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1. INTRODUCTION AND MOTIVATION.

1.1 Motivation. Let P be the Wiener measure on C([0,∞),Rd) corresponding to a d- dimensional Brow-
nian motion W = (Wt)t≥0 starting from the origin. We continue with the study of compactness issues
pertaining to large deviation theory developed in [MV14]. One of the motivations of our earlier work came

from studying the asymptotic behavior of Brownian occupation measures Lt = 1/t
∫ t

0
δWsds under mean-

field type interaction expressed by the Gibbs measures of the form

P̂t(dω) =
1

Zt
exp

{
tH(Lt)

}
P(dω)

where

(1.1) H(µ) =

∫ ∫

Rd×Rd
V (x− y)µ(dx)µ(dy)

for some continuous function V vanishing at infinity and µ ∈ M1(R
d), the space of probability measures

in Rd. Here Zt denotes the usual normalization constant or the partition function whose exponential growth
rate was determined by Donkser and Varadhan ([DV83]) resulting in the variational formula

(1.2) lim
t→∞

1

t
logZt = sup

ψ∈H1(Rd)
‖ψ‖2=1

{ ∫ ∫

Rd×Rd
dxdy V (x− y)ψ2(x)ψ2(y) −

1

2
‖∇ψ‖2

2

}
.

If d = 3 and V (x) = 1/|x|, by a result of Lieb ([L76]), it is well-known that the above variational formula
admits a rotationally symmetric maximizer ψ0 which is unique modulo spatial translations. Hence, the max-
imizing set can be written as m = {µx : x ∈ R3} where µx denotes the probability measure with density
ψ2
x = ψ2

0 ? δx.

In [MV14] it was shown that, the distributions P̂t◦L
−1
t concentrate locally around an (infinite) neighborhood

of the set of maximizers. More precisely,

(1.3) lim sup
t→∞

1

t
log P̂t

{
Lt /∈ U(m)

}
< 0,

with U(m) denoting any neighborhood of m in the weak topology. Although, (1.3) requires only the weak
topology in M1(R

d) in its statement, a rigorous justification is based on a different topology imposed in a
“lifted spaceänd in this context, the following simple fact is of crucial significance: For any x ∈ Rd,

(1.4) H(µ) = H(µ ? δx).

In other words, H(µ) is a function only of the orbit µ̃ = {µ ? δx : x ∈ Rd} under spatial shifts. This

inherent shift invariance of the model naturally leads to a study of the quotient space of orbits M̃1(R
d) =

{µ ? δx : x ∈ Rd} and an embedding

M̃1(R
d) ↪→ X̃ .

Here X̃ is the space of all collections of equivalence classes of sub-probability measures and is the

“translation-invariant compactificationöf M̃1. This is also the space where a strong large deviation princi-

ple for the distributions of L̃t ∈ M̃1(R
d) holds and this allows a direct analysis of the path measures

P̂tL
−1
t , which goes far beyond analysis of the partition function Zt which can be handled by classical weak

large deviation theory.
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In this article we are interested in a variant of the above model with two independent Brownian motions
interacting through a mutual self-attraction potential. This can be written as the transformed path measure

(1.5)

P̂⊗
t

(
dω(1) ⊗ dω(2)

)
=

1

Z⊗
t

exp

{
1

t

∫ t

0

∫ t

0

V
(
ω(1)

σ − ω(2)

s

)}
P⊗(dω(1) ⊗ dω(2))

=
1

Z⊗
t

exp

{
tH⊗

(
L(1)

t ⊗ L(2)

t

)}
P⊗(dω(1) ⊗ dω(2))

where

(1.6) H⊗
(
µ⊗ ν

)
=

∫ ∫

Rd×Rd
V (x− y)µ(dx)ν(dy) µ, ν ∈ M1(R

d).

Here V (·) is a continuous function vanishing at infinity as before and P⊗ = P(1) ⊗ P(2) denotes the product
of two Wiener measures P(1) and P(2) corresponding to two independent Brownian motions W (1) and W (2)

both starting at the origin. Also L(1)

t and L(2)

t are the corresponding normalized occupations measures and

Z⊗
t = E⊗

[
exp

{
tH⊗(L(1)

t ⊗ L(2)

t )

}]

is the partition function. Let us denote by L⊗
t the product measure L(1)

t ⊗L(2)

t . We are interested in studying

the joint asymptotic behavior of the product measure L⊗
t under the transformed path measures P̂⊗

t as
t → ∞. It will turn out that, when V (x) = 1/|x| in d = 3 or if V satisfies a mild technical condition

(e.g., rotational invariance), then the asymptotic distribution of L⊗
t under P̂⊗

t concentrate around an “infinite
tube"comprising of spatial shifts of the maximizers of variational formula 1.2, being in complete analogy to
(1.3). The model (1.5) for V (x) = 1/|x| in d = 3 is related to the mean-field bipolaron problem arising
in statistical mechanics. In this context, our first main result, Theorem 3.1, is a rigorous justification of the
anticipated localization of path measures, carried out for this model for the first time, to the best of our
knowledge.

Another motivation of our work comes from studying the moments of the approximating solutions to the
ill-defined stochastic partial differential equation

(1.7) ∂tZ =
1

2
∆Z + ξZ

for spatial white noise potential ξ in Rd. This is called the spatial parabolic Anderson problem and in d = 3,
a rigorous construction of this ill-used equation has been carried out in [HL15] based on the robust theory
of regularity structures ([H14]). On the other hand, motivated by different reasons based on our work on
large deviations, we prove that, due to spatial shift-invariance of the Gaussian noise, our analysis allows a
direct computation of the annealed (i.e., averaged over the noise) Lyapunov exponents of a smoothened and
rescaled version of (1.7) as the smoothing parameter goes to zero. These exponents admit explicit variational
formulas.

It also seems that our strong large deviation principle for products of occupation measures are related to
mutual intersection local times of two independent Brownian motions in R3 (note that due to recurrence, the
intersection local times of arbitrarily many Brownian paths in R2 is infinity, while in R3, at most two Brownian
paths have a non-trivial intersection). Intersection local times, due to singularity of occupation measures in
high dimensions, are notoriously difficult to handle. For example, they can be given a rigorous meaning only
in a limiting sense, after a suitable mollification procedure. In an asymptotic sense (i.e., in the language
of large deviations), they however admit an interpretation as the pointwise product of individual occupation
measures. Such a large deviation analysis was carried out in a bounded domain in [KM13] based on classical
weak Donsker-Varadhan large deviations. It seems that the methods developed in this article can be used
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to derive similar asymptotic behavior for the intersection local times in the whole space R3 corresponding to
two independent Brownian motions.

For these assertions, strong large deviation principle for the distributions for L⊗
t seem to be desirable

and it is tempting to appeal to the methods developed in [MV14]. However, due to the “mixed productöf two
different measures in (1.6), the crucial translation-invariance of (1.4) is somewhat lost: H⊗(µ⊗ ν) might fail
to be equal to

H⊗
(
(µ ? δx) ⊗ (ν ? δy)

)

if x 6= y. Hence, we are not entitled to invoke the shift-invariant theory developed in [MV14] directly and we
are led to a slightly different “compactfication"for product measures. Here is the key intuitive idea.

1.2 The main idea. As usual we denote by M1 = M1(R
d) the space of probability measures in Rd and

by M⊗
1 = M1 ×M1 the space of product measures. For brevity, let us write µν for the product measure

µ⊗ν ∈ M⊗
1 . Note that, when equipped with the usual weak topology, both M1 and M⊗

1 are non-compact.
This can be attributed to several reasons. A Gaussian measure with a very large variance spreads thinly into
dust and thus, a sequence constructed from the product of two such Gaussian measures disintegrates
completely in the product topology. Also, a mixture of the form 1

2
(δan + δ−an) splits into two (or more) widely

separated pieces and escape to infinity as an → ∞. Likewise, the product of mixtures 1
2
(δan + δ−an)

and 1
2
(δbn + δ−bn) can not converge in the weak topology as an, bn → ∞. Starting with any sequence of

probability measures (µn)n in M1, the intuitive idea is to “centerëach piece separately as well as to allow
some mass to be “thinly spread and disappear". For this, the first step is to identify regions in Rd where
µn has its accumulations of masses. This can be written by the function qµn(r) = supx∈Rd µn

(
Br(x)

)
.

By choosing subsequences, we can assume that qµn(r) → qµ(r) as n → ∞ and qµ(r) → p1 ∈ [0, 1]
as r → ∞. Then there is a shift µn ? δan which converges vaguely along some subsequence to a sub-
probability measure α1 of mass p1. We can peel off a measure of mass ≈ p1 from µn and repeat the same
process for the leftover to get convergence again along a further subsequence. We can go on recursively
and end up with a picture where µn concentrates roughly on widely separated compact pieces of masses
{pj}j∈N while the rest of the mass 1 −

∑
j pj leaks out.

In an exactly similar manner, starting with another independent sequence of probability measures (νn)n,
we can visualize a similar concentration in widely separated compact pieces of masses {ql}l∈N with the
remaining mass 1−

∑
l ql being dissipated. Note that, regions of concentration of µn and νn are completely

independent and hence, are also possibly mutually widely separated. However, for the product µn ⊗ νn
to converge, we can hope to recover any partial mass pjql only if some concentration region of µn hap-
pens to have be in O(1) distance from some concentration region of νn. Since there is wide separation
between individual components of µn and individual components of νn, such “matchings"could take place
only pairwise and the order of the matchings do not matter. Finally, since we will be interested in a topology
inherited from test functions, which, among other properties, admit to vanish at infinity, any other mutually
distant (and “unmatched") pair of components will not contribute. We end with a picture where the product
sequence µnνn roughly concentrates on matched pairs of islands, so that in each pair, two components are
within bounded distance, while the pairs are mutually widely separated, and there is a certain dissipation of
mass from unmatched pairs. This intuition again leads to a compactfication of the quotient space of product
measures.

In such a compactification, due to mutual attraction, two independent Brownian paths tend to find such
matched pairs of islands and stick together by treating each pair as one bigger island. Since such bigger is-
lands are mutually distant, an optimal strategy rules out any interaction between them, leading to asymptotic
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independence and a full large deviation principle for distribution of orbits L̃⊗
t embedded in the compactfi-

cation, the rate function simply being the sum of classical Donsker-Varadhan rate functions on each such
island. This is the key heuristic idea behind the aforementioned localization property.

Let us now briefly summarize the organization of the rest of the article. In the next section we collect some
topological facts, define a class of relevant test functions, introduce a metric which will lead to the desired

compactfication. In section 3, we prove a large deviation principle for the distribution of the orbits L̃⊗
t and give

applications to the aforementioned localization of path measures as well as present a direct computation of
the annealed Lyapunov exponents of the spatial parabolic Anderson model with white noise potential in Rd.
In several parts in our proofs, we will draw heavily on the methods developed in [MV14].

2. SHIFT INVARIANT COMPACTIFICATION FOR PRODUCT MEASURES

The space M1 = M1(R
d) of probability distributions on Rd carries two natural topologies. A sequence

µn in M1 converges weakly to µ, denoted by µn⇒µ, if

(2.1) lim
n→∞

∫

Rd
f(x)µn(dx) =

∫

Rd
f(x)µ(dx),

for all bounded continuous functions on Rd. On the other hand, in the vague topology for the convergence of
µn to µ, denoted by µn↪→µ, we only require (2.1) for continuous functions with compact support. It continues
to hold for continuous functions that tend to 0 as |x| → ∞. Note that the total mass of probability measures,
which is conserved in the weak convergence, is not necessarily conserved under vague convergence– a
salient feature which distinguishes these two topologies. If we denote by M≤1 = M≤1(R

d) the space
of all sub-probability measures (non-negative measures with total mass less than or equal to one), then
both topologies carry over to M≤1 with the same requirements. Note that, M≤1 is compact in the vague
topology. The following fact, whose proof is elementary and is omitted, will be useful later.

Lemma 2.1. Let µn↪→α in M≤1. Then µn can be written as µn = αn + βn where αn⇒α and βn↪→0.

2.1 Test functions on product spaces and diagonal shift-invariance. Let us denote by

M⊗
1 = M1 ⊗M1

the space of products of probability measures on Rd × Rd. We are interested in the action of Rd as an
additive group of translations on M⊗

1 leading to the orbit space

M̃⊗
1 = (M1 ⊗M1)

/
∼

=
{
(µ ? δx) ⊗ (ν ? δx) : x ∈ Rd

}

Typical elements of this space will be denoted by µ̃ν for µ, ν ∈ M1. Note that M̃⊗
1 fails to be compact

when M1 is equipped with the weak topology. This is the space we would like to compactify and for this
purpose we need to identify a class of “continuous functionals". The following class provides a rich class of
test functions in this regard.

For any k ≥ 1, we denote by F⊗
k the space of continuous functions f : (R2d)k → R that vanish at infinity

in the sense

(2.2) lim
r→∞

f
(
x1, y1, . . . , xk, yk

)
= 0.
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where r is the diameter given by maxi,j=1,...,k

{
|xi−yj|, |xi−xj|, |yi−yj|

}
. Furthermore, these functions

should be diagonally translation-invariant in the sense

f
(
x1, y1, . . . , xk, yk

)
= f

(
x1 + a, y1 + a, . . . , xk + a, yk + a

)

∀ (xj, yj) ∈ R2d, a ∈ Rd, j = 1, . . . , k

We will often use a typical function f ∈ F⊗
1 of the form f(x1, y1) = V (x1 − y1) for some continuous

function V (·) vanishing at infinity.

Denote by F⊗ = ∪k≥1F
⊗
k the countable union and for any f ∈ F⊗ and for any µ, ν ∈ M1, we set

Λ⊗(f, µ⊗ ν) =

∫

(R2d)k
f(x1, y1, . . . , xk, yk)

k∏

j=1

µ(dxj)
k∏

j=1

ν(dyj).

For any fixed f ∈ F⊗, this is clearly a function of the orbit µ̃ν = {(µ ? δx) ⊗ (ν ? δx) : x ∈ Rd}. Such

objects are natural continuous functionals on M̃⊗
1 . Note that each F⊗

k admits a countable dense subset
under the uniform metric and for the countable union F⊗, we can order them all as a single countable
sequence {fr(x1, y1, . . . , xk, yk)}r∈N. Hence, for any sequences (µn)n and (νn)n in M1, the limit

(2.3) Λ⊗(f) = lim
n→∞

Λ⊗(f, µn ⊗ νn)

exists along some subsequence by diagonalization. The set of all possible limit points of (2.3) will comprise
of the desired compactification. But we need some more useful facts pertaining to the the space F⊗.

We say that a sequence (µn) in M≤1 totally disintegrates if for any positive r <∞,

lim
n→∞

sup
x∈Rd

µn
(
B(x, r)

)
= 0.

A typical example of a totally disintegrating sequence µn of measures is a centered Gaussian with covariance
matrix n Id. The following fact is useful and its proof can be found in Lemma 2.3 in [MV14].

Lemma 2.2. If the sequences (µn)n totally disintegrates. Then, for any sequence (νn)n in M≤1 and any

continuous function V (x) with lim|x|→∞ V (x) = 0,

lim
n→∞

∫ ∫

R2d

V (x− y)µn(dx)νn(dy) = 0.

Furthermore, for any k ≥ 1 and f ∈ Fk,

lim
n→∞

∫
. . .

∫

R2dk

f(x1, y1 . . . , xk, yk)
k∏

i=1

µn(dxi)
k∏

i=1

νn(dyi) = 0.

We say that two sequences (αn)n and (βn)n in M≤1 are widely separated, if for some function V on Rd

which is continuous and vanishes at infinity,

(2.4) lim
n→∞

∫
V (x− y)αn(dx)βn(dy) = 0.

Note that if a sequence (µn)n in M≤1 totally disintegrates, then it is widely separated from any arbitrary
sequence of measures in M≤1.
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Lemma 2.3. Suppose a sequence α(1)
n is widely separated from α(2)

n , while the sequence β(1)
n is widely

separated from β(2)
n in M≤1. Then the product α(1)

n β
(1)
n is widely separated from the product α(2)

n β
(2)
n . Fur-

thermore, for every k ≥ 1 and f ∈ F⊗
k ,

(2.5)

lim
n→∞

∣∣∣∣
∫
f(x1, y1, . . . , xk, yk)

k∏

i=1

((
α(1)

n β
(1)

n

)
(dxidyi) +

(
α(2)

n β
(2)

n

)
(dxidyi)

)

−

∫
f(x1, y1, . . . , xk, yk)

k∏

i=1

(
α(1)

n β
(1)

n

)
(dxidyi) −

∫
f(x1, y1, . . . , xk, yk)

k∏

i=1

(
α(2)

n β
(2)

n

)
(dxidyi)

∣∣∣∣

Proof. The proof of the first claim is easy. For the second part, for k = 2, if we can expand the product, we
see that all the mixed terms disappear by the first claim and the definition of the class of functions F⊗

k . The
general case follows from an induction argument. �

2.2 Compactification of M̃⊗
1 .

Let us denote the space

X̃⊗ =

{
ξ⊗ : ξ⊗ =

{
α̃iβi

}
i∈I
, αi, βi ∈ M≤1.

∑

i

αi(R
d) ≤ 1,

∑

i

βi(R
d) ≤ 1

}

We remark that, in order to keep notation short, we suppressed the fact that the index set I above ranges

over empty, finite or countably many collections. We will write any typical element ξ⊗ ∈ X̃⊗ as ξ⊗ = {α̃iβi}
with the understanding that either the collection is empty or i ranges over a finite or countable set.

Note that, we have a canonical embedding of M̃⊗
1 in the space X̃⊗. If we write 〈f, µ〉 for the integral∫

fdµ for any function f and any measure µ, then we want a sequence (ξ⊗n )n to converge to ξ⊗ in the

space X̃⊗ under the desired metric, if the sequence

Λ⊗(f, ξ⊗n ) =
∑

(α̃nβn)∈ξ⊗n

∫
f(x1, y1 . . . , xk, yk)

n∏

i=1

(
αnβn

)
(dxidyi) =

∑

(α̃nβn)∈ξ⊗n

〈
f, αnβn

〉
,

converges to the corresponding expression

Λ⊗(f, ξ) =
∑

fαβ∈ξ⊗

∫
f(x1, y1 . . . , xk, yk)

n∏

i=1

(
αβ

)
(dxidyi) =

∑

fαβ∈ξ⊗

〈
f, αβ

〉
,

for every f ∈ F⊗. Note that the integral
∫
f(x1, y1 . . . , xk, yk)

n∏

i=1

(
αβ

)
(dxidyi)

depends only on the orbit α̃β of the product measure αβ, by translation invariance of f ∈ F⊗.

We fix a countable sequence of functions {fr(x1y1, . . . , xkr , ykr)}r∈N which is dense in F⊗. For any

ξ⊗1 , ξ
⊗
2 ∈ X̃⊗, we define

(2.6) D
⊗
(
ξ⊗1 , ξ

⊗
2

)
=

∞∑

r=1

1

2r
1

1 + ‖fr‖∞

∣∣∣∣
∑

fαβ∈ξ⊗1

〈
fr, α⊗ β

〉
−

∑

fαβ∈ξ⊗2

〈
fr, α⊗ β

〉∣∣∣∣.
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Theorem 2.4. D
⊗ is a metric on X̃⊗.

Proof. The proof of the theorem is lengthy and non-trivial, but follows the same line of arguments modulo
slight modifications as Theorem 3.1 in [MV14]. We drop the details to avoid repetition. �

Theorem 2.5. The set of orbits M̃⊗
1 is dense in X̃⊗. Furthermore, given any sequence (µ̃nνn)n in M̃⊗

1 ,

there is a subsequence that converges to a limit in X̃⊗. Hence X̃⊗ is a compactification of M̃⊗
1 . It is then

also the completion under the metric D
⊗ of the totally bounded space M̃⊗.

Proof. Step 1: We first prove that, given any ξ⊗ ∈ X̃⊗, there is a sequence (µ̃nνn)n in M̃⊗
1 which con-

verges to ξ⊗. Indeed, let ξ⊗ = (α̃jβj)j such that αj(R
d) = pj , βj(R

d) = qj . Then
∑

j pj ≤ 1 and∑
j qj ≤ 1. If it is an infinite collection, we choose a finite sub-collection {α1, . . . , αn} and {β1, . . . , βn}

so that
∑

j>n pj as well as
∑

j>n qj add up to at most ε > 0. Then, for any f ∈ F⊗
k ,

(2.7)
∑

j>n

∫
f(x1, y1, . . . , xk, yk)

k∏

i=1

αj(dxi)
k∏

i=1

βj(dyi) ≤ ‖f‖∞
∑

j>n

pjqj ≤ ‖f‖∞
1

2

∑

j>n

(p2
j+q

2
j ) ≤ ε‖f‖∞.

Any centered Gaussian measure λM with covariance matrixMId totally disintegrates asM → ∞. Hence,
by Lemma 2.2,

(2.8) lim
M→∞

∫
f(x1, y1, . . . , xk, yk)

k∏

i=1

λM(dxi)
k∏

i=1

λM(dyi) = 0.

We choose a sequence of spatial points a1, . . . , an ∈ Rd so that infi6=j |ai − aj| → ∞.

Then for the convex combinations

(2.9)

µn =
n∑

j=1

αj ? δaj +

(
1 −

n∑

j=1

pj

)
λM

νn =
n∑

j=1

βj ? δaj +

(
1 −

n∑

j=1

qj

)
λM ,

for any k ≥ 1 and f ∈ F⊗
k , we have

∫
f(x1, y1, . . . , xk, yk)

k∏

i=1

µn(dxi)
k∏

i=1

νn(dyj) →
n∑

j=1

∫
f(x1, y1, . . . , xk, yk)

k∏

i=1

αj(dxi)
k∏

i=1

βj(dyi).

as infi6=j |ai−aj| → ∞ andM → ∞, by (2.8) and Lemma 2.3. By the definition of the metric D
⊗ in (2.6),

clealy µ̃nνn converges in X̃⊗ to ξ⊗ = {α̃jβj}.

Step 2: We now show that, given any sequence µ̃nνn in M̃⊗
1 , there is a subsequence which converges to

some ξ⊗. Let us start with the concentration functions of µn and νn given by

Qµn(r) = sup
x∈Rd

µn(Br(x)) Qνn(r) = sup
x∈Rd

νn(Br(x)).

We can assume that along some subsequences, Qµn(r) → Qµ(r) and Qνn(r) → Qν(r) as n → ∞.
Furthermore, Qµ(r) → p1 and Qν(r) → q1 as r → ∞.
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Let us first consider the case p1 = 0 or q1 = 0. If p1 = 0, then, for every r > 0,

lim
n→∞

sup
x∈Rd

µn(Br(x)) = 0.

In other words, the sequence µn totally disintegrates. Then by Lemma 2.2 and the definition of the metric

D
⊗ in (2.6), the sequence µ̃nνn → 0 in X̃⊗.

Let us now assume that p1, q1 ∈ (0, 1]. Then there is a sequence of shifts (an) ⊂ Rd such that, for some
r > 0 and n sufficiently large,

(2.10) µn
(
Br(an)

)
≥ p/2.

Then, along some subsequence, µn ? δan ↪→α′ for some α′ ∈ M≤1. By lemma 2.1, we can write

µn = αn + µ(1)

n

so that αn ? δan⇒α′ and µ(1)
n ↪→0. Note that αn and µ(1)

n are widely separated.

We repeat the procedure with µ(1)
n ? δan . Since

(
µ(1)
n ? δan

)
(·) ≤ µn(·), we conclude, by (2.10), that for

every r > 0,
lim
n→∞

Q
(µ

(1)
n ?δan )

(r) ≤ min
{
1 − p1/2, p1}.

This iterative process could go on forever, or it might stop at a finite stage (i.e., when the recovered mass
pk+1, after stage k, happens to be 0). If it stops at a finite stage, then we can write

µn =
k∑

j=1

α(j)

n + γn

such that, for each j = 1, . . . , k, along some subsequence,

(2.11) α(j)

n ? δ
a
(j)
n
⇒α′

j,

and for i 6= j, |a(i)
n − a(j)

n | → ∞, while the sequence γn totally disintegrates (i.e., for every r > 0,
Qγn(r) → 0). We remark that if p1 = 1, then there is disintegration of mass.

For the sequence (νn), in an exactly similar manner, we can write,

νn =
m∑

l=1

β(l)

n + λn

such that, for each l = 1, . . . ,m, along some subsequence,

(2.12) β(l)

n ? δ
b
(l)
n
⇒β′

l,

and for l 6= u, |b(l)n − b(u)
n | → ∞, while the sequence λn also totally disintegrates (again, if q1 = 1, there is

no disintegration).

Let us now turn to the product

(2.13) µn ⊗ νn =
k∑

j=1

m∑

l=1

α(j)

n ⊗ β(l)

n +
m∑

l=1

β(l)

n ⊗ γn +
k∑

j=1

α(j)

n ⊗ λn

Since both γn and λn totally disintegrate, by Lemma 2.2, for any V ∈ F⊗
1 ,

(2.14)

lim
n→∞

∫ ∫
V (x− y)α(j)

n (dx)λn(dy) = 0 ∀j = 1, . . . , k

lim
n→∞

∫ ∫
V (x− y)β(l)

n (dx)γn(dy) = 0 ∀l = 1, . . . ,m.
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Finally for the products α(j)
n ⊗ β(l)

n , if for some j ∈ {1, . . . , k} and l ∈ {1, . . . ,m}, the distance of the
shifts |a(j)

n − a(l)
n | remains bounded, i.e,

(2.15) |a(j)

n − a(l)

n | ≤ c(jl) = c <∞,

then we can find some common spatial shift c(jl)
n = cn so that, again along sone subsequence,

(
α(j)

n ⊗ β(l)

n

)
? δcn =

(
α(j)

n ? cn
)
⊗

(
β(l)

n ? cn
)

⇒αj ⊗ βl,

for some αj, βl ∈ M≤1. In other words, for any such pair j ∈ {1, . . . , k} and l ∈ {1, . . . ,m}, for every
V ∈ F⊗

1 ,

(2.16)

∫ ∫
V (x− y)α(j)

n (dx)β(l)

n (dy) =

∫ ∫
V (x− y)

(
α(j)

n ? δcn
)
(dx)

(
β(l)

n ? δcn
)
(dy)

→

∫ ∫
V (x− y)αj(dx)βl(dy).

On the other hand, if |a(j)
n − b(l)n | → ∞,

(2.17)∫ ∫
V (x− y)α(j)

n (dx)β(l)

n (dy) =

∫ ∫
V

(
x− y + a(j)

n − b(l)n
)(
α(j)

n ? δ
a
(j)
n

)
(dx)

(
β(l)

n ? δ
b
(l)
n

)
(dy)

→ 0

for any V ∈ F⊗
1 , by and (2.2), (2.11) and (2.12). Summaraizing (2.14), (2.16) and (2.17), we conclude that

the sequence µ̃nνn converges to some element ξ⊗ =
{(
α̃jβl

)
j,l

}
∈ X̃⊗.1

Finally, if the process continues forever, then an induction argument combined with the finite step recursion
scheme leads to the same conclusion. �

Corollary 2.6. For any V ∈ F⊗
1 , the functional H : X̃⊗ → R defined by

H(ξ⊗) =
∑

j

∫ ∫
V (x− y)αj(dx)βj(dy) ξ⊗ = (α̃jβj)j

is continuous.

Proof. For any µn, νn ∈ M1 if the sequence µ̃nνn converges to ξ⊗ = (α̃jβj)j , then
∫ ∫

V (x− y)µn(dx)νn(dy) →
∑

j

∫ ∫
V (x− y)αj( dx)βj(dy).

Since M̃⊗
1 is dense in X̃⊗, the corollary is proved. �

01For example, let µn be a sequence which is a mixture of three Gaussians, one with mean 0 and variance 1, one with mean
n and variance 1 and one with mean 0 and variance n, each with equal weights 1/3. On the other hand, let νn also be a mixture
of three Gaussians, one with mean n2 and variance 1, one with mean n+1 and variance 1 and one with mean 0 and variance n,

also with equal weights 1/3. Then the limiting object for µ̃nνn is the single orbit {α̃1β2}, where α1 is the a Gaussian with mean

0, variance 1 and mass 1/3, β2 is a Gaussian with mean 1, variance 1 and mass 1/3, while α̃1β2 is the equivalence class of the
product of these two Gaussians with mass 1/9.



10

3. APPLICATIONS

3.1 Pair interaction under mean-field path measures.

We now focus on the model introduced in Section 1. P(1) and P(2) will denote two Wiener measures
corresponding to two independent Brownian motions W (1) and W (2) starting from the origin and P⊗ =
P(1) ⊗ P(2) will denote the product. We will be interested in the Gibbs measure

P̂⊗
t

(
dω(1) ⊗ dω(2)

)
=

1

Z⊗
t

exp

{
1

t

∫ t

0

∫ t

0

V
(
ω(1)

σ − ω(2)

s

)}
P⊗(dω(1) ⊗ dω(2))

=
1

Z⊗
t

exp

{
tH

(
L⊗
t

)}
P⊗(dω(1) ⊗ dω(2)).

Here L⊗
t = L(1)

t ⊗ L(2)

t where L(1)

t and L(2)

t are the normalized occupation measures of W (1) and W (2)

respectively and

H(µ⊗ ν) =

∫ ∫
V (x− y)µ(dx)ν(dy) µ, ν ∈ M1,

for V ∈ F⊗
1 . Note that, via

Ω → M⊗
1 (Rd) → M̃⊗

1 (Rd) ⊂ X̃⊗

we have a distribution Q̂⊗
t of L̃⊗

t in X̃⊗ under P̂⊗
t . In other words,

Q̂⊗
t = P̂⊗

t ◦
(
L̃⊗
t

)−1

Note that since V vanishes at infinity, the interaction in P̂⊗
t is mutually attractive and we will be interested in

the asymptotic behavior of the distributions Q̂⊗
t as t→ ∞.

In what follows, an important role will be played by the variational formula

(3.1) ρ = sup
ψ∈H1(Rd

‖ψ‖2=1

{∫ ∫
V (x− y)ψ2(x)ψ2

2(y)dxdy − ‖∇ψ‖2
2

}

It is well-known ([L76]) that if V (x) = 1/|x| in d = 3, then the variational problem (3.1) has a rotationally
symmetric maximizer ψ0 which is unique except for spatial translations, despite 1/|x| failing to be continuous
due to the Coulomb singularity. Let µ0 be the measure with the maximizing density ψ2

0 . We will write

µ̃0 = µ̃0µ0 ∈ M̃⊗
1 ⊂ X̃⊗.

Here is our next main result.

Theorem 3.1. Let V (x) = 1/|x| in d = 3 or let V (·) be any continuous, positive definite function vanishing

at infinity such that the variational problem (3.1) has a rotationally symmetric maximizer ψ0 which is unique

except for spatial translations. Then the family of probability measures Q̂⊗
t converges weakly to δ

eµ0 .

We will prove Theorem 3.1 in few steps. Let us introduce the Donsker-Varadhan rate function

(3.2) I(µ) =

{
1
2
‖∇f‖2

2 if f =
√

dµ
dx

∈ H1(Rd)

∞ else.

Here H1(Rd) is the usual Sobolev space of square integrable functions with square integrable derivatives.
Note that the function µ 7→ I(µ) is translation invariant and depends only on the orbit µ̃. Furthermore,
this map is convex and homogenous of degree 1. It is well-known ([DV75]) that the family of distributions of
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any occupation measure Lt = 1/t
∫ t

0
δWsds under any Wiener measure P satisfies a “weak"large deviation

principle in the space probability measures on M1(R
d) with the rate function I . This means, under the weak

topology, for every compact subset K ⊂ M1(R
d) and for every open subset G ⊂ M1(R

d),

(3.3) lim sup
t→∞

1

t
log P(Lt ∈ K) ≤ − inf

µ∈K
I(µ)

(3.4) lim inf
t→∞

1

t
log P(Lt ∈ G) ≥ − inf

µ∈G
I(µ),

If for any family of distributions the upper bound (3.3) holds for any closed set, we say that the family satisfies
a strong large deviation principle, or just large deviation principle.

Let us also introduce the functional I⊗ : X̃⊗ → [0,∞] given by

(3.5) I
⊗
(
ξ⊗

)
=

∑

fαβ∈ξ⊗

[
I(α) + I(β)

]

where I is defined in (3.2) and α, β ∈ M≤1 so that the product αβ is any arbitrary element of the orbit α̃β.
Also recall that, I(·) is translation invariant. Let us also note that I⊗(·) is a lower semicontinuous functional

on X̃⊗.

Lemma 3.2. The distributions of L̃⊗
t under P⊗ satisfies a large deviation principle in the compact metric

space X̃⊗ with rate function I.

Proof. The Lower bound. If Q⊗
t denotes the distribution of L̃⊗

t under P⊗, then it suffices to show that for

any ξ⊗ ∈ X̃⊗ with I
⊗(ξ⊗) <∞ and any neighborhood U of ξ⊗,

(3.6) lim inf
t→∞

1

t
log Q⊗

t (U) ≥ −I
⊗(ξ⊗)

First let us note that given any ξ⊗ ∈ X̃⊗ with I
⊗(ξ⊗) < ∞, there is a sequence (ξ⊗n )n in X̃⊗ which

converges to ξ⊗ and

(3.7) lim sup
n→∞

I
⊗(ξ⊗n ) ≤ I

⊗(ξ⊗).

This is essentially due to the convex decomposition of µn and νn constructed in (2.9). Furthermore, since
I(·) is convex and 1-homogeneous,

lim sup
n→∞

I
⊗(ξ⊗n ) = lim sup

n→∞

[
I(µn) + I(νn)

]
≤

∑

j

[
I(αj ? δaj) + I(βj ? δbj)

]

=
∑

j

[
I(αj) + I(βj)

]

Now for (3.6), we can get the single orbit sequence µ̃nνn converging to ξ⊗. Then, also invoking indepen-
dence of L(1)

t and L(2)

t ,

lim inf
t→∞

1

t
log Q⊗

t (U) ≥ lim inf
n→∞

[
lim inf
t→∞

1

t
log P(1)

(
L(1)

t ∈ Uw(µn)
)
+lim inf

t→∞

1

t
log P(2)

(
L(2)

t ∈ Uw(νn)
)]

where Uw(µn), Uw(νn) denote some neighborhoods of µn and νn in the usual weak topology in M1. By
the classical lower bound (3.4) and (3.7), we conclude

lim inf
t→∞

1

t
log Q⊗

t (U) ≥ lim inf
n→∞

{
− I(µn) − I(νn)

}
≥ −I(ξ⊗).
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The upper bound. Since X̃⊗ is a compact metric space, we only need to prove a local upper bound of the
form

(3.8) lim sup
t→∞

1

t
log Q⊗

t (U) ≤ −I(ξ⊗) =
∑

j

[
I(αj) + I(etaj)

]

for any neighborhood U of any ξ⊗ = (α̃jβj)j in a given closed set F ⊂ X̃⊗ in the metric D
⊗. By the

definition set in (2.6) of D⊗, the decomposition (2.13), and (2.14)-(2.17) then imply that for (3.8), it is enough
to estimate the probability

P⊗

{
∃c1, . . . , ck ∈ Rd, k ∈ N, r > 0: |ci − cj| ≥ 4r ∀i 6= j,

L(1)

t

∣∣
Br

∈ Uw
(
αj ? δcj

)
, L(2)

t

∣∣
Br

∈ Uw
(
βj ? δcj

)}
,

Note that the requirement (2.15) plays an important role in the above statement. Again by independence, the
above probability splits into the product

P(1)

{
∃c1, . . . , ck ∈ Rd, k ∈ N, r > 0: |ci − cj| ≥ 4r, L(1)

t

∣∣
Br

∈ Uw
(
αj ? δcj

)}

× P(2)

{
∃c1, . . . , ck ∈ Rd, k ∈ N, r > 0: |ci − cj| ≥ 4r, L(2)

t

∣∣
Br

∈ Uw
(
βj ? δcj

)}
.

Proposition 4.4 in [MV14] identifies
∑

j I(αj) and
∑

j I(βj) as the exponential decay rates of the probabil-
ities above and finishes the proof of (3.8). �

Lemma 3.3. The family of distributions Q̂⊗
t satisfies a large deviation principle in X̃⊗ with rate function

J(ξ⊗) = ρ̃−
∑

j

{∫
V (x− y)αj(dx)βj(dy) − I(αj) − I(βj)

}
ξ⊗ = (α̃jβj),

and

ρ̃ = sup
ξ⊗∈ eX⊗

∑

j

{∫

Rd

∫

Rd
V (x− y)ψ2

j (x)φ
2
j(y)dxdy −

1

2

∑

j

∥∥∇ψj
∥∥2

2
−

1

2

∑

j

∥∥∇φj
∥∥2

2

}

and αj and βj have densities ψ2
j and φ2

j such that
∑

j

∫
R3 ψ

2
j (x)dx ≤ 1 and

∑
j

∫
Rd φ

2
j(y)dy ≤ 1.

Proof. Suppose V is continuous and vanishes at infinity (i.e., V ∈ F⊗
1 ). Let us write, for any A ⊂ X̃

(3.9)

Q̂⊗
t (A) = P̂⊗

t

{
L̃⊗
t ∈ A

}

=

EQt

{
exp

{
1
t

∫ t

0

∫ t

0
V (W (1)

σ −W (2)
s )dσds

}
1lA

}

EQ⊗
t

{
exp

{
1
t

∫ t

0

∫ t

0
V (W (1)

σ −W (2)
s )dσds

}}

=
1

Z⊗
t

EQt

{
exp

{1

t

∫ t

0

∫ t

0

V (W (1)

σ −W (2)

s )dσds
}

1lA

}

where Q⊗
t is the distribution of L̃⊗

t in X̃⊗. To handle the required large deviation upper bound, we can take

A = F ⊂ X̃⊗ to be a closed set. Then the upper bound proved in Lemma 3.2, the continuity assertion
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proved in Corollary 2.6 and Varadhan’s lemma,

lim sup
t→∞

1

t
logEQt

{
exp

{1

t

∫ t

0

∫ t

0

V (W (1)

σ −W (2)

s )dσds
}

1lF

}

≤ sup
ξ⊗∈F

∑

j

{∫

Rd

∫

Rd
V (x− y)ψ2

j (x)φ
2
j(y)dxdy −

1

2

∑

j

∥∥∇ψj
∥∥2

2
−

1

2

∑

j

∥∥∇φj
∥∥2

2

}

where ξ⊗ = (α̃jβj) and αj and βj have densities ψ2
j and φ2

j such that
∑

j

∫
R3 ψ

2
j (x)dx ≤ 1 and∑

j

∫
Rd φ

2
j(y)dy ≤ 1.

Similarly for the desired large deviation lower bound, for any open set A = G ⊂ X̃⊗, by the lower bound
proved in Lemma 3.2, the continuity assertion proved in Corollary 2.6 and Varadhan’s lemma,

lim inf
t→∞

1

t
logEQt

{
exp

{1

t

∫ t

0

∫ t

0

V (W (1)

σ −W (2)

s )dσds
}

1lG

}

≥ sup
ξ⊗∈F

∑

j

{ ∫

Rd

∫

Rd
V (x− y)ψ2

j (x)φ
2
j(y)dxdy −

1

2

∑

j

∥∥∇ψj
∥∥2

2
−

1

2

∑

j

∥∥∇φj
∥∥2

2

}

For the total mass Z⊗
t in (3.9), we can take G = F = X̃⊗ in the two bounds proved above and conclude

(3.10)

lim
t→∞

1

t
logZ⊗

t = sup
ξ⊗∈ eX⊗

∑

j

{∫

Rd

∫

Rd
V (x− y)ψ2

j (x)φ
2
j(y)dxdy−

1

2

∑

j

∥∥∇ψj
∥∥2

2
−

1

2

∑

j

∥∥∇φj
∥∥2

2

}

If V (x) = 1/|x| in d = 3, then we can follow a truncation argument with replacing the singular function
V (x) = 1/|x| by Vδ(x) = 1/(δ2 + |x|2)1/2 ∈ F⊗

1 and invoke the super exponential estimate

lim sup
δ→0

lim sup
t→∞

1

t
log E⊗

[
exp

{
λ

t

∫ t

0

∫ t

0

Yδ(W
(1)

s −W (2)

σ )dsdσ

}]
= 0

for any λ > 0 to control the difference Yδ = V − Vδ. Such an estimate above is a routine check and its
proof is omitted. �

Lemma 3.4. If V (·) is positive definite, then

(3.11)

sup
α,β∈M≤1

{ ∫ ∫
V (x− y)α( dx)β(dy) − I(α) − I(β)

}

= sup
α∈M≤1

{ ∫ ∫
V (x− y)α( dx)α(dy) − 2I(α)

}

Hence,

(3.12) ρ̃ = sup
(eαj)j∈ eX⊗

∑

j

{ ∫

Rd

∫

Rd
V (x− y)ψ2

j (x)ψ
2
j (y)dxdy −

∥∥∇ψj
∥∥2

2

}

so that αj has density ψ2
j and

∑
j

∫
ψ2
j (x)dx≤ 1.

Proof. The lower bound in (3.11) is trivial. For the upper bound, note that, if V is positive definite, then

2

∫ ∫
V (x− y)α(dx)β(dy) ≤

∫ ∫
V (x− y)α(dx)α(dy) +

∫ ∫
V (x− y)β(dx)β(dy).

�
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The following lemma underlines the stability of the variational problem (3.12). This lemma, combined with
Lemma 3.3 and Lemma 3.4, will also finish the proof of Theorem 3.1.

Lemma 3.5. Let V (·) be any continuous, positive definite function vanishing at infinity such that the varia-

tional problem (3.1) has a rotationally symmetric maximizer ψ0 which is unique except for spatial translations.

Then the supremum in (3.12) is attained only when we have a single orbit µ̃0 with µ0(dx) = ψ2
0(x)dx for a

unique radially symmetric ψ0 and
∫

R3 ψ0(x)
2dx = 1

Proof. The proof can be found in Lemma 5.4 in [MV14]. �

3.2 Lyapunov exponents of the parabolic Anderson problem in Rd.

Let us now consider the stochastic partial differential equation written formally as

(3.13) ∂tZ =
1

2
∆Z + Zξ,

with a prescribed initial condition. Here ξ denotes white noise in Rd, which is a centered Gaussian process
with covariance kernel E

(
ξ(x)ξ(y)

)
= δ0(x − y). Since the random field ξ = {ξ(x)}x∈Rd can not be

defined pointwise and the product Zξ is ill-defined, we need a smoothing procedure leading to a mollified
and well defined version of (3.13). We are interested in the asymptotic growth rate of the moments of the
smoothened solution under a suitable “rescaling". In other words, we study the annealed Lyapunov expo-

nents of the smoothened model as the smoothing parameter is turned off. The The large deviation theory
developed in Section 2 and Section 3.1 allows a direct and explicit computation of the objects under interest
and implies, in particular, a certain intermittency effect exhibited by the smoothened model. Let us now turn
to a forma definition of the model.

Let us fix d ≥ 3 and for each ε > 0, let φε be a smooth mollifier in Rd, i.e., φε(x) = ε−dφ(x/ε) for some
smooth, positive definite, even function φ with compact support and

∫
Rd φ = 1. Then

∫
Rd φε = 1 and φε ⇒

δ0 as ε→ 0, where ⇒ stands for the weak convergence of probability measures as before. Let S = S(Rd)
denote the Schwartz space of rapidly decreasing functions. On a complete probability space (Ω,F ,P) we
denote by ξ = {ξ(f)}f∈S a centered Gaussian field with covariance E{ξ(f)ξ(g)} =

∫
Rd f(x)g(x)dx.

This can also be defined pointwise in Rd by setting

ξε(x) = ξ
(
φε(x− ·)

)
=

(
ξ ? φε

)
(x).

Note that ξε = {ξε(x)}x∈Rd is also a centered Gaussian process with covariance

(3.14) E
{
ξε(x)ξε(y)

}
=

∫

Rd
φε(x− z)φε(y − z) dz =

(
φε ? φε

)
(x− y),= Vε(x− y).

and we denoted Vε = φε ? φε. We want to consider the mollified version of (3.13) and study the asymptotic
growth rate of the moments of the solution as ε→ 0. For our purposes, this leads to a rescaled equation

(3.15)
∂tZε =

1

2
∆Zε + C(ε)Zεξε

Zε(0, x) = 1

where

(3.16) C(ε) = ε
d−2
2 d ≥ 3

Then the Feynman-Kac solution is given by

(3.17) Zε(t, x) = Ex

{
exp

{
C(ε)

∫ t

0

ξε(Ws) ds

}}
.
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where Ex refers to the expectation with respect to the Wiener measure Px for a d- dimensional Brownian
motion starting at x ∈ Rd. Since we are interested in the behavior of Zε(t, x) as ε → 0 for fixed t, we will
write Zε(x) = Zε(1, x) and study the asymptotic behavior of

mp(ε, x) = E
[
Zε(x)

p
]
p ∈ N

as ε→ 0.

Theorem 3.6. For any p ∈ N and x ∈ Rd,

(3.18)
lim
ε→0

ε2 logmp(ε, x) = mp

= 2p−1 sup
ψ∈H1(Rd)
‖ψ‖2=1

{
2p−2

∫ ∫

Rd×Rd
V (x− y)ψ2(x)ψ2(y)dxdy −

1

2
‖∇ψ‖2

2

}
,

where V = Vφ = φ ? φ.

Remark 1. It follows directly from Theorem 3.6 that

m1 <
m2

2
<
m3

3
< . . . .

This strict ordering is related to what is known as intermittency. As explained in [GM90], intermittent random

fields are distinguished by formation of a peculiar spatial structure of strong pronounced “islands"(such as

sharp peaks) which determine the main contribution to the physical process in such media.

Remark 2. Recently Hairer and Labbe ([HL15]) have carried out a robust construction of the ill-posed

equation (3.13) in R3 based on the seminal work on the theory of regularly structures ([H14]). This re-

sult shows that if we set the rescaling C(ε) = 1 in the mollified equation (3.15), then the approving solution

diverges like e1/ε (in leading order). Hence for a well-posed limit one must consider the renormalized equa-

tion ∂tXε = 1
2
∆Xε + ξε(Xε − κε) where κε ∼ 1/ε + | log ε|. Note that this nature of renormalization is

different from our scaling, subtracting the “infinite"constant κε is crucial for the convergence to a well-defined

solution in a robust sense ([HL15]). On the other hand, although our purpose is significantly different and

modest, a simple scaling argument in our proof shows that in d = 3, if we set C(ε) = 1 in (3.15), then the

first moment of the solution is the integral

Ex

[
exp

{
ε

∫ 1/ε2

0

∫ 1/ε2

0

V (Wσ −Ws)dσds

}]
.

Note that the above double integral diverges like ε−2 along the diagonal and hence divergence of the first

moment of the solution coincides with the aforementioned e1/ε divergence.

Let us now turn to the short proof of Theorem 3.6.

Proof of Theorem 3.6. We fix any starting point x ∈ Rd and handle the case p = 1 first. Then,

m1(ε, x) = E
(
Zε(x)

)
= E

{
E(x)

(
eε

d
2−1 R 1

0 ξε(Ws)ds

)}

= E(x)

[
exp

{
1

2
εd−2

∫ 1

0

∫ 1

0

dσds Vε(Wσ −Ws

)}]
,

since {ξε(x)}xRd is centered Gaussian with covariance given by (3.14). But,

Vε(x− y) =
(
φε ? φε

)
(x− y) = ε−dV

(
x− y

ε

)
,
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where V = φ ? φ. By Brownian scaling,

m1(ε, x) = Ex

[
exp

{
1

2
εd−2 ε−d

∫ 1

0

∫ 1

0

dσds V (ε−1(Wσ −Ws))

}]

= Ex

[
exp

{
1

2
εd−2 ε−d

∫ 1

0

∫ 1

0

dσds V
(
Wσ/ε2 −Ws/ε2

)}]

= Ex

[
exp

{
1

2
ε2

∫ 1/ε2

0

∫ 1/ε2

0

dσds V
(
Wσ −Ws

)}]

= Ex

{
exp

{
1

2τ

∫ τ

0

∫ τ

0

dσds V (Wσ −Ws

)}}

for τ = ε−2. Since the first moment involves only one path, by (5.10) in Theorem 5.3 in our earlier work
([MV14]) and Lemma 3.5,

lim
ε→0

ε2 logm1(ε, x) = lim
τ→∞

1

τ
logEx

{
exp

{
1

2τ

∫ τ

0

∫ τ

0

dσds V (Wσ −Ws

)}}

= sup
‖ψ‖2=1

{
1

2

∫ ∫

Rd×Rd
V (x− y)ψ2(x)ψ2(y)dxdy −

1

2
‖∇ψ‖2

2

}
= m1,

proving Theorem 3.6 for p = 1.

Let us now turn to the case p ≥ 2 and focus on the case p = 2 for simplicity. Let W (1),W (2) be two
independent Brownian motions both starting at x ∈ Rd with E⊗

x denoting their joint distribution. Then, using
similar scaling relations as before,

mp(ε, x) = E

[
E⊗
x

{
e

P2
i=1 ε

d/2−1
R 1
0 ξε

(
W

(i)
s

)
ds

}]

= E⊗
x

[
exp

{
1

2

2∑

i,j=1

εd−2

∫ 1

0

∫ 1

0

Vε
(
W (i)

σ −W (j)

s

)
dσds

}]

= E⊗
x

[
exp

{
1

2

2∑

i,j=1

ε2

∫ 1/ε2

0

∫ 1/ε2

0

V
(
W (i)

σ −W (j)

s

)
dσds

}]
.

We combine (3.10) in Lemma 3.3, Lemma 3.4 (recall V is positive definite) and Lemma 3.5,

lim sup
ε→0

ε2 log E
(
m2(ε, x)

)
= 2 sup

ψ∈H1(Rd)
‖ψ‖2=1

{∫ ∫

Rd×Rd
dxdy V (x− y)ψ2(x)ψ2(y) −

1

2
‖∇ψ‖2

2

}

= m2.

�
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