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Abstract

We analyze the Mayer pressure-activity and virial pressure-density series for a classical

system of particles in continuous configuration space at low temperature. Particles interact

via a finite range potential with an attractive tail. We propose physical interpretations of

the Mayer and virial series’ radius of convergence, valid independently of the question of

phase transition: the Mayer radius corresponds to a fast increase from very small to finite

density, and the virial radius corresponds to a cross-over from monatomic to polyatomic

gas. Our results have consequences for the search of a low density, low temperature solid-

gas phase transition, consistent with the Lee-Yang theorem for lattice gases and with the

continuum Widom-Rowlinson model.

1 Introduction

The present work started from a seeming contradiction between results on cluster size distribu-
tions at low temperature and low density [9] and predictions from the Mayer activity expansions.
It turned out that not only is there no contradiction, but moreover the interplay between the two
different approaches considerably helps the physical interpretation of the classical expansions.

The seeming contradiction is the following. Consider a classical system of particles, interacting
via a stable potential with an attractive tail. As is well-known from the theory of Mayer expansions
(see e.g., the classical textbook [16]), at low density, the system behaves approximately like an
ideal gas, suggesting that particles move more or less independently and are typically far from
each other. But [9] showed that when both the density and temperature are small, there can be
regimes where particles form small compounds – the system could behave, for example, like a
diatomic gas. Such a behavior is, in fact, well established for quantum Coulomb systems [2, 5, 6].

In order to fit both pictures together, we investigate the temperature dependence of the Mayer
and virial series. The temperature dependence confirms the intuitive relation between Mayer’s
series and Frenkel-Band theory of physical clusters, as exposed in [7, Chapter 5]: the Mayer
series βp =

∑

bkz
k looks like the pressure of an ideal mixture of size k components with

respective activities bkz
k. But unlike physical activities, the coefficients bk can be negative. The

gas is therefore, at best, an exact ideal mixture of fictitious objects, “mathematical” clusters. On
the other hand, at low density, it is tempting to consider the system as an approximately ideal
mixture of “physical” clusters, groups of particles close in configuration space.

Each physical cluster comes with a partition function over internal degrees of freedom. At low
temperatures, it is natural to approximate the internal partition function as exp(−βEk), with Ek
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a ground state energy, and we expect

βp ≈
∑

k

zk exp(−βEk). (1)

We prove that at low temperatures, the Mayer series coefficients bk(β) indeed behave as
exp(−β(Ek + o(1))), so that the approximation described above matches the exact Mayer
series. As a consequence, we can easily understand the formation of compounds: if β → ∞ at
fixed chemical potential µ, we have to maximize (kµ − Ek) in order to see which k gives the
dominant contribution. In particular, even when the Mayer series converges, at low temperatures
the main contribution does not necessarily come from k = 1.

With the approximate formula (1) in mind, we show several results on Mayer and virial series
and low temperature statistical physics, stated in Sect. 3; the proofs are given in Sects 4–7.
We hope to convince the reader that the radius of convergence of both the pressure-activity
and pressure-density series have physical interpretations. They do not necessarily correspond
sharp phase transitions, and may very well be determined by singularities off the positive axis;
nevertheless, they reflect changes in low-temperature physical behavior. This is formally analo-
gous to resonances in quantum mechanics, when Green’s function singularities off the real axis
do not qualify as eigenvalues, but can nonetheless affect the system’s behavior.

2 Setting

We are interested in the statistical mechanics for a classical system of particles, in continuous
configuration space, interacting via a pair potential v(|x−y|). Thus let v : [0,∞) → R∪{∞}
and

U(x1, . . . , xN ) :=
∑

1≤i<j≤N

v(|xi − xj |)

be the energy of a configuration of N particles x1, . . . , xN ∈ R
d. We assume that the energy

is stable, i.e., there is a constant B ≥ 0 such that

∀N ∈ N, ∀(x1, . . . , xN ) ∈ (Rd)N : U(x1, . . . , xN ) ≥ −BN. (2)

In addition, we assume that the pair potential has finite range, i.e., v has compact support. For
a given inverse temperature β > 0 and Λ ⊂ R

d, the canonical partition function is

ZΛ(β, N) :=
1

N !

∫

ΛN

e−βU(x1,...,xN )dx1 · · ·dxN ,

and the free energy per unit volume is

f(β, ρ) := − lim
1

β|Λ|
log ZΛ(β, N).

The limit is along N → ∞, Λ = [0, L]d with L → ∞, N/Ld → ρ > 0. It is well-known
that if the potential has no hard core (rhc = 0), the limit exists and is finite for all ρ > 0; if the
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potential has a hard core, then for a suitable number ρcp > 0 (the close-packing density ), the
limit is finite for ρ < ρcp, and infinite for ρ > ρcp. Moreover the free energy f(β, ρ) is a convex
function of the density ρ.

The pressure at inverse temperature β and chemical potential µ ∈ R is

p(β, µ) := sup
0<ρ<ρcp

(

ρµ − f(β, ρ)
)

. (3)

We call ρ(β, µ) the maximizer in the previous relation, if it is unique. Because of convexity, the
density ρ(β, µ) is an increasing function of the chemical potential µ.

At fixed temperature, for sufficiently negative chemical potential, the pressure is an analytic
function of the chemical potential, with expansion

βp(β, µ) = z +
∑

n≥2

bn(β)zn, z = exp(βµ), (4)

the Mayer series, and the density is given by

ρ(β, µ) = z +
∞

∑

n=2

nbn(β)zn.

Similarly, at low density, the free energy is strictly convex and analytic with expansion

βf(β, ρ) = ρ(log ρ − 1) −
∑

n≥2

dn(β)ρn. (5)

Eq. (3) gives, for µ negative enough,

βp(β, µ) = ρ −
∑

n≥2

(n − 1)dn(β)ρn, ρ = ρ(β, µ), (6)

the virial series. We would like to know how large z, or ρ, can be in those equations, and define

RMay(β) := sup
{

ρ > 0 | Eq. (4) is true with absolutely convergent series
}

,

Rvir(β) := sup
{

ρ > 0 | Eq. (5) is true with absolutely convergent series
}

.

In principle, RMay(β) and Rvir(β) can be smaller than the radius of convergence of the cor-
responding series. For non-negative potentials, however, it is known [10] that the domains of
convergence coincide with the domain of equality of Eqs. (4), (5), and (6), so that in this case
RMay(β) and Rvir(β) are exactly equal to the radius of convergence.

Furthermore we define

µsat(β) := sup{µ̃ ∈ R | p(β, µ) is analytic in µ < µ̃},

ρsat(β) := sup{R ∈ (0, ρcp) | f(β, ρ) is analytic in 0 < ρ < R}.

the chemical potential and density at the onset of condensation, i.e., the quantities associated
with saturated gas. In the absence of a phase transition – for example, in one dimension –,
µsat(β) = ρsat(β) = ∞. Another quantity of interest is

ρMay(β) := sup {ρ(β, µ) | exp(βµ) < RMay(β)}.
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We have the general bounds

β−1 log RMay(β) ≤ µsat(β), max
(

Rvir(β), ρMay(β)
)

≤ ρsat(β).

With these notations, we can ask:

Question: When are the previous inequalities strict? When they are strict, is it
nevertheless possible to give physical meaning to RMay and Rvir, even though
in this case RMay and Rvir do not correspond to phase transitions (i.e., points of
non-analyticity) ?

The main goal of this article is to convince the reader that the answer to the second question
should be yes; moreover, in the presence of a phase transition for attractive potentials, the in-
equalites should be approximate equalities, in a sense specified in the Corollary 3.3 and the
Conjectures 3.4 and 3.9 below.

We conclude this section with a description of the convergence criterium for the Mayer series
that we shall use. Let

EN := inf
x1,...,xN∈(Rd)N

U(x1, . . . , xN), E1 = 0, (7)

be the ground state energy for N particles (without any volume constraint), and

e∞ := inf
N∈N

EN

N
= lim

N→∞

EN

N
≤ 0 (8)

(note that (EN ) is subadditive). The stability assumption on the pair potential ensures that
e∞ > −∞, and Eq. (2) holds with B = −e∞ as optimal constant. We shall make repeated
use of the following Theorem, which is a direct consequence of from [13, Theorem 2.1], see
also [1] for integrable potentials (without hard core).

Theorem 2.1 (Mayer series estimates [13]). Let v(|x−y|), be a stable pair interaction potential.
Suppose that ||v̄||1 :=

∫

Rd |v̄(|x|)|dx < ∞ where v̄(r) = v(r) if v(r) < ∞, and v̄(r) = 1 if
v(r) = ∞. If z ≥ 0 satisfies

βze−βe∞

∫

Rd

|v̄(x)|dx ≤ 1/e, (9)

then z ≤ RMay(β), and
∑

n≥2

n|bn(β)|zn−1 ≤ (e − 1)e−βe∞. (10)

As an immediate consequence, we note that

lim inf
β→∞

µsat(β) ≥ lim inf
β→∞

β−1 log RMay(β) ≥ e∞. (11)

Therefore every chemical potential µ < e∞, as β → ∞, eventually falls into the gas phase.
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3 Results and conjectures

Our standard assumptions on the potential are the following:

Assumption 1 (Minimal assumptions). v : [0,∞) → R∪{∞} satisfies the following assump-
tions:

� The energy is stable in the sense of Eq. (2).

� v is everywhere finite except possibly for a hard core: there is a rhc ≥ 0 such that
v(r) = ∞ for r < rhc and v(r) > ∞ for r > rhc.

� v has compact support, b := sup{r > 0 | v(r) 6= 0} < ∞.

� v is continuous in [rhc,∞).

� v has an attractive tail: for suitable δ > 0 and all x ∈ (b − δ, b), v(r) < 0.

Note that we allow for v(rhc) < ∞, which is relevant for Radin’s soft disk potential [15].

The previous assumptions will be enough when working in the low density gas phase. For
results that hold all the way up into a finite density region, we will make additional assumptions.
We refer to every minimizer (x1, . . . , xN ) ∈ (Rd)N of U(x1, . . . , xN ) as a N -particle ground
state. Note that the attractive tail favors configurations where particles stick together.

Assumption 2 (Ground state geometry and Hölder continuity). For suitable a > 0, r0 > 0,
and every N ∈ N, there is a N -particle ground state (x1, . . . , xN) ∈ (Rd)N such that

� the interparticle distance is lower-bounded by r0: for all i 6= j, |xi − xj | ≥ r0;

� the ground state fits into a cube of volume kad: x1, . . . , xN ∈ [0, k1/da]d.

Moreover v(r) is uniformly Hölder continuous in [r0,∞).

The simplest example, in dimension two, of a potential satisfying Assumptions 1 and 2 is Radin’s
soft disk potential [15]. More general potential classes, again in dimension two, are given in [19].

Assumption 2 is enough to ensure that various limits can be interchanged. In particular, if

e(ρ) := lim
β→∞

f(β, ρ)

is the ground state energy per unit volume at density ρ, then

e∞ = min
0<ρ<ρcp

e(ρ)

ρ
.

Moreover e(ρ)/ρ has a minimizer ρ∗ ≤ 1/ad, i.e., the ground state has a finite preferred den-
sity. In [15, 19], ρ∗ is the density of particles in a simple hexagonal lattice.

Our first result is about the low-temperature behavior of the Mayer coefficients and should be
contrasted with the alternating sign property for non-negative potentials [16, Chapter 4]. Recall
the ground state energies EN from Eq. (7).
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Theorem 3.1 (Mayer coefficients at low temperature). Suppose that v satisfies Assumption 1.
Then, for every fixed k, as β → ∞, bk(β) is eventually positive, and

lim
β→∞

β−1 log bk(β) = −Ek. (12)

Thus we may think of the Mayer series as

βp ≈
∑

k

zk exp(−βEk). (13)

The subsequent results are best understood with the approximate formula (13) in mind. We
should stress that the approximation (13) can be derived without using Mayer expansions,
see [5] for a quantum Coulomb systems result. Direct proofs are, in fact, much more instructive
from a physical point of view; therefore Theorem 3.1 should be seen as a verification of the
consistency of the Mayer series with the approximation (13).

The next theorem builds upon a low temperature, low density result from [9] which we briefly
recall. Suppose that v satisfies Assumptions 1 and 2. Then, for suitable β0, ρ0, C0 > 0 and all
β ≥ β0 and ρ < ρ0,

∣

∣

∣

∣

f(β, ρ) − ρ inf
k∈N

Ek + β−1 log ρ

k

∣

∣

∣

∣

≤ C0ρβ−1 log β. (14)

The density ρ0 can be chosen of the order of the preferred ground state density, 1/ad, with a
as in Assumption 2, see Appendix B. We will also need the auxiliary quantity

ν∗ := inf
k∈N

(Ek − ke∞) ≥ 0.

For potentials with an attractive tail, ν∗ > 0 [9].

Theorem 3.2 (Density increase around µ = e∞). Suppose that v satisfies Assumptions 1
and 2, and that v is integrable in |x| > rhc. Let C0, β0 and ρ0 be as for Eq. (14). Then:

� For every C > C0,suitable βC ≥ β0 > 0, and all β ≥ βC ,

µ ≥ e∞ + Cβ−1 log β ⇒ ρ(β, µ) ≥
C − C0

C + C0
ρ0.

� For every C > 1, all n ∈ N, suitable β(n, C) and and all β ≥ β(n, C),

µ ≤ e∞ − Cβ−1 log β ⇒ ρ(β, µ) ≤ β−n.

In particular, for every fixed µ > e∞, as β → ∞, the density is bounded away from zero, while
for µ < e∞, it vanishes exponentially fast (Eq. (15) anticipates on Theorem 3.2):

µ > e∞ : lim inf
β→∞

ρ(β, µ) ≥ ρ0 > 0.

µ < e∞ : ρ(β, µ) = O(e−βν∗

). (15)
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Remark (Non-negative potentials). When v ≥ 0, a similar change in the density behavior occurs
around µ = 0, as the following two examples illustrate. For an ideal gas in continuum space,
βp = z, ρ = z, e∞ = 0. For a lattice gas with no interaction except the hard-core on-site
repulsion,

βp(β, µ) = log(1 + z), ρ(β, µ) =
z

1 + z
, e∞ = 0.

As β → ∞, if µ > 0 is fixed, the density diverges (for the ideal gas) or approaches the
maximum density (for the lattice gas). For both the continuum and lattice gas, at fixed µ < 0,
the density goes to 0 exponentially fast, but in contrast with the attractive potential case Eq. (15)
there is no positive lower bound on the rate of exponential decay, ν∗ = 0.

A first consequence is an indication where the low temperature, low density solid-gas transition,
if there is any, is located.

Corollary 3.3 (Where to look for a solid-gas transition). Under the assumptions of Theorem 3.2,
if ρsat(β) → 0 as β → ∞, then necessarily

µsat(β) = e∞ + O(β−1 log β)

as β → ∞.

The corollary follows from Theorem 3.2 and the observation that µsat(β) ≥ β−1 log RMay(β),
combined with the convergence criterion from Eq. (9).

Remark (Lee-Yang theorem). For a lattice gas on Z
d with attractive pair interactions v(x−y) ≤

0, the Lee-Yang theorem [16, Theorem 5.1.3] says that if there is a phase transition, then it must
be at

exp
(

βµ −
1

2

∑

x 6=0

βv(x)
)

= 1,

equivalently at chemical potential µ = (
∑

x 6=0 v(x))/2. The right-hand side of the latter equal-
ity is readily identified as e∞, the ground state energy per particle for the lattice gas. Thus
Corollary 3.3 compares well with the Lee-Yang theorem.

Remark (Widom-Rowlinson model). It is instructive to look at a continuum space model for
which the existence of a phase transition is known, the Widom-Rowlinson model [20], see the
review [18]. Consider particles interacting via the energy

UΛ(x1, . . . , xN ) =
∣

∣Λ ∩ ∪N
i=1B(xi, 1)

∣

∣ − N
∣

∣B(0, 1)
∣

∣

wher B(x, 1) is the ball of radius 1 centered at x. The interaction is not a sum of pair interac-
tions, but it qualifies nevertheless as an attractive, stable, finite-range interaction. The ground
state energy per particle is e∞ = −|B(0, 1)|. An equivalent formulation is in terms of a two-
species model with hard core repulsion between particles of different type:

∞
∑

N=0

zN

N !

∫

ΛN

e−βUΛ(x)dx

= e−z2|Λ|

∞
∑

N1,N2=0

zN1
1

N1!

zN2
2

N2!

∫

ΛN1

∫

ΛN2

1
(

dist(x, y) ≥ 1
)

dxdy,
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provided
β = z2, z = z1e

−z2|B(0,1)|.

It is known [17, 3] that for sufficiently high, equal activities z1 = z2, the system has a phase
transition. In the one-species picture, a phase transition happens at low temperature and activity
z = β exp(−β|B(0, 1)|), or chemical potential

µ = −|B(0, 1)| + β−1 log β = e∞ + β−1 log β.

Again, this matches Corollary 3.3.

A second consequence of Theorem 3.2 is that, even when there is no phase transition – for
example, in one dimension –, there is nevertheless a change in physical behavior around µ =
e∞: consider the family of curves µ 7→ ρ(β, µ) around µ = e∞. At β = ∞, it has a jump of size
≥ ρ0. At β large but finite, there could be either a jump, or the curves resemble the occupation
numbers of fermions around the Fermi energy. Hence there is either a phase transition, or a fast
increase from small to large density.

We would like to propose this as a a physical interpretation to the domain of convergence of the
Mayer series, for attractive potentials, based on the following conjecture:

Conjecture 3.4 (Mayer series’ radius of convergence). Suppose that v satisfies Assumptions 1
and 2. Then

lim
β→∞

β−1 log RMay(β) = e∞. (16)

Note that for pair potentials whose finite part is integrable, we have the lower bound Eq. (11) on
the liminf. Hence the only part that is open in the previous conjecture is an upper bound on the
limsup.

In fact, if we are willing to allow for a minor modification of the definition of RMay(β), a rigorous
statement can be proven by combining Theorem 3.1 with the bounds from [12]. First recall that
the pressure βpΛ(β, z), defined via the logarithm of the grand-canonical partition function in a
finite box Λ = [0, L]d, has a Mayer expansion similar to Eq. (4), with volume-dependent radius
of convergence RMay

Λ (β), and lim sup|Λ|→∞ RMay
Λ (β) ≤ RMay(β).

Theorem 3.5. Let the pair interaction satisfy Assumptions 1 and 2. Then, if we let first |Λ| → ∞
along cubes, and then β → ∞,

lim
β→∞

lim sup
|Λ|→∞

β−1 log RMay

Λ (β) = lim
β→∞

lim inf
|Λ|→∞

β−1 log RMay

Λ (β) = e∞.

We are now heading towards similar interpretations for the virial expansion. First, we note that
inside the gas phase, there might be “chemical” transitions [8], say, from monatomic to diatomic
gas. The next theorem is a grand-canonical version of results from [9] and should be compared
to the atomic or molecular limit for quantum Coulomb systems [2, 5, 6]. (See also a a result for
the classical one-dimensional two-component plasma [11].)

Theorem 3.6 (Possible cross-overs inside the gas phase). Suppose that v satisfies Assump-
tion 1 and that v is integrable in |x| > rhc. Then for every fixed µ < e∞,

lim
β→∞

β−1 log ρ(β, µ) = − inf
k≥1

(Ek − kµ) < −ν∗ < 0. (17)
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If in addition inf(Ek − kµ)k∈N has a unique minimizer k(µ) ∈ N, then as β → ∞,

βp(β, µ) =
ρ(β, µ)

k(µ)
(1 + o(1)). (18)

The interpretation is that the gas is, approximately, an ideal gas of molecules consisting of k(µ)
particles each, with effective activity zk exp(−βEk), see also Eq. (13).

The auxiliary variational problem Ek − kµ
!
= min and its relation with the minimization problem

(Ek + β−1 log ρ)/k
!
= min from Eq. (14) are discussed in more detail in Appendix A. Of

particular interest here is the following: let

µ1 := inf
k∈N

Ek

k − 1
≤ e∞, ν1 := −µ1 ≥ ν∗.

For µ < µ1, Ek − kµ has the unique minimizer k(µ) = 1 and minimum value ν1. If µ1 < e∞,
then ν1 > −e∞ > ν∗ and for every µ ∈ (µ1, e∞), each minimizer of Ek − kµ is larger or
equal to p ≥ 2, where p is the (unique) integer such that Ek/(k − 1) = µ1.

As a consequence, for sufficiently negative chemical potentials, we observe a monatomic gas
(k(µ) = 1). If µ1 = e∞, this is all we see in the gas phase. If µ1 < e∞, as we increase the
chemical potential, we observe a transition from monatomic to polyatomic gas before the gas
condenses.

The existence of such a transition becomes very natural when we look at a concrete example,
taken from [4, Sect. 6]. Consider a pair potential with a hard core and two potential wells, a
very deep well at small distances, and a very shallow well at larger distances, separated by a
repulsive (v > 0) part at intermediate distances. The deep well favors small groups of particles
(pairs, triangles or tetraeders, depending on the dimension), arranged at larger distances be-
tween them; think of a solid made of molecules instead of atoms. It is natural, then, that the solid
forms after atoms gather in molecules. A rigorous statement with a proof of ν1 > ν∗ (equivalent
to µ1 < e∞), for dimension one, can be found in [4].

This example suggests a relationship between the geometry of ground states and the existence
or non-existence of a cross-over inside the gas phase. An interesting open question is, therefore,
whether the conditions from [19, 21] ensuring a crystalline ground state with hexagonal lattice
(one particle per unit cell) also imply µ1 = e∞. A much weaker result is the following:

Proposition 3.7 (Criterion for the absence of polyatomic gas). Let v be a stable pair interaction
with attractive tail.

1 If for all m, n ∈ N,
Em+n+1 ≤ Em+1 + En+1 (19)

then µ1 = e∞.

2 If v(r) ≤ 0 for all r > rhc, then Eq. (19) is true for all m, n, and µ1 = e∞.

9



Eq. (19) should be read with a “gluing” operation in mind: instead of juxtaposing m and n-
particle configurations in space, as is done in order to derive the subadditivity Em+n ≤ Em +
En, we glue two configurations with m + 1 and n + 1 in one point.

After this excursion into ground states, we back to the virial series.

Theorem 3.8 (Comparison of Rvir, ρMay, ρsat and ν1). Suppose that v satisfies Assumptions 1
and 2. Then

lim inf
β→∞

β−1 log ρsat(β) ≥ lim inf
β→∞

β−1 log ρMay(β) ≥ −ν∗, (20)

lim inf
β→∞

β−1 log Rvir(β) ≥ −ν1. (21)

If in addition µ1 < e∞ and Ek/(k − 1) has a unique minimizer, then

lim
β→∞

β−1 log Rvir(β) = −ν1 < −ν∗, (22)

and Rvir(β) ≪ ρMay(β) ≤ ρsat(β).

It is natural to think that the radius of convergence of the virial expansion, for attractive potentials,
is always determined by the first cross-over, either from monatomic to polyatomic gas, or directly
from small density, monatomic gas, to large density.

Conjecture 3.9. For interactions with an attractive tail,

lim
β→∞

β−1 log ρMay(β) = −ν∗, lim
β→∞

β−1 log Rvir(β) = −ν1 ≤ −ν∗.

If in addition there is a low-density, low-temperature phase transition, i.e., if ρsat(β) → 0 as
β → ∞, then

lim
β→∞

β−1 log ρsat(β) = −ν∗.

Let us recall that the line ρ = exp(−βν∗) has the following physical interpretation, proven
in [9]: at densities that are very small but higher than exp(−βν∗), particles tend to gather in
very large clusters (i.e., groups of particles close in space), even though the system is dilute. At
densities smaller than exp(−βν∗), particles stay for themselves or form small groups – this is
the gas phase discussed above.

Finally, we have partial results on the low-temperature asymptotics of the virial coefficients, to
be compared with Theorem 3.1.

Proposition 3.10 (Virial coefficients in the absence of polyatomic gas). Let v satisfy Assump-
tion 1. Suppose that Eq. (19) holds for all m, n ∈ N. Then µ1 = e∞ and for all k ≥ 2,

lim sup
β→∞

β−1 log dk(β) ≤ −Ek.

If in addtion the inequality (19) is strict for all m, n ∈ N, the previous inequality for the limsup
becomes an equality for the limit.
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Proposition 3.11 (Virial coefficients in the presence of a monatomic-diatomic transition). Sup-
pose that v satisfies Assumption 1, and in addition µ1 < e∞ and Ek/(k − 1) has the unique
minimizer k = 2. Then for every k ≥ 2, as β → ∞, dk(β) eventually has the sign of (−1)k−1,
and

lim
β→∞

β−1 log
(

(−1)k−1dk(β)
)

= −(k − 1)E2 > −Ek.

In particular, |dk(β)|/bk(β) → ∞ as β → ∞.

The natural generalization when µ1 = Ep/(p − 1) for a unique p ≥ 3 is

d1+r(p−1)+q(β) ≈ (−1)r−1dq+1(β) exp
(

−βr(Ep + o(1)
)

,

r ∈ N0, q = 0, 1, . . . , p − 2. We leave the proof, or disproof, as an open problem, and do not
exclude surprises – it is not impossible that additional conditions, in the spirit of Eq. (19), are
needed.

4 Mayer coefficients at low temperature

Here we prove Theorem 3.1. We use the usual short-hand vij = v(|xi − xj |), and fij as in

exp(−βv(|xi − xj |)) = exp(−βvij) = 1 + fij.

We recall the expression of the Mayer coefficient: it is known that

bk(β) =
1

k!

∑

γ conn.

∫

(Rd)k−1

∏

(ij)∈γ

fij(x)dx2 · · ·dxk, x1 := 0. (23)

The sum is over connected, undirected graphs γ = (V, E) with vertices 1, . . . , k, and
∏

(ij)∈γ

is the product over edges {i, j} ∈ E, i < j (no self-edges (ii)).

Let us start with a look at the β → ∞ behavior for an individual graph. Observing that

fij(x) =

{

(1 + o(1)) exp(−βvij(x)), vij(x) < 0,

−1 + o(1), vij(x) ≥ 0,

we get
∏

(ij)∈γ

∣

∣fij(x)
∣

∣ = (1 + o(1)) exp
(

−β
∑

(ij)∈γ

vij(x)1(vij(x) < 0)
)

.

In the exponent, only negative interactions appear. As a result, we may end up with energies
much smaller than the ground state energy, seemingly contradicting Theorem 3.1. The reason
is, of course, that there are cancellations between different graphs. In order to get a hold on
them, it is convenient to do separate book-keepings for “positive” and “negative” edges. Given
x = (x1, . . . , xk), we define

E+(x) :=
{

{i, j} | 1 ≤ i < j ≤ k, vij(x) > 0
}

E−(x) :=
{

{i, j} | 1 ≤ i < j ≤ k, vij(x) < 0
}

.
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and let γ±(x) be the graphs with vertices 1, . . . , k and edge sets E±(x).

The next simplifying observation is that if the interaction has a finite range R > 0, fij(x)
vanishes as soon as |xi − xj | > R. Therefore we define, for x = (x1, . . . , xk),

E(x) :=
{

{i, j} | 1 ≤ i < j ≤ k, |xi − xj | ≤ R
}

,

and let γ(x) be the graph with vertices 1, . . . , k and edge set E(x). We call a configuration x

connected if the graph γ(x) is connected, and write 1conn(x) for the corresponding character-
istic function. With these notations, for every configuration x and every graph γ,

∏

(ij)∈γ

fij(x) 6= 0 ⇒ E(γ) ⊂ E(x),

and if γ is connected, so is x.

We are going to compare the Mayer coefficient with a partition function for connected configu-
rations,

Zcl
k (β) :=

1

k!

∫

(Rd)k−1

e−βU(0,x2,...,xk)
1conn(0, x2, . . . , xk)dx2 · · ·dxk. (24)

Lemma 4.1 (Cluster partition function vs. Mayer coefficient).

Zcl
k (β) − bk(β)

=
1

k!

∑

γ not conn.

∫

(Rd)k−1

∏

(ij)∈γ

fij(x)1conn(x)dx2 · · ·dxk, x1 = 0 (25)

where the sum extends over graphs γ with vertices {1, . . . , k} that are not connected.

Proof. In the integral for Zcl
k (β), write as usual exp(−βvij) = 1 + fij and expand. This gives

a sum over graphs. The graphs that are not connected correspond to the right-hand side of
Eq. (25). The connected graphs yield an integral similar to Eq. (23), except that there is the ad-
ditional characteristic function 1conn(x). Noting that

∏

(ij)∈γ fij(x) vanishes if γ is connected
and x is not connected, we can drop the characteristic function without changing the value of
the integral, and obtain Eq. (25).

For γ a graph with vertex set {1, . . . , k}, and x = (x1, . . . , xk) ∈ (Rd)k a configuration, write
γ−(x) ∩ γ for the graph with vertices 1, . . . , k and edge set E(γ) ∩ E−(x). Thus γ−(x) ∩ γ
is the subgraph of γ consisting of the negative edges.

Lemma 4.2. Let k ∈ N and γ− a graph with vertices 1, . . . , k with connected components of
size k1, . . . , kr, r ∈ N,

∑r
1 ki = k. Then

∣

∣

∣

∣

∣

∣

∑

γ: γ−(x)∩γ=γ−

∏

(ij)∈γ

fij(x)

∣

∣

∣

∣

∣

∣

≤ Ck exp
(

−β(Ek1 + · · · + Ekr
)
)

.

for some suitable Ck > 0 which does not depend on β or r, k1, . . . , kr. A similar estimate
holds, for r ≥ 2, if the sum is further restricted to graphs γ with γ−(x) ∩ γ = γ− that are not
connected.
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Remark. The lemma is also true for a sum further restricted to graphs that are connected. It
becomes wrong, in general, for doubly connected graphs.

Proof. Consider first the case r = 1, i.e., γ− connected. Then

∑

γ: γ−(x)∩γ=γ−

∏

(ij)∈γ

fij(x) =





∏

(ij)∈γ−

fij(x)





∑

E⊂E+(x)

∏

(ij)∈E

fij(x)

=





∏

(ij)∈γ−

fij(x)









∏

(ij)∈E+(x)

e−βvij(x)



 .

Noting that for a negative edge, 0 ≤ fij ≤ exp(−βvij), it follows that

0 ≤
∑

γ: γ−(x)∩γ=γ−

∏

(ij)∈γ

fij(x) ≤ exp
(

−β
[

∑

(ij)∈γ+(x)

vij(x) +
∑

(ij)∈γ−

vij(x)
])

≤ exp
(

−βU(x1, . . . , xk)
)

≤ exp(−βEk).

Next, suppose that r ≥ 2 and that we restrict the sum to graphs γ that have γ−(x) ∩ γ = γ−

and are disconnected. Such a graph can be constructed from γ− in two steps: first, add positive
intra-component edges, i.e., edges (ij) that have vij ≥ 0 and connect two labels i, j belonging
to the same connected component of γ−. There is no restriction on the choices of such edges.
Second, add positive inter-component edges. There is a restriction on how many edges we may
add, since the resulting graph is required to be disconnected. Let F be the collection of allowed
inter-component edge sets. The sum to be estimated takes the form

∑

E∈F





∏

(ij)∈E

fij(x)





r
∏

q=1





(

∏

(ij)∈γ−

q

fij(x)
)(

∏

(ij)∈γ+
q (x)

e−βvij(x)
)



 (26)

Here γ−
1 , . . . , γ−

r are the connected components of γ−, and γ+
1 (x), . . . , γ+

r (x) have as edge
set the positive intra-component edges. Noting that −1 ≤ fij ≤ 0 for every positive edge, we
deduce that (26) has absolute value bounded by

|F| exp
(

−β(Ek1 + · · · + Ekr
)
)

.

Since |F| can be bounded by some k-dependent constant, independent of γ−, this concludes
the proof.

Proof of Theorem 3.1. Let x = (x1, . . . , xk) be an arbitrary configuration and γ a graph with
vertices 1, . . . , k that is not connected. Then γ−(x) ∩ γ is not connected either. Therefore

∑

γ not conn.

∏

(ij)∈γ

fij(x) =
∑

γ− not conn.

∑

γ not conn.:

γ−(x)∩γ=γ−

∏

(ij)∈γ

fij(x).

Lemma 4.2 then yields a bound on the absolute value of the form

Ck exp
(

−β(Ek1 + · · ·+ Ekr
)
)

≤ Ck exp(−β(r − 1)ε) exp(−βEk). (27)
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Here we have used that for potentials with an attractive tail, for suitable ε > 0 and all k, q ∈ N,
Ek+q ≤ Ek + Eq − ε (see the appendix in [9]). Since the set of connected configurations
(0, x2, . . . , xk) has a finite Lebesgue volume, the integral on the right-hand side of Eq. (25)
has an upper bound similar to the right-hand side of Eq. (27). On the other hand, because of
the attractive tail of the potential, ground states are always connected. The continuity of the
potential therefore yields

lim
β→∞

β−1 log Zcl
k (β) = −Ek,

and we conclude from Lemma 4.1 that for every fixed k, as β → ∞,

bk(β) = (1 + O(e−εβ))Zcl
k (β) = exp

(

−β(Ek + o(1))
)

.

5 Virial coefficients and absence of polyatomic gas

The virial coefficients have an expression similar to Eq. (23) for the Mayer coefficients. First
we need a further graph theoretic notion. Let γ be a connected graph with vertices 1, . . . , k.
A vertex j is called an articulation point if the graph γ\{j}, obtained from γ by removing the
vertex j and all incident edges, is not connected. A graph γ is called doubly connected if it
has no articulation point. Let Gdc

k be the doubly connected graphs with edges 1, . . . , k. It is
known [7, Chapter 5] that

dn(β) =
1

n!

∫

(Rd)n−1

∑

γ∈Gdc
n

∏

(ij)∈γ

fij(x)dx2 · · ·dxn, x1 = 0. (28)

The dn are, up to a factor and a shift in the index, often called “irreducible cluster integrals”;
irreducibility refers to a product structure explained below.

Thus the Mayer coefficient bn(β) is the sum of dn(β) and a sum over graphs that are not doubly
connected. We will not estimate dn(β) directly, but instead express dn(β) as a combination of
bk(β)’s and then apply Theorem 3.1.

For this purpose the following product structure, exploited in [14], proves useful: let γ be a
connected graph with articulation point j. Call γ′

1, γ′
2 the connected graphs obtained from γ by

removing the articulation point and all incident edges, and γ1, γ2 the graphs obtained by adding
back to γ′

1 (resp. γ′
2) the articulation point j and incident edges. Then the integral corresponding

to the graph γ in Eq. (28) (without the factorial) is a product of similar integrals corresponding to
the graphs γ1 and γ2. The simplest example happens for n = 3 and the graph with articulation
point 1, noting that

∫

(Rd)2
f12(x)f13(x)dx2dx3 =

(

∫

Rd

f12(0, x2)dx2

)(

∫

Rd

f13(0, x3)dx3

)

.

This product structure can be iterated and, in the end, we can group graphs whose doubly
connected components have the same supports X1, . . . , Xr, which necessarily satisfy

n
⋃

i=1

Xi = {1, . . . , n}, 1 +

n
∑

i=1

(

|Xi| − 1
)

= 1.
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Let Bk(β) := k!bk(β), Dk(β) = k!dk(β). We obtain

Bn(β) =
∑

{X1,...,Xr}

D|X1|(β) · · ·D|Xr|(β)

with a sum over all set collections possibly coming from the doubly connected components of a
graph; Dn(β) appears as the unique term for r = 1. The relation can be inverted,

Dn(β) =
∑

r≥1

(−1)r−1
∑

{X1,...,Xr}

B|X1|(β) · · ·B|Xr|(β). (29)

This is the expression we will work with. The formula becomes very natural, and can be rigor-
ously proven, by a cluster expansion in the canonical ensemble, as was recently done in [14],
see Appendix C. We rewrite Eq. (29) as follows:

Lemma 5.1. The virial coefficients are of the form

Dn(β) = Bn(β) +
∑

r≥2

(−1)r−1
∑′

k1,...,kr

a(k1, . . . , kr)Bk1(β) · · ·Bkr
(β) (30)

with
∑′ the sum over all integers k1, . . . , kr ≥ 2 such that

1 + (k1 − 1) + · · ·+ (kr − 1) = n, (31)

and a(k1, . . . , kr) ∈ N > 0 are non-zero integers.

The lemma enables us to deduce the low-temperature asymptotics of virial coefficients from the
asymptotics of Mayer coefficients as given in Theorem 3.1, provided we have some control over
energy sums Ek1 + · · ·+ Ekr

. Here condition (19) comes into play.

Lemma 5.2. Suppose Eq. (19) holds for all m, n ∈ N. Then, for all r, k1, . . . , kr ≥ 2 satisfying
Eq. (31),

En ≤ Ek1 + · · ·+ Ekr
. (32)

If the inequality (19) is strict for all m, n, then the previous inequality is strict too.

Proof. We proceed by induction over r. For r = 2, the inequality (32) is the same as (19),
and true by assumption. For the induction step, suppose that the statement is true, at r, for all
n ∈ N. Let k1, . . . , kr satisfy Eq. (31). Then, by Eq. (19), for all kr+1 ≥ 2,

E1+(n−1)+(kr+1−1) ≤ En + Ekr+1 ≤ (Ek1 + · · · + Ekr
) + Ekr+1,

which proves the claim. The procedure for strict inequalities is exactly the same.

Prop. 3.10 is an immediate consequence.

Proof of Prop. (3.10). By Lemma 5.2 and Theorem 3.1, all terms in the sum (30) are of order
at most exp(−βEn(1 + o(1)). If the inequality (19) is strict, the dominant contribution comes
from Bn(β) (r = 1), which is equal to exp(−βEn(1 + o(1))), again by Theorem 3.1.
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Lemma 5.3. Suppose that µ1 = E2 < e∞ and Ek/(k − 1) > E2 for all k ≥ 3. Then, for all
k1, . . . , kr ≥ 2 and r ≥ 2 satisfying Eq. (31),

(n − 1)E2 ≤ Ek1 + · · · + Ekr
.

with equality if and only if r = n − 1 and k1 = k2 = · · · = kr = 2.

Thus the main contribution to bn(β) − dn(β) comes from graphs whose doubly connected
components all have size 2.

Proof. By assumption, Ek > (k − 1)E2 for all k ≥ 3, from which we obtain

Ek1 + · · ·+ Ekr
≥

r
∑

1

(ki − 1)E2 = (n − 1)E2

with equality if and only if all ki’s are equal to 2.

Proof of Prop. 3.11. By Lemma 5.3 and Theorem 3.1, in Eq. (30) all terms are negligible except
the one for r = n − 1, k1 = · · · = kr = 2.

We conclude with the proof of the sufficient criteria for the absence of polyatomic gas.

Proof of Prop. 3.7. 1. An induction on n shows that if Eq. (19) holds, then for all n ∈ N and
p ∈ N

E2n(p−1)+1

2n(p − 1)
≤

Ep

p − 1
. (33)

Letting n → ∞, we obtain e∞ ≤ Ep/(p − 1) for all p, whence µ1 ≥ e∞. Since in any case
µ1 ≤ e∞, we get µ1 = e∞.

2. Suppose v(r) ≤ 0 for all r > rhc. Let m, n ∈ N and x, y be m + 1 and n + 1-particle
ground states. We can construct an m + n + 1-configuration z by shifting and rotating x and
y, and then gluing them in one point, in such a way that all points except the two points that got
glued have distance > rhc, (if v(rhc) ≤ 0) or > rhc (if v(rhc) = ∞).

The energy of the resulting configuration is Em+1 + En+1+ the interaction between the two
cloud of m and n particles, excluding the glued particle. By construction, the interaction is finite
and, therefore, negative. It follows that Em+n+1 ≤ U(z) ≤ Em+1 + En+1. Since m and n
were arbitrary, applying the sufficient criterion from 1., we get µ1 = e∞.

6 Bounds for the density ρ(β, µ)

In this section we prove Theorems 3.2 and 3.6.
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Proof of Theorem 3.2. 1. Suppose µ > e∞+Cβ−1 log β with C > C0. Write ρ = exp(−βν)
and µ(ν) = infk∈N(Ek − ν)/k. For ν ≤ ν∗, µ(ν) = e∞, and for ν > ν∗, µ(ν) < e∞, see
Appendix A. Using Eq. (14),

p(β, µ) = sup
0<ρ<ρcp

(µρ − f(β, ρ))

≥ sup
0<ρ<ρ0

(µρ − f(β, ρ))

≥ sup
0<ρ<ρ0

(

µρ − µ(ν)ρ − C0ρβ−1 log β
)

≥ sup
0<ρ<ρ0

(

(µ − e∞ − C0β
−1 log β)ρ

)

= ρ0

(

µ − e∞ − C0β
−1 log β

)

,

since µ > e∞ + C0β
−1 log β. On the other hand, let ρ = ρ(β, µ) be any maximizer of

ρµ − f(β, ρ). If ρ ≥ ρ0, we are done. If exp(−βν∗) ≤ ρ ≤ ρ0, then

ρ(µ − e∞ + C0β
−1 log β) ≥ p(β, µ) ≥ ρ0

(

µ − e∞ − C0β
−1 log β

)

,

which gives

µ ≤ e∞ + C0
ρ0 + ρ

ρ0 − ρ
β−1 log β.

Since µ ≥ e∞ + Cβ−1 log β, we obtain C0(ρ0 + ρ) ≥ C(ρ0 − ρ) whence

ρ ≥
C − C0

C + C0
ρ0.

Thus we are left with the case ρ < exp(−βν∗), i.e., ν > ν∗. Noting µ(ν) ≥ e∞ − ν for all ν,
we get

ρµ − ρ(e∞ − ν) + C0ρβ−1 log β ≥ p(β, µ) ≥ ρ0

(

µ − e∞ − C0β
−1 log β

)

.

Since ρν = νe−βν ≤ β−1, we obtain

µ ≤ e∞ +
β−1 + C0(ρ0 + ρ)β−1 log β

ρ0 − ρ

≤ e∞ +
β−1 + C0(ρ0 + e−βν∗

)β−1 log β

ρ0 − e−βν∗
= e∞ + C0(1 + o(1))β−1 log β,

which for sufficiently large β is in contradiction with the assumption on µ.

2. For µ < e∞ − Cβ−1 log β with C > 1 we use Theorem 3.1. Define R > 0 by

Re−βe∞β||v̄||1 = 1/e, ||v̄||1 = B(0, rhc) +

∫

|x|>rhc

|v(|x|)|dx (34)

17



see Eq. (9). For K ∈ N, using Eq. (10), we have

ρ(β, µ) ≤
K

∑

k=1

k exp
(

β(kµ − Ek + o(1))
)

+
( z

R

)K

z

∞
∑

k=K+1

kbk(β)Rk−1

≤ e−β(ν∗+o(1)) +
( z

R

)K

(e − 1)ze−βe∞

= e−β(ν∗+o(1))

+ (e − 1) exp
(

K
[

(−C + 1)β−1 log β + β−1(1 − log ||v̄||1)
])

As β → ∞, the second term is of order β−K(C−1+o(1)). Since K could be chosen arbitrarily
large, this completes the proof of Theorem 3.2.

Proof of Theorem 3.6. We proceed analogously to the proof of the second part of Theorem 3.2.
Let R = exp(β(e∞ + o(1))) be as in Eq. (34). Fix µ < e∞. For K ∈ N, using Eq. (10),

∣

∣

∣
ρ(β, µ) −

K
∑

k=1

k exp
(

β(kµ − Ek + o(1))
)

∣

∣

∣
≤

( z

R

)K

(e − 1)ze−βe∞. (35)

Since Ek − kµ = k(e∞ − µ + o(1)) → ∞ as k → ∞, there is a finite k(µ) minimizing
Ek − kµ. Choosing K large enough so that K ≥ k(µ) and K(e∞ − µ) > | infk(Ek − kµ)|,
Eq. (17) follows from the inequality (35).

If (Ek − kµ)k∈N has a unique minimizer k(µ) ∈ N, the previous argument actually yields

ρ(β, µ) = k(µ)bk(µ)(β)eβk(µ)µ(1 + o(1)).

An analogous argument gives

βp(β, µ) = bk(µ)(β)eβk(µ)µ(1 + o(1)),

and Eq. (17) follows.

7 Asymptotics of RMay, ρsat, ρ
May and Rvir

Here we prove Theorems 3.5 and 3.8.

Proof of Theorem 3.5. If the activity satisfies Eq. (9), then z < RMay
Λ (β), see [13, Theorem

2.1], and the lower bounds follow just as in Eq. (11). For the upper bound, we use a result
from [12]: for all k ∈ N,

RMay
Λ (β) ≤

( k exp(−βe∞)

(k − 1)|bk,Λ(β)|

)1/(k−1)

.
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Here bk,Λ(β) are the coefficients of the finite volume pressure-density series. They converge to
bk(β) as |Λ| → ∞, whence

lim sup
|Λ|→∞

RMay
Λ (β) ≤

( k exp(−βe∞)

(k − 1)|bk(β)|

)1/(k−1)

.

We deduce from Theorem 3.1 that for every k ∈ N,

lim sup
β→∞

lim sup
|Λ|→∞

log RMay

Λ (β) ≤
−e∞ + Ek

k − 1
.

We conclude by letting k → ∞ in the upper bound.

For the proof of Theorem 3.8, we start with the lower bound on the density of saturated gas
ρsat(β) and the density ρMay(β) delimiting the physical parameter region covered by the Mayer
series.

Proof of Eq. (20). We observe that ρsat(β) ≥ ρMay(β) ≥ ρ(β, µ) for all β and all µ ≤
µsat(β). By Eq. (11) and Theorem 3.6, it follows that for every µ < e∞,

lim inf
β→∞

β−1 log ρsat(β) ≥ lim inf
β→∞

β−1 log ρMay(β) ≥ sup
k∈N

(kµ − Ek).

Noting that

sup
µ<e∞

sup
k∈N

(kµ − Ek) = sup
k∈N

sup
µ<e∞

(kµ − Ek) = sup
k∈N

(ke∞ − Ek) = −ν∗,

we deduce Eq. (20).

Proof of Eq. (21). Write the pressure-density series as βp = ρ +
∑

n≥2 cn(β)ρn. We start
from the contour integral, see [10] or [16, Chapter 4.3],

cn(β) =
β−1

2πi

∮

C

dz

nzρ(z)n−1
.

Here the density ρ(z) =
∑∞

n=1 nbn(β)zn is extended to complex activities z, and we integrate
on a circle C of radius exp(βµ) < exp(βµ1). For β sufficiently large, we know that exp(βµ) <
RMay(β), and we are going to check that |ρ(z)| > 0 for |z| = exp(βµ). To this aim we write

|ρ(z)| ≥ |z|
(

1 −
∑

k≥2

kbk(β)|z|k−1
)

.

For every fixed K ≥ 2, as β → ∞,

K
∑

k=2

kbk(β)(eβµ)k−1 =

K
∑

k=2

k exp
(

β(k − 1)
[

µ −
Ek

k − 1
+ o(1)

]

)

≤
K

∑

k=2

k exp
(

β(k − 1)
(

µ − µ1 + o(1)
)

)

≤ const(K, µ) exp
(

β
(

µ − µ1 + o(1)
)

)

.
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Furthermore, if R = exp(β(e∞ + o(1))) is as in Eq. (34), and β sufficiently large so that
exp(βµ)/R ≤ exp(−βε) with suitable ε > 0,

∞
∑

k=K+1

kbk(β)|z|k−1 ≤
( z

R

)K

(e − 1) exp(−βe∞)

≤ (e − 1) exp
(

−β(Kε + e∞)
)

.

We choose K ∈ N such that Kε + e∞ > µ1 − µ and combine the previous estimates.
We obtain that as β → ∞,

∑

k≥2 kbk(β)|z|k−1 is of order at most exp(β(µ − µ1)) and, in
particular, goes to 0, so that ρ(z) 6= 0.

We can plug the lower bound for |ρ(z)| into the contour integral. This yields

|cn| ≤
β−1

n
×

1
[

(1 + o(1)) exp(βµ)
]n−1

whence Rvir(β) ≥ (1 + o(1)) exp(βµ) and

lim inf
β→∞

β−1 log Rvir(β) ≥ µ.

This is true for every µ < µ1 = −ν1, and the inequality (21) follows.

Proposition 7.1. Under the assumptions of Theorem 3.8, suppose that in addition µ1 = E2 <
e∞. Then, for suitable β1, C1, ε > 0 and all β ≥ β1, the equation

dρ

dz
(z) = 1 +

∞
∑

k=2

k2bk(β)zk−1 = 0

has a solution z0(β) at distance ≤ C1 exp(−εβ)/b2(β) of −1/(4b2(β)), and ρ(z0(β)) 6= 0.
If µ1 = Ep/(p−1) < e∞ for some p ≥ 3, a similar statement holds with −1/4b2(β) replaced
with one of the roots of the equation 1 + p2bp(β)zp = 0.

Proof of Eq. (21). For sufficiently small ρ, the density-activity relation can be inverted: there is
function g(ρ), analytic in a domain containing 0, such that for small z, g(ρ(z)) = z, and the
restriction of g to some neighborhood of 0 is actually injective. The virial series is given by the
composition

G(ρ) =

∞
∑

n=1

cnρ
n =

∞
∑

n=1

bn

(

g(ρ)
)n

= F (g(ρ)).

For sufficiently small z, we have g(ρ(z)) = z and

G′(ρ(z)) =
ρ(z)

zρ′(z)
. (36)

The relation extends by analyticity to every domain D such that ρ is analytic in z ∈ D and G
is analytic in ρ(D). Now, from Prop. 7.1, we know that ρ′(z0)/ρ(z0) = 0 with |z0| < RMay.
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Eq. (36) cannot be true at z = z0. Let D be an open disk centered at 0 with radius > |z0|. The
function G cannot be analytic in all of ρ(D), hence there must be some z ∈ D such that

Rvir ≤ |ρ(z)| ≤
∞

∑

k=1

k|bk(β)zk|. (37)

Let δ > 0 small enough so that µ1 + δ < e∞. For sufficiently large β, we may choose
|z| ≤ exp(β(µ1 + δ)) in Eq. (37). The usual procedure shows that

lim sup
β→∞

β−1 log Rvir(β) ≤ sup
k∈N

(

k(µ1 + δ) − Ek

)

.

Noting that supk(kµ − Ek) is locally bounded and convex, hence continuous, in µ < e∞, we
can let δ ց 0, which yields

lim sup
β→∞

β−1 log Rvir(β) ≤ sup
k∈N

(kµ1 − Ek) = −ν1.

Proof of Prop. 7.1. The idea is to use an implicit function theorem, perturbing around exp(−β) =
0. We give the proof for µ1 = E2 < ∞. The proof for µ1 = Ep/(p − 1), p ≥ 3, is similar. For
sufficiently large β, b2(β) > 0. Let

ak(β) := k2 bk(β)

b2(β)k−1
, ẑ := b2(β)z.

The equation to be solved becomes

1 + 4ẑ +
∑

k≥3

ak(β)ẑk−1 !
= 0.

By assumption, for suitable ∆ > 0 and all k ≥ 3, Ek ≥ µ1 + (k − 1)∆, and µ1 = E2 < e∞.
Therefore, for every fixed k ≥ 3, as β → ∞,

|ak(β)| ≤ k2 exp
(

−β(k − 1)(∆ + o(1))
)

→ 0.

Moreover, for every s > 0 and K ∈ N,

∞
∑

k=K+1

k1+s

∣

∣

∣

∣

bk(β)

b2(β)k−1

∣

∣

∣

∣

≤
(

sup
k≥K

(k + 1)s(b2(β)R)−k
)

(e − 1)e−βe∞.

with R = exp(β(e∞ + o(1))) as in Eq. (34). Thus

b2(β)R = exp
(

β(e∞ − E2 + o(1))
)

→ ∞.

It follows that for every s > 0, and suitable εs > 0, as β → ∞,

∞
∑

k=3

ks|ak(β)| = O
(

exp(−εsβ)
)

.
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Now let X be the Banach space of sequences (ak)k≥3 with weighted norm ||a|| :=
∑

k ks|ak|.
Set

F (a, ẑ) := 1 + 4ẑ +
∑

k≥3

akẑ
k−1.

The equation F (0, ẑ) = 0 has the unique solution ẑ0 = −1/4, and in a neighborhood of
(0, ẑ0), for suitable choice of s, F is continuously Fréchet-differentiable. Moreover ∂ẑF (0, ẑ) =
4 6= 0. As a consequence, we can apply a Banach space implicit function theorem. It follows in
particular that as ||a|| → 0, the equation F (a, ẑ) = 0 has a solution ẑ(a) = ẑ0 + O(||a||).
Applying this to a(β) = (ak(β))k∈N, we obtain the solution b2(β)z0(β) = −1/4 +O(e−βεs).

For the density, we observe that

ρ(z0(β)) = z0(β)
(

1 + 2b2(β)z0(β) + O(e−εsβ)
)

= −
1

2
z0(β)(1 + O(e−εsβ)).

It follows that for sufficiently large β, ρ(z0(β)) 6= 0.

A Two auxiliary variational problems

Throughout this section we assume that v is a stable pair potential with attractive tail. Consider
the following two variational problems

ν(µ) := inf
k∈N

(Ek − kµ), µ ≤ e∞,

µ(ν) := inf
k∈N

Ek − ν

k
, ν > 0.

The first variational problem appears in Theorem 3.6, and minimizers k(µ) correspond to the
favored size of molecules in the gas phase as β → ∞ at fixed µ. The second problem appears
in Eq. (14) and, as shown in [9], minimizers k(ν) correspond to favored cluster or molecule
sizes as β → ∞ and ρ → 0 along ρ = exp(−βν), at fixed ν.

Recall that for potentials with an attractive tail, ν∗ := infk(Ek − ke∞) > 0.

Lemma A.1 (Convexity, monotonicity and equivalence). Let v be a stable pair interaction with
attractive tail. Then:

1 The function µ 7→ ν(µ) is strictly decreasing, piecewise affine and concave in µ ∈
(−∞, e∞]. The function ν 7→ µ(ν) is decreasing, piecewise affine and concave in ν ∈
[0,∞); it is strictly decreasing in ν ∈ [ν∗,∞) and equals µ(ν) = e∞ for ν ≤ ν∗.

2 The function ν(µ) is the inverse of [ν∗,∞) ∋ ν 7→ µ(ν): for µ ≤ e∞ and ν ≥ ν∗,

ν = ν(µ) ⇔ µ = µ(ν).

The reciprocity of µ(ν) and ν(µ) is analogous to the equivalence of the grand-canonical and
the constant pressure ensembles. Indeed, the pressure and the Gibbs energy (per particle) are
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both obtained as Legendre transforms of the free energy, one with respect to the density, the
other with respect to the volume per particle,

p(β, µ) = sup
ρ

(

µρ − f(β, ρ)
)

, g(β, p) = inf
v

(

f̃(β, v) + pv
)

,

with f̃(β, v) = vf(β, v−1) the free energy per particle. Equivalence of ensembles here means
that p(β, ·) and g(β, ·) are reciprocal: the Gibbs energy is the same as the chemical potential.

Similarly, µ(ν) looks like a Legendre transform of k 7→ Ek with respect to k, while ν(µ) looks
like a Legendre transform of Ek/k with respect to 1/k, which should be compared with the
relations v = 1/ρ, f̃(β, v) = f(β, ρ)/ρ.

Proof of Lemma A.1. 1. The statement for the function µ(ν) was proven in [4, 9]. For ν(µ),
we note that it is the infimum of a family of decreasing, affine functions and therefore concave
and decreasing. Moreover it is almost everywhere differentiable, with derivative −k(µ), the
minimizer of Ek − kµ. In particular k(µ) ≥ 1, hence ν(µ) is strictly decreasing.

2. We prove “⇒”. The proof of the converse is similar. Thus let µ ≤ e∞ and ν = infk(Ek−kµ).
Clearly, ν ≤ infk(Ek − ke∞) = ν∗, and for every k ∈ N,

ν ≤ Ek − kµ ⇒ µ ≤
Ek − ν

k
,

whence µ ≤ µ(ν). On the other hand, if µ < e∞, then Ek − kµ ≥ ν∗ + k(e∞ − µ) → ∞ as
k → ∞, so there must be a finite k such that ν = Ek − kµ. It follows that µ = (Ek − ν)/k ≥
µ(ν), whence µ = µ(ν). If µ = e∞, then ν = ν∗ and the claim follows from the general
inequality µ(ν) ≤ e∞.

Lemma A.2 (Comparison of thresholds). Let

µ1 := inf
k≥2

Ek

k − 1
, ν1 = −µ1.

Then

� either µ1 = e∞ and ν∗ = −e∞ = ν1,

� or µ1 < e∞ and ν∗ < −e∞ < ν1 .

Proof. Lemma A.1 implies the general bounds µ1 ≤ e∞ and ν1 ≥ ν∗. Moreover, by definition,
ν∗ ≤ E1 − e∞ = −e∞ and

ν1 = sup
k

Ek

1 − k
≥ lim

k→∞

Ek

1 − k
= −e∞

so that ν∗ ≤ −e∞ ≤ ν1. If in addition µ1 = e∞, then ν1 = −e∞ and for all k ∈ N,
Ek ≥ (k − 1)e∞ from which we get ν∗ = infk(Ek − ke∞) ≥ −e∞. Since in any case
ν∗ ≤ e∞, we get ν∗ = e∞.

If µ1 < e∞, then ν1 > e∞ and there is a p ∈ N such that µ1 = Ep/(p − 1) < e∞. It follows
that

ν∗ ≤ Ep − pe∞ = (p − 1)(µ1 − e∞) − e∞ < −e∞.
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Lemma A.3 (“Phase” diagram). 1 For µ < µ1, Ek −kµ has the unique minimizer k(µ) =
1. Similarly, for ν > ν1, (Ek − ν)/k has the unique minimizer k(ν) = 1.

2 For µ1 < µ < e∞, every minimizer is finite and larger or equal to 2; similarly for ν∗ <
ν < ν1.

3 For ν < ν∗, (Ek − ν)/k has no finite minimizer.

Proof. The statements for the (Ek − ν)/k, except the formula for ν1, were proven in [4, 9]. The
statements for Ek − kµ follow with the help of the reciprocity from Lemma A.1.

It remains to check the nature of the transition at µ1 if µ1 < e∞. To this aim we note that
ν(µ) = −µ if and only if Ek − kµ ≥ −µ for all k ≥ 2, i.e., if and only if Ek/(k − 1) ≥ µ for
all k ≥ 2, which is precisely the condition µ1 ≥ µ.

B Free energy at low temperature and low density

Here we give a sketch of the proof of (14). The primary aim is to show that ρ0 can be chosen
indeed of the order of the preferred ground state density, ρ0 ≈ 1/ad. For the sake of com-
pleteness, we also make a remark on how Eq. (14) should be modified for potentials without
attractive tail.

Potentials with attractive tail Let Zcl
k (β) be the cluster partition function from (24) above.

Then [9, Lemma 3.1]

ZΛ(β, N) ≤
∑

P

kNk=N

(|Λ|Zcl
k (β))Nk

Nk!

The sum is over integers N1, . . . , NN ∈ N0 such that
∑

k kNk = N . The integers describe
a partition of the N particles into clusters, i.e., groups of particles close in space. Using that for
suitable c > 0 and all β > 0 and k ∈ N,

Zcl
k (β) ≤ exp(−βEk) exp(ck),

[9, Lemma 4.3] we deduce that −βf(β, ρ) is upper bounded by the supremum of

cρ − β
(

∑

k∈N

ρkEk + (ρ −
∑

k∈N

ρk)e∞

)

+
∑

k∈N

ρk(1 − log ρk).

over all (ρk)k∈N ∈ [0,∞)N such that
∑∞

1 kρk ≤ ρ (think ρk = Nk/|Λ|). Next, we observe
that the mixing entropy can be bounded as

∑

k ρk log(ρk/ρ) ≥ −2ρ, for all ρ > 0 and all
admissible (ρk), see [9, Lemma 4.2]. Therefore we obtain

− βf(β, ρ) ≤ (c + 3)ρ

− β inf
{

(ρ −
∑

k∈N

kρk)e∞ +
∑

k∈N

ρk(Ek + β−1 log ρ)
∣

∣

∣

∑

k

kρk ≤ ρ
}

,
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whence

f(β, ρ) ≥ −(c + 3)β−1ρ + ρ inf
k∈N

Ek + β−1 log ρ

k
, (38)

for all β > 0 and all ρ > 0.

It remains to obtain an upper bound for the free energy, or a lower bound for the partition
function. Consider first the case ν∗ > 0 and ρ ≥ exp(−βν∗). In this case the auxiliary
variational problem has e∞ as its minimizer. We lower bound the partition function by integrating
only over a small neighborhood of the N -particle ground state, and deduce −βf(β, ρ) ≥
e∞−Cβ−1 log β for suitable C and sufficiently large β. Note that this is possible if ρ is smaller
than the density of the ground state, ρ < 1/ad.

Next, consider the case ρ = exp(−βν) < exp(−βν∗). In this case (Ek − ν)/k has a finite
minimizer k = k(ν) ∈ N. We lower bound the partition function for a cube Λ = [0, L]d and
N ∈ kN particles as follows: we split the cube into M small cubes (“cells”) with side length of
the order ak1/d and mutual distance R. Here R is of the order of the potential range, and ak1/d

is large enough so that a k-particle ground state fits into the small cube, as in Assumption 2.
We can place approximately M = |Λ|/(ak1/d + R)d small cubes in that way. We consider
configurations in which particles form clusters of size k close to their ground state, such that
each cluster fits completely into a small cube, and there is at most one cluster per cell.

We refer the reader to [9] for the details and content ourselves with the following remark: the
procedure works provided the the number M of available cells is larger than N/k. This gives
the condition

ρ < (a + Rk−1/d)−d.

Hence if we choose β large enough so that exp(−βν∗) ≤ (a+R)−d, the condition is certainly
fulfilled for every ρ ≤ exp(−βν∗).

Remember that for ρ ≥ exp(−βν∗), we are in the first case considered above and we only
need ρ ≤ 1/ad ≈ ground state density. Therefore, in the end, all we need is the condition
ρ < ρ0 with ρ0 of the order of 1/ad.

Potentials without attractive tail If v has no attractive tail, we might have ν∗ = 0, and ground
states are not necessarily connected. Set Ecl

1 = E1 = 0 and

Ecl
k := inf

{

U(x1, . . . , xk) | (x1, . . . , xk) ∈ (Rd)k R-connected
}

≥ Ek.

The lower bound (38) is still true, but can be improved by replacing Ek by Ecl
k . In fact, indices k

with Ecl
k > Ek can be dropped altogether: if Ecl

k > Ek, then for suitable r ≥ 2, k1+· · ·+kr =
k,

Ecl
k > Ek = Ecl

k1
+ · · · + Ecl

kr
(39)

Suppose that for some ν > 0, (Ecl
ki
− ν)/ki ≥ (Ecl

k − ν)/k for all k. Then

r
∑

1

Ecl
ki
≥

r
∑

1

(

ν + ki
Ecl

k − ν

k

)

= (r − 1)ν + Ecl
k > Ecl

k ,
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contradicting (39). Thus

inf
k∈N

Ecl
k − ν

k
= inf

{Ek − ν

k
| k ∈ N, Ek = Ecl

k

}

is the appropriate auxiliary variational problem to be substituted into Eq. (14). The density ρ0

can be chosen of the order of (a + R)−1/d.

Non-negative potentials When v ≥ 0, the situation becomes particularly simple: we have
ν∗ = 0 and for all ν > 0,

inf
k∈N

Ek − ν

k
= inf

k∈N

Ecl
k − ν

k
= −ν

and k(ν) = 1 is the unique minimizer. Eq. (14) is replaced by the following: For sufficiently low
temperature and density ρ smaller than or of the order of 1/Rd,

∣

∣f(β, ρ) − β−1ρ log ρ
∣

∣ ≤ Cρβ−1 log β

and we recognize the free energy β−1ρ(log ρ − 1) of an ideal gas.

C Cluster expansion in the canonical ensemble

Eq. (29) for the coefficients for the free energy-density series can be derived directly, without
any need to refer to doubly connected graphs as in Eq. (28). This was recently shown in [14]
with the help of a cluster expansion in the canonical ensemble. The aim of this section is to give
some key ideas, without any proofs – for those we refer the reader to [14].

The starting point is an expression of the canonical partition function as a sum over set partitions
{X1, . . . , Xr}, r ∈ N, of the particle label set {1, . . . , N}:

ZΛ(β, N) =
|Λ|N

N !

∑

{X1,...,Xr}

ζΛ(X1) · · · ζΛ(Xr).

Monomers (|X| = 1) have activity 1, sets with higher cardinality have activity

|X| = k ≥ 2 : ζΛ(X) =
1

|Λ|k

∑

γ∈Gc(k)

∫

Λk

∏

(ij)∈γ

fij(x)dx1 · · ·dxk,

with Gc(k) is the set of connected graphs with vertices 1, . . . , k. Note that as |Λ| → ∞, for
every fixed k and β, the activity is related to the Mayer coefficients as follows:

|X| = k : ζΛ(X) ∼
k!

|Λ|k−1
bk(β) =

Bk(β)

|Λ|k−1
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The formalism of cluster expansions for polymer partition functions gives

log ZΛ(β, N) = log
|Λ|N

N !
+

∑

r≥1

1

r!

∑

X=(X1,...,Xr)

conn, Xi∈ΓN

n(X) ζΛ(X1) · · · ζΛ(Xr).

Here ΓN is the collection of subsets of {1, . . . , N} of cardinality at least 2, and connectedness
and n(X) are defined as follows: With X = (X1, . . . , Xr) ∈ Γr

N we associate the graph
G(X) with vertices 1, . . . , r and edges {i, j}, i 6= j, Xi ∩ Xj 6= ∅. The polymer X is
called connected if the graph of overlaps G(X) is, and n(X) ∈ N0 is the index of G(X), i.e.,
n(X) = n+(X) − n−(X) with n±(X) the number of connected subgraphs of G(X) with an
even (odd) number of edges.

The N -dependence in the summation index is slightly inconvenient. We remove it by exploiting
the invariance with respect to particle relabeling,

log ZΛ(β, N) = log
|Λ|N

N !
+

N
∑

n=2

(

N

n

) ∞
∑

r=1

1

r!

∑

X=(X1,...,Xr)

conn, Xi∈Γn

n(X)

× ζΛ(X1) · · · ζΛ(Xr) 1
(

∪r
1Xi = {1, . . . , n}

)

.

In the thermodynamic limit N, |Λ| → ∞, for each cluster X = (X1, . . . , Xr) in the sum,

1

|Λ|

(

N

n

)

ζΛ(X1) · · · ζΛ(Xr) ∼
1

n!

Nn

|Λ|1+
Pr

1(|ki|−1)

× Bk1(β) · · ·Bkr
(β), ki = |Xi|.

This goes to zero unless 1 +
∑r

1(ki − 1) = n (note that “≥” for every cluster X). When
this condition is satisfied, the overlap graph G(X) is necessarily a tree, with index n(X) =
(−1)r−1, and the components are distinct, Xi 6= Xj . Assuming we can exchange summation
and thermodynamic limits, we obtain

−βf(β, ρ) = −ρ(log ρ − 1) +
∞

∑

n=2

ρn

n!
Bn(β)

+
∞

∑

n=2

ρn

n!

∑

r≥2

(−1)r−1
∑(n)

{X1,...,Xr}

r
∏

i=1

B|Xi|(β).

(40)

The sum
∑(n) is over collections of subsets {X1, . . . , Xr} with (X1, . . . , Xr) connected,

|Xi| ≥ 2 for all i, and such that ∪r
1Xi = {1, . . . , n} and n = 1 +

∑r
1(ki − 1), and we

recognize the coefficients given in (29).
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