS. For this, we introdu
e the relevant tools from thetheory of BV-spa
es in Se
tion 2.1 and establish the MRS in Se
tion 2.2.Theorem 2.1 (Existen
e of energeti
 solutions for the BV-model) Let
(Q, E ,R) be given by (7), (3) and (1) with the regularization (5). Let (4) holdand let the tensor C in (3) be symmetri
 and positive de�nite, i.e. there are 
on-stants 0 < cC

1 ≤ cC
2 su
h that cC

1 |e|
2 ≤ e : C : e ≤ cC

2 |e|
2. Moreover, assume that

Ω ⊂ Rd is an open, bounded Lips
hitz domain, that the Diri
hlet boundary ΓD 6= ∅and that the extension g of the Diri
hlet-datum satis�es g ∈ C1
(
[0, T ], H1(Ω, Rd)

).Then, for any initial value (u0, z0) ∈ Q, whi
h satis�es (2(S)) at t = 0, thereexists an energeti
 solution (u, z) : [0, T ]→ Q for the system (Q, E ,R).Proof: Let W (e, z) := f(z)e : C : e su
h that f and C satisfy the assumptions ofTheorem 2.1. Then, W : Rd×d × [0, 1] → R enjoys the following properties(P1) Continuity: W : Rd×d × [0, 1] → R is 
ontinuous.(P2) Convexity: ∀z ∈ [0, 1] : W (·, z) : Rd×d → R stri
tly 
onvex.(P3) Coer
ivity: ∃ c1, c2 >0 ∀(e, z) ∈ Rd×d × [0, 1] : c1|e|2 ≤ W (e, z) ≤ c2|e|2.(P4) Stress 
ontrol: ∃ c3 >0 ∀(e, z) ∈ Rd×d × [0, 1] : |∂eW (e, z)| ≤ c3|e|.(P5) Lips
hitz 
ontinuity of the stresses: ∃ c4 > 0 ∀(e1, z), (e2, z) ∈ Rd×d × [0, 1] :
|∂eW (e1, z)− ∂eW (e2, z)| ≤ c4|e1 − e2|.(P6) Monotoni
ity: ∀(e, z1), (e, z2) ∈ Rd×d × [0, 1] with z1 ≤ z2 :
W (e, z1) ≤ W (e, z2) ≤ b/aW (e, z1).Properties (P1)-(P3) together with (8) imply that E(t, ·, ·) is sequentially lowersemi
ontinuous and that its sublevels are 
ompa
t in the topology T from (9).Hen
e, the existen
e of a minimizer (u(tk), z(tk)) for E(tk, ·, ·) + R(· − z(tk−1)) isguaranteed for all 0 ≤ tk−1 < tk ≤ T. For all k ∈ N these minimizers (u(tk), z(tk))satisfy (2(S)) at time tk. Property (P4) together with the assumptions on g enablesus to show the existen
e of

∂tE(t, u, z) :=

∫

Ω

∂eW (e(u + g(t), z) : e(ġ(t)) dx for all t ∈ [0, T ] . (10)Additionally, it leads to the 
ontrol of ∂tE(t, u(tk), z(tk)) by E(t, u(tk), z(tk)) uni-formly in [0, T ]. Then, a Gronwall argument yields the boundedness of the energyuniformly in time. This implies that (u(tk), z(tk))k∈N is uniformly bounded in Q.4



As tk → t, i.e. when passing to 0 with the step size of the partitions of the timeinterval [0, T ], we therefore have a subsequen
e (u(tk), z(tk))
T
→ (ut, zt).Properties (P5) and (P6) are used to prove that ∂tE(t, u(tk), z(tk))→∂tE(t, ut, zt)for every (tk, u(tk), z(tk))

[0,T ]×T
→ (t, ut, zt) with (tk, u(tk), z(tk)) satisfying (2(S)).This allows it to verify the energy balan
e (2(E)). It remains to show that the limit

(t, ut, zt) satis�es (2(S)), i.e. the 
losedness of stable sets must be shown. This willbe 
arried out in detail below.The proof of the 
losedness of stable sets is not straight forward due to the unidi-re
tionality of R. Consider (tk, uk, zk)k∈N satisfying (2(S)) with (tk, uk, zk)
[0,T ]×T
→

(t, u, z) and ẑ ∈ Z. Then we have to prove that (t, u, z) satis�es (2(S)) as well. Butsin
e R(ẑ − zk) = ∞ whenever ẑ > zk on a set of positive Ld-measure, we 
annotsimply pass to the limit in (2(S)). Instead we use the following 
ondition.De�nition 2.2 (MRS-
ondition) The system (Q, E ,R) satis�es the mutual re-
overy sequen
e 
ondition if for all sequen
es (tk, qk)k∈N = (tk, uk, zk)k∈N with
(tk, qk) satisfying (2(S)) for all k ∈ N and with (tk, qk)

[0,T ]×T
→ (t, q) and for ev-ery q̂ = (û, ẑ) ∈ Q there is a sequen
e (q̂k)k∈N = (ûk, ẑk)k∈N with q̂k

T
→ q̂ in Q, sothat

lim sup
k→∞

(
E(tk, q̂k) +R(ẑk − zk)− E(tk, qk)

)
≤ E(t, q̂) +R(ẑ − z)− E(t, q) . (11)Note that E(tk, q̂k) +R(ẑk − zk) − E(tk, qk) ≥ 0 for all k ∈ N due to (2(S)) for

(tk, qk). Hen
e the MRS-
ondition implies (2(S)) for (t, q).The property R(ẑk−zk)<∞ requires that 0≤ ẑk≤ zk Ld-a.e. in Ω. In [TM10,Se
t. 3.2.5℄ for the setting of W 1,r-fun
tions this was a
hieved by the ansatz ẑk :=
max{0, min{ẑ − δk, zk}} using that the superposition of the Lips
hitz 
ontinuousfun
tion min with a W 1,r-fun
tion generates a W 1,r-fun
tion and its gradient 
anbe 
al
ulated by a 
hain rule. Then, the proof of inequality (11) exploited the
an
ellation of G(ẑk) − G(zk) on the subsets [zk ≤ ẑ − δk], where δk → 0 wasdetermined su
h that Ld([zk ≤ ẑ− δk]) → 0. In the BV-setting we also want to takeadvantage of this 
an
ellation argument. A 
hain rule for BV-fun
tions superposedwith Lips
hitz 
ontinuous fun
tions was established in [ADM90℄. Sin
e it mayhappen that a Lips
hitz 
ontinuous fun
tion l is nowhere di�erentiable on the rangeof a BV-fun
tion z this general 
hain rule involves a tangential di�erential of l tothe range of z. However, for our problem we 
an repla
e the superposition usingindi
ator fun
tions of suitable level sets, i.e. ẑk := (ẑ−δk)IAk

+zkIBk
+0·ICk

, where
Ak := [0 ≤ ẑ−δk ≤ zk], Bk := [0 ≤ zk < ẑ−δk] and Ck := Ω\(Ak ∪Bk). Intuitively(but sloppily), the distributional gradient Dẑk is given by Dẑ in Ak, by Dzk in Bkand additionally by the jumps a
ross the (redu
ed) boundaries of these sets. Inorder to ensure that |Dẑk|(Ω) < ∞, i.e. that ẑk 
omposed in this way indeed is a
BV-fun
tion, requires that Ak and Bk have �nite perimeter and that the tra
es ofthe fun
tions ẑ and zk on the (redu
ed) boundaries of Ak and Bk are wellde�nedand bounded. This relation is stated by the theorem on the de
omposability of
BV-fun
tions [AFP05, Th. 3.84℄ (Lemma 2.12, here). For our problem, this 
anbe a
hieved by 
hoosing δk suitably, whi
h is possible due to the 
oarea formula.Moreover, δk → 0 
an be determined su
h that Ld(Bk) → 0. But this does notimply that also P (Bk, Ω) → 0, whi
h would make the jump parts 
onverge suitably.Therefore, we have to evaluate the BV-tra
es of ẑ and ẑk 
arefully on the redu
ed5



boundaries of Ak and Bk. In order to make the 
onvergen
e proof of the MRSas readable as possible all the required BV-terminology is provided beforehand inSe
tion 2.1. The MRS is then established in Se
tion 2.2.2.1 Tools from BV-spa
es for the 
onstru
tion of the MRSThis se
tion is a 
olle
tion of tools from the theory of BV-spa
es, whi
h are usedfor the 
onstru
tion of the MRS in Se
tion 2.2. The notation and the results aretaken from [AFP05, Se
t. 3℄ and readers who are familiar with BV-theory may skipthis present se
tion.Proposition 1 ([AFP05, Prop. 3.38℄ Properties of the perimeter)1. The mapping E 7→ P (E, Ω) is lower semi
ontinuous with respe
t to lo
al 
on-vergen
e in measure in Ω.2. The mapping E 7→ P (E, Ω) is lo
al, i.e. P (E, Ω) = P (F, Ω) whenever
Ld(Ω ∩

(
(E\F ) ∪ (F\E)

)
)) = 0.3. It holds P (E, Ω) = P (Rd\E, Ω) and

P (E ∪ F, Ω) + P (E ∩ F, Ω) ≤ P (E, Ω) + P (F, Ω) . (12)Theorem 2.3 ([AFP05, Th. 3.40℄ Coarea formula in BV ) For any open set
Ω ⊂ Rd and v ∈ L1

loc(Ω) one has
|Dv|(Ω) :=

∫ ∞

−∞

P ({x ∈ Ω | v(x) > t}, Ω)dt . (13)If v ∈ BV (Ω) the set {v > t} has �nite perimeter for L1-a.e. t ∈ R and
|Dv|(B) =

∫ ∞

−∞

|DI{v>t}|(B) dt , Dv(B) =

∫ ∞

−∞

DI{v>t}(B) dt (14)for any Borel set B ⊂ Ω.De�nition 2.4 ([AFP05, Def. 3.54℄ Redu
ed boundary) Let E be an Ld-mea-surable subset of Rd and Ω the largest open set su
h that E is lo
ally of �niteperimeter in Ω. The redu
ed boundary FE is de�ned as the 
olle
tion of all points
x ∈ supp |DIE | ∩ Ω su
h that the limit

νE(x) := lim
̺→0

DIE(B̺(x))

|DIE |(B̺(x))
(15)exists in Rd and satis�es νE(x)=1. The fun
tion νE : FE → Sd−1 is 
alled thegeneralized inner normal to E.De�nition 2.5 ([AFP05, Def. 3.60℄Points of density t, essential boundary)For all t ∈ [0, 1] and every Ld-measurable set E ⊂ Rd we introdu
e

Et :=

{
x ∈ Rd

∣∣ lim
̺→0

Ld(E ∩B̺(x))

Ld(B̺(x))
= t

} and ∂∗E := Rd\(E0 ∪E1) . (16)
Et denotes the set of all points where E has density t and ∂∗E is the essentialboundary of E. Moreover, E1 
an be 
onsidered as the measure theoreti
 interiorand E0 as the measure theoreti
 exterior of the set E.6



The next properties of the measure theoreti
 interior dire
tly follow from (16).Corollary 1 The measure theoreti
 interior has the following properties:1. Let N ⊂ Ω with Ld(N) = 0. Then N1 = ∅ and (Ω\N)1 = Ω1.2. Let A ⊂ B ⊂ Ω. Then A1 ⊂ B1 ⊂ Ω1.The next theorem, whi
h is due to Federer, states that FE is the important part ofthe boundary, sin
e Ω\(E0 ∪ FE ∪ E1) is a Hd−1-negligible set.Theorem 2.6 ([AFP05, Th. 3.61℄ Federer) Let E be a set of �nite perimeterin Ω. Then
FE ∩Ω ⊂ E1/2 ⊂ ∂∗E and Hd−1(Ω\(E0 ∪ FE ∪ E1)) = 0 . (17)In parti
ular, E has density either 0 or 1/2 or 1 at Hd−1-a.e. x ∈ Ω and Hd−1-a.e.

x ∈ ∂∗E ∩ Ω belongs to FE.De�nition 2.7 ([AFP05, Def. 3.63℄ Approximate limit) Let v ∈ L1
loc(Ω)d.We say that v has an approximate limit at x ∈ Ω if there exists v̄ ∈ Rd su
hthat

lim
̺→0

∫

B̺(x)

|v(y)− v̄| dy = 0 . (18)The set Sv of points where this property does not hold is 
alled the approximatedis
ontinuity set. For any x ∈ Ω\Sv the ve
tor v̄, uniquely determined by (18), is
alled approximate limit of v at x and denoted by ṽ(x).De�nition 2.8 ([AFP05, Def. 3.67℄ Approximate jump points) Let
B±

̺ (x, ν) := {y ∈ B̺(x) | ± 〈y − x, ν〉 > 0} . (19)Let v ∈ L1
loc(Ω)d and x ∈ Ω. We say that x is an approximate jump point of v ifthere exist a, b ∈ Rd and ν ∈ Sd−1 su
h that a 6= b and
lim
̺→0

∫

B+
̺ (x,ν)

|v(y)− a| dy = 0 , lim
̺→0

∫

B−̺ (x,ν)

|v(y)− b| dy = 0 . (20)The triple (a, b, ν), uniquely determined by (20) up to a permutation of (a, b) anda 
hange of sign of ν, is denoted by (v+, v−, νv(x)). The set of approximate jumppoints of v is denoted by Jv.De�nition 2.9 ([AFP05, Def. 2.57℄ Re
ti�able sets) Let E ⊂ Rd be an Hk-measurable set. We say that E is 
ountably k-re
ti�able if there exists 
ountablymany Lips
hitz fun
tions fi : Rk → Rd su
h that
E ⊂ ∪∞i=0fi(R

k) . (21)We say that E is 
ountably Hk-re
ti�able if there exists 
ountably many Lips
hitzfun
tions fi : Rk → Rd su
h that
Hk

(
E\ ∪∞i=0 fi(R

k)
)

= 0 . (22)Clearly, k-re
ti�ability implies Hk-re
ti�ability.7



Theorem 2.10 ([AFP05, Th. 3.59℄ De Giorgi) Let E be an Ld-measurable sub-set of Rd. Then FE is 
ountably (d−1)-re
ti�able and |DIE | = Hd−1⌊FE.Due to Th. 2.10 the perimeter of E 
an be 
omputed by
P (E, Ω) = Hd−1(Ω ∩ ∂∗E) = Hd−1(Ω ∩ E1/2) . (23)This 
an be used to rewrite the 
oarea formula (13) using the essential boundary oflevel sets

|Du|(B) =

∫ ∞

−∞

Hd−1
(
B ∩ ∂∗{u > t}

)
dt for all Borel sets B ⊂ Ω . (24)Theorem 2.11 ([AFP05, Th. 3.77℄ Tra
es on interior re
ti�able sets) Let

v be a fun
tion in BV (Ω)d and let Γ ⊂ Ω be a 
ountably Hd−1-re
ti�able set orientedby ν. Then, for Hd−1-a.e. x ∈ Γ there exist v+
Γ (x), v−Γ (x) ∈ Rd su
h that

lim
̺→0

∫

B+
̺ (x,ν(x))

|v(y)− v+
Γ (x)| dy = 0 , lim

̺→0

∫

B−̺ (x,ν(x))

|v(y)− v−Γ (x)| dy = 0 .(25)Moreover, Dv⌊Γ = (v+
Γ − v−Γ )⊗ νHd−1⌊Γ.2.2 Existen
e of mutual re
overy sequen
esThe 
onstru
tion of a MRS in the BV -setting will be based on the following lemmaon the de
omposability of BV-fun
tions. Using 
omplete indu
tion, it 
an dedu
edfrom [AFP05, Th. 3.84℄, whi
h gives the statement of the lemma for N = 2.Lemma 2.12 (De
omposability of BV-fun
tions) For all i ∈ {1, . . . , N}, N ∈

N, let vi ∈ BV (Ω) and Ai ⊂ Ω with �nite perimeter and the generalized innernormal νi to the redu
ed boundary FAi, su
h that ∪N
i=1Ai = Ω and Ai ∩Aj = ∅ forall i 6= j. For all i ∈ {1, . . . , N} and all j ∈ {i+1, . . . , N} let FAi∩FAj be orientedby νi. Let IAi

denote the indi
ator fun
tion of the set Ai and vi
±
FAi

the tra
es on
FAi. Then

w :=

N∑

i=1

viIAi
∈ BV (Ω) ⇐⇒

N∑

i=1
j=i+1

∫

FAi∩FAj∩Ω

|vi
+
FAi

− vj
−
FAj

| dHd−1 < ∞ . (26)If w ∈ BV (Ω), the measure Dw is representable by
Dw :=

N∑

i=1

(
Dvi⌊A

1
i +

N∑

j=i+1

(vi
+
FAi

− vj
−
FAj

)⊗ νiH
d−1⌊(FAi ∩ FAj ∩ Ω)

)
, (27)where A1

i is the measure theoreti
 interior of Ai, as in Def. 2.5.Moreover, we will exploit that the BV-tra
es of a fun
tion, whi
h is bounded Ld-a.e.,are bounded Hd−1-a.e. by the same 
onstants. This 
an be proven by 
ontradi
tionusing formula (25).Corollary 2 Let v ∈ BV (Ω) with a ≤ v ≤ b Ld-a.e. in Ω for 
onstants a, b ∈ R.assume that Γ is a Hd−1-re
ti�able set oriented by ν. Then a ≤ v±Γ (x) ≤ b for
Hd−1-a.e. x ∈ Ω. 8



With these tools at hand we are in a position to verify the MRS-
ondition.Lemma 2.13 Let the assumptions of Theorem 2.1 hold. Then (Q, E ,R) satis�esthe MRS-
ondition from De�nition 2.2.Proof: Let (tk, uk, zk)k∈N ⊂ [0, T ] × Q with (tk, uk, zk)
[0,T ]×T
→ (t, u, z). Choosenow q̂ = (û, ẑ) ∈ Q su
h that E(t, q̂) < E for some E ∈ R, otherwise (11) triviallyholds. Now we distinguish between the following two 
ases:Case A: Let q̂ = (û, ẑ) ∈ Q be su
h that there exists a Ld-measurable set B ⊂ Ωwith Ld(B) > 0 and ẑ > z on B. Then R(ẑ − z) = ∞ and (11) holds.Case B: Let q̂ = (û, ẑ)∈Q so that ẑ≤ z a.e. in Ω. Then R(ẑ−z) is �nite, i.e.

R(ẑ−z)=
∫
Ω
̺(z−ẑ)dx<∞. To 
onstru
t a MRS we set ûk := û for every k ∈ N and

ẑk := (ẑ−δk)IAk
+ zkIBk

+ 0·ICk
, where (28)

Ak := [0 ≤ ẑ−δk ≤ zk] , Bk := [0 ≤ zk < ẑ−δk] , Ck = Ω\(Ak ∪Bk) . (29)With this 
hoi
e we ensure that 0 ≤ ẑk ≤ zk a.e. in Ω. We show now that thesequen
e δk
R
→ 0 
an be determined in su
h a way that ẑk ∈ BV (Ω), so that (27)is appli
able, su
h that (

Ld(Bk)+Ld(Ck)
)
→ 0 and ẑk → ẑ in L1(Ω) as k → ∞.Be
ause of ẑ ≤ z in Ω we obtain

Bk ⊂ [zk < ẑ−δk] ⊂ [zk < z−δk] ⊂ [δk < |z−zk|] . (30)Using Markov's inequality (M) in the last estimate of (31) below we 
on
lude
Ld(Bk) ≤ Ld([δk < |z−zk|])

(M)
≤ δ−1

k ‖z−zk‖L1(Ω) (31)and to ensure that the right-hand side of (31) tends to 0, we may e.g. 
hoose any
δk ∈ [m

1/2
k , m

1/4
k ] with mk := max{k−1, ‖z−zk‖L1(Ω)}.Moreover, to make Cor. 2.12 appli
able we have to 
hoose δk ∈ [m

1/2
k , m

1/4
k ] su
hthat the sets Ak, Bk and Ck have �nite perimeter and that the right-hand side of(26) is �nite for all k ∈ N. For this, we rewrite Ak = [δk ≤ ẑ] ∩ [−δk ≤ zk− ẑ] and

Bk = [0 ≤ zk] ∩ [δk < ẑ−zk] as the interse
tions of levels sets of the fun
tions ẑ,
(zk− ẑ), zk and (ẑ−zk) ∈ BV (Ω). By formula (12) and the 
oarea formulas (13),(24) we 
on
lude that δk ∈ [m

1/2
k , m

1/4
k ] 
an be 
hosen su
h that Ak, Bk and Ckhave �nite perimeter. It remains us to verify that the right-hand side of (26) is�nite. Coarea formula (24) yields Hd−1(FAk ∩ FBk ∩ Ω) ≤ 3|Dẑ|(Ω) + 3|Dzk|(Ω),

Hd−1(FAk ∩ FCk ∩Ω) ≤ 3|Dẑ|(Ω) + |Dzk|(Ω) and thirdly Hd−1(FBk ∩ FCk ∩Ω) ≤
2|Dẑ|(Ω) + 2|Dzk|(Ω), where |Dzk|(Ω) ≤ C for all k ∈ N by the properties of stablesequen
es. Additionally, Cor. 2 implies that |ẑ±−δk−z±k | ≤ 1−δk, |ẑ±−δk| ≤ 1−δkas well as |z±k | ≤ 1 Hd−1-a.e. on the respe
tive redu
ed boundaries. Hen
e, theright-hand side of (26) is �nite and Cor. 2.12 
an be applied.Now we verify that ẑk → ẑ in L1(Ω). For this we use that

Ck = [ẑ − δk < 0] ∪ [zk < 0] , (32)where the se
ond set is Ld-negligible. Moreover, we have [ẑ − δk < 0] → [ẑ < 0]pointwise Ld-a.e., whi
h again is an Ld-negligible set. This shows that Ld(Ck) → 0and together with (31) we have obtained that (
Ld(Bk)+Ld(Ck)

)
→ 0 as k → ∞.From this, we infer

‖ẑk − ẑ‖L1(Ω) = δkL
d(Ak) + ‖zk − ẑ‖L1(Bk) + ‖ẑ‖L1(Ck)

≤ δkL
d(Ω) + Ld(Bk) + Ld(Ck) → 0 as δk → 0.

(33)9



Now we are in a position to verify the lim sup estimate (11). For this we usethat
lim sup

k→∞
(E(tk, q̂k) +R(ẑk − zk)− E(tk, qk))

≤ lim sup
k→∞

I(t, q̂k)− lim inf
k→∞

I(t, qk)

+ lim sup
k→∞

(
|Dẑk|(Ω)−|Dzk|(Ω)

)
+ lim sup

k→∞
R(ẑk−zk) ,

(34)where, we introdu
ed I(t, q) :=
∫
Ω f(z)e(u+g(t)) : C : e(u+g(t)) dx for q = (u, z).In the following, we estimate the di�erent terms in (34) separately.Due to the strong L1-
onvergen
e obtained in (33) and the fa
t that ẑk ≤ zk forall k ∈ N by 
onstru
tion we 
on
lude that

R(ẑk − zk) →R(ẑ − z) as k →∞ . (35)Moreover, sin
e ûk = û and ẑk ≤ ẑ for all k ∈ N by 
onstru
tion we infer fromthe monotoni
ity of f : [0, 1] → [a, b] together with the 
ontinuity of the given data
g ∈ C1([0, T ], H1(Ω, Rd)) that

lim sup
k→∞

I(tk, q̂k) ≤ lim sup
k→∞

I(tk, q̂) = I(t, q̂) . (36)Furthermore, the weak sequential lower semi
ontinuity of I implies that
− lim inf

k→∞
I(t, qk) ≤ −I(t, q) . (37)Thus, it remains to show that

lim sup
k→∞

(
|Dẑk|(Ω)−|Dzk|(Ω)

)
≤ |Dẑ|(Ω)−|Dz|(Ω) . (38)For this, we use ẑk = (ẑ−δk)IAk

+ zkIBk
+0·ICk

as well as zk = zk(IAk
+ IBk

+ ICk
)and we express their derivatives with the aid of formula (27). Hen
e, we obtain

|Dẑk|(Ω) =|Dẑ|(A1
k) + |Dzk|(B

1
k) +

∫

FAk∩FBk∩Ω

|ẑ+−δk−z−k | dH
d−1

+

∫

FAk∩FCk∩Ω

|ẑ+−δk| dH
d−1 +

∫

FBk∩FCk∩Ω

|z+
k | dH

d−1 ,

(39)where we applied Cor. 2 to determine the tra
es ẑ±k on the di�erent parts of theredu
ed boundaries. Similarly we �nd
−|Dzk|(Ω) =− |Dzk|(A

1
k)− |Dzk|(B

1
k)− |Dzk|(C

1
k)−

∫

FAk∩FBk∩Ω

|z+
k −z−k | dH

d−1

−

∫

FAk∩FCk∩Ω

|z+
k −z−k | dH

d−1 −

∫

FBk∩FCk∩Ω

|z+
k −z−k | dH

d−1 .

(40)We note that |Dẑk|(B1
k)−|Dzk|(B1

k) 
an
els out in (38). Moreover, −|Dzk|(C1
k) ≤ 0in (40). Thus, to establish (38) we have to show− lim infk→∞ |Dzk|(A1

k) ≤ −|Dz|(Ω)10



and that the boundary terms in (39)+(40) 
an be estimated as follows for all k ∈ N:
∫

FAk∩FBk∩Ω

|ẑ+−δk−z−k | dH
d−1 +

∫

FAk∩FCk∩Ω

|ẑ+−δk| dH
d−1 +

∫

FBk∩FCk∩Ω

|z+
k | dH

d−1

−

∫

FAk∩FBk∩Ω

|z+
k −z−k | dH

d−1 −

∫

FAk∩FCk∩Ω

|z+
k −z−k | dH

d−1 −

∫

FBk∩FCk∩Ω

|z+
k −z−k | dH

d−1

≤

( ∫

FAk∩FBk∩Ω

+

∫

FAk∩FCk∩Ω

+

∫

FBk∩FCk∩Ω

)
|ẑ+ − ẑ−| dHd−1 .

(41)To verify estimate (41) we use the information on the tra
es stated in Cor. 2 anddistinguish between all possible relations. On FAk∩FBk∩Ω it holds 0 ≤ ẑ+−δk ≤ z+
kand 0 ≤ z−k < ẑ−−δk Hd−1-a.e.. Hen
e, for Hd−1-a.e. x ∈ FAk ∩ FBk ∩ Ω with

z+
k ≤ z−k it is ẑ+−δk ≤ z+

k ≤ z−k < ẑ−−δk, i.e. |ẑ+−δk−z−k | ≤ |ẑ+−ẑ−| ,

z+
k > z−k it is either ẑ+−δk ≤ z−k < z+

k ≤ ẑ−−δk, i.e. |ẑ+−δk−z−k | ≤ |ẑ+−ẑ−| ,or ẑ+−δk ≤ z−k < ẑ−−δk ≤ z+
k , i.e. |ẑ+−δk−z−k | ≤ |ẑ+−ẑ−| ,or z−k < ẑ−−δk ≤ ẑ+−δk ≤ z+
k , i.e. |ẑ+−δk−z−k | ≤ |z+

k −z−k | ,or z−k < ẑ+−δk ≤ z+
k ≤ ẑ−−δk, i.e. |ẑ+−δk−z−k | ≤ |z+

k −z−k | ,or z−k < ẑ+−δk < ẑ−−δk ≤ z+
k , i.e. |ẑ+−δk−z−k | ≤ |z+

k −z−k | .Using these estimates and denoting the set of points, where one of the last threerelations holds by E, we �nd that
∫

FAk∩FBk∩Ω

|ẑ+−δk−z−k | dH
d−1 −

∫

FAk∩FBk∩Ω

|z+
k −z−k | dH

d−1 ≤

∫

FAk∩FBk∩Ω\E

|ẑ+−ẑ−| dHd−1 − 0

≤

∫

FAk∩FBk∩Ω

|ẑ+−ẑ−| dHd−1 .

(42)On FAk ∩FCk ∩Ω it holds 0 ≤ ẑ+−δk ≤ z+
k and ẑ−−δk < 0 ≤ z−k Hd−1-a.e.. Thus,for Hd−1-a.e. x ∈ FAk ∩ FCk ∩ Ω with

z+
k ≤ z−k it is ẑ−−δk <0 ≤ ẑ+−δk ≤ z+

k ≤ z−k , i.e. |ẑ+−δk| ≤ |ẑ+−ẑ−| ,

z+
k > z−k it is either ẑ−−δk <0 ≤ z−k ≤ ẑ+−δk ≤ z+

k , i.e. |ẑ+−δk| ≤ |ẑ+−ẑ−| ,or ẑ−−δk <0 ≤ ẑ+−δk ≤ z−k ≤ z+
k , i.e. |ẑ+−δk| ≤ |ẑ+−ẑ−| .Thus, we have

∫

FAk∩FCk∩Ω

|ẑ+−δk| dH
d−1 −

∫

FAk∩FCk∩Ω

|z+
k −z−k | dH

d−1 ≤

∫

FAk∩FCk∩Ω

|ẑ+−ẑ−| dHd−1 − 0 . (43)On FBk∩FCk∩Ω it holds 0 ≤ z+
k < ẑ+−δk and ẑ−−δk < 0 ≤ z−k Hd−1-a.e.. Hen
e,for Hd−1-a.e. x ∈ FBk ∩ FCk ∩Ω with

z+
k ≤ z−k it is either ẑ−−δk <0 ≤ z+

k ≤ ẑ+−δk ≤ z−k , i.e. |ẑ+−δk| ≤ |ẑ+−ẑ−| ,or ẑ−−δk <0 ≤ z+
k ≤ z−k ≤ ẑ+−δk, i.e. |ẑ+−δk| ≤ |ẑ+−ẑ−| ,

z+
k > z−k it is ẑ−−δk <0 ≤ z−k ≤ z+

k ≤ ẑ+−δk, i.e. |ẑ+−δk| ≤ |ẑ+−ẑ−| ,11



whi
h yields
∫

FBk∩FCk∩Ω

|z+
k | dH

d−1 −

∫

FBk∩FCk∩Ω

|z+
k −z−k | dH

d−1 ≤

∫

FBk∩FCk∩Ω

|ẑ+−ẑ−| dHd−1 − 0 . (44)Thus, estimate (41) holds. In total we have up to now obtained that the left-handside of (38) 
an be estimated by
lim sup

k→∞

(
|Dẑk|(Ω)− |Dzk|(Ω)

)

≤ lim sup
k→∞

(
|Dẑ|(A1

k) +

∫

((FAk∩FBk)∪(FAk∩FCk)∪(FBk∩FCk))∩Ω

|ẑ+ − ẑ−| dHd−1

+ |Dẑ|(B1
k) + |Dẑ|(C1

k)− |Dzk|(A
1
k)

)

≤ |Dẑ|(Ω)− lim inf
k→∞

|Dzk|(A
1
k)

(45)To show that − lim infk→∞ |Dzk|(A1
k) ≤ −|Dz|(Ω) in (45) we �rst 
hoose a subse-quen
e (zk)k∈N su
h that the lim inf is attained. Then, we introdu
e the sets

Un :=
∞⋃

k=n

(Bk ∪ Ck) . (46)Sin
e both Ld(Bk) → 0 and Ld(Ck) → 0 as k → ∞ we may 
hoose a furthersubsequen
e in su
h a way that ∑∞
k=1 L

d(Bk) +Ld(Ck) < ∞. For this subsequen
e
Ld(Un) < ∞ and Ld(Un) → 0 as n →∞ . (47)We set limn→∞ Un = N and put Ωn := Ω\Un, whi
h satis�es Ωn ⊂ An for all

k ≥ n. Then, also Ω1
n ⊂ A1

k as well as Ω1
n ⊆ Ω1

n+1 ⊂ Ω1 for all n ∈ N by Cor. 1, 2.).Sin
e Ld(N) = 0 we 
on
lude that (Ω\N)1 = Ω1 by Cor. 1, 1.). This proves that
Ω1

n → Ω1. Note that Ω ⊂ Rd is an open set, hen
e Ω1 = Ω.Keep n ∈ N �xed. Then the sets Ω1
n ⊂ A1

k 
an be used to �x a set independentof k ≥ n, so that the lower semi
ontinuity of the variation 
an be exploited on Ω1
nfor the sequen
e zk

∗
⇀ z in BV (Ω) and we have ensured that Ω1

n → Ω. For all k ≥ nwe have
− lim inf

k→∞
|Dzk|(A

1
k) ≤ − lim inf

k→∞
|Dzk|(Ω

1
n) ≤ −|Dz|(Ω1

n) → −|Dz|(Ω) as n →∞ .This �nishes the proof of estimate (45), so that it is shown that the MRS (ûk, ẑk)k∈Ngiven by ûk = û and ẑk from (28) satis�es the lim sup-estimate (11).3 A brittle damage model and its Modi
a-MortolaapproximationAs an example for the model with BV -regularization we now dis
uss the spe
ial
ase, when the damage variable attains the values 1 or 0, only. This means thatthe damage variable z : Ω → {0, 1} only distinguishes between the two situations:lo
ally unbroken for z(x) = 1 and lo
ally broken for z(x) = 0. For this reason itis 
alled brittle damage, see [FG06, GL09℄, or brutal damage in [FM93℄. In this12



setting, the set Z of admissible damage variables 
an be 
onsidered as the subsetof BV(Ω) 
onsisting of the indi
ator fun
tions of sets of �nite perimeter, i.e.
ZB := {IZ : Ω → {0, 1} indi
ator fun
tion of Z ⊂ Ω, P (Z, Ω) < ∞} . (48)Compa
tness properties of ZB are dis
ussed in Remark 1 below. Sin
e an indi
atorfun
tion IZ of su
h a set Z is simply a jump fun
tion, its variation in Ω redu
es tothe jump part, whi
h is exa
tly the perimeter of Z in Ω, i.e. |DIZ |(Ω) = P (Z, Ω).Hen
e, with a 
onstant σ > 0, the regularizing BV -gradient term is given by

G(z) := σHd−1(Jz) = σP (Z, Ω) . (49)We want to use the above regularization in a model that des
ribes the damage of
on
rete. From now on we denote with Z := [z = 1] the set where the stru
tureis unbroken. Then, Ω\Z := [z = 0] des
ribes the regions where the stru
ture is
ompletely disintegrated. We assume that these regions are �lled with pulverizedmaterial whi
h is densely pa
ked. For this reason, the region Ω\Z is able to resist
ompression as good as the undamaged region Z. Sin
e we only allow for in�nites-imally small strains we may expe
t that the body Ω keeps its outward appearan
e.We further assume that the 
on
rete stru
ture 
ontains a reinfor
ement, whi
h en-sures that the body Ω 
an rea
t on tension even in pulverized regions Ω\Z, but nolonger as good as the sound material in Z. All these properties are featured by thestored energy density of the form
WB(e, z) := µ(z+ρ)|e|2 + λ

2

(
|(tr e)−|2 + (z + α)|(tr e)+|2

)
, (50)where α ∈ (0, 1) is 
onstant and µ, λ > 0 are the Lamé 
onstants. Moreover, also

ρ ∈ (0, 1] is 
onstant and 
learly, the assumption ρ > 0 preserves the 
oer
ivity of
WB with respe
t to e. Sin
e the volumetri
 part of the strain tensor is under 
ontrolby the term λ

2

(
|(tr e)−|2 + (z + α)|(tr e)+|2

) it parti
ularly ensures that also thedeviatori
 part is 
ontrolled. This means that �nite shear stresses 
an o

ur in thepulver Ω\Z.In the setting of reinfor
ed 
on
rete we de�ne the state spa
e Q as in (7). With
R : Z → [0,∞] from (1) and QB := U × ZB from above the system (Q, EB,R) is
ompleted by the energy fun
tional EB : [0, T ]×Q → R ∪ {∞},

EB(t, u, z) :=

{ ∫
Ω

WB(e(u+g(t)), z) dx + σHd−1(Jz) if (u, z) ∈ QB ,
∞ otherwise. (51)Again, the rate-independent damage pro
ess is driven by slow time-dependent ex-ternal loadings indu
ed by time-dependent Diri
hlet 
onditions, whi
h are modeledby the given displa
ement g : [0, T ] → H1(Ω, Rd), and σ > 0.The works [FM93, FG06, GL09℄ 
onsider brittle damage without any regu-larization for the damage variable. In these works the density is of the form

W̃B(e, z) = ze : A : e + (1−z)e : B : e, where A, B ∈ R(d×d)×(d×d) are symmetri
 andpositive de�nite with 
onstants c1, c2 > 0 su
h that c1|e|2 ≤ e :B :e ≤ e :A :e ≤ c2|e|2for all e ∈ Rd×d. Thus, WB from (50) 
an be regarded as a spe
ial 
ase of
W̃B. In [FM93, FG06, GL09℄, minimizing energy plus dissipation in the �rst time-step means minimizing ∫

Ω
W̃B(e(u), z)+̺(1−z) dx in H1(Ω, Rd)×L∞(Ω). Be
auseof the absen
e of a damage gradient one 
an immediately eliminate z by per-forming the minimization of the fun
tional ∫

Ω
ŴB(e(u)) dx in H1(Ω, Rd), where13



ŴB(e) = min{e : A : e, e : B : e +̺}. This density is non
onvex and in order toguarantee the existen
e of minimizers a relaxation using homogenization tools isrequired. However, for the brittle damage problem (51) regularized with (49) one
annot remove z from the minimization as easily. For all z ∈ ZB one rather 
onsid-ers the redu
ed energy fun
tional ER(t, z) = minu∈U EB(t, u, z) and then minimizes
ER(t, z) + R(1−z) in ZB (at the �rst time-step). Sin
e for every z ∈ [0, 1] �xedthe density WB(·, z) is 
onvex with respe
t to the strains the 
orresponding ER(t, z)exists for all z ∈ ZB. In order to make sure that also a minimizer of ER(t, ·) ex-ists, we now dis
uss the lower semi
ontinuity and 
ompa
tness properties of theregularization (49) in ZB.Remark 1 (Compa
tness of ZB, 
f. [AFP05, Chap. 4℄) The distributionalgradient Dz of any fun
tion z ∈ BV(Ω) 
an be uniquely divided into three parts:

Dz = Daz + Djz + Dcz . (52)Here, Daz denotes the part whi
h is absolutely 
ontinuous with respe
t to the mea-sure Ld and (Djz + Dcz) is singular with respe
t to Ld. Moreover, Djz stands forthe jump part and Dcz for the Cantor part. We say that z is a spe
ial fun
tionwith bounded variation, i.e. z ∈ SBV(Ω), if Dcz = 0. The set SBV(Ω) is an alge-brai
ally 
losed subspa
e of BV(Ω) [AFP05, p. 213, Cor. 4.3℄. In parti
ular, for any
z ∈ SBV(Ω) the derivative in (52) takes a spe
ial stru
ture sin
e it 
an be re
overedfrom the approximate di�erential ∇z, the approximate one-sided limits (z+, z−) andthe normal νz to the jump set Jz, i.e.

∀z ∈ SBV(Ω) : Dz = ∇zLd + (z+ − z−)⊗ νzH
d−1⌊Jz . (53)A

ording to [AFP05, p. 216, Th. 4.7℄ the topologi
al 
losedness of SBV(Ω) is en-sured if the following holds: Let φ : [0,∞) → [0,∞], θ : (0,∞) → (0,∞] be lowersemi
ontinuous in
reasing fun
tions and assume that

lim
t→∞

φ(t)

t
= ∞ and lim

t→0

θ(t)

t
= ∞ . (54)Let Ω ⊂ Rd be open and bounded and let (zk)k∈N ⊂ SBV(Ω) su
h that

sup
k∈N

{∫

Ω

φ(|∇zk|) dx +

∫

Jzk

θ(|z+
k − z−k |) dHd−1

}
< ∞ . (55)If zk

∗
⇀ z in BV(Ω), then z ∈ SBV(Ω), in parti
ular, ∇zk ⇀ ∇z in L1(Ω)d and

Djzk
∗
⇀ Djz in Ω. Moreover, we have lower semi
ontinuity of the fun
tionals, i.e.

∫

Ω

φ(|∇z|) dx ≤ lim inf
k→∞

∫

Ω

φ(|∇zk|) dx if φ is 
onvex, (56)
∫

Jz

θ(|z+ − z−|) dHd−1 ≤ lim inf
k→∞

∫

Jzk

θ(|z+
k − z−k |) dHd−1 if θ is 
on
ave. (57)The spa
e SBV(Ω) is 
ompa
t with respe
t to the weak∗ topology, if (55) holdstogether with the additional equiboundedness of ‖zk‖∞, i.e., if (zk)k∈N ⊂ SBV(Ω)satis�es (55) and ‖zk‖∞ < c, then there is a subsequen
e zk

∗
⇀ z in BV(Ω) and

z ∈ SBV(Ω) [AFP05, p. 216, Th. 4.8℄. 14



The set ZB from (48), whi
h 
onsists of the indi
ator fun
tions IZ of all thesets Z with �nite perimeter in Ω is a subset of SBV(Ω) having the property DIZ =
(I+

Z − I−Z )⊗ νIZ
Hd−1(JIZ

), where I+
Z , I−Z ∈ {0, 1}. Hen
e, the fun
tion θ from above
an be any power law θ(t) = tp with p ∈ (0, 1) to ensure (54) and the 
on
avity from(57). Thus, for any IZ ∈ ZB we obtain

∫

JIZ

θ(|I+
Z − I−Z |) dHd−1 = Hd−1(JIZ

) = P (Z, Ω) .Consider (IZk
)k∈N ⊂ ZB with ‖IZk

‖∞ + P (Zk, Ω) ≤ c. Then the 
ompa
tness the-orem for pie
ewise 
onstant fun
tions [AFP05, p. 234, Th. 4.25℄ guarantees theexisten
e of a subsequen
e that 
onverges in measure to a pie
ewise 
onstant fun
-tion z. Moreover, the lower semi
ontinuity of the Hausdor�-measure ensures that
Hd−1(Jz) ≤ lim infk→∞Hd−1(JIZk

) ≤ c. Sin
e a sequen
e that 
onverges in measure
ontains a subsequen
e that 
onverges Ld-a.e. we 
on
lude that also z ∈ ZB.In order to address the main issue in the proof of energeti
 solutions, it shouldbe mentioned that the re
overy sequen
e for ẑ ∈ ZB 
an be adopted from Se
tion2.2. Now, one may 
onsider ẑk := ẑIAk
+ zkIBk

+0·ICk
with Ak = [0 ≤ ẑ−δk ≤ zk],

Bk = [0 ≤ zk < ẑ−δk], Ck = Ω\(Ak ∪ Bk) and δk → 0 determined as in Se
tion2.2. This is due to the fa
t that ẑ and ẑk take the values 0 and 1 only, so that for
δk < 1 the property ẑ(x)−δk ≤ zk(x) implies ẑ(x) ≤ zk(x) for Ld-a.e. x ∈ Ak andthis 
an be transferred to the relations for the tra
es by Cor. 2.The distributional gradient Hd−1(Jz) may be disadvantageous for numeri
al
omputations. Therefore, we would like to approximate it by integral terms via
Γ-
onvergen
e. Following the ideas of [MM77, Mod87℄ whi
h originate in modelingof phase transitions, this 
an be a
hieved by a term of Modi
a-Mortola type

Mk(z) :=

{ ∫
Ω

(
k2z2(1−z)2 + 1

k2 |∇z|2
)
dx if z∈H1(Ω, [0, 1]) ,

∞ otherwise, (58)where H1(Ω, [0, 1]) denotes the set of H1(Ω)-fun
tions with values in the interval
[0, 1]. A detailed proof for the Γ-
onvergen
e of Mk(zk) to the limit σHd−1(Jz)with σ := 2

∫ 1

0
z(1 − z) dz, 
an be found e.g. in [Alb98℄. Intuitively, it seems to be
lear that this ansatz also works for the brittle damage model. The only di�
ultyis given by the unidire
tionality of R. Hen
e, to prove the MRS-
ondition, there
overy sequen
e (ẑk)k∈N given in [Alb98℄ has to be adjusted suitably.A Modi
a-Mortola term in the 
ontext of damage 
an also be found in [Gia05℄.There, as a part of the Ambrosio-Tortorelli model for volume damage it was usedto approximate the Fran
fort-Marigo model for Gri�th 
ra
ks [BFM08℄. Withinthis limit passage the (volume) damage variable turns into the d − 1-dimensional
ra
k set, i.e. into the jump set of the limit displa
ement. However, here we want touse a fun
tional of Modi
a-Mortola type to approximate a model for brittle volumedamage by a more regular model for volume damage.3.1 Approximation of (Q, EB,R) by a Modi
a-Mortola termIn this se
tion we show that the system (Q, EB,R) given by (7), (51) and (1) with

ρ > 0 in (50) 
an be approximated by systems (Q, Ek,R)k∈N in the sense of Γ-
onvergen
e of rate-independent systems developed in [MRS08℄. In this 
ontext, for15



all k ∈ N the approximating energy fun
tionals Ek : [0, T ] → Q are given by
Ek(t, u, z) := IB(t, gk, u, z) +Mk(z) with Mk(z) from (58) and (59)

IB(t, gk, u, z) :=

∫

Ω

WB(e(u+gk(t)), z) dx with WB from (50). (60)For the given data we assume (gk)k∈N ⊂ C1([0, T ], H1(Ω, Rd)) and
∃ cg > 0 ∀k ∈ N : ‖gk‖

2
C1([0,T ],H1(Ω,Rd)) ≤ cg . (61)For every k ∈ N �xed the rate-independent systems (Q, Ek,R) �t into the frame-work dis
ussed in [TM10, Se
t. 5.2℄. Hen
e, we may state the existen
e of energeti
solutions for (Q, Ek,R) as a dire
t 
onsequen
e of [TM10, Th. 3.1℄.Lemma 3.1 (Existen
e of energeti
 solutions for (Q, Ek,R)) Let Ω ⊂ Rd bean open, bounded Lips
hitz domain with a Diri
hlet boundary ΓD 6= ∅. For all

k ∈ N let the system (Q, Ek,R) be given by (7), (59) and (1) with ρ > 0 in (50).Let (61) hold true. Assume that the initial data (uk(0), zk(0)) satisfy (2(S)) for
Ek and R at time t = 0. Then, for all k ∈ N there exists an energeti
 solution
(uk, zk) : [0, T ]→ Q for the system (Q, Ek,R) and the initial datum (uk(0), zk(0)).Our aim is to show that energeti
 solutions of the systems (Q, Ek,R) 
onverge to anenergeti
 solution of the brittle damage system (Q, EB,R), where the 
onvergen
eof sequen
es (uk, zk)

T
→ (u, z) is to be understood in the sense of (9).Theorem 3.2 (Modi
a-Mortola approximation of (Q, EB,R)) Let the assump-tions of Lemma 3.1 hold. For all k ∈ N let (uk, zk) : [0, T ] → Q be an energeti
solution to the system (Q, Ek,R) given by (7), (59) and (1). If the initial data satisfy

(uk(0), zk(0))
T
→ (u(0), z(0)) and Ek(0, uk(0), zk(0)) → EB(0, u(0), z(0)) then there isa subsequen
e (uk(t), zk(t))

T
→ (u(t), z(t)) for all t ∈ [0, T ] and (u, z) : [0, T ] → Q isan energeti
 solution of (Q, EB,R).3.2 Proof of Convergen
e Theorem 3.2In the following we show the existen
e of a subsequen
e of energeti
 solutions of

(Q, Ek,R)k∈N whi
h 
onverges in the topology T for all t ∈ [0, T ] to an energeti
solution of the brittle damage system (Q, EB,R). This is done following the ideasof [MRS08, Th. 3.1℄. To obtain this 
onverging subsequen
e, it is ne
essary thatthe energies are uniformly bounded and that sublevels of the energies are 
ompa
tin T , whi
h is veri�ed in Se
tion 3.2.1 and parti
ularly in Corollary 3 below. The
onvergen
e of the sequen
e pointwise for all t ∈ [0, T ] 
an be obtained followingthe ideas of [MM05, Th. 3.2℄. The proof of the energy balan
e for the limit systemfurther requires that the Γ-lim inf-inequality holds, whi
h is established in Proposi-tion 3 below. Additionally, the partial time derivatives must 
onverge pointwise forall t ∈ [0, T ], i.e. ∂tEk(tk, uk(t), zk(t)) → ∂tEB(t, uk(t), zk(t)), where ∂tEk and ∂tEBhave the form (10). As in the proof of Theorem 2.1, the above 
onvergen
e 
anbe dedu
ed from the properties (P4) and (P5) of WB, see e.g. [MRT10℄ for details.With this 
onvergen
e a lower energy estimate 
an be established, see [MRS08, Th.3.1℄. The respe
tive upper energy estimate 
an be obtained following the ideas of[MRS08, Prop. 2.4℄, so that the energy balan
e (2(E)) for (u, z) and (Q, EB,R) isgained. The stability of (u, z) and (Q, EB,R) is dedu
ed with the aid of a MRS inLemma 3.5 in Se
tion 3.2.2. 16



3.2.1 Compa
tness of energy sublevels and the lower Γ-limitFrom the stability inequality (2(S)) one obtains that the energies Ek(t, uk(t), zk(t)) ofthe energeti
 solutions (uk, zk) : [0, T ] → Q are uniformly bounded for all t ∈ [0, T ].This 
an be seen from testing (2(S)) with the fun
tions (ûk, ẑk) with ûk = 0 and
zk = 0 :

Ek(t, uk(t), zk(t)) ≤ Ek(t, 0, 0) +R(0 − zk) ≤ C . (62)Lemma 3.3 (A priori estimates) Let (61) be satis�ed and ρ > 0 in (50). Forall k ∈ N let the fun
tion (uk, zk) : [0, T ]→ Q be an energeti
 solution of the system
(Q, Ek,R). Then, there is a 
onstant C := Ld(Ω)(̺+cg(µ(1+ρ)+λ(2+α)/2)) su
hthat for all t ∈ [0, T ] the following estimates hold:

Ek(t, uk(t), zk(t)) ≤ C , (63a)
‖e(uk(t))‖2L2(Ω,Rd) ≤ 2C/(µρ) + 2cg , (63b)
∫

Ω

z2
k(1− zk)2 dx ≤ C/k2 , (63
)

∫

Ω

|∇H(zk(t))| dx ≤ C , where H(z) := 2

∫ z

0

ξ(1−ξ) dξ . (63d)Proof: An energeti
 solution satis�es stability inequality (2(S)) for all t ∈ [0, T ].Hen
e, estimate (63a) and the 
onstant C 
an be obtained uniformly in time bytesting (2(S)) with the fun
tions ûk = 0 and ẑk = 0. With this 
hoi
e we �nd that
WB(0, 0) ≤ µ(1+ρ)|e(gk(t))|

2 + λ
2 |(tr e(gk(t)))−|2 + λ

2 (1+α)|(tr e(gk(t)))+|2

≤ (µ(1+ρ) + λ(2+α)/2)|e(gk(t))|2.Moreover it is R(zk(t) − 0) ≤ ̺Ld(Ω). Integrating WB(0, 0) over Ω then yields
C := Ld(Ω)( +̺cg(µ(1+ρ)+λ(2+α)/2)) and establishes estimate (63a). Then, estimate(63
) is an immediate 
onsequen
e of (63a), sin
e all the terms in Ek(t, uk(t), zk(t))are positive. In order to obtain estimate (63b) we use the following 
al
ulation with
a = e(uk(t)), b = e(gk(t)) and Young's inequality in the last estimate:

|a + b|2 ≥ (|a| − |b|)2 = |a|2 − 2(1
2 |a|)(2|b|) + |b|2 ≥ 1

2 |a|
2 − |b|2 . (64)Together with (63a) this implies ‖e(uk(t))‖2L2 ≤

2C
µρ + 2‖e(gk(t))‖2L2 , i.e. (63b).It remains us to verify (63d). For H(z) := 2

∫ z

0 ξ(1−ξ) dξ it is H ′(z) = 2z(1−z)and ∇H(z) = H ′(z)∇z. Applying Young's inequality to Mk(zk(t)) we �nd that
∇H(zk(t)) is uniformly bounded in L1(Ω), i.e.

Mk(zk(t)) =

∫

Ω

(
k2(z2

k(1− zk)2 + k−2|∇zk|
2
)
dx

≥ 2

∫

Ω

zk(1 − zk)|∇zk| dx ≥

∫

Ω

|∇H(zk(t))| dx .The above a-priori estimates are used to dedu
e the pre
ompa
tness of unions ofenergy sublevels. 17



Proposition 2 (Pre
ompa
tness of unions of energy sublevels) Let the as-sumptions of Lemma 3.3 hold. Let the energy fun
tionals Ek be given by (59). As-sume that tk → t and Ek(tk, uk, zk) ≤ E for all k ∈ N. Then there is a subsequen
e
(uk, zk)

T
→ (u, z) and (u, z) ∈ QB.Proof: Be
ause of Ek(tk, uk, zk) ≤ E the sequen
e (uk, zk)k∈N satis�es boundssimilar to (63). In parti
ular, we have ‖uk‖H1

0 (Ω,Rd) ≤ cK‖e(uk)‖L2(Ω,Rd×d) ≤ Ẽby estimate (63b) and Korn's inequality. Sin
e H1
0 (Ω, Rd) is a re�exive Bana
hspa
e, Bana
h-Alaoglu's theorem states the existen
e of a subsequen
e uk ⇀ u in

H1
0 (Ω, Rd).Now, we prove the existen
e of a subsequen
e zk

∗
⇀ z in BV(Ω). Estimate(63d) implies that the sequen
e (H(zk))k∈N is uniformly bounded in BV(Ω). Hen
e,there is a subsequen
e (H(zk))k∈N 
onverging strongly in L1(Ω), i.e. (H(zk))k∈N ispre
ompa
t in L1(Ω). Sin
e |H(z̃)−H(ẑ)| = |

∫ z̃

ẑ H ′(ξ) dξ| ≤ |z̃− ẑ| we obtain thatthe operator H : L1(Ω) → L1(Ω) is 
ontinuous. Hen
e, also (zk)k∈N as the preimageof (H(zk))k∈N is pre
ompa
t in L1(Ω). Thus, there is a subsequen
e zk → z in
L1(Ω) and from the lower semi
ontinuity of the variation with respe
t to strong
L1-
onvergen
e for (zk)k∈N ⊂ BV(Ω) we 
on
lude that z ∈ BV(Ω). Moreover, fromestimate (63
) we dedu
e that z(x) ∈ {0, 1} for a.e. x ∈ Ω, i.e. z ∈ ZB.Proposition 3 (Lower Γ-limit) Let the assumptions of Lemma 3.3 hold. Let theenergy fun
tionals Ek be given by (59). Let σ := (H(1)−H(0)) with H from (63d).Assume that tk → t and (uk, zk)

T
→ (u, z). Moreover, let Ek(tk, uk, zk) ≤ E for all

k ∈ N. Then
EB(t, u, z) ≤ lim inf

k→∞
Ek(tk, uk, zk) . (65)Proof: We �rst show that lim infk→∞Mk(zk) ≥ σHd−1(Jz). Sin
e the operator

H : L1(Ω) → L1(Ω) from (63d) is 
ontinuous, as it was shown in the proof of Propo-sition 2, we have H(zk) → H(z) in L1(Ω). Moreover, due to the equiboundednessof the energies, estimate (63d) applies, whi
h states that (H(zk))k∈N is uniformlybounded in BV(Ω). Hen
e, the lower semi
ontinuity of the variation yields
lim inf
k→∞

Mk(zk) ≥ lim inf
k→∞

∫

Ω

|∇H(zk)|dx ≥ |DH(z)|(Ω) . (66)Be
ause of the equiboundedness of the energies Proposition 2 yields (u, z) ∈ QB. Inparti
ular, z(x) ∈ {0, 1} and hen
e H(z(x)) ∈ {H(0), H(1)} for a.e. x ∈ Ω. More-over, |Dz|(Ω) = |Djz|(Ω) = Hd−1(Jz). The 
hainrule for BV fun
tions 
omposedwith Lips
hitz-
ontinuous fun
tions [AFP05, p. 188℄ then yields
|DjH(z)|(Ω) =

∣∣H(z+)−H(z−)

z+ − z−
Djz

∣∣(Ω) = (H(1)−H(0))|Djz|(Ω) , (67)where (H(1)−H(0)) = σ.As a dire
t 
onsequen
e of the pre
ompa
tness of unions sublevels proved in Propo-sition 2 and the lower Γ-limit we may 
on
lude their 
ompa
tness.Corollary 3 (Compa
tness of unions of energy sublevels) Let the assump-tions of Proposition 3 hold. Let tk → t and Ek(tk, uk, zk) ≤ E for all k ∈ N. Thenthere is a subsequen
e (uk, zk)
T
→ (u, z) and EB(t, u, z) ≤ E.18



3.2.2 Closedness of stable sets via MRSIn this se
tion we show that the limit states of sequen
es whi
h satisfy (2(S)) forthe approximating systems (Q, Ek,R) are stable for the limit system (Q, EB,R). Asusual, this is done by proving the existen
e of a MRS.De�nition 3.4 (MRS-
ondition) Let tk → t and qk
T
→ q for qk := (uk, zk) and

q := (u, z). For all k ∈ N assume that qk satis�es (2(S)) for (Q, Ek,R). For all
q̂ :=(û, ẑ)∈Q there is a sequen
e (q̂k)k∈N⊂Q with q̂k :=(ûk, ẑk) and q̂k

T
→ q̂ so that

lim sup
k→∞

(
Ek(tk, q̂k)−Ek(tk, qk)+R(ẑk−zk)

)
≤ EB(t, q̂)−EB(t, q)+R(ẑ−z) . (68)Clearly, our problem allows it to set ûk := û. Thus, the main di�
ulty is hidden inthe 
onstru
tion of (ẑk)k∈N. For this, we will of 
ourse resort to the ideas appliedin [MM77, Mod87, Alb98℄. In parti
ular, in [Alb98℄, the re
overy sequen
e, whi
henables to show thatMk Γ-
onverges to σHd−1, is 
onstru
ted for a dense set D of

ZB, only, namely for the indi
ator fun
tions of polyhedral sets with �nite perimeterin Ω, i.e.
D :=

{
IZ : Ω → {0, 1} indi
ator fun
tion of polyhedron Z ⊂ Ω, P (Z, Ω) < ∞

}
.The density of D in ZB is a dire
t 
onsequen
e of the fa
t that any set Ẑ of �niteperimeter 
an be approximated by open, smooth sets (Sk)k∈N su
h that Sk → Ẑ in

Ld-measure and P (Sk, Ω) → P (Ẑ, Ω) [AFP05, p. 147, Th. 3.42℄.For our problem, the re
overy sequen
e will be nontrivial if ẑ ≤ z a.e. in Ω, i.e.if Ẑ ⊂ Z with Ẑ := [ẑ=1] and Z := [z=1]. Only in this 
ase we have R(ẑ−z) < ∞.As Z refers to a given state, whi
h is supposed to be stable, we 
annot simplyrepla
e it by a sequen
e of polyhedra (Dj)j∈N in (68). Using the triangle inequality
R(ẑ−z) ≤ R(ẑ−IDj

) +R(IDj
−z) su
h that the right-hand side is �nite, requiresthat Ẑ ⊂ Z ⊂ Dj for all j ∈ N. Moreover, if Ẑ shall be approximated by polyhedra

D̂j su
h that R(I bDj
−z) < ∞ ne
essitates even D̂j ⊂ Ẑ ⊂ Z ⊂ Dj for all j ∈ N.But the following example similar to [AFP05, p. 154, Ex. 3.53℄ or [Giu84, p. 24,Rem. 1.27℄ shows that sets of �nite perimeter in general 
annot be approximatedfrom inside or outside by smooth open sets.Example 1 (Topologi
al boundary 6= redu
ed boundary) Let Q := (0, 1)2.The set of points in Q with rational 
oordinates Q ∩ Q2 is 
ountable and 
an bearranged in a sequen
e (qj)j∈N. For every j ∈ N we de�ne the open ball B(qj , rj)with radius rj := 1/2j+2 and 
enter in qj . Then, L2(B(qj , rj)) = r2

j π = π/22(j+2)and P (B(qj , rj), Q) = L(∂B(qj , rj)) = 2πrj = π/2j+1. Let A := ∪j∈NB(qj , rj).Then A is an open set and we obtain that L2(A) ≤
∑

j∈N
L2(B(qj , rj)) = π/12 and

P (A, Q) ≤
∑

j∈N
P (B(qj , rj), Q) = π. Moreover, sin
e Q2 ⊂ A we note that A isdense in Q. Let now E := Q\A. Sin
e L2(Q) = 1 we �nd that L2(E) ≥ 1−π/12 > 0and hen
e E is nonempty with E ⊂ Q\Q2. Moreover, sin
e A is dense in Q we
on
lude that every point in E is an a

umulation point of A and hen
e E = ∂A.This shows that the topologi
al boundary ∂A has a positive L2-measure. However,sin
e Hd−1(FA) = P (A, Q) < ∞ we know that the redu
ed boundary FA has �nite

Hd−1-measure, see Theorem 2.10. Hen
e Hd(FA) = Ld(FA) = 0. Therefore we
on
lude that the topologi
al boundary ∂A 
onsists of the redu
ed boundary FA and19



the measure-theoreti
 exterior A0, see De�nition 2.5, with L2(A0) = L2(∂A). Sin
e
A is open, E is 
losed. Moreover, due to E = ∂A it is even nowhere dense. Be
auseof A0 = E1, this shows that the measure-theoreti
 interior of a set is in general notan open set in topologi
al sense.Neither E nor E1 has a nonempty interior and therefore it 
annot be approx-imated by open sets 
ontained in E su
h that the perimeters 
onverge. Moreover,due to cl A = Q, we 
on
lude that A 
annot be approximated by open sets from theoutside with perimeters 
onverging to P (A, Ω).Sin
e the polyhedra might not enjoy the properties required in our setting we 
annotdire
tly adopt the re
overy sequen
e from [MM77, Mod87, Alb98℄. Instead, we
onsider the sequen
e of polyhedra (D̂j)j∈N that approximates Ẑ. For ea
h elementof the sequen
e we apply the 
onstru
tion of [MM77, Mod87, Alb98℄, whi
h involvesthe solution of the optimal pro�le problem. We 
hoose a diagonal sequen
e (z̃k)k∈Nwith the property Mk(z̃k) ≤ σHd−1(FẐ) + o(1). Finally, we obtain the re
overysequen
e (ẑk)k∈N, whi
h is suitable for our purpose, with an ansatz similar to Se
tion2.2, namely

∀ k ∈ N : ẑk := max
{
0, min{z̃k − δk, zk}

}
, (69)where δk → 0 has to be adjusted. With this idea we 
an verify the MRS-
ondition.Lemma 3.5 Let the assumptions of Proposition 3 hold. Then the MRS-
onditionfrom De�nition 3.4 is satis�ed.Proof: Let (tk, uk, zk)k∈N ⊂ [0, T ] × Q with (tk, uk, zk)

[0,T ]×T
→ (t, u, z). Choose

q̂ = (û, ẑ) ∈ Q su
h that EB(t, q̂) ≤ E for some E ∈ R, otherwise (68) trivially holds.We distinguish between the following two 
ases:Case A: Let q̂ = (û, ẑ) ∈ Q be su
h that there exists a Ld-measurable set B ⊂ Ωwith Ld(B) > 0 and ẑ > z on B. Then R(ẑ − z) = ∞ and (68) holds.Case B: Let q̂=(û, ẑ)∈Q so that ẑ≤z a.e. in Ω. Then, R(ẑ−z)=
∫
Ω
̺(z−ẑ)dx<

∞. Let Ẑ := [ẑ = 1]. For Ẑ we �nd a sequen
e of polyhedra (D̂j)j∈N su
h that
D̂j → Ẑ in Ld-measure and P (D̂j , Ω) → P (Ẑ, Ω). For all l ∈ N we 
hoose apolyhedron D̂j with the property ‖I bDj

− ẑ‖L1(Ω) + |P (D̂j , Ω) − P (Ẑ, Ω)| < 1/land label it D̂l. For ea
h D̂l we now apply the 
lassi
al 
onstru
tion of [Alb98,p. 16℄ to obtain the sequen
e (z̃k
l )k∈N. This 
onstru
tion uses the solution of theoptimal pro�le problem in order to approximate I bDl

near the boundary of D̂l bya smooth fun
tion. We refer to [Alb98, p. 16℄ for the detailed 
onstru
tion. Thissequen
e satis�es z̃k
l → IẐl

and Mk(z̃k
l ) ≤ σP (D̂l, Ω) + o(1) as k →∞. Hen
e, wehave Mk(z̃k

l ) ≤ σP (Ẑ, Ω) + 1/l + o(1). Moreover, by the lower Γ-limit there is asubsequen
e with σP (Ẑ, Ω) − 1/l ≤ σP (D̂l, Ω) ≤ Mk(z̃k
l ). Thus, for all k ∈ N we
an pi
k z̃k

k with l = k and set z̃k := z̃k
k . We �nd that

z̃k → ẑ in L1(Ω) and lim
k∈N

Mk(z̃k) = σP (Ẑ, Ω) . (70)Now we 
an apply the 
onstru
tion (69) to get ẑk. In a �rst step we will determine
δk → 0 su
h that ẑk → ẑ in L1(Ω). As a dire
t 
onsequen
e we then have

IB(tk, gk, û, ẑk) → IB(t, g, û, ẑ) and also R(ẑk−zk) →R(ẑ−z) , (71)20



sin
e ẑk ≤ zk by 
onstru
tion and zk → z in L1(Ω). Thus, as a se
ond step, itremains to prove
lim sup

k→∞

(
Mk(ẑk)−Mk(zk)

)
≤ σP (Ẑ, Ω)− σP (Z, Ω) . (72)Step 1 (ẑk → ẑ in L1(Ω)): As in Se
tion 2.2 we de
ompose the domain intothree subsets, i.e. Ω = Ak ∪Bk ∪ Ck with

Ak := [0 ≤ z̃k−δk < zk] , Bk := [0 ≤ zk ≤ z̃k−δk] , Ck := Ω\(Ak ∪Bk) . (73)We �rst determine δk → 0 su
h that Ld(Bk) → 0. For this, we use that
Bk = [zk ≤ z̃k−δk] ⊂ [δk ≤ z̃k−ẑ+z−zk] ⊂ [δk ≤ |z̃k−ẑ+z−zk|] , (74)due to ẑ ≤ z. With Markov's inequality we obtain

Ld(Bk) ≤ Ld([δk ≤ |z̃k−ẑ+z−zk|]) ≤ δ−1
k ‖z̃k−ẑ+z−zk‖L1(Ω)

!
→ 0 . (75)Be
ause both z̃k → ẑ and zk → z in L1(Ω) we see that δk → 0 
an be 
hosensu
h that the right-hand-side of (75) tends to 0. This is e.g. the 
ase for δk :=

‖z̃k−ẑ+z−zk‖
1/2
L1(Ω).We now show that also Ld(Ck) → 0 and prove that ẑk → ẑ in L1(Ω). For this,we use a sequen
e νk → 0, similar to δk → 0, and we obtain

Ck = [z̃k−ẑ+ ẑ < δk] = [ẑ < δk+ẑ−z̃k] ∩
(
[|ẑ−z̃k| < νk] ∪ [|ẑ−z̃k| ≥ νk]

)

⊂ [ẑ < δk+νk] ∪ [|ẑ−z̃k| ≥ νk] .Clearly, [ẑ < δk +νk] → ∅ as δk +νk → 0. Moreover, by the same pro
edure as in(75), we 
an determine νk su
h that Ld([|ẑ−z̃k| ≥ νk]) → 0, sin
e z̃k → ẑ in L1(Ω).Hen
e, Ld(Ck) → 0 as k →∞. With the above results and z̃k, ẑ ∈ [0, 1] we �nd
‖ẑk−ẑ‖L1(Ω) ≤ ‖z̃k−ẑ‖L1(Ω) + δkL

d(Ω) + Ld(Bk) + Ld(Ck) → 0 . (76)Step 2 (Proof of (72)): To shorten notation we write Mk(zk, E) to indi
atethat the Modi
a-Mortola-term (58) is de�ned by integration over the set E. Usingthe de
omposition Ω = Ak ∪Bk ∪ Ck and the de�nition of ẑk we 
al
ulate that
Mk(ẑk) = Mk(ẑk, Ω) = Mk(z̃k−δk, Ak) +Mk(zk, Bk) +Mk(0, Ck)with Mk(0, Ck) = 0. Thus we have

lim sup
k→∞

(
Mk(ẑk, Ω)−Mk(zk, Ω)

)
= lim sup

k→∞

(
Mk(z̃k−δk, Ak)−Mk(zk, Ak ∪ Ck)

)

≤ lim
k→∞

Mk(z̃k−δk, Ω)− lim inf
k→∞

Mk(zk, Ak)

≤ lim
k→∞

(
Mk(z̃k, Ω) + (δ2

k + 2δk)Ld(Ω)
)
− lim inf

k→∞
Mk(zk, Ak)

≤ σHd−1(Jẑ)− σHd−1(z) .Here, the last estimate holds be
ause ofMk(z̃k, Ω) ≤ σHd−1(Jẑ)+1/k+o(1) by 
on-stru
tion. Moreover, lim infk→∞Mk(zk, Ak) ≥ σHd−1(Jz) is obtained by repeatingthe arguments of Se
tion 2.2 starting from (45). That is, to 
hoose a subsequen
e21



whi
h realizes the lim sup and whi
h satis�es ∑
k∈N

Ld(Bk ∪ Ck) < ∞. Then one
an introdu
e the sets Un := ∪∞k=n(Bk ∪Ck), whi
h satisfy Ld(Un) → 0 as n →∞.For all k ≥ n it is (Bk ∪Ck) ⊂ Un and hen
e Ω\Un ⊂ Ak. These sets Ω\Un are usedin order to exploit the lower Γ-limit (65) for (zk)k∈N on �xed domains, i.e. for all
k ≥ n with n ∈ N �xed it is lim infk→∞Mk(zk, Ak) ≥ lim infk→∞Mk(zk, Ω\Un) ≥
σP (Z, Ω\Un). Then, for n → ∞ it holds P (Z, Ω\Un) → P (Z, Ω). This �nishes theproof of (72) and hen
e the MRS-
ondition is veri�ed.A
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