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Abstract

An existence result for energetic solutions of rate-independent damage
processes is established. We consider a body consisting of a physically lin-
early elastic material undergoing infinitesimally small deformations and par-
tial damage. In [TM10] an existence result in the small strain setting was ob-
tained under the assumption that the damage variable z satisfies z € W' (Q)
with 7 € (1,00) for Q C R%. We now cover the case r = 1. The lack of com-
pactness in W' (Q) requires to do the analysis in BV (Q). This setting allows
it to consider damage variables with values in {0, 1}. We show that such a brit-
tle damage model is obtained as the ['-limit of functionals of Modica-Mortola

type.

1 Introduction

Damage means the creation and growth of cracks and voids on the micro-level of a
solid material. Based on the method of Continuum Damage Mechanics this process
is modeled by an internal variable, the damage variable z : [0,T] x Q — [0, 1], which
is incorporated to the constitutive law in order to reflect the changes of the elastic
behavior due to damage. As in [MRO06, TM10] z(t,x2) = 1 stands for no damage
and z(t,z) = 0 for maximal damage in the material point z of the body Q C R? at
time ¢ € [0, T.

The damage process is treated within the so-called energetic formulation. This
ansatz solely uses an energy functional € : [0,7] x @ — RU {oo} and a dissipation
potential R : Z — [0, co]. Here, Z denotes the set of damage variables and together
with the set of displacements U it defines the state space Q := U x Z, which here
is a Banach space. The triple (Q,&,R) is called a (rate-independent) system. The
rate-independence of (Q, &, R) is reflected by the positive-1-homogeneity of R, i.e.
R(0) = 0 and R(awv) = aR(v) for all & > 0 and all v € Z. Moreover, the damage
process is assumed to be unidirectional. With a constant ¢ > 0 this is modeled by
R being of the following form:

R(v) = ‘/QR(U(LL‘))CLT, where R(v) ;—{ del e bl

With v = £ as the partial time derivative of z, the dissipation potential accounts for
the evolution of the damage process. Moreover, due to its positive-1-homogeneity
the convex potential R generates a dissipation distance between all 21,2, € Z,
which is given by R(v) from (1) with v = 25 — 21, i.e. R(22 — 21) for all 21, 20 € Z;
see e.g. [Mie05] for more details. This fact is used within the energetic approach to
define a concept of solution that does not involve the partial time derivative of z.
These are the so-called energetic solutions:

Definition 1.1 (Energetic solution) A function ¢ = (u, z) : [0, ] — Q is called
an energetic solution for the system (Q,E,R), if t — & E(t,q) € L ((0,T)) and if
for all s,t € [0,T] we have E(t,q(t)) < oo, global stability (2(S)) and global energy
balance (2(E)):

for allG = (u,2) € Q holds :  E(t,q(t)) < E(t,§) + R(2—2(t)), (2(8))
E(t,q(t)) + Dissr (2, [s, t]) = £(s, q(s)) + [} 0E(€,q(€)) & (2(E))

with Dissg (2, [s,t]) := sup { Zjv=1 R(2(&)—2(&-1)) | s =& <...<&v=t, NEN}.



In the style of [FN96] the energy functional for our setting is set up as follows:
E(t.u.)i= [ Felutg®):Celutg®)detG(2)+ [ So()de. (3
Q Q

Here, u : Q — R? denotes the displacement and e(u):=1(Vu+ VuT) the linearized
strain tensor. The first term in (3) represents the stored elastic energy with the
tensor C € R(@xd)x(dxd) heing symmetric and positive definite. We assume that

f:10,1] — [a, b] for constants 0<a<b

(4)

is continuous and monotonously increasing on [0, 1].

Moreover, )9 1 is the characteristic function of the interval [0,1], i.e. dj9 1)(2) =0,
if z € [0,1] and §jg,1)(2) = oo, if 2& [0,1]. Although z = 0 is allowed, (3) only
models partial damage, since we assume 0 < a < b in (4). Hence, the coercivity
of the energy functional is ensured, so that, in validity of Korn’s inequality, the
displacements are well-defined allover in 2. The damage process is driven by the
time-dependent external loadings g : [0, 7] x Q — R? modeled by a given extension
of time-dependent Dirichlet data. Finally, the term G(z) has regularizing effects. It
is used in mathematical literature, see e.g. [FN96], but also in engineering contri-
butions [HS03], where it is considered to account for microscopic interactions. In
[MRO6] the existence of energetic solutions for the system (Q, &, R) was proven for
G(2) := [ £|Vz|" dz with r>d. This restriction was necessary in an essential step
of the proof, namely for the construction of a so-called mutual recovery sequence
(MRS), where the compact embedding W17 (Q) € C(Q) was exploited. More pre-
cisely, the existence of a MRS is used to verify (2(S)) for an energetic solution, see
Def. 2.2. The difficulties in the construction lie in the discontinuity of R and the
gradient term G. In [Thol0, TM10] the existence result was extended to r € (1, c0)
by introducing a new technique for the construction of the MRS, which does not
use the compact embedding. Instead, the construction is based on the chain rule for
WL functions composed with Lipschitz functions and on a cancellation argument
for the resulting terms. Moreover, a model for partial damage without regulariza-
tion is treated in [FKS10]. The absence of the gradient causes a lack of compactness,
so that one resorts to the framework of Young measures.

In this contribution we focus on the limit case r = 1. In contrast to r € (1, 00)
the space W11(Q) lacks sequential compactness. For this reason we extend the
functionals to the space BV () of functions with bounded variation, which consists
of all the functions z € L!(Q2), whose distributional derivatives D;z, i=1,...,d, can
be represented by a finite Radon measure in 2. Hence, with Dz as the distributional
gradient and |Dz|(2) as the variation of z in Q (see e.g. [AFP05, Def. 3.4]), we set

G(z) :== |Dz|(Q2) for all z € BV(Q). (5)

This covers the intermediate case inbetween damage evolution in Sobolev spaces
[MR06, TM10] and the much weaker case of damage evolution in terms of Young
measures [FKS10].

In Section 2 the proof of the existence result in the BV-setting will be carried
out and the MRS will be constructed in detail by transferring the arguments of
the case r € (1,00) to the BV-setting. This involves results from the theory of
BV-spaces, which are provided in Section 2.1. The most important tool is the
decomposability of BV-functions, see Lemma 2.12 and [AFP05, Th. 3.84], which



allows it to compose the elements of the recovery sequence Zj piecewise in {2 by the
elements of the stable sequence z; and a testfunction Z using indicator functions
of suitable level sets in order to ensure that R(2; —2z;) < oco. This construction
replaces the chain rule for the composition of W -functions with the Lipschitz-
function min : [0, 1] x [0,1] — [0, 1] used in the setting of Sobolev spaces.

In Section 3 we treat a so-called brittle damage model, which accounts for two
material states only, the undamaged and a damaged one. This is mathematically
modeled by considering the damage variable as an indicator function of a set with
finite perimeter. Due to this assumption the BV-regularization is given by the
perimeter P(E, ), which is the variation of the indicator function:

P(E,Q) := |DIg|(Q) < . (6)

This regularization is coupled to a stored energy which can be used for the modeling
of concrete, see (51). In Section 3.1 it will be shown that the rate-independent
brittle damage model can be approximated by functionals of Modica-Mortola type.
Having in mind the works [Alb98, MMT77|, where classical I'-convergence of the
static Modica-Mortola energy to the static perimeter energy term was proven in the
context of phase transitions, this convergence seems to be obvious on the first glance.
But one must be aware that the present work deals with I'-convergence of rate-
independent systems, where the energy functionals and the dissipation potential
interplay because of the conditions (2). In particular, the proof of the upper I'-
limit gets more involved due to the unidirectionality of the dissipation potential,
see Section 3.2.2.

2 Existence of energetic solutions for the BV-model

The aim of this section is to prove the existence of energetic solutions for the rate-
independent system (Q,&,R) given by (1), (3) with the regularization (5) in the
state space

Q=UxZ with U:={veH(QRY),v=00nTp} and Z:=BV(Q). (7)

The procedure to prove our main result is based on the abstract theory developed
in [MMO05, Mie05, FM06, MRS08]. In particular, the proof can be carried out by
verifying the conditions of [Mie09, Th. 3.4]. Moreover, most of the steps to do are
similar to the ones in [TM10, Sect. 3], since the stored energy density f(z)e: C:e
considered here is a special case of [TM10]. The main difference arises from the
BV-regularization. Of course, G defined as the variation of BV-functions is lower
semicontinuous and guarantees sequential compactness in BV(€Q) with respect to
strong L'(£2)-convergence, i.e. there holds

sup (||zkHL1(Q)+Q(zk)) <c¢ = Jsubseq. z; — z in L'(Q) and z€BV(Q), (8a)
keN
2z — 2z in LY(Q) = G(2) < likm inf G(zx), (8b)
oo
see [AFP05, Rem. 3.5, Th. 3.23]. The convergence z — z in L'(Q2) with G(z;) < ¢

for all k € N is equivalent to weak*-convergence in BV(Q), denoted by z, — =z
in BV(Q) [AFP05, Prop. 3.13]. Because of this, the topology of convergence is



specified as follows

up — uin HY(Q,R?

(unra) % (w2) & {25 ©
Properties (8) help to ensure the existence of minimizers at each time step. The
main difficulty arises when passing from the time-discretized model to the time-
continuous one, in particular, when proving the closedness of stable sets. Similarly
to [TM10, Sect. 3.4] we thereto construct a MRS, which requires to transfer the
ansatz used for the W' -regularization for r € (1,d] to the BV-setting. In the
following we present the existence result and we briefly address the nonproblematic
steps of the proof. As it is the main issue of the proof, the focus of this section lies
in the construction of the MRS. For this, we introduce the relevant tools from the
theory of BV-spaces in Section 2.1 and establish the MRS in Section 2.2.

Theorem 2.1 (Existence of energetic solutions for the BV-model) Let
(Q,E,R) be given by (7), (3) and (1) with the regularization (5). Let (4) hold
and let the tensor C in (3) be symmetric and positive definite, i.e. there are con-
stants 0 < ¢ < ¢S such that Sle> < e: C:e < cSle|>. Moreover, assume that
Q C R? is an open, bounded Lipschitz domain, that the Dirichlet boundary T'y, #
and that the extension g of the Dirichlet-datum satisfies g € Cl([O,T},Hl(Q,Rd)).

Then, for any initial value (ug,z0) € Q, which satisfies (2(S)) at t = 0, there
exists an energetic solution (u,z) :[0,T] — Q for the system (Q,&,R).

Proof: Let W(e,z) := f(z)e: C: e such that f and C satisfy the assumptions of
Theorem 2.1. Then, W : R4*? x [0,1] — R enjoys the following properties

P1) Continuity: W : R¥4 x [0,1] — R is continuous.

P2) Convexity: Vz € [0,1] : W(, 2) : R?¢ — R strictly convex.

P4

(P1)
(P2)
(P3) Coercivity: Jep,c2>0 V(e,z) € R4 x [0,1] : c1le]? < W(e, 2) < calel?.
(P4) Stress control: ¢z >0 V(e,z) € R4 x [0,1] : |0.W (e, 2)| < c3lel.

(P5)

P5) Lipschitz continuity of the stresses: 3¢y >0 V(ey, 2), (e2,2) € R¥*4 x [0,1] :

|0W (e1,2) — 0. W (e2,2)| < caler — ea].

(P6) Monotonicity: (e, 21), (e, 22) € R4 x [0,1] with 23 < 25 :
Wi(e,z1) < W(e, z2) < b/aW (e, z1).

Properties (P1)-(P3) together with (8) imply that £(¢,-,-) is sequentially lower
semicontinuous and that its sublevels are compact in the topology 7 from (9).
Hence, the existence of a minimizer (u(ty), z(tx)) for (g, ) + R(- — z(tg—-1)) is
guaranteed for all 0 < ¢, <t <T. For all k € N these minimizers (u(tx), z(tx))
satisfy (2(S)) at time ¢. Property (P4) together with the assumptions on g enables
us to show the existence of

& (t,u, z) == /Qﬁ‘eW(e(u +9(t),2):e(g(t))dz for all t € [0,T]. (10)

Additionally, it leads to the control of 9:E(t, u(ty), z(tx)) by E(t, u(ty), z(tx)) uni-
formly in [0,T]. Then, a Gronwall argument yields the boundedness of the energy
uniformly in time. This implies that (u(tg), z(tx))ken is uniformly bounded in Q.



As t;, — t, i.e. when passing to 0 with the step size of the partitions of the time

interval [0, T], we therefore have a subsequence (u(ty), z(tx)) Z (ug, 2t)-
Properties (P5) and (P6) are used to prove that 0;E (¢, u(tx), z(tx)) — 0:E(t, ue, 2¢)

for every (tr, u(tn), 2(t8)) T (6 us, z0) with (b, u(ty), 2(t)) satistying (2(S)).
This allows it to verify the energy balance (2(E)). It remains to show that the limit
(t,ut, z¢) satisfies (2(S)), i.e. the closedness of stable sets must be shown. This will
be carried out in detail below. ]

The proof of the closedness of stable sets is not straight forward due to the unidi-
. . . o . 0,T)xT
rectionality of R. Consider (tg, uk, 2k )ren satistying (2(S)) with (tx, ug, 2x) 071

(t,u,z) and 2 € Z. Then we have to prove that (¢, u, z) satisfies (2(S)) as well. But
since R(2 — z;) = oo whenever 2 > z;, on a set of positive £%-measure, we cannot
simply pass to the limit in (2(S)). Instead we use the following condition.

Definition 2.2 (MRS-condition) The system (Q,E,R) satisfies the mutual re-

covery sequence condition if for all sequences (tr,qr)ken = (i, Uk, 2k)keNn wWith
(ti, qr) satisfying (2(S)) for all k € N and with (tx, qx) [0T1xT (t,q) and for ev-
ery § = (u,2) € Q there is a sequence (Gx)ken = (Uk, 2k)ken with g z, q in Q, so
that

timsup (£t ) + RU(E = 22) = (b)) < E(0) + R(E =) = (). (1)

Note that E(tg, dr) + R(2x — z1) — E(tk, qx) > 0 for all k& € N due to (2(S)) for
(tk,qr). Hence the MRS-condition implies (2(8)) for (¢, q).

The property R(2) —2x) < 0o requires that 0 < 2 <z L%a.e. in . In [TM10,
Sect. 3.2.5] for the setting of W1 "functions this was achieved by the ansatz 2, :=
max{0, min{Z — dx, 2z} } using that the superposition of the Lipschitz continuous
function min with a W1 -function generates a W' "-function and its gradient can
be calculated by a chain rule. Then, the proof of inequality (11) exploited the
cancellation of G(2;) — G(zx) on the subsets [z, < Z — 0y, where d; — 0 was
determined such that £¢([zx < 2—dx]) — 0. In the BV-setting we also want to take
advantage of this cancellation argument. A chain rule for BV-functions superposed
with Lipschitz continuous functions was established in [ADM90]. Since it may
happen that a Lipschitz continuous function [ is nowhere differentiable on the range
of a BV-function z this general chain rule involves a tangential differential of [ to
the range of z. However, for our problem we can replace the superposition using
indicator functions of suitable level sets, i.e. 2; := (2—0;)Ia, +21Ip, +0-I¢c, , where
A = [0 <Z-6, < Zk], By = [0 <zp < 275& and C} := Q\(Ak @] Bk) Intuitively
(but sloppily), the distributional gradient D2y is given by D2 in Ay, by Dz in By,
and additionally by the jumps across the (reduced) boundaries of these sets. In
order to ensure that |D2;|(Q) < oo, i.e. that 2 composed in this way indeed is a
BV-function, requires that Ay and By have finite perimeter and that the traces of
the functions Z and zj on the (reduced) boundaries of A and By are welldefined
and bounded. This relation is stated by the theorem on the decomposability of
BV-functions [AFP05, Th. 3.84] (Lemma 2.12, here). For our problem, this can
be achieved by choosing 6§ suitably, which is possible due to the coarea formula.
Moreover, d;, — 0 can be determined such that £4(Bj) — 0. But this does not
imply that also P(By, 2) — 0, which would make the jump parts converge suitably.
Therefore, we have to evaluate the BV-traces of 2 and Z; carefully on the reduced



boundaries of Ay and Bjy. In order to make the convergence proof of the MRS
as readable as possible all the required BV-terminology is provided beforehand in
Section 2.1. The MRS is then established in Section 2.2.

2.1 Tools from BV-spaces for the construction of the MRS

This section is a collection of tools from the theory of BV-spaces, which are used
for the construction of the MRS in Section 2.2. The notation and the results are
taken from [AFP05, Sect. 3] and readers who are familiar with BV-theory may skip
this present section.

Proposition 1 (JAFP05, Prop. 3.38] Properties of the perimeter)
1. The mapping E — P(E, Q) is lower semicontinuous with respect to local con-
vergence in measure in .
2. The mapping E — P(E,Q) is local, i.e. P(E,Q) = P(F,Q) whenever
LN ((E\F) U (F\E)))) =0.
3. It holds P(E,Q) = P(R*\E, ) and

P(EUF,Q)+ P(ENF,Q) < P(E,Q) + P(F,Q). (12)

Theorem 2.3 (JAFPO05, Th. 3.40] Coarea formula in BV) For any open set
QCR? and v € L _(Q) one has

loc

IDv|(Q) = /OO Pz € Qv(@) > 1}, Q) dt. (13)

— 00

If v e BV(Q) the set {v >t} has finite perimeter for L'-a.e. t € R and

polB) = [ Pl DB = [ Diea@ma

for any Borel set B C Q.

Definition 2.4 ([AFPO05, Def. 3.54] Reduced boundary) Let E be an L% -mea-
surable subset of R and Q the largest open set such that E is locally of finite
perimeter in ). The reduced boundary §FE is defined as the collection of all points
x € supp |[DIg| N Q such that the limit

vg(z) := lim DIp(Bo())

£ D] (Bo()) (15)

exists in R? and satisfies vg(x)=1. The function vy : FE — Se=1 s called the
generalized inner normal to E.

Definition 2.5 ([AFP05, Def. 3.60] Points of density ¢, essential boundary)
For all t € [0,1] and every L%-measurable set E C R? we introduce

'Cd(EmBg(w))

t . d| 1;
o= fo e |y S

= t} and O*E:=RN(E°UEY). (16)
Et denotes the set of all points where E has density t and O*E is the essential
boundary of E. Moreover, E' can be considered as the measure theoretic interior
and E° as the measure theoretic exterior of the set E.



The next properties of the measure theoretic interior directly follow from (16).

Corollary 1 The measure theoretic interior has the following properties:
1. Let N C Q with L4 N) =0. Then N!' =) and (Q\N)! = QL.
2. Let AC B C Q. Then A' C B! C QL.

The next theorem, which is due to Federer, states that §F is the important part of
the boundary, since Q\(E° UFE U E') is a HY L-negligible set.

Theorem 2.6 (JAFPO05, Th. 3.61] Federer) Let E be a set of finite perimeter
in Q. Then

SENQCEY?Cco*E and HTHOQ\(E°UFEUEY) =0. (17)

In particular, E has density either 0 or 1/2 or 1 at H¥ -a.e. x € Q and H 1-a.e.
x € 0*ENQ belongs to FE.

Definition 2.7 (JAFP05, Def. 3.63] Approximate limit) Let v € L. (Q)%.

loc
We say that v has an approzimate limit at x € Q if there exists © € R? such

that

lim ]é |v(y) —o|dy =0. (18)

0
e o)

The set S, of points where this property does not hold is called the approximate
discontinuity set. For any x € Q\S, the vector v, uniquely determined by (18), is
called approximate limit of v at x and denoted by v(x).

Definition 2.8 ([AFPO05, Def. 3.67] Approximate jump points) Lel
BZE(LL‘,I/) ={y € By(x)| £ (y —z,v) > 0}. (19)

Let v € LL _(Q)¢ and x € Q. We say that x is an approximate jump point of v if

there exist a, b € R? and v € S*! such that a # b and

lim ][ |v(y) —aldy =0, lim lv(y) —bldy =0. (20)
e=0 JBf (a.v) e=0 JBg (2,v)

The triple (a,b,v), uniquely determined by (20) up to a permutation of (a,b) and
a change of sign of v, is denoted by (vT,v™,v,(x)). The set of approzimate jump
points of v is denoted by J,.

Definition 2.9 (JAFPO05, Def. 2.57] Rectifiable sets) Let E C R? be an H*-
measurable set. We say that E is countably k-rectifiable if there exists countably
many Lipschitz functions f; : R¥ — R? such that

E C UZ, fi(RY). (21)

We say that E is countably H*-rectifiable if there exists countably many Lipschitz
functions f; : RF — R such that

HM(E\ U, fi(RY)) = 0. (22)

Clearly, k-rectifiability implies H*-rectifiability.



Theorem 2.10 (JAFP05, Th. 3.59] De Giorgi) Let E be an L-measurable sub-
set of RY. Then FE is countably (d—1)-rectifiable and |DIg| = H' | FE.

Due to Th. 2.10 the perimeter of E can be computed by
P(E,Q) =H"HQNOE) = HEH QN EY?) . (23)

This can be used to rewrite the coarea formula (13) using the essential boundary of
level sets

|Du|(B) = / H*H(BNO*{u>t})dt for all Borel sets B C Q. (24)
—0o0

Theorem 2.11 (JAFPO05, Th. 3.77] Traces on interior rectifiable sets) Lel
v be a function in BV (Q)? and let T’ C Q be a countably H~'-rectifiable set oriented
by v. Then, for H% '-a.e. x € T there exist v{ (z), vy (z) € R? such that

lim ][ lu(y) —vf (z)|dy =0, lim ][ lv(y) —vp (2)]dy = 0.
=0 J Bt (2,v(x)) =0 /B (2,v(x))
(25)

Moreover, Dv|T' = (v —vp) ® vHI YT

2.2 Existence of mutual recovery sequences

The construction of a MRS in the BV -setting will be based on the following lemma
on the decomposability of BV-functions. Using complete induction, it can deduced
from [AFPO05, Th. 3.84], which gives the statement of the lemma for N = 2.

Lemma 2.12 (Decomposability of BV-functions) Foralli € {1,...,N},N €
N, let v; € BV(Q) and A; C Q with finite perimeter and the generalized inner
normal v; to the reduced boundary §A;, such that Uf\ilAi =Q and A;NA; =0 for
alli#j. Forallic{l,...,N} and all j € {i+1,...,N} let §A;NTA; be oriented
by v;. Let 14, denote the indicator function of the set A; and vl?Ai the traces on
FA;. Then

N N
wi=» vls €BV(Q) = > / Vit a, = vjga |dHT" <00, (26)
= 5 J3Aangane !
j=i+1

If w € BV(Q), the measure Dw is representable by

N

N
Dw =3 (DAl + 3 ik, — viza) @HT(FANFANQ)),  (27)
i=1 j=i+1

where A} is the measure theoretic interior of A;, as in Def. 2.5.

Moreover, we will exploit that the BV-traces of a function, which is bounded £%a.e.,
are bounded H% !-a.e. by the same constants. This can be proven by contradiction
using formula (25).

Corollary 2 Let v € BV(Q) with a < v < b L%-a.e. in Q for constants a, b € R.
assume that T is a H% -rectifiable set oriented by v. Then a < vri(x) < b for
H 1 a.e. z € Q.



With these tools at hand we are in a position to verify the MRS-condition.

Lemma 2.13 Let the assumptions of Theorem 2.1 hold. Then (Q,E,R) satisfies
the MRS-condition from Definition 2.2.

T
Proof: Let (tx,ur,zx)ken C [0,T] x Q with (¢, ug, 2x) (071 (t,u,z). Choose

now § = (4, 2) € Q such that £(t,§) < E for some E € R, otherwise (11) trivially
holds. Now we distinguish between the following two cases:

Case A: Let § = (@, 2) € Q be such that there exists a £%-measurable set B C Q
with £4(B) > 0 and 2 > z on B. Then R(2 — z) = oo and (11) holds.

Case B: Let §=(a,%) € Q so that 2<z a.e. in Q. Then R(Z—2z) is finite, i.e.
R(2—z)=J,0(z—%)dx < 00. To construct a MRS we set, @iy, := @ for every k € N and

g = (73_510)-[Ak -l—ZkIBk +0~Ick, where (28)
Ay = [0 <Z2-0p < Zk], B = [0 <z < ZA:—(Sk} , Cp = Q\(Ak U Bk). (29)

With this choice we ensure that 0 < 2, < 2z, a.e. in Q. We show now that the
sequence &z — 0 can be determined in such a way that % € BV (Q), so that (27)
is applicable, such that (£L¥(By)+L%(Cy)) — 0 and 2, — 2 in L*() as k — oo.
Because of 2 < z in Q we obtain

B C [Zk < 2—(5k] C [Zk < Z—(Sk] C [5k < |Z—ZkH . (30)

Using Markov’s inequality (M) in the last estimate of (31) below we conclude

(M)
LYBy) < LY [0 < |z—2z]]) < 6, 2= 2kl 110 (31)

and to ensure that the right-hand side of (31) tends to 0, we may e.g. choose any
ok € [m]1€/27m]1€/4] with my, ;= max{k™", ||z— 2| L2 () }-

Moreover, to make Cor. 2.12 applicable we have to choose 0, € [mi/2, m,lc/ﬂ such
that the sets Ay, By and Cj have finite perimeter and that the right-hand side of
(26) is finite for all k¥ € N. For this, we rewrite Ay = [0 < 2] N [—0r < 2z, —£] and
B =10 < z] N[0k < 2—2z] as the intersections of levels sets of the functions 2,
(25— %), z and (2—2z;) € BV(Q). By formula (12) and the coarea formulas (13),
(24) we conclude that J; € [m,lﬁ,m,m,i/ﬂ can be chosen such that Ay, B and Cj
have finite perimeter. It remains us to verify that the right-hand side of (26) is
finite. Coarea formula (24) yields H?~}(F A, N FBr N Q) < 3|D2|(Q) + 3|D2x|(Q),
HI=HFA NFCr N Q) < 3ID2|(Q) + |D2x| () and thirdly H4H(FBL NFCL N Q) <
2|DZ|(2) + 2|Dz| (), where |Dzg|(©) < C for all k € N by the properties of stable
sequences. Additionally, Cor. 2 implies that |2F—6, fz;ﬂ <18, [2F 0] <16
as well as |z,zt| < 1 H% la.e. on the respective reduced boundaries. Hence, the
right-hand side of (26) is finite and Cor. 2.12 can be applied.

Now we verify that 2, — 2 in L!(Q). For this we use that

Cr=1[2—0r <0JUJz <0], (32)

where the second set is £%negligible. Moreover, we have [2 — §;, < 0] — [ < 0]
pointwise £%-a.e., which again is an £%negligible set. This shows that £4(C) — 0
and together with (31) we have obtained that (£%(Bg)+L£%(Cy)) — 0 as k — oo.
From this, we infer

12 = 2l i) = kLY (Ak) + 2k — 2l L2y + 1212 (c)

d d d (33)
< 0L + LYBg) + LY(Cr) — 0 as g — 0.



Now we are in a position to verify the limsup estimate (11). For this we use
that

lillcnsup (E(tr, ar) + R(2k — 2x) — E(tr, qr))

< limsupZ(t,gi) — likm inf Z(¢t, qx) (34)

k—o0

+ limsup (|DZ|(22) — |Dzy[(Q)) + limsup R (2 — 2k ,
k—oo k—o0

where, we introduced Z(t,q) := [, f(2)e(u+g(t)) : C: e(u+g(t)) dz for ¢ = (u, z).
In the following, we estimate the different terms in (34) separately.

Due to the strong L!-convergence obtained in (33) and the fact that 2, < z; for
all £ € N by construction we conclude that

Rk —zx) > R(2—2) ask — oco. (35)

Moreover, since ur = @ and 2 < Z for all £ € N by construction we infer from
the monotonicity of f : [0,1] — [a, b] together with the continuity of the given data
g € C1([0,T], H' (2, R?)) that

limsup Z(t, Gx) < limsupZ(tx, 4) = Z(t,4§) . (36)

k—oo k—o0

Furthermore, the weak sequential lower semicontinuity of 7 implies that
~liminf Z(t, g¢) < ~Z(t,q) (37)
— 00

Thus, it remains to show that

lim sup (|D2](2) = [D=¢/() < [D21(2)=|D=1(2). (38)
oo

For this, we use 2z = (2—(5k)IAk +z1lp, +0-Ic, as well as 2, = Zk(IAk +1Ip, +Ick)
and we express their derivatives with the aid of formula (27). Hence, we obtain

ID2[() =[DE|(A}) + [Dasl (BY) + [ |57 5,z | ant?
FALNF BN

+/ |z+75k|de*1+/ |z | dHAT
FALNFCLNQ FBrNFCrNQ

(39)

where we applied Cor. 2 to determine the traces 22: on the different parts of the
reduced boundaries. Similarly we find

~[Dz[(Q) = — [Dzk|(Ay) — Dzi|(Bi) — [Dzil (Cy) —/ |2 — 7 | AR
FALNF BN

7/ |zk+fz,;|d7'(d717/ |2 — 2 [ dHAL.
T .

ArNFCrNQ FBrNFCrLNQ

(40)

We note that |DZ;|(Bi) — |Dzx|(B},) cancels out in (38). Moreover, —|Dz|(C}) <0
in (40). Thus, to establish (38) we have to show — lim infj,_, [Dzx|(AL) < —|Dz|(2)
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and that the boundary terms in (39) +(40) can be estimated as follows for all k¥ € N:

/ |2+—5k—z,;|de*1+/ |2+—5,€|de*1+/ |z [ dH!
SALNFBLNQ FALNFCLNQ FBLNFCLNQ

[l mplantt [ g eants = [ jpespantt )
FALNF BN FALNFCLNQ SBrNFCrN

g(/ +/ +/ )|2+—A—|de—1.
FALNF BN FALNFCLNQ SBrNFCrN

To verify estimate (41) we use the information on the traces stated in Cor. 2 and
distinguish between all possible relations. On FAxNFBLNQ it holds 0 < 215, < z,j
and 0 < 2,7 < 27— H1.a.e.. Hence, for H% l-a.e. x € A, N FB, N Q with
z <z itis 27 —0 < 2f <2 <27 =0k, de. |2t —0p—2, | < 2T 27,
2 > 2z it is either 27 =0 < 2, <z <276y, fe. [FT—0p—z, | < |FT 27
k k k> <L — ks 1-€. k k> )
or 276, <z <2 =6 <z, ie |2T—6p—z | <|2T-27],
or z;; <z —0 < 3T 6, < z,j, i.e. |é+—6k—zk_| < \z,j—zk_\,
or z, < 2T 6, < z,j < 37—, ie. |2+—6k—z,;| < \z,j—z,;\,
or z;; < 2T—6, < 57 —0, < z,j, ie. |2+—6k—z];| < \zlj—z,;\

Using these estimates and denoting the set of points, where one of the last three
relations holds by F, we find that

/ |é+—6k—zk_|de’1—/ |z,j—z,;|de*1g/ 25| dHe = 0
FANF BN FANF BN SAkNSBkﬁQ\E (42)

g/ 2T —27|dHL.
3

ArNFBrNQ

On §A,NZCLNQ it holds 0 < 2T —§;, < z;' and 276 <0< 2 H% -a.e.. Thus,
for H% l-a.e. z € A, NFCr N Q with

<z itis 27 —0r<0<2t—0p <2f <z, de. BTG <227,
b >z, itiseither 27—, <0<z, <2 -0, <z, e 2T -0k <2727,

or 3T —0,<0<3t—§, < z, < z,j, e, |2t =8 <2t —27].

Thus, we have

/ |2+75k|de—1f/ |z,;bz,;|de—1g/ |2t —27|dH 0. (43)
3 S §

ApNFCLNQ ANFCLNQ ANFCLNQ

On §BNFCLNQ it holds 0 < z,j <2t—fpand 27 =6, <0< 2y H% '-a.e.. Hence,
for H% l-a.e. z € B, N FCr N Q with

z;' <z, itiseither 27 -6, <0< z,j < Et—6, < z; , le. |2t =6 < |2t -2,
or 2T —0,<0< 2zt <z < 2T, e [2T=6 < 2T -27],

z; > 2y itis 27 —6r<0< 2, < z,:r < AT =6y, e BT —0i] < 2T 27,
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which yields

/ |z,j|de—1—/ |z,j—z,;|de—1g/ |ZT =27 dH —0. (44)
S $ §

BrNFCrNQ BrNFCrLN BrNFCrLN

Thus, estimate (41) holds. In total we have up to now obtained that the left-hand
side of (38) can be estimated by

1i]£risup (|D£’k|(Q) - |D2’k|(Q))

< limsup (|D73|(A,1$) —l—/ |2F — 27| dH!
k—o0 (FARNFBr)U(FALNTCrL)U(FBLNFCr))NQ (45)
+ IDZ|(B}) + [D2I(C}) — Dzl (4}) )
< |D2|(Q) — liminf Dz |(A})

To show that — liminf, . [Dzx|(A4}) < —|Dz|(2) in (45) we first choose a subse-
quence (zk)ken such that the liminf is attained. Then, we introduce the sets

Un = |JBeUCy). (46)

k=n

Since both £4(By) — 0 and £4(Cy) — 0 as k — oo we may choose a further
subsequence in such a way that >"p-, £L4(By) + L4(C) < occ. For this subsequence

LYU,) <o and L4YU,) =0 asn— oco. (47)

We set lim,—.o, U, = N and put Q, := Q\U,, which satisfies Q, C A, for all
k > n. Then, also Q}, C A, as well as ), C Q},; € Q! for all n € N by Cor. 1, 2.).
Since £4(N) = 0 we conclude that (Q\N)! = Q! by Cor. 1, 1.). This proves that
QL — Q. Note that Q C R? is an open set, hence Q' = Q.

Keep n € N fixed. Then the sets Q) C A} can be used to fix a set independent
of k > n, so that the lower semicontinuity of the variation can be exploited on Q}
for the sequence zj, — z in BV (Q) and we have ensured that Q) — Q. For all k > n
we have

—1ikminf|Dzk|(A,1€) < —likminf Dz |(Q) < —|D2|(2}) — —|Dz|(Q) as n — oo.
:— 00 —00

This finishes the proof of estimate (45), so that it is shown that the MRS (4, 2k )ren
given by 4 = @ and 2, from (28) satisfies the lim sup-estimate (11). ]

3 A brittle damage model and its Modica-Mortola
approximation

As an example for the model with BV-regularization we now discuss the special
case, when the damage variable attains the values 1 or 0, only. This means that
the damage variable z :  — {0,1} only distinguishes between the two situations:
locally unbroken for z(x) = 1 and locally broken for z(z) = 0. For this reason it
is called brittle damage, see [FG06, GL09], or brutal damage in [FM93]. In this

12



setting, the set Z of admissible damage variables can be considered as the subset
of BV(Q) consisting of the indicator functions of sets of finite perimeter, i.e.

Zy = {Iz : Q — {0,1} indicator function of Z C Q, P(Z,) < oo} . (48)

Compactness properties of Z; are discussed in Remark 1 below. Since an indicator
function Iz of such a set Z is simply a jump function, its variation in € reduces to
the jump part, which is exactly the perimeter of Z in Q, i.e. |DIz|(Q) = P(Z,Q).
Hence, with a constant o > 0, the regularizing BV -gradient term is given by

G(2) == oHY(J.) = oP(Z,Q). (49)

We want to use the above regularization in a model that describes the damage of
concrete. From now on we denote with Z := [z = 1] the set where the structure
is unbroken. Then, Q\Z := [z = 0] describes the regions where the structure is
completely disintegrated. We assume that these regions are filled with pulverized
material which is densely packed. For this reason, the region Q\Z is able to resist
compression as good as the undamaged region Z. Since we only allow for infinites-
imally small strains we may expect that the body ) keeps its outward appearance.
We further assume that the concrete structure contains a reinforcement, which en-
sures that the body €2 can react on tension even in pulverized regions Q\Z, but no
longer as good as the sound material in Z. All these properties are featured by the
stored energy density of the form

Wale, 2) := p(z+p)lel* + 5 (I(tre) 71> + (2 + a)|(tre) T [?) , (50)

where o € (0,1) is constant and p, A > 0 are the Lamé constants. Moreover, also
p € (0,1] is constant and clearly, the assumption p > 0 preserves the coercivity of
W5 with respect to e. Since the volumetric part of the strain tensor is under control
by the term 3 (|(tre)~|> + (z + a)|(tre)*|?) it particularly ensures that also the
deviatoric part is controlled. This means that finite shear stresses can occur in the
pulver Q\Z.

In the setting of reinforced concrete we define the state space Q as in (7). With
R : Z — [0,00] from (1) and Qp := U x Z; from above the system (Q,&,R) is
completed by the energy functional & : [0,7] x Q — R U {oo},

& (tu,z) =

{ gg%(e(u"i_g(t))?Z) dz +0Hd_1(Jz) if (U,Z) € QB? (51)

otherwise.

Again, the rate-independent damage process is driven by slow time-dependent ex-
ternal loadings induced by time-dependent Dirichlet conditions, which are modeled
by the given displacement g : [0,T] — H'(Q,R%), and o > 0.

The works [FM93, FG06, GL09] consider brittle damage without any regu-
larization for the damage variable. In these works the density is of the form
Wa(e,z) = ze:A:e + (1—2)e:B:e, where A, B € R(@x4)x(dxd) are symmetric and
positive definite with constants c1, ca > 0 such that c;le|? < e:B:e < e:A:e < calel?
for all e € R4, Thus, Wy from (50) can be regarded as a special case of
Ws. In [FM93, FG06, GL09], minimizing energy plus dissipation in the first time-
step means minimizing [, WB(e(u), 2)+o(1—2z)dx in H(Q,R?) x L>=(2). Because
of the absence of a damage gradient one can immediately eliminate z by per-
forming the minimization of the functional [, W(e(u))dz in H'(Q,R?), where
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WB(e) = min{e: A:e,e:B:e+p}. This density is nonconvex and in order to
guarantee the existence of minimizers a relaxation using homogenization tools is
required. However, for the brittle damage problem (51) regularized with (49) one
cannot remove z from the minimization as easily. For all z € Z; one rather consid-
ers the reduced energy functional Eg(t, z) = ming,ey &(t, u, z) and then minimizes
Er(t,z) + R(1—2) in Z; (at the first time-step). Since for every z € [0, 1] fixed
the density Wy (-, 2) is convex with respect to the strains the corresponding Eg(t, 2)
exists for all z € Z;. In order to make sure that also a minimizer of Eg(¢,-) ex-
ists, we now discuss the lower semicontinuity and compactness properties of the
regularization (49) in Z;.

Remark 1 (Compactness of Z;, cf. [AFP05, Chap. 4]) The  distributional
gradient Dz of any function z € BV(Q) can be uniquely divided into three parts:

Dz = D% + D’z + D*z. (52)

Here, D%z denotes the part which is absolutely continuous with respect to the mea-
sure L% and (D7 z 4+ D¢2) is singular with respect to L. Moreover, DIz stands for
the jump part and D¢z for the Cantor part. We say that z is a special function
with bounded variation, i.e. z € SBV(Q), if D°2 = 0. The set SBV(Q) is an alge-
braically closed subspace of BV(Q) [AFP05, p. 213, Cor. 4.3]. In particular, for any
z € SBV(Q) the derivative in (52) takes a special structure since it can be recovered
from the approzimate differential Vz, the approzimate one-sided limits (27,27 ) and
the normal v, to the jump set J,, i.e.

V2€SBV(Q): Dz=VzLi4 (T —27)@uv,HIT .. (53)

According to [AFP05, p. 216, Th. 4.7] the topological closedness of SBV(Q) is en-
sured if the following holds: Let ¢ : [0,00) — [0,00], 8 : (0,00) — (0, 0] be lower
semicontinuous increasing functions and assume that

lim@:oo and lim@:oo. (54)

t—o00 t—0 t

Let Q C R? be open and bounded and let (z;)zen C SBV(Q) such that

keN

sup{/ﬂ¢(|Vzk|)dx+/JZk 9(|z,j—z,;)dwdl} < o0, (55)

If z;, = z in BV(Q), then z € SBV(Q), in particular, Vz; — Vz in L'(Q)¢ and
Dz, = DIz in Q. Moreover, we have lower semicontinuity of the functionals, i.e.

/ d(|Vz])dr < likminf/ d(|Vzi|)da if ¢ is convex, (56)
Q —oo Jo

/ 0(|zF —27|)dHe! < likminf/ 0(|zf — 2, [)AHY™Y if 0 is concave.  (57)
Jz —0o0 Jzk

The space SBV(Q) is compact with respect to the weak* topology, if (55) holds
together with the additional equiboundedness of ||zx| oo, i-€., if (2x)reny € SBV(Q)

satisfies (55) and ||zx]|ec < ¢, then there is a subsequence z;, — z in BV(Q) and
2 € SBV(Q) [AFPO5, p. 216, Th. 4.8|.
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The set Z from (48), which consists of the indicator functions Iz of all the
sets Z with finite perimeter in Q is a subset of SBV(Q) having the property DIz =
(I, —1;)®@vr,H* Y (J1,), where I, I, € {0,1}. Hence, the function 0 from above
can be any power law 6(t) = t? with p € (0,1) to ensure (54) and the concavily from
(57). Thus, for any Iy € Z5 we obtain

O(If — I, )dH* =HI1(J,) = P(Z,9).

JIZ

Consider (Iz,)ken C 25 with |1z, ||cc + P(Zk, Q) < c. Then the compactness the-
orem for piecewise constant functions [AFP05, p. 234, Th. 4.25] guaraniees the
existence of a subsequence that converges in measure to a piecewise constant func-
tion z. Moreover, the lower semicontinuity of the Hausdorff-measure ensures that
HIL(J,) < liminfg_ o0 'Hd_l(JIZk) < c. Since a sequence that converges in measure

contains a subsequence that converges L%-a.e. we conclude that also z € Z;.

In order to address the main issue in the proof of energetic solutions, it should
be mentioned that the recovery sequence for 2 € Z; can be adopted from Section
2.2. Now, one may consider 2i, := 214, + zxIp, +0-Ic, with Ay = [0 < 2—0; < z],
B =10 <z, < 2=68k], Cr = Q\(Ax U Bg) and §; — 0 determined as in Section
2.2. This is due to the fact that Z and 2j take the values 0 and 1 only, so that for
8k < 1 the property 2(z)—dx < zx(x) implies 2(z) < zx(x) for L%-a.e. z € Ay and
this can be transferred to the relations for the traces by Cor. 2.

The distributional gradient H¢~1(J.) may be disadvantageous for numerical
computations. Therefore, we would like to approximate it by integral terms via
I-convergence. Following the ideas of [MM77, Mod87] which originate in modeling
of phase transitions, this can be achieved by a term of Modica-Mortola type

Jo (F?22(1=2)? + & |Vz*)dz if 2€ HY(Q,[0,1]),

0 otherwise, (58)

Mi(2) == {

where H'(€2,[0,1]) denotes the set of H!(Q)-functions with values in the interval
[0,1]. A detailed proof for the I'-convergence of My(zy) to the limit oH?~1(J,)
with o := 2f01 z(1 — z) dz, can be found e.g. in [Alb98]. Intuitively, it seems to be
clear that this ansatz also works for the brittle damage model. The only difficulty
is given by the unidirectionality of R. Hence, to prove the MRS-condition, the
recovery sequence (Zg)gen given in [Alb98] has to be adjusted suitably.

A Modica-Mortola term in the context of damage can also be found in [Gia05].
There, as a part of the Ambrosio-Tortorelli model for volume damage it was used
to approximate the Francfort-Marigo model for Griffith cracks [BFMO08]. Within
this limit passage the (volume) damage variable turns into the d — 1-dimensional
crack set, i.e. into the jump set of the limit displacement. However, here we want to
use a functional of Modica-Mortola type to approximate a model for brittle volume
damage by a more regular model for volume damage.

3.1 Approximation of (Q,&,,R) by a Modica-Mortola term

In this section we show that the system (Q, &, R) given by (7), (51) and (1) with
p > 0 in (50) can be approximated by systems (Q,Ek, R)ken in the sense of I'-
convergence of rate-independent systems developed in [MRSO08]. In this context, for
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all k € N the approximating energy functionals & : [0, 7] — Q are given by
Ex(t,u, 2) == TIu(t, g, u, 2) + Myp(z)  with My(z) from (58) and (59)

In(t, gryu, 2) := / Wa(e(u+gi(t)), z)dz  with Wy from (50). (60)
Q

For the given data we assume (gx)ren C C1([0, 7], HY(2,R9)) and
Jeg >0k €N: | gul|Ea o, (0,m0y) < - (61)

For every k € N fixed the rate-independent systems (Q, &, R) fit into the frame-
work discussed in [TM10, Sect. 5.2|. Hence, we may state the existence of energetic
solutions for (Q, &, R) as a direct consequence of [TM10, Th. 3.1].

Lemma 3.1 (Existence of energetic solutions for (Q, &, R)) Let Q C RY be
an open, bounded Lipschitz domain with a Dirichlet boundary T'p # 0. For all
k € N let the system (Q, &, R) be given by (7), (59) and (1) with p > 0 in (50).
Let (61) hold true. Assume that the initial data (ux(0),25(0)) satisfy (2(S)) for
E and R at time t = 0. Then, for all k € N there exists an energetic solution
(ug, zx) : [0,T] — Q for the system (Q, &k, R) and the initial datum (uy(0), z(0)).

Our aim is to show that energetic solutions of the systems (Q, &g, R) converge to an
energetic solution of the brittle damage system (Q, &, R), where the convergence

of sequences (u, z) Z (u, z) is to be understood in the sense of (9).

Theorem 3.2 (Modica-Mortola approximation of (Q, &, R)) Let the assump-
tions of Lemma 8.1 hold. For all k € N let (ug,z) : [0,T] — Q be an energetic
solution to the system (Q, &k, R) given by (7), (59) and (1). If the initial data satisfy

(ux(0), z,(0)) KN (u(0),2(0)) and E,(0,uk(0), 2, (0)) — &(0,u(0), 2(0)) then there is
a subsequence (ug(t), zx(t)) Z (u(t),z(t)) for allt € [0,T] and (u,z) : [0,T] — Q is
an energetic solution of (Q,&,R).

3.2 Proof of Convergence Theorem 3.2

In the following we show the existence of a subsequence of energetic solutions of
(9, &k, R)ren which converges in the topology 7 for all ¢t € [0,7] to an energetic
solution of the brittle damage system (Q, &, R). This is done following the ideas
of [MRS08, Th. 3.1]. To obtain this converging subsequence, it is necessary that
the energies are uniformly bounded and that sublevels of the energies are compact
in 7, which is verified in Section 3.2.1 and particularly in Corollary 3 below. The
convergence of the sequence pointwise for all ¢ € [0,7T] can be obtained following
the ideas of [MMO05, Th. 3.2]. The proof of the energy balance for the limit system
further requires that the I'-lim inf-inequality holds, which is established in Proposi-
tion 3 below. Additionally, the partial time derivatives must converge pointwise for
all t € [O,T], i.e. 6t8k(tk,uk(t),zk(t)) — ath(t,uk(t),Zk(t)), where 0;&;, and 0:&
have the form (10). As in the proof of Theorem 2.1, the above convergence can
be deduced from the properties (P4) and (P5) of W, see e.g. [MRT10] for details.
With this convergence a lower energy estimate can be established, see [MRS08, Th.
3.1]. The respective upper energy estimate can be obtained following the ideas of
[MRSO08, Prop. 2.4], so that the energy balance (2(E)) for (u,z) and (9, &, R) is
gained. The stability of (u,2) and (Q, &, R) is deduced with the aid of a MRS in
Lemma 3.5 in Section 3.2.2.
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3.2.1 Compactness of energy sublevels and the lower I'-limit

From the stability inequality (2(S)) one obtains that the energies Ex (¢, ux (t), 2k (t)) of
the energetic solutions (ug, zx) : [0,7] — Q are uniformly bounded for all ¢ € [0, T].
This can be seen from testing (2(S)) with the functions (g, Z;) with 4 = 0 and
ZE — 0:

St ui (), zu (1)) < Ex(t,0,0) + R0 — 2,) < C. (62)

Lemma 3.3 (A priori estimates) Let (61) be satisfied and p > 0 in (50). For
all k € N let the function (uk, z) : [0,T] — Q be an energetic solution of the system
(Q, &k, R). Then, there is a constant C := LU(Q)(o+cy(u(1+p)+A(2+a)/2)) such
that for all t € [0,T] the following estimates hold:

Ek(t,up(t), z1(8) < C, (63a)

leCur(O)Z2(za) < 20/ (1p) + 2¢4, (63b)
/ 22(1 — z,)%dx < C/K?, (63c)
Q

/ |VH(z(t))|dx < C', where H(z) := 2/ E(1=¢)d¢. (63d)
Q 0

Proof: An energetic solution satisfies stability inequality (2(S)) for all ¢ € [0,T].
Hence, estimate (63a) and the constant C' can be obtained uniformly in time by
testing (2(S)) with the functions @x = 0 and 2, = 0. With this choice we find that

Wi (0,0) < p(1+p)le(gr®)]® + 3(tre(gr(t)) > + 2 (1+a)|(tre(ge(t)) T |?

(1(1+p) + A2+a)/2)[e(gr(t) .

Moreover it is R(zx(t) — 0) < oL4(Q). Integrating W;(0,0) over Q then yields
C = LYQ)(ot+cy (n(1+pHA(2+a) /2)) and establishes estimate (63a). Then, estimate
(63c) is an immediate consequence of (63a), since all the terms in & (¢, uk(t), zx(t))
are positive. In order to obtain estimate (63b) we use the following calculation with
a = e(ug(t)), b = e(gr(t)) and Young’s inequality in the last estimate:

<
<

la+ b > (la| = [b)* = |al® = 2(3]aD)(2[8]) + [b]* > glal* — [b*.  (64)

Together with (63a) this implies [le(ux(t))|3. < % + 2||e(gr(t))]|3 2, i-e. (63b).
It remains us to verify (63d). For H(z) :=2 [ £(1-¢)d€ it is H'(2) = 2z(1—2)
and VH(z) = H'(2)V=z. Applying Young’s inequality to My(z;(t)) we find that

VH (z(t)) is uniformly bounded in L'(), i.e.
M (zi(t)) = / (K*(zp(1 — 2)* + k72| V2|?) do
Q

22/sz(1—zk)|Vzk|dx2/Q|VH(zk(t))|dx.
| |

The above a-priori estimates are used to deduce the precompactness of unions of
energy sublevels.
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Proposition 2 (Precompactness of unions of energy sublevels) Let the as-
sumptions of Lemma 3.3 hold. Let the energy functionals & be given by (59). As-
sume that ti, — t and E(tg, uk, 2x) < E for all k € N. Then there is a subsequence

(ug, 2k) Z (u,2) and (u, z) € Qg.

Proof: Because of & (tk,ur, 2zx) < E the sequence (ug,2i)ren satisfies bounds
similar to (63). In particular, we have [ugllg1(qre) < cxlle(ur)| 2@ raxe) < E
by estimate (63b) and Korn’s inequality. Since HZ(Q,R?) is a reflexive Banach
space, Banach-Alaoglu’s theorem states the existence of a subsequence up — u in
H(Q,RY).

Now, we prove the existence of a subsequence z; — z in BV(). Estimate
(63d) implies that the sequence (H(zy))ken is uniformly bounded in BV(Q2). Hence,
there is a subsequence (H (z))ken converging strongly in L1(Q), i.e. (H(zk))ken is
precompact in L'(Q). Since |H(2) — H(2)| = | [ H'(€) d¢| < |2 — 2| we obtain that
the operator H : L'(2) — L*(Q) is continuous. Hence, also (2x)ren as the preimage
of (H(zx))ken is precompact in L'(Q). Thus, there is a subsequence 2z, — 2 in
LY(Q) and from the lower semicontinuity of the variation with respect to strong
L'-convergence for (z)ren C BV(Q) we conclude that z € BV(Q). Moreover, from
estimate (63¢) we deduce that z(z) € {0,1} for a.e. x € Q, i.e. z € Z;. |

Proposition 3 (Lower I'-limit) Let the assumptions of Lemma 8.3 hold. Let the
energy functionals & be given by (59). Let o := (H(1)—H(0)) with H from (63d).

Assume that t, — t and (ug, i) z, (u, z). Moreover, let E(ty, uk,zr) < E for all
k € N. Then

&t u,2z) < likm inf &k (t, ke, 21) - (65)

Proof: We first show that liminfy .. My (zx) > oH971(J,). Since the operator
H: LYQ) — LY(Q) from (63d) is continuous, as it was shown in the proof of Propo-
sition 2, we have H(z;) — H(z) in L'(Q). Moreover, due to the equiboundedness
of the energies, estimate (63d) applies, which states that (H(z))ken is uniformly
bounded in BV(2). Hence, the lower semicontinuity of the variation yields

likrn inf My (zx) > likminf/ |VH(z)|dz > |DH(2)|(£2) . (66)
— 00 —0o0 Q

Because of the equiboundedness of the energies Proposition 2 yields (u, z) € Qg. In
particular, z(x) € {0,1} and hence H(z(x)) € {H(0), H(1)} for a.e. x € Q. More-
over, |Dz|(Q) = |D72|(2) = H?"1(J,). The chainrule for BV functions composed
with Lipschitz-continuous functions [AFP05, p. 188] then yields

H(z") - H(z")

DIH()|(@) = | =

D72|(Q) = (H(1) — H(0))|D’2|(©2),  (67)

where (H(1) — H(0)) = o. |

As a direct consequence of the precompactness of unions sublevels proved in Propo-
sition 2 and the lower I'-limit we may conclude their compactness.

Corollary 3 (Compactness of unions of energy sublevels) Let the assump-
tions of Proposition 3 hold. Let ty, — t and E;(tk, uk, zx) < E for all k € N. Then

there is a subsequence (uy, zx) 7 (u,z) and & (t,u,z) < E.
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3.2.2 Closedness of stable sets via MRS

In this section we show that the limit states of sequences which satisfy (2(S)) for
the approximating systems (Q, &, R) are stable for the limit system (Q,&,R). A
usual, this is done by proving the existence of a MRS.

Definition 3.4 (MRS-condition) Let ty, — t and g LR q for qx = (uk, zr) and
q:= (u,z). For all k € N assume that qx satisfies (2(S)) for (Q,&,R). For all

G:= (0, 2) € Q there is a sequence (Gx)ren C Q with G := (tk, 2r) and §g KN q so that

lillcnsup (Enths @) = Enlte, ar) +R(Zu—2x)) < &a(t, @) —Ea(t, @) +R(2-2).  (68)
Clearly, our problem allows it to set g := 4. Thus, the main difficulty is hidden in
the construction of (£)ren. For this, we will of course resort to the ideas applied
in [MM77, Mod87, Alh98]. In particular, in [Alb98], the recovery sequence, which
enables to show that My I-converges to o H% ™1, is constructed for a dense set D of
Z,, only, namely for the indicator functions of polyhedral sets with finite perimeter
in Q, i.e.

D :={I; : Q — {0, 1} indicator function of polyhedron Z C Q, P(Z,9) < oo} .

The density of D in Z; is a direct consequence of the fact that any set Z of finite
perimeter can be approximated by open, smooth sets (Si)ren such that Sy — Z in
L9-measure and P(Sy, Q) — P(Z,Q) [AFP05, p. 147, Th. 3.42].

_For our problem, the recovery sequence will be nontrivial if £ < 2 a.e. in {, i.e.
if Z C Z with Z :=[2=1] and Z := [z=1]. Only in this case we have R((—2z) < cc.
As Z refers to a given state, which is supposed to be stable, we cannot simply
replace it by a sequence of polyhedra (D;), ey in (68). Using the triangle inequality
R(2— z) < R(2—1Ip;) + R(Ip, —z) such that the right-hand side is finite, requires
that Z C Z C D; for all j € N. Moreover, if Z shall be approx1mated by polyhedra
D such that R(IA —2z) < 00 necessitates even D cZczc D; for all j € N.
But the following example similar to [AFPO05, p. 154, Ex. 3.53] or [Giu&4, p. 24,
Rem. 1.27] shows that sets of finite perimeter in general cannot be approximated
from inside or outside by smooth open sets.

Example 1 (Topological boundary # reduced boundary) Let Q := (0,1)2.
The set of points in Q with rational coordinates Q N Q2 is countable and can be
arranged in a sequence (qj)jen. For every j € N we define the open ball B(q;,7;)
with radius r; := 1/20%% and center in q;. Then, L*(B(q;,r;)) = rim = m/220F2)
and P(B(qj,7;),Q) = L(0B(g;,7;)) = 2nr; = m/2*1. Let A == UjenB(qj,7;)-
Then A is an open set and we obtain that L2(A) < D jeN L%(B(gj,r;)) = /12 and
P(A,Q) < > en P(B(gj,75), Q) = m. Moreover, since Q? C A we note that A is
dense in Q. Let now E := Q\ A. Since £L2(Q) = 1 we find that L2(E) > 1—7/12 >0
and hence E is nonempty with E C Q\Q?. Moreover, since A is dense in Q we
conclude that every point in E is an accumulation point of A and hence E = 0A.
This shows that the topological boundary OA has a positive L>-measure. However,
since H1(FA) = P(A,Q) < oo we know that the reduced boundary FA has finite
H1-measure, see Theorem 2.10. Hence H(FA) = LI(FA) = 0. Therefore we
conclude that the topological boundary OA consists of the reduced boundary FA and
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the measure-theoretic exterior A°, see Definition 2.5, with L2(A°) = L2(0A). Since
A is open, E is closed. Moreover, due to E = OA it is even nowhere dense. Because
of AY = E', this shows that the measure-theoretic interior of a set is in general not
an open set in topological sense.

Neither E nor E' has a nonempty interior and therefore it cannot be approz-
imated by open sets contained in E such that the perimeters converge. Moreover,
due to cl A = Q, we conclude that A cannot be approximated by open sets from the
outside with perimeters converging to P(A, ().

Since the polyhedra might not enjoy the properties required in our setting we cannot
directly adopt the recovery sequence from [MM77, Mod87, Alb98]|. Instead, we
consider the sequence of polyhedra (ﬁj)jeN that approximates 7. For each element
of the sequence we apply the construction of [MM77, Mod87, Alb98], which involves
the solution of the optimal profile problem. We choose a diagonal sequence (Zx)gen
with the property My(%x) < oH? Y (FZ) + o(1). Finally, we obtain the recovery
sequence (2 )ren, which is suitable for our purpose, with an ansatz similar to Section
2.2, namely

VkeN: 2 := maX{O,min{Zk — (5k,zk}} , (69)
where J; — 0 has to be adjusted. With this idea we can verify the MRS-condition.

Lemma 3.5 Let the assumptions of Proposition 3 hold. Then the MRS-condition
from Definition 3.4 is satisfied.

Proof: Let (¢, uk,2k)keny C [0,7T] x Q with (¢, ug, 2x) [O’T—]>><T (t,u,z). Choose

G = (4, %) € Qsuch that &(t, §) < E for some E € R, otherwise (68) trivially holds.
We distinguish between the following two cases:

Case A: Let § = (@, 2) € Q be such that there exists a £%-measurable set B C Q
with £4(B) > 0 and 2 > z on B. Then R(Z — z) = oo and (68) holds.

Case B: Let ¢= (1, 2) € Q so that 2<z a.e. in Q. Then, R(2—z)=[,0(z—2)dz <
0o. Let Z := [2=1]. For Z we find a sequence of polyhedra (ﬁj)jeN such that
D; — Z in L%measure and P(D;,Q) — P(Z,Q). For all | € N we choose a
polyhedron ﬁj with the property ||Iﬁj — 2|1 + \P(ﬁj,Q) — P(Z, Q)| < 11
and label it ﬁl. For each ﬁl we now apply the classical construction of [Alb98,
p. 16] to obtain the sequence (Zf)ren. This construction uses the solution of the
optimal profile problem in order to approximate Iﬁz near the boundary of ﬁl by
a smooth function. We refer to [Alb98, p. 16] for the detailed construction. This
sequence satisfies Z° — 7, and My (zF) < oP(Dy, Q) + o(1) as k — co. Hence, we
have My (ZF) < oP(Z,Q) 4+ 1/1+ o(1). Moreover, by the lower I-limit there is a
subsequence with o P(Z,Q) — 1/1 < oP(D;, Q) < My (3F). Thus, for all k € N we
can pick Zy with [ =k and set Z; := Z}. We find that

%, — 2 in LY(Q) and lim M () = oP(Z,Q). (70)
€

Now we can apply the construction (69) to get Zx. In a first step we will determine
5k — 0 such that 2, — 2 in L*(Q). As a direct consequence we then have

IB(tkvgkvﬂvék) HIB(tagaﬁa 2) and also R(ék‘fzk:) - R('%*Z) ) (71)
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since 2; < 2z by construction and 2z, — z in L'(Q). Thus, as a second step, it
remains to prove

limsup (My,(2) — My(zi)) < 0P(Z,9Q) — 0P(Z,9). (72)

k—o0

Step 1 (2 — 2 in L1(Q)): As in Section 2.2 we decompose the domain into
three subsets, i.e. Q = Ax U By U C with

A = [0 < Zp—0 < Zk] , By:= [0 <z < Zk—ék] , Cp:= Q\(Ak @] Bk) . (73)
We first determine §; — 0 such that £¢(By) — 0. For this, we use that
By = [z < 20 C [0 < Zp—2+2—2k) C [0k < |Zu—2+z—z],  (74)

due to z < z. With Markov’s inequality we obtain

L:d(Bk) < ﬁd([(sk < |2k—2+2—2k|]) < (5;1||5k—2+2—2kHLl(Q) —|> 0. (75)
Because both Z;, — 2 and z; — z in L'(Q) we see that 6y — 0 can be chosen
such that the right-hand-side of (75) tends to 0. This is e.g. the case for §; =
25— 2+ 2= 2l| i%q)-

We now show that also £4(Cy) — 0 and prove that 2, — 2 in L'(Q). For this,
we use a sequence v, — 0, similar to 0 — 0, and we obtain

Cr = [gk—é-f— zZ< 51@] = [2 < 6k+2_2k] N ([|2—2]€| < I/k] @] [|2_2k‘ > l/k])
C [2 < (5k>+1/k] U [|2_2k| > Z/k] .

Clearly, [2 < 8k +vi] — 0 as dp+vx — 0. Moreover, by the same procedure as in
(75), we can determine vy such that £¢([|2—Z;| > vi]) — 0, since Z;, — 2 in L}(Q).
Hence, £4(Cy) — 0 as k — oo. With the above results and Z, 2 € [0, 1] we find

26— 2l iy < 126—2ll i) + 0k LUDQ) + LY By) + L4C) — 0. (76)

Step 2 (Proof of (72)): To shorten notation we write My/(zx, F) to indicate
that the Modica-Mortola-term (58) is defined by integration over the set E. Using
the decomposition 2 = A U By U C), and the definition of Z; we calculate that

M (2r) = Mg (2, Q) = My(Zr— 0k, Ag) + Mg(z, Br) + My (0, Cy)
with M(0,C%) = 0. Thus we have
11£S£p(Mk(2k, Q)— My (21, Q)) = hgis:ip (M (Zk— Ok, Ag) — My (21, Ax, U Ci))
< le{:OMk(Zkfék,Q) — ligE'g‘}ka(zk,Ak)
< Jim (M (2, Q) + (67 + 20%)L7(2) — lim inf My (25, A)

< oHTNT:) — oHT(2).

Here, the last estimate holds because of My, (Zy, ) < oH4"(J;)+1/k+0(1) by con-
struction. Moreover, lim infj,_, o, My, (2x, Ar) > o H9"1(J,) is obtained by repeating
the arguments of Section 2.2 starting from (45). That is, to choose a subsequence
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which realizes the limsup and which satisfies ), LB, U Cy) < oo. Then one
can introduce the sets U, := U2 (By U Cy), which satisfy L£4U,) — 0 as n — oo.
For all k > n it is (Bx UC}) C U, and hence Q\U,, C Aj. These sets Q\U,, are used
in order to exploit the lower I'-limit (65) for (zx)ren on fixed domains, i.e. for all
k > n with n € N fixed it is lim infy_, oo My (2, Ag) > liminfy_, oo My (zi, Q\Up) >
oP(Z,Q\U,,). Then, for n — oo it holds P(Z,Q\U,,) — P(Z,Q). This finishes the
proof of (72) and hence the MRS-condition is verified. ]
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