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Abstract

nanotube synthesis.

The initial development of carbon nanotube synthesis revolved heavily around the use of 3d valence transition
metals such as Fe, Ni, and Co. More recently, noble metals (e.g. Au) and poor metals (e.g. In, Pb) have been shown
to also yield carbon nanotubes. In addition, various ceramics and semiconductors can serve as catalytic particles
suitable for tube formation and in some cases hybrid metal/metal oxide systems are possible. All-carbon systems
for carbon nanotube growth without any catalytic particles have also been demonstrated. These different growth
systems are briefly examined in this article and serve to highlight the breadth of avenues available for carbon

Introduction

The current excitement in carbon nanotubes (CNTs)
was triggered by Sumio lijima’s Nature publication in
1991 [1]. At that time there was a considerable interest
in developing the arc evaporation method, initially dis-
covered by Huffman and Kréitschmer [2], for the pro-
duction of Cg in macroscopic amounts. lijima analysed
the deposit on the cathode and found macroscopic
amounts of multi-walled carbon nanotubes (MWNTSs)
and facetted graphitic particles. The lack of fullerenes in
the sample was unexpected. Moreover, the excitement
at that time in carbon nanostructures, born out of the
discovery of fullerenes [3] was a further favourable fac-
tor and so his publication drew significant attention. Iiji-
ma’s next step was to see if he could fill these structures
with transition metals. Transition metals were mixed
into the graphitic electrodes and the arc evaporation
process was run. The resultant product sprung another
surprise. This time, a new form of carbon nanotube,
namely, single-walled carbon nanotubes (SWNTs) with
diameters between 1.1 and 1.3 nm were obtained [4].
Almost at the exact same time Donald S. Bethune, at
IBM research laboratory, made the same discovery (see
Figure 1) [5]. The discovery of SWNT was particularly
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exciting due to interesting structure-property correla-
tions. In addition, it highlighted the use of transition
metals as catalysts for carbon nanotube synthesis. Over
the next years, a massive amount of synthesis routes
and variations were developed. Most of these were
based on the use of catalyst particles, including the che-
mical vapour deposition (CVD) route. CVD synthesis of
CNT is facile and can be set up in laboratories without
difficulty. Moreover, it is easily scaled up for mass pro-
duction and so has developed into the most popular
technique.

Metal catalyst particles

Vapor-grown CNT generally use metal catalyst particles
and some even claim CNT synthesis requires a catalyst
for their formation, despite lijima’s original work on
MWNT synthesis never having used a catalyst. The use
of metal catalysts and filamentous carbon from vapour-
based routes has a long history dating back well before
lijima’s landmark work, perhaps even as far back as
1889 [6]. For the most part 3d valence transition metals
such as Fe, Co and Ni were used for the catalytic
growth of CNT. More recently, several groups have
grown CNTs from metals such as Au, Ag and Cu [7-10]
and poor metals, e.g. Pb, In [11,12]. The conventional
arguments for CNT growth are argued to occur in a
similar manner to the model proposed for filamentous
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Figure 1 Transmission electron micrographs of SWNT bundles (left panel) and an individual SWNT (right panel) synthesized from
cobalt by Bethune et al. Reprinted with permission from Bethune et al. [5].

carbon growth by Baker et al. [13] (Figure 2) which is
derived from the vapour-liquid-solid (VLS) theory devel-
oped by Wagner and Ellis to describe Si whisker forma-
tion [14]. The model proposed that hydrocarbons
adsorb on the metal particles and are catalytically
decomposed. This results in carbon dissolving into the
particle forming a liquid eutectic. Upon supersaturation,
carbon precipitates in a tubular, crystalline form. How-
ever, various alternative models exist and it is likely that
the appropriate description of growth depends on the
synthesis route and conditions used. For example, it is

argued that at low temperature CNT growth can occur
through surface diffusion [15]. In addition, most models
assume thermal equilibrium conditions, although in
practice, this is not so. In the case of noble metal cata-
lyst particles, at temperatures where the VLS model is
expected to be valid, they exhibit very low carbon solu-
bility and negligible carbide formation. Zhou et al. [16]
argue that low carbon solubility results in an increased
precipitation rate. To grow carbon nanotubes, Lu and
Liu [17] argue one needs to match the carbon supply
rate to the tube formation rate.

EXTRUSION OR ROOT GROWTH

TIP GROWTH

U
Support

CH, = C+H,

Figure 2 Schematic showing base growth and tip growth of carbon fibres according to the VLS mode described by Baker [13].
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Ceramic and semiconductor catalysts

Of the non-metallic catalysts for CNT, SiC is the most
widely used and historically one of the first to be
exploited. The early investigations involved the high
temperature annealing (>1500°C) of SiC and was first
demonstrated by Kusunoki et al. [18]. An example of
the CNT is provided in Figure 3. Kusunoki and co-
workers showed that in low vacuum conditions the SiC
decomposes through the following oxidation route:

SiC (s) + CO (g) — SiO (g) +2C(s) (1)

The controlled oxidation process depletes Si at the
surface, enabling the construction of CNTs. However,
the formation of the initial caps at the nucleation stage
has yet to be clarified [19]. Some argue a transformation
process of surface graphene layers [20,21] or amorphous
carbon [22] forms nucleation caps. Others argue the for-
mation of convex structures on the surface enable initial
cap formation [23-25]. Single-walled carbon nanotubes
(SWNTs) can also be grown from SiC nanoparticles in
CVD as was shown by Takagi [26]. Botti et al. [27,28]
demonstrated laser annealing of SiC nanoparticles as a
technique to obtain CNT.

The potential of semiconducting catalyst particles was
first demonstrated by Uchino et al. [29,30] in which car-
bon-doped SiGe islands on Si were used to grow CNT
after chemical oxidation and annealing treatments.
Growth of the CNT was argued to occur from Ge
clusters.

This is due to the greater thermodynamic tendency of
Si to be oxidized as compared to Ge. Thus, the oxida-
tion treatment results in the formation of SiO, and the
segregation of Ge clusters. Takagi et al. [26] also showed
that SWNT could be grown directly from Ge particles
as well as from Si nanoparticles.

Numerous investigators have shown oxides are well
suited for CNT growth. An early example was the use
of MgO as the catalysts for SWNT formation via the
laser evaporation route [11]. More recently, Liu et al.
[31] showed Al,O3 nanoparticles could be used to grow
SWNT using an alcohol CVD route. Steiner et al. [32]
showed both multi- and single-walled carbon nanotubes
could be grown from zirconia. The use of magnesium
borates can yield B-doped CNT (Figure 4) as was first
demonstrated by Bystrzejewski et al. [33,34].

In 2009, two groups showed SWNT formation using
SiO, nanoparticles [35,36]. A little later Bachmatiuk
et al. [37,38] showed stacked cup CNT could be grown
from amorphous SiO, nano-particles. However, trans-
mission electron microscopy (TEM), infrared (IR) and
Raman spectroscopic studies showed the nano-particles
at the root of the CNT to be SiC. Their data points to
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Figure 3 Transmission electron micrograph of the interface
between the graphite constructing a carbon nanotube and -
SiC on the surface of (111) B-SiC. Lower panel: Schematic of the
orientation relationship between one [111] SiC plane, on which
carbon nanotubes are standing perpendicularly, and the other [111]
SiC planes. Reprinted with permission from Kusunoki et al. [18].

the carbo-thermal reduction of SiO,. This result is in
contrast to X-ray photoemission studies (XPS) by
Huang et al. [36] which did not show any carbide for-
mation and hence they argued growth occurred from
the SiO, particles. Steiner et al. [32] also conducted XPS
studies and also found no evidence for carbide



Rimmeli et al. Nanoscale Research Letters 2011, 6:303
http://www.nanoscalereslett.com/content/6/1/303

Page 4 of 9

Figure 4 Energy filtered TEM images of carbon nanotubes produced from phenylboronic acid in a MgO matrix. The images show a
carbon outer shell and a core (nanowire) comprised B, O and Mg. Top image-zero loss image. The C, B, O and MgO energy filtered TEM images
are presented in false colour. Reprinted with kind permission from Bachmatiuk et al. [34].

J

formation when using zirconia as the catalyst. However,
it should be noted that Bachmatiuk et al. [37] also
found no carbide formation when using XPS despite
other techniques clearly demonstrating the presence of
carbides. This suggests XPS, which is a surface sensitive
technique, may not be best suited to determine if oxides

used as catalysts for CNT growth reduce to carbides or
not during synthesis. Various other oxides, outside of
those mentioned, including TiO, and lanthanide oxides
can also be used to grow carbon nanotubes [36]. Tem-
plated CNT grown in porous alumina without catalyst
particles have also been demonstrated [39]. Further
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studies are required to better understand which oxide
systems are stable and which are reducible. Previous
studies of ours in which nano-crystalline oxides were
subjected CVD reactions showed many oxides are stable,
whilst others are not. These studies confirmed oxides
are capable of graphitising carbon [40].

Hybrid metal/metal-oxide catalyst systems

Many of the oxides described above as catalytic nano-
particles for CNT growth are often used as supports in
supported catalyst CVD. Commonly used oxide supports
are Al,O3, SiO,, TiO, and MgO. All these oxides have
been shown to grow CNT. Their role is primarily to sta-
bilize the metal catalysts, viz. prevent coalescence. How-
ever, in oxide-supported metal catalysis it is well known
that small clusters can have enhanced catalytic activity.
A well-known example is Au, which is a bulk material is
rather inert, but finely dispersed and deposited on oxi-
des as small nano-clusters Au exhibits high catalytic
ability (e.g. Haruta [41]). This enhanced catalytic activity
is generally accepted to occur at the circumference of
the nano-cluster/support interface.

It is then natural to query if oxides and the catalyst/
support interface play a role in the case of CNT grown
from oxide-supported metal catalyst clusters. To this
end, we conducted various studies on CNT grown from
Fe and Co clusters supported on alumina. Whilst the
studies showed a good correlation between the initial
catalyst size and the CNT outer diameter, after synthesis
the catalyst particles are found to lie within the core of
the CNT and are elongated [42]. In addition, the roots
of the graphitic walls do not terminate on the metal par-
ticle but rather on the oxide support as shown in Figure
5 [43]. This highlights the diversity with which carbon
nanotubes can grow, in that some base growth modes
show the CNT is rooted at the metal catalyst particle
[44] much like tip growth grown CNT [45] or in other
cases from the oxide support [42,43].
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Another hybrid metal/metal-oxide example is the
hydrocarbon dissociation over supported less active
metal catalysts like Au and Cu, where it is argued that
electron donation to the support creates d-vacancies for
hydrocarbon dissociation [46].

All carbon systems

The formation of CNT on the cathode in the arc-dis-
charge route can occur without catalyst addition as
shown by the work of Bacon in 1957 [47] and more
recently by Iijima [1]. Despite the huge impact of Iiji-
ma’s 1991 Nature paper, the fact that no catalyst was
required was largely ignored or forgotten. More recently,
a broad array of growth routes using pure carbon sys-
tems without any catalyst particle addition have
emerged. Takagi et al. [48] have shown that SWNT can
be grown in CVD using nano-diamond particles as cata-
lysts. Moreover, nano-diamond particles do not suffer
from coalescence and sintering difficulties. Exciting stra-
tegies to open fullerenes and use them as nucleation
caps for SWNT have also been demonstrated. Once the
fullerenes have been opened they are subjected to a
CVD process and grow tubes [49,50]. The proposed
growth mechanism is given in Figure 6. In a similar
vein, the direct cloning of SWNT was shown by Liu and
co-workers [51]. The formation of CNT on graphitic
surfaces has also been demonstrated in various works by
Lin et al. [52,53]. In these studies by Lin et al., it was
shown that the early formation of amorphous nano-
humps apparently serve as seed sites for the self-assem-
bly of CNT.

Growth Mechanisms

Whilst significant strides have been made in under-
standing CNT synthesis, the mechanisms behind growth
remain a highly debated issue. In part this is due to
some mechanisms being presented as universal. The
brief variety of synthesis strategies presented in this

Figure 5 TEM micrographs showing cross section view of a CNT root at the support surface. The (Co) catalyst particle resides in the core
of the tube. The fringes at the base of the particle correspond to the (200) lattice fringes of cubic Co. The outer walls of the CNT align
themselves with the lattice fringes of the a-alumina nanoplatelet. The middle micrograph is a magnification of the boxed region from the left
micrograph. The right micrograph is a copy of the middle image with lines added to highlight the alignment of the graphitic planes with the
rhombohedral (110) lattice fringes of the corundum support. Reprinted from Rimmeli et al. [43].
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Figure 6 Proposed mechanism for the growth of single walled carbon nanotubes using thermally opened Cg, caps according to Yu et
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simple review alone, highlight the need for particular
mechanisms for specific routes and conditions. It is gen-
erally accepted that VLS description presented by Baker
et al. [13] for carbon filament growth is also applicable
to carbon nanotube growth, at least when metal catalyst
particles are employed. However, even in this case, there
are inconsistencies. As Reilly and Whitten [54] pointed
out, the so called catalyst poisoning has yet to be
demonstrated. As they highlight, often it is argued that
a metal catalyst particle coated with amorphous carbon
is considered poisoned, yet when it is coated with gra-
phitic carbon (CNT growth) it is not considered poi-
soned, viz. they are apparently still able to decompose
hydrocarbons. This oddity is further illustrated by our
studies in which the catalyst particles lie fully within the
core of the CNT [42,43]. Moreover, the ability of oxides
to form graphene [40,55] and CNT [26-38] with out any
metal catalyst present further weakens the commonly
accepted notion that the (metal) catalyst particle is
required to decompose the hydrocarbon. Reilly and
Whitten proposed a free radical condensate (FRC) forms
which provides carbon species through a leaving group.
The breaking of carbon-hydrogen or carbon-carbon
bonds naturally form free-radicals in hydrocarbon pyro-
lysis, with each fragment keeping one electron to form
two radicals. The presence of a radical in a hydrocarbon
molecule enables rapid rearrangement of carbon bonds.
This same argument can explain the nucleation of CNT
from unstable nano-humps which form on graphitic sur-
faces which then eventually lead to the formation of
multi-walled carbon nanotubes [52,53]. Thus, in the
FRC model, the catalyst particle’s primary role is to
serve as template for the formation of hemispherical
caps at nucleation (as this reduces the high total surface

energy of the particle caused by its high curvature).
Thereafter, the catalyst may also provide an interface
where carbon rearrangement may occur. However, this
is not a prerequisite. Another surface, for example, an
oxide support or simply unsaturated bonds at the edges
of graphitic layers (e.g. open tube ends) can provide sui-
table sites for growth. Various studies provide experi-
mental evidence for carbon addition to the edges of free
standing graphitic edges [56-58]. In this scenario, carbon
species are able to diffuse along the surface of graphitic
layers which are then adsorbed at the edges. This self-
assembling mechanism can explain the growth of cloned
SWNT [51], SWNT nucleated from opened fullerenes
[49,50] and from MWNT grown on graphitic surfaces
[52,53]. In the case of CNT growth from stable oxides
(oxides which are not reduced in the reaction), either in
nano-particulate form or as the support material, the
VLS theory is not valid since carbon dissolution is unli-
kely and probably occurs through surface diffusion pro-
cesses. In the case of very small (<5 nm) non-metallic
catalyst particles, the increased relative fraction of low-
coordinated atoms could lead to surface saturation fol-
lowed by carbon precipitation [7]. On the other hand,
where the oxide can be reduced to a carbide, as for
example, the carbo-thermal reduction of SiO, nanoparti-
cles [37,38], bulk carbon dissolution and precipitation in
a manner similar to the VLS theory may be relevant
(e.g. Figure 7).

In short, there appear to be a variety of growth modes
and investigating each is complicated. Ex situ studies by
definition means the catalysts have had time to relax
and re-crystallize before being subjected to any investi-
gative method. Hence, ex situ studies are necessarily
limited in that they cannot unequivocally testify to
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Figure 7 Schematic representation of the carbothermal reduction of silica to silicon carbide and carbon nanostructure formation:
(a) SiO, is reduced to SiC via a carbothermal reaction, (b) SiC nanoparticles coalesce, (c) carbon caps form on the surface of the SiC particles
through precipitation and/or SiC decomposition. Reproduced with permission from Bachmatiuk et al. [37].
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circumstances during growth. On the back of this some
argue in situ measurements as the only way forward.
However, these routes present key limitations such as
the need to work at very low pressures, well beyond any
conventional or commercial route would use, as is the
case for TEM and XPS in situ studies. Moreover, in in
situ TEM only tiny sample sizes are examined and in
the case of XPS in situ examinations, as already dis-
cussed above, the technique is surface sensitive and
hence provides limited information on the catalyst dur-
ing growth. Another area to investigate is how nature
produces carbon nanotubes. Surprisingly, there is little
evidence on planet Earth for their formation with only a
few examples of MWNT and none for SWNT [59].
However, CNT may form more readily in outer space.
Graphite whiskers have been found in high-temperature
components of meteorites [60]. In addition, it has been
proposed they can form in protostellar nebulae via
Fischer-Tropsch-type catalytic reactions [61,62]. Recent
experiments by the same group investigating the poten-
tial of Fischer-Tropsch and Haber-Bosch type reactions
appear to support this hypothesis [63]. Thus, it is the
collective data from both ex situ and in situ examina-
tions that are important; however, the limitations of
each implemented technique, and the specifics of the
synthesis route in question must be considered as there
is no single universal growth mode.

Summary

There remains a fair amount of controversy in explaining
carbon nanotube growth; this in part is due to the sheer
number of possible synthesis routes and the fact that there
is no single universal growth mode. Even so, tremendous
advances have been made. This includes the development
of new catalyst systems and even catalyst-free systems.
Nonetheless the successful integration of CNT into appli-
cations and large-scale production processes remains

limited and is dependant on the understanding of several
fundamental issues. Some of these issues are highlighted by
the disparate catalyst and catalyst free options available
which raise new questions on nucleation and growth as
well as the role of supports in supported catalysts. In some
sense the rapid development of graphene may render CNT
less important, for example, in the integration of carbon
nanotubes in integrated circuit manufacturing, however,
many of the questions raised in understanding carbon
nanotube growth are directly relevant to graphene also.
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