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Abstract The assessment of stability in cluster analysis is strongly related to
the main difficult problem of determining the number of clusters present in
the data. The latter is subject of many investigations and papers considering
different resampling techniques as practical tools. In this paper, we consider
non-parametric resampling from the empirical distribution of a given dataset
in order to investigate the stability of results of partitional clustering. In detail,
we investigate here only the very popular K-means method. The estimation of
the sampling distribution of the adjusted Rand index (ARI) and the averaged
Jaccard index seems to be the most general way to do this. In addition, we
compare bootstrapping with different subsampling schemes (i.e., with different
cardinality of the drawn samples) with respect to their performance in finding
the true number of clusters for both synthetic and real data.

1 Introduction

Originally, nonparametric bootstrapping is a statistical method for estimating
the sampling distribution of an estimator by sampling with replacement from
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the original sample (Efron, 1979, 1981). Many authors such as Mammen (1992)
derived asymptotic results of parametric bootstrapping. Others presented simu-
lation results of parametric/nonparametric bootstrapping (Efron, 1981; Efron
and Tibshirani, 1993).

This very simple technique allows estimation of the sampling distribution
of almost any statistic. Bootstrapping falls in the broader class of resampling
methods and simulation schemes. Some alternative resampling methods are
subsampling (draw a subsample to a smaller size without replacement) and
jittering (add noise to every single observation), and a combination of both
simulation schemes.

In hierarchical cluster analysis (HCA), we found out that bootstrapping
performs best for finding the number of clusters (Mucha and Bartel, 2014, 2015).
In all cases (toy and real data), it outperforms subsampling. In subsampling,
the choice of the parameter “resampling rate” p causes an additional problem.
A subsampling rate of 90% (i.e., p = 0.9: this corresponds in some sense to
tenfold-cross-validation) or greater performs very bad in HCA methods such as
Ward and Average Linkage. The question arises: Is bootstrapping also the best
choice for stability investigations of results of partitional clustering?

2 Partitional and hierarchical cluster analysis

A recent survey of partitional and hierarchical clustering algorithms is given by
Reddy and Vinzamuri (2014). Here we will emphasize the differences of these
two families of cluster analysis methods with respect to the results that have
to be assessed by resampling methods. Hierarchical clustering looks fit and
proper for resampling because of the (usual) unique and parallel clustering of
the I observations into partitions of K = 2,K = 3, . . . clusters. (Here, a partition
P(I,K) is simply the exhaustive partitioning of the set of I observations into K
subsets (clusters).) In addition, pairwise distances, the usual starting point of
hierarchical cluster analysis, are not affected by bootstrapping/subsampling.

The results of partitional (iterative) clustering methods are dependent on the
initial partition into a fixed number of clusters K. That’s quite different from
hierarchical clustering. In addition, the results of some exchange algorithms
are also dependent on the sequence of the observation (Mucha, 2009). For
instance, Fig. 1 shows a quite bad result of clustering of a dataset of three two-
dimensional randomly generated normal subpopulations. The three Gaussian
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Fig. 1 Result of Quickcluster of SPSS applied to 4000 observations.

subpopulations were generated with the following parameters: cardinalities
1100, 1600, and 1300, mean values (-3, 3), (0, 0), and (3, 3), and standard
deviations (1, 1), (0.7, 0.7), and (1.2, 1.2). Here the procedure Quickcluster
of SPSS is applied with the option running means: the clusters are updated
after each observation is assigned to a new cluster. In this two-dimensional
setting, one can check the validity of cluster analysis results visually by eye. In
a high-dimensional setting, there is a need for a general validation approach
that works in almost all situations (see the next subsection). In this paper, the
partitional clustering methods of our software ClusCorr98 are used (Mucha,
2009). Here, a random access to the observations is realized. This is in order
to avoid such bad solutions as shown in Fig. 1. Usually, many different initial
partitions, say around 50, are needed to get many different locally optimal
solutions. In practice, the best solution is taken for the investigation of stability.
Moreover, you have to do this for each K (K = 2,3, . . .). Finally, you have to
do all the things outlined above also for each bootstrap sample (or subsample).
Obviously, resampling of partitional clustering looks much more costly in terms
of computational complexity than hierarchical clustering. The good news is that
some partitional methods such as K-means clustering can work with pairwise
distances which are not affected by bootstrapping/subsampling.
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Fig. 2 K-means clustering of the two-dimensional no-structure data into three clusters (marked by
black borderlines and color).

Concerning interpretation/comparison of the assessment of stability of two
partitions P(I,K) and P(I,K +1) of a hierarchy one has to keep in mind that
exactly K�1 clusters are identical, i.e., only one cluster is changed when going
from P(I,K) to P(I,K + 1). That means, theoretically, the lower K the more
the stability of the partition P(I,K) depends on the stability of the partition
P(I,K + 1). This is different from partitional clustering where, usually, all
clusters of the two partitions are different.

Even though both clustering techniques, the well-known hierarchical Ward’s
method and the partitional K-means method, have the same underlying sta-
tistical model (Banfield and Raftery, 1993), the results are usually different.
Both methods minimize the same criterion (Eq. 1) below but they do this in
another way. The K-means clustering method produces the well-known Voronoi
tessellation, where the objects have minimum distance to their centroid and,
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Fig. 3 Ward’s clustering of the two-dimensional no-structure data into three clusters (marked by black
borderlines) and into 15 clusters (marked by color), respectively.

thus, the borderlines between clusters are hyperplanes as shown in Fig. 2. There
are 4000 random generated points in R2 coming from a standard normally
distributed population. In detail: a K-means clustering was done here based on
pairwise proximities (squared Euclidean distances, see equations (4) and (5) be-
low). By contrast, the Ward method does not create hyperplanes as borderlines
between clusters as illustrated in Fig. 3 for the three cluster solution. Both the
hierarchical Ward method and the partitional K-means method minimize the
within-cluster sum of squares criterion

WK(G) =
K

Â
k=1

tr(Wk) (1)

with respect to a Boolean assignment matrix G for a fixed K (for details see
below).
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Wk =
I

Â
i=1

gik(xi �xk)(xi �xk)
T (2)

is the sample cross-product matrix for the kth cluster Ck of a given data matrix
X = (xi j) consisting of I rows and J columns (variables), and

xk =
1

g.k

I

Â
i=1

gikxi (3)

is the usual maximum likelihood estimate of expected values in cluster Ck.
Further, g.k is the cardinality of cluster Ck, that is, g.k = Âi gik.

The Boolean assignment matrix G formalizes the simplest (elementary) solu-
tion to the clustering problem with a fixed number of clusters K: G 2 {0,1}I⇥K

(that is, G = (gik)) with the restriction of uniqueness and exhaustive assignment
(completeness) ÂK

k=1 gik = 1 for every object i. Formally, the mapping is:

G : C ⇥{1,2, . . . ,K}�! {0,1}

with

gik =

⇢

1 if observation i comes from the cluster (subset) Ck
0 otherwise.

Indeed, the cluster mapping G induces a partition P(I,K) = {C1, . . . ,CK} of C .
Here, by definition,

SK
k=1 Ck = C and Ck \Cl = /0 for every pair of clusters Ck

and Cl , k, l = 1,2, . . . ,K,k 6= l. This cluster mapping yields exactly K clusters
(subsets), where the numbering of the clusters is arbitrary because it usually
depends on the applied clustering algorithm. Alternatively, let g = (g1, . . . ,gI)T

denote the identifying labels for the clustering and thus for the cluster mapping
G, where gi = k if the ith object xi comes from the kth cluster. One can under-
stand g as a categorical variable or partition variable with K different nominal
states {1, 2, . . . ,K}. Formally, g = Ge, where the vector e = (1,2,3, . . . ,K)T

has K entities.
It is well known that the criterion (1) can be written in the following equiv-

alent form without the explicit specification of cluster centers (centroids) xk
(Späth, 1982):

WK(G) =
K

Â
k=1

1
2g.k

I

Â
i=1

I

Â
h=1

gikghkdih, (4)

and

Herein
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dih = d(xi,xh) = (xi �xh)
T (xi �xh) = kxi �xhk2 (5)

is the squared Euclidean distance between two observations i and h.
In practice, it is not possible to know how good our best (sub-optimum) result

matches both the true (but unknown) classes and the global optimum. We start
with many different initial partitions (usually 50), and we select the one that
gives the best criterion value. Cluster ensemble methods are another approach
in order to find a better cluster analysis result (see, for instance, Minaei-Bidgoli
et al, 2014; Fischer and Buhmann, 2003).

3 Resampling techniques in cluster analysis

Nonparametric bootstrapping is resampling taken with replacement from the
original data. Equivalently, bootstrapping can be formulated by choosing the
following random weights of the observations:

mi =

⇢

n if observation i is drawn n times
0 otherwise. (6)

Here we suppose that the original weights of the observations are mi = 1, i =
1,2, . . . , I (“unit mass”). Then, obviously, I = Âi mi holds in resampling with
replacement. Bootstrapping generates multiple observations. When clustering
“small” datasets, this can cause problems. The meaning of “small” depends
on several factors of influence such as the number of dimensions (variables)
and the complexity of the cluster analysis model. Small can be, for instance
in the case of simple models such as K-means clustering or Ward’s method, a
relation I/K < 5 with regard to the number of expected clusters K, or a number
of observations I < 20. In the last situation, soft bootstrapping is recommended
by Mucha and Bartel (2014). All statistical methods that make use (directly or
indirectly) of weights of the observations can do bootstrapping based on (6).
Concerning the K-means method based on pairwise distances, the “centers-free”
criterion (4) can be generalized by introducing the weights of the observations
to

WK(G) =
K

Â
k=1

1
2Mk

I

Â
i=1

mi

I

Â
h=1

gikghkmhdih. (7)

Obviously, it allows a computationally efficient bootstrapping because the
pairwise distances (5) remain unchanged in the K-means clustering.
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Subsampling is resampling taken without replacement from the original data.
It can also be formulated by choosing the following random weights of the
observations:

m⇤
i =

⇢

1 if observation i is drawn randomly
0 otherwise. (8)

Here I > L = Âi m⇤
i holds in resampling without replacement. The param-

eter p = L/I is needed which causes an additional problem, i.e., setting the
cardinality L of the drawn sample. This is different from bootstrapping where
no parameter is needed because here the cardinality of the drawn sample al-
ways equals I. Below we will investigate subsampling with different p values,
say p = 0.6 (“Sub60%”), p = 0.75 (“Sub75%”), and p = 0.9 (“Sub90%“). A
practical way out from choosing the parameter p would be to discard multiple
points in a bootstrap scheme (named “Boot2Sub“ in the investigations below).
Concretely, the random bootstrap-weights mi in (6) have to be modified simply
to

m⇤
i =

⇢

1 if observation i is drawn n times
0 otherwise. (9)

As a consequence of subsampling via (9), the cardinality of such a subsample
“Boot2Sub“ is around 63.2% of the I observations (see Efron and Tibshirani,
1997). Clearly, “Boot2Sub“ (based on (9)) and bootstrapping (based on (6)) lead
to identical results for all the cluster analysis methods that make no use (directly
or indirectly) of the weights of the observations mi such as the hierarchical
Single Linkage or Complete Linkage method.

For instance, the resampling method can be used to investigate the variations
of the centroids of the clusters, see Mucha and Bartel (2014). As an application,
Fig. 5 shows the estimates of the location parameters that are the result of
hierarchical Ward’s clustering of 250 non-parametric subsamples of the toy
dataset presented in Fig. 4. Here three clusters were investigated (for details see
Mucha and Bartel, 2014). But, in clustering, the estimation of parameters such
as the expected values is not the main task. However, in the case of quantitative
data, an estimation of the confidence regions around the cluster centroids can
be of interest. The final aim of clustering is the formation of groups either as a
partition or a hierarchy of a given set of observations. Therefore, here the focus
is on a general investigation of the stability based on partitions. This covers
also hierarchies because they can be considered as a set of partitions (Mucha,
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Fig. 4 Plot of the two-dimensional toy dataset divided into three classes by eye. The latter can be
found exactly by the partitional K-means clustering. The data values are integers. They can be taken
directly from the plot. The observations are numbered.

Fig. 5 Plot of the estimates of the location parameter of clusters. They are the result of Ward’s HCA
of 250 subsamples (75% resampling rate) into three clusters.
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2007). To assess the stability of a cluster in the most general way, resampling
techniques can be used.

Xiong and Li (2013) investigated many measures of stability with reference
to cluster analysis. Here our focus is on two measures, namely the adjusted
Rand index (ARI) R and the Jaccard index g . Why is validation of clustering so
important? That is because cluster analysis presents clusters in almost any case.
Real clusters should be stable, i.e., they should be confirmed and reproduced to
a high degree if the dataset is changed in a non-essential way (Hennig, 2007).
Thus, clustering of a randomly drawn sample of a dataset consisting of really
well-separated clusters should lead to similar results.

In clustering, usually nothing is known about the true class structure, es-
pecially about the number of clusters K. Therefore, the performance or the
stability of clustering can not be assessed by counting the rate of misclassifica-
tions based on a confusion matrix. However, with the help of non-parametric
bootstrapping we are able to operate also on a confusion matrix. It comes from
crossing two partitions: the original one and one coming from clustering a
“bootstrap” sample. Then the adjusted Rand index or other measures of stability
can operate on such an “artificial” confusion matrix. Usually, hundreds of boot-
strap samples are needed, see for details (Mucha and Bartel, 2015). Here we
work with B = 250 bootstrap samples and we take the average (or median) of
the B ARI values to come to a final RK ,K = 2,3, . . .. The maximum RK gives
us an idea about the number of clusters K we are looking for.

In addition to ARI, bootstrapping the Jaccard coefficient can be recom-
mended. The latter assesses the similarity between sets (clusters), for details,
see Hennig (2007). It can be used to measure the stability of each individual
cluster k by the corresponding Jaccard values g

b
k with regard to the bootstrap

sample b,b = 1,2, . . . ,B. Then we take the average (or median) of the B Jaccard
values to come to gk that assesses the stability of an individual cluster k. Both the
ARI and the averaged Jaccard measure gK are recommended for an investigation
of the stability of a partition into K clusters. Here, the latter is the average of
all Jaccard values gk of the K individual clusters of a partition into K clusters.
An alternative proposal can be, for instance, a weighted average of all Jaccard
values gk.

To summarize, bootstrapping of a stability measure is based on an original
clustering that is compared many times to corresponding clustering results
coming from a bootstrap sample. Concerning more details about bootstrapping
a stability index see Mucha (2007); Hennig (2007); Mucha and Bartel (2015).
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Fig. 6 Jaccard’s measures of partitional K-means clustering (shown in Fig. 4) of the toy data.

Fig. 7 ARI measures of partitional K-means clustering (shown in Fig. 4) of the toy data.

Other ways of the evaluation of cluster solutions via the bootstrap can be found,
for instance, in Fang and Wang (2012), and Dolnicar and Leisch (2010).
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4 Bootstrapping versus subsampling in partitional cluster analysis

Fig. 4 introduces a toy dataset consisting of three classes C1 = {1,2, . . . ,17},
C2 = {18,19, . . . ,23}, and C3 = {24,25, . . . ,32}, i.e., it seems to be plausible
that there are three classes when looking at the scatterplot. In Fig. 6, different
resampling techniques are compared based on the averaged Jaccard measure gK

for the validation of results of the toy data shown in Fig. 4. The three cluster
solution of K-means clustering matches exactly the three classes shown in
Fig. 4. Fig. 7 shows similar results as Fig. 6 but based on the ARI RK .

Fig. 8 Plot of the bivariate density estimate of the toy data.

Without much doubt, in this experiment only bootstrapping finds out that
there are three clusters. In addition, the ARI “outperforms“ Jaccard with respect
to the steepest rise when going from K = 2 to K = 3 clusters. But both present
similar results and especially both vote clearly for three clusters and for at most
four clusters. The latter because of the steep decrease when going further on to
five clusters. Almost all subsampling versions fail in finding the three clusters.
In addition, “Sub90%“ doesn’t indicate any partition clearly. Fig. 8 shows a
continuous representation of the toy data. Only class 2 looks homogeneous and
well separated (see also Fig. 4), and, maybe, there are more than three peaks.
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Fig. 9 Jaccard’s measures of K-means clustering of the Gaussian data.

Fig. 10 ARI measures of partitional clustering of the Gaussian data.

Similar to Figs. 6 and 7, Figs. 9 and 10 show the validation results of
the partitional K-means clustering of the randomly generated two-dimensional
three class data based on the averaged Jaccard measure gK and the ARI RK ,
respectively. The three Gaussian sub-populations were generated with the fol-
lowing parameters: cardinalities 80, 130, and 90, mean values (-3, 3), (0, 0),
and (3, 3), and standard deviations (1, 1), (0.7, 0.7), and (1.2, 1.2). K-means
clustering is successful in dividing (decomposing) the data into three subsets:
only five errors are counted.
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Fig. 11 Variance of ARI measures of partitional clustering of the Gaussian data.

Here bootstrapping performs also best in finding the three classes because it
has

1. the maximum value at K = 3,
2. the most steeply rising when coming from K = 2 and going to K = 3, and
3. the most steeply sloping when going further on to K = 4.

As before, “Sub90%“ performs worst. Subsampling “Boot2Sub“ looks most
similar to bootstrapping. However, looking at the variances of ARI, say for K =
2, bootstrapping has nearly three times more variance (Fig. 11). Bootstrapping
looks very instable for the K = 2 solution in contrast to “Boot2Sub“, and, thus,
bootstrapping excludes the wrong solution much clearer.

Next, a real dataset is investigated: the well-known Swiss banknotes data
(Flury and Riedwyl, 1988). The data consists of 200 Swiss bank notes based
on 6 measurements. There are 100 genuine bank notes and 100 forged ones.
Figures 12 and 13 show the validation results of K-means clustering that finds
the two classes almost perfectly except for one misclassified observation only.
The two true classes are confirmed by both the averaged Jaccard index gK and
the ARI RK . The steepest decrease when coming from K = 3 and going to
K = 4 indicates that at most three clusters have a high stability. The latter comes
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Fig. 12 Averaged Jaccard of the partitional K-means clustering of the Swiss bank notes data.

Fig. 13 ARI of the partitional K-means clustering of the Swiss bank notes data.

from the fact that the class of forged bank notes is much more heterogeneous
than the class of genuine bank notes (Mucha, 1996). Maybe, the reason for this
is that the forged banknotes stem from several different workshops.

The Iris flower data is another well-known real dataset (Fisher, 1936). There
are 150 observations that come from three species (classes). One class (species)
is easy to find because it looks well separated from the other two in a principle
component analysis plot (Mucha, 1992). The other two species are not well
separated of each other. 16 errors are counted when using the K-means method
with K = 3. Fig. 14 and Fig. 15 show the validation results of K-means cluster-
ing. The true three classes partition cannot be confirmed by both the averaged
Jaccard index and the ARI. The main reason for this failure may be, among
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Fig. 14 Averaged Jaccard of the partitional K-means clustering of the Iris data.

Fig. 15 ARI of the partitional K-means clustering of the Iris data..

others, that K-means clustering is not the appropriate method with an error rate
of more than 10%.
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5 Summary

In partitional cluster analysis, bootstrapping seems to be also the first choice
for both the decision about the number of clusters and the general investiga-
tion/assessment of stability. In all cases investigated so far (toy and real data), it
outperforms subsampling. It seems to me that multiple observations in bootstrap
samples (i.e., observations with mass mi > 1 in (6)) have a great influence for
finding the (true) number of clusters. Why? This question has to be answered
in the future. The experience of bootstrapping as the winner is similar to the
results of hierarchical cluster analysis presented in (Mucha and Bartel, 2014,
2015). But, we investigated here only the very popular K-means method. In sub-
sampling, the choice of the parameter “resampling rate” p causes an additional
problem. The simulation results based on a low subsampling rate such as 60%
looks similar to bootstrapping. If it necessarily should be subsampling then
the recommendation is to take the usual bootstrap scheme but discard multiple
observations, i.e., “Boot2Sub“. As a consequence, approximately 63.2% of the
observations will be presented in such a subsample. The advantage is that no
parameter for setting the sample size is necessary.
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