
Applied Surface Science Advances 6 (2021) 100182

Available online 18 October 2021
2666-5239/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

On the viscous dissipation caused by randomly rough indenters in smooth 
sliding motion 

Sergey Sukhomlinov a,b, Martin H. Müser *,a,b 

a Dept. of Materials Science and Eng., Saarland University, Saarbrücken 66123, Germany 
b INM – Leibniz Institute for New Materials, Campus D2 2, Saarbrücken 66123, Germany   

A R T I C L E  I N F O   

Keywords: 
Rubber friction 
Viscoelasticity 
Theory 
Green’s function molecular dynamics 

A B S T R A C T   

The viscous dissipation between rigid, randomly rough indenters and linearly elastic counter bodies sliding past 
them is investigated using Green’s function molecular dynamics. The study encompasses a variety of models 
differing in the height spectra properties of the rigid indenter, in the viscoelasticity of the elastomer, and in their 
interaction. All systems reveal the expected damping linear in sliding velocity v at small v and a pronounced 
maximum at intermediate v. Persson’s theory of rubber friction, which is adopted to the studied model systems, 
reflects all observed trends. However, close quantitative agreement is only found up to intermediate sliding 
velocities. Relative errors in the friction force become significant once the contact area is substantially reduced 
by sliding.   

1. Introduction 

In 2001, Bo Persson, who is honored in this special issue of Applied 
Surface Science Advances, published an article with the title Theory of 
rubber friction and contact mechanics [32]. The importance of this paper 
to tribology in general and to contact mechanics in particular can barely 
be overestimated. It is the first theoretical approach to the description of 
contacts between nominally flat surfaces making reliable predictions on 
many interfacial properties possible, at least in the important limiting 
case of linearly elastic bodies. The aspect of this seminal work on static 
contact mechanics has been scrutinized with many rigorous large-scale 
simulations. Agreement is found to be generally excellent, in particular 
for the dependence of mean separation on normal pressure [3,6,15,26, 
30,34,48] and the gap distribution function as well as the leakage rate 
that follows from it [13], including the leakage rate close to the perco
lation threshold [14] and for anisotropic surfaces [36,37,47]. 

One of the appeals of Persson’s theory is the ease with which it can be 
applied and extended to interfaces other than the default system con
sisting of a semi-infinite, elastic body in repulsive contact with an 
isotropic, randomly rough counterface. Often, it is sufficient to identify 
the correct expression for how the elastic energy depends on the wave 
vector of a sinusoidal surface undulation in full contact to address an 
entirely new contact problem. Comparison between Persson’s theory 
and accurate numerical approaches include the analysis of adhesion 

with half spaces [11,20,38,46] and thin elastic plates [9], anisotropic 
roughness [8,47], and generalized (graded) elastic manifolds [27], to 
name a few. 

In contrast to the many, just-mentioned tests on the validity of 
Persson’s theory regarding static contact mechanics, to which Persson’s 
own successful contribution to the contact mechanics challenge [26] can 
be added, the capability of his theory to describe viscous dissipation 
induced by the sliding motion of randomly rough indenters past elas
tomers has been scrutinized surprisingly little with stringent numerical 
methods. 

In fact, despite significant progress in numerical boundary-value 
simulations of visco-elastic solids  [4,5,10,12,16,21,23–25,31,40,41, 
43,45] over the last decade, only few studies  [2,5,24,43] presented a 
direct comparison of numerically rigorous simulations to Persson’s 
theory. In our perception, those latter works address predominantly a 
narrow parameter range with a focus on large relative contact areas, 
where good agreement with theory is found [2,5,24,43], but contain 
inconclusive results on the friction at velocities large enough to sub
stantially reduce the contact area. For example, only one [2] of the 
studies that we are aware of tested Persson’s theory by comparing its 
predictions to numerically accurate reference data [41] in a way that we 
find most meaningful, that is, by studying how the friction (coefficient) 
depends on velocity v at a constant normal pressure, for which the static 
(v = 0) relative contact area is clearly less than one half. While 
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Afferrante et al. [2] find semi-quantitative agreement between theory 
and simulations, even at large velocities when contact areas are small, 
others [5,24,43] find agreement only at relative contact areas ar⪆0.5. 
However, when the sliding velocity is large and ar⪅0.2, deviations be
tween theory and simulations appear to be large, as can be seen, for 
example, in Fig. 2 of Ref. [43], in Figs. 8–11 of Ref. [5], and in Fig. 8 of 
Ref. [24]. Moreover, none of the works incorporate inertial effects, 
which, in principle, are easily encoded into Persson’s theory, as we 
demonstrate in this study, but generally defy those approaches [10,12, 
40] assuming the Green’s function to factor into a time-dependent and a 
spatially dependent function. 

To investigate the validity of Persson’s rubber friction theory more 
comprehensively than before, we simulate the sliding motion of 
randomly rough indenters past elastic counterfaces. In this endeavor, we 
replace the commonly made non-overlap constraint with a repulsive 
interaction, in which the energy density increases quadratically with the 
overlap between the surfaces. This choice, which contains the non- 
overlap constraint as a limiting case, makes it possible to extend our 
favourite numerical technique for contact-mechanics simulation, 
namely, Green’s function molecular dynamics (GFMD) [7], from 
quasi-statics to dynamics. At the same time, Persson’s theory is readily 
adapted to account for such finite microscopic contact stiffness making it 
possible to meaningfully compare theory and simulation. In addition, we 
adjust his theory to reflect inertial effects, which are included in some of 
the employed viscoelastic models. We also extended our house-written 
GFMD code such that the standard-linear-solid model in the 
Kelvin-Voigt representation, which Persson used in his original work on 
rubber friction [32], could be simulated. 

The remainder of this article is organized as follows: In Section 2, we 
introduce the used models and methods. Section 3 contains a brief 
summary of Persson’s rubber friction theory including our modification 
to make it account for intertial effects and finite-range repulsion. Results 
are presented in Section 4, while conclusions are drawn in Section 5. 

2. Model and methods 

In this section, we present our model for the sliding contact of a 
(hypothetical) elastomer past a randomly rough indenter. To this end, 
we separate the model description into three parts, namely, the struc
tural properties of the indenter, the viscoelastic properties of the elas
tomer, and the interaction between the counterfaces. Once the model is 
set up, it is straightforward to implement the features into our house- 
written GFMD code, which has been described numerous times before 
[7,39,49]. Two new, important features were added to the code for this 
work: first, the use of the standard-linear-solid model and second, the 
way how sliding is imposed and lateral forces are measured. These as
pects are discussed in separate subsections. Finally, we present simula
tions of the retraction from and the sliding motion past a flat punch in 
this section to illuminate the dynamical properties of the various 
elastomers. 

2.1. Randomly rough indenter 

The height spectrum of a randomly rough indenter is generally 
assumed to cross over smoothly between being constant at small wave 
numbers q and to a power law dependence in q at large q, according to 
[19,22,28,35] 

C(q) =
Cr Θ(qs − q)

(
1 + q2

/
q2

r

)1+H (1)  

Here, Cr is the height spectrum at the roll-off wave number qr, Θ(…)

denotes the Heaviside step function, H is called the Hurst exponent, and 
qs = 2π/λs is the wave vector associated with the short wavelength 
cutoff λs. 

In addition to the default, smooth roll-off spectrum we also consider 

a hard cut-off spectrum, defined through 

C(q) = Cr (qr/q)2(1+H) Θ(qs − q)Θ(q − qr). (2)  

It allows some analytical results to be obtained more easily than for 
realistic spectra, which is why it is a useful reference from a theoretical 
perspective. As a compromise between smooth roll off and hard cut off, 
we also use a hard roll off spectrum, in which C(q ≤ qr) = Cr, while for 
other q, the spectrum is identical to that used for a hard cutoff. 

When defining a surface, the Fourier coefficient of the height h(r) is 
set to h̃(q) =

̅̅̅̅̅̅̅̅̅̅
C(q)

√
exp(2π iuq), where uq is an independent random 

number that is uniformly distributed on (0,1). Of course, h̃(0), which is 
nothing but the center-of-mass height of the indenter surface, is not 
assigned a random variable. Instead it is chosen such that the highest 
point of the surface equals zero. 

As default values, we use λr = 0.4 L, λs = 0.004 L, and H = 0.8. The 
specific value of C(qr) is irrelevant for this study, as we assume linear 
elasticity and report all results in reduced units so that no single reported 
number depends on the specific value of C(qr). However, we mention for 
completeness that heights are always normalized in our code such that 
the mean-square height gradient equals unity. 

2.2. Viscoelastic properties of the elastomer 

The viscoelastic properties of a linear solid determine its dynamical 
response to an external time-dependent stress, whereby they define the 
equations of motion. In a reverse conclusion, it can be argued that the 
way how the equations of motion are solved define the viscoelastic 
properties of the in-silico solid. In this sense, the default GFMD dynamics, 
which are set up as to let the simulation quickly relax to static solutions, 
scarcely reflect realistic dynamics. They are nevertheless well defined 
dynamics, which allow us to ascertain to what extent Persson’s theory 
faithfully reflects inertial effects. This is why we consider GFMD dy
namics in addition to dynamics reflecting standard, linearly viscoelastic 
solids, which we solve in a similar way as Bugnicourt et al. [5], who also 
used a Fourier based approach to model viscoelastic half spaces. 

Finally, the small-slope approximation is assumed. This concerns 
both, the viscoelastic aspects as well as the interfacial interactions. 

2.2.1. Conventional GFMD dynamics 
In most Fourier-based GFMD simulations conducted so far, the 

equation of motion of a surface mode ũ(q) satisfies 

mq
¨̃u(q, t) + γ mq

˙̃u(q, t) + qE∗

2
ũ(q, t) = σ̃(q, t), (3)  

where mq is the inertia associated with a given mode, γ is the rate with 
which velocity is damped, and σ̃(q, t) is the Fourier transform of the 
stress acting on the solid’s surface, which includes interfacial and 
external stresses. In this work, the latter is simply the nominal pressure 
p0 acting on the center-of-mass mode. 

Here and in the following, σ is meant to refer to compressive stresses. 
In our calculations, the elastomer is squeezed down with the nominal 
pressure p0 against the substrate. This way, a positive stress leads to a 
positive displacement and the mean interfacial stress is equal to p0 in 
steady-state sliding. When presenting results visually, we found it more 
intuitive to revert that set-up. 

The dynamical properties of the model are defined by the choice of 
the inertia mq and the damping γ, the latter of which could also depend, 
in principle, on the wave vector. We define a reference mass mref such 
that if mref were assigned to the stiffest mode, the intrinsic frequency of 
the stiffest mode of the system, ̃u(qmax), would be unity in an appropriate 
unit system, i.e., 

mref =
qmax E∗

2
[t]2, (4) 
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where [t] is the unit of time in our unit system. Two different approaches 
are used in this work: In the original, or, regular GFMD [7], the inertia of 
all modes is chosen equal, while in mass-weighting (MW) GFMD [49], an 
attempt is made to collapse the frequencies at small relative contact 
area, by assigning smaller inertia to longer wavelength undulations. 
While the proportionality in MW-GFMD is usually made a function of the 
normal pressure p0 with which the elastic solid is squeezed down on the 
indenter, we decided to use an inertia that does not depend on p0, to ease 
the interpretation of numerical results. 

To summarize, the following two choices were made 

mq = mref ×

⎧
⎨

⎩

1 regularGFMD
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

q2
0 + q2

√ /

qmax MW − GFMD,
(5)  

where q0 = 2π/L is the smallest non-zero wave vector fitting into the 
periodically repeated, square simulation cell having edges of length L. 
Finally, the damping term is chosen as 

γ = [t]− 1
{

q0/qmax regularGFMD
1 MW − GFMD (6)  

such that the slowest internal modes are close to being critically damped 
in regular GFMD, i.e., modes with wave number q0. In MW-GFMD, all 
modes are reasonably close to critical damping [49]. 

2.2.2. Standard-linear-solid dynamics 
To obtain more realistic dynamics than those produced by conven

tional GFMD, we also consider the standard model for linear solids in the 
Kelvin-Voigt representation. It had also been used in Persson’s pio
neering paper on rubber friction [32]. The model contains two degrees 
of freedom and is depicted in Fig. 1. 

In the notation of Section 2.2, the equations of motion read: 

γ mq
˙̃u(q, t) + qE2

2
ũ(q, t) = γ mq

˙̃v(q, t) + qE2

2
ṽ(q, t) + σ̃(q, t) (7a)  

γ mq
˙̃v(q, t) + q(E1 + E2)

2
ṽ(q, t) = γ mq

˙̃u(q, t) + qE2

2
ũ(q, t). (7b) 

Substituting γ mq with τ q E2/2 and realizing that ṽ(q, t) = 2 σ̃(q, t)
/(q E1), the equation of motion for ũ(q, t) simplifies to Bugnicourt et al. 
[5] 

q
2

{
τ ˙̃u(q, t) + ũ(q, t)

}
=

E1 + E2

E1 E2
σ̃(q, t) +

τ ˙̃σ(q, t)
E1

, (8)  

from where it can be easily deduced that the static contact modulus, E∗ =

E1 E2/(E1 + E2), results from a series coupling of two static compliances. 

Obviously, Eq. (8) cannot be used for the centre-of-mass mode, 
u0(t) ≡ ũ(0, t), because the prefactor to u̇0(t) disappears. We therefore 
replaced the prefactor to the u̇0(t) term with qeff

CME2τ/2 and treated qeff
CM as 

a free parameter, whose value only affects the stability of the integration 
scheme as well as how quickly u0(t) approaches its steady-state value. If 
we had simulated the relative sliding motion of two rough bodies, its 
proper choice would necessitate knowledge of body heights, h. To lowest 
order, it should be possible to set qeff

CM = q0 L/h, at least as long as h is not 
(distinctly) less than L. If this were not the case, the prefactors to the 
elastic restoring forces have need to be changed anyway. 

Since this work is concerned with steady-state sliding, the possibility 
to encode steady-state sliding into a static Green’s function was 
exploited [25]. To this end, the substrate was fixed in space and the 
time-dependence of the steady-sliding motion of the slider written as 
ũ(q, t) = ũ(q,0) exp(− i ω t) with ω = q⋅v. This leads to a q-dependent 
modulus of 

E(ω= − q⋅v) = E0
1 + i ω τ E0/E1

1 + i ω τ . (9) 

A final extended note on our numerical solution of Eq. (8) is in place. 
We estimate ˙̃σ(q, t) with a numerical first-order finite difference of the 
current and the previous value of ̃σ(q,t). This induces a systematic lag of 
half a time step in ˙̃σ(q, t), which could certainly be alleviated through a 
predictor method. However, a predictor increases the demands on 
memory and computing time. More importantly, it deteriorates the 
numerical stability when sudden events occur or when the substrate 
potential is very stiff. This would become particularly relevant if short- 
range adhesion were included. In those cases, the displacement field 
jumps between two or even several branches from one time step to the 
next. Reducing the time step by as much as a factor of 100 did not 
generally alleviate the situation, even when jumps occurred only be
tween two branches. To stabilize the integration scheme in such situa
tions, we applied a low-pass filter to the (original) r.h.s. of Eq. (8) of the 
type flpf(t) = (1 /τ)

∫ t
0dt′ exp( − t′ /τ) f(t′ ), where f(t) is the original r.h.s., 

while flpf(t) is the function obtained after low-pass filtering, which is 
then used as new r.h.s. of Eq. (8). Of course, it needs to be insured that τ 
is small compared to any characteristic time scale in the system. e.g., 
small compared to the discretization length over sliding velocity. An 
alternative solution to the stability issue could be the use of an implicit 
integration method, which, however, would be quite demanding on 
memory, computing time, and coding time, while not necessarily 
promising success. In contrast, realizing a low-pass filter necessitates 
only one additional, large array to be allocated and a few minutes of 
coding. 

2.3. Interfacial interaction 

When elastomer and indenter have a positive gap, g(r), their inter
action energy is set to zero. Once they start overlapping, i.e., once 
g(r) < 0, their energy density increases quadratically with the overlap. 
Thus, the total interfacial energy in our model reads 

Vint =
κi

2

∫

d2r g2(r)Θ( − g(r)), (10)  

where Θ(…) is the Heaviside step function. 
The default choice of the stiffness parameter is 

κD
i = 0.2qmaxE∗, (11)  

where qmax is the maximum wave number contained in the simulation 
cell, i.e., qmax =

̅̅̅
8

√
π nx/L, where nx is the number of grid points into 

which the elastomer is discretized parallel to one spatial direction. This 
way, the interfacial potential is close to being as stiff as the stiffest mode 
in the system, i.e., κi is roughly as large as possible without creating the 
need of having to (substantially) reduce the time step compared to a 

Fig. 1. Standard linear solid model in the Kelvin-Voigt representation with the 
parameters used in the GFMD simulations. 
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simulation of a free but initially strained surface. To test the relevance of 
this choice for final results and to demonstrate that Persson’s theory was 
generalized correctly for finite interfacial stiffnesses, κi was also set to 
values different than its default. To approach the non-overlap constraint, 
we also consider a local interfacial contact stiffness of κi = 4 κD

i . This 
latter choice led to dynamical instabilities, which we believe were pre
dominantly caused from the ˙̃σ(q, t) term on the rhs of Eq. (8). To elim
inate this unintended behavior, we implemented the low-pass filter for 
the elastic stresses mentioned at the end of Section 2.2.2, which stabi
lized all modes. 

2.4. Imposing sliding and measuring lateral forces 

To impose sliding without (significant) discretization artifacts, we 
store the initial Fourier coefficients of the height profiles and propagate 
them in time according to 

h̃(q, t) = h̃(q, 0) ei q⋅v t. (12)  

After each time step, the inverse Fourier transform is taken so that the 
precise height of the sliding indenter is known at the grid points rep
resenting the elastomer. 

The instantaneous lateral force in the in-plane-direction can be given 
as 

f = − ∇ΔrVtot(Δr), (13)  

where Δr is a virtual, rigid, relative, displacement of the two counter 
bodies by the in-plane vector Δr. In the Derjaguin approximation (i.e., 
assuming interfacial interactions to depend only on the local height 
difference but neither on height gradients nor on deformation gradients 
nor on related terms), it can be evaluated to be 

f = −

∫

A
d2r σ(r)∇h(r), (14)  

if the compliant top solid is displaced by Δr relative to the stiff bottom 
indenter having the height profile h(r). 

The magnitude of the instantaneous dissipated power can be ob
tained by multiplying the force from the damping element times the 
velocity. Thus, for conventional GFMD dynamics, the dissipated power 
is given by 

Pd(t) = A γ
∑

q
mq

⃒
⃒
⃒ ˙̃u(q, t)

⃒
⃒
⃒

2
(15a)  

with ˙̃v(q, t) = 2 ˙̃σ(q, t)/(qE1) and A = L2 the nominal contact area, while 
for SLS dynamics 

Pd(t) =
A τ E2

2
∑

q
q
⃒
⃒
⃒ ˙̃u(q, t) − ˙̃v(q, t)

⃒
⃒
⃒

2
(15b)  

must be used. 
In steady-state sliding, the mean lateral force corresponds to the 

friction force whenever there are no external constraints beyond con
stant sliding velocity, so that the friction force at constant velocity v is 
given by: 

F(t) = −
Pd(t)

v
v
v
. (16)  

Thus, estimates obtained through the direct computation of the lateral 
force (method 1) and those obtained by the measurement of the dissi
pated power (method 2) approach each other during “running in”, 
which happens quite rapidly in the considered set-up of a rough indenter 
sliding past an originally flat but compliant counterbody. Only small 
discrepancies remain between the two methods, which disappear line
arly as the time step Δt is decreased, method 1 generally yielding smaller 

errors in our simple integration scheme. Δt is always made small enough 
so that the discrepancies remain below 1%, which makes us confident 
that absolute errors due to finite-time-step errors are also at most 1%. 

2.5. Model validation on single-asperity contacts 

To validate our model and to also gain more intuition about the 
dynamics produced by the various viscoelastic models, we studied their 
time- or velocity-dependent behavior in various single-asperity contacts. 
We first discuss the sliding motion of an elastomer past a rigid, flat 
punch. Its radius was set to 0.2 times the length L of the periodically 
repeated simulation cell. To reduce Gibbs ringing in the tip shape caused 
by the rigid translation of a discontinuous tip profile, the tip height was 
brought down swiftly but smoothly from its maximum value to zero. 
Results for displacements and stresses during steady-state sliding are 
shown in Fig. 2. It may be useful to keep in mind that the different 
methods mentioned in the different panels define the inertial and 
viscoelastic properties of the system. 

At zero sliding velocity, both stress and displacement profiles are 
symmetric, see Fig. 2(a). The stress singularities at the edge of the 
contact are smoothed compared to the continuum solution due to a finite 
discretization and the finite stiffness of the punch-elastomer interaction. 
At non-zero velocity, the peak profiles become asymmetric for all 
studied dynamics, as revealed in Fig. 2(b–d). For the two dynamics 
involving inertia, waves are produced within the contact at the leading 
edge, which are much more pronounced and rugged in regular GFMD 
than in MW-GFMD. Assigning larger inertia to larger wavelength un
dulations, i.e., by reflecting them more realistically in those cases where 
inertia matter, would certainly bolster this trend. 

Further insight into the dynamics of the various models can be 
gained from Fig. 3, which shows how the displacement fields relax after 
the sudden removal of a flat punch. MW-GFMD and SLS dynamics look 
similar to the eye. This is because a free surface has relaxation times that 
are independent of the wavevector for SLS dynamics and almost inde
pendent for MW-GFMD dynamics. As a consequence, SLS is a perfectly 
shape conserving relaxation, while MW-GFMD produces only an almost 
shape-conserving relaxation, albeit with slightly different dynamics 
than SLS. Specifically, the relaxation function is a single exponential for 
SLS, while it is (close-to) critical damping dynamics for MW-GFMD. In 
contrast, regular GFMD makes short-wavelength undulation move on 
smaller time scales than long-wavelength undulations. The time step is 
therefore restricted by local dynamics so that it takes many times steps 
for the coarse features of the profile to disappear. 

To ascertain which dynamical model mimics what application, it 
must be determined when inertia and when damping counteracts the 
static restoring force of a surface undulation more strongly for a given 
wave number q and velocity v. Their relative importance can be crudely 
estimated with the ratio r(q) = ρ ω/(q2 E2 τ)→ρ v/(qE2 τ), so that inertial 
corrections have the upper hand for r(q)≫1 and viscous corrections for 
r(q)≪1. Assuming typical values for moderately cross-linked elasto
mers, say, E∗ = O(10 MPa), τ = O(1 s), ρ ≈ 103 kg/m3, and sliding ve
locities of v = 10− 3 − 1 m/s, the cross-over wave number qc, for which 
r(qc) ≈ 1 is many orders of magnitude, i.e., more than seven decades, 
smaller than typical roll-off wave numbers qr≈ O(104 m− 1). Thus, in
ertial effects are clearly irrelevant for sliding dynamics of elastomers 
with relaxation times of order 1 s. However, for hard-matter systems, in 
which relaxation does not arise from thermally activated dynamics but 
from phonon-phonon or phonon-electron coupling, τ is easily nine to 
twelve orders of magnitude smaller than for polymers. Inertia would 
then prevail even at sub-micrometer scales. However, other effects, such 
as plastic deformation, may have to be included in order to faithfully 
represent the time dependence of contact stresses locally. At large 
wavelengths, these details may be negligible owing to Saint-Venant’s 
principle. 

In the final part of the model validation, a Kelvin-Voigt elastomer 
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slides past a Hertzian tip at different velocities. The problem is directly 
linked to that of a rolling cylinder, which has an analytical solution [18]. 
At low and high velocities the contact is close to being circular in shape, 
and the surface stresses resemble that of a Hertzian contact (see Fig. 4). 
This can be rationalized in a straightforward way when considering the 
two limiting cases of frequency-dependent elastic modulus of the 
viscoelastic modulus: at very low speed it is almost constant and is close 
to E2, while at high velocities the modulus effectively approaches close 
to E1. These observations are perfectly in line with results of related, 
earlier work [12,29,44,45]. 

3. Theory 

3.1. Full contact 

In our model, full contact is achieved when the pressure is high 
enough to induce a negative gap throughout the contact. The Fourier 
component of the stress acting on the surface is 

σ̃(q, t) = κi

{
h̃(q, t) − ũ(q, t)

}
+ p0 δq,0, (17)  

so that the solution for the displacement ̃u(q, t) in the frequency domain 
satisfies 

ũfc(q,ω) =
κi

κ(q,ω) + κi
h̃(q,ω), (18)  

for q ∕= 0, where κ(q,ω) is the effective “stiffness”, which satisfies 

κ(q,ω) =

⎧
⎪⎪⎨

⎪⎪⎩

qE∗

2
− mqω2 + iγmqω (conv.GFMD)

q
2

(1 + iωτ)E2 E1

(1 + iωτ)E2 + E1
(SLS)

(19)  

The regular full-contact solution, ũfc(q, ω) = h̃(q,ω), is recuperated in 
Eq. (18) in the limit of infinitely large local interfacial stiffness, i.e. when 
κi→∞. 

At constant v, the frequency associated with a wave vector q is ω = q⋅ 
v so that the absolute square of the stress acting on that mode at constant 
sliding velocity v is 
〈⃒
⃒
⃒
⃒σ̃fc(q)

⃒
⃒
⃒
⃒

2〉

v
=

⃒
⃒
⃒
⃒

κ(q, q⋅v) κi

κ(q, q⋅v) + κi

⃒
⃒
⃒
⃒

2 ⃒
⃒
⃒h̃(q)

⃒
⃒
⃒

2
. (20)  

This expression, which will be needed later, states by how much the 
second moment of the stress distribution increases in full contact due to 
the existence of the height Fourier component h̃(q). 

The full-contact dissipated power remains to be determined. To
wards this end, it is useful to realize that each mode contributes with 

Pfc
d (q, v) = A κ′′(q,q⋅v) (q⋅v)2

⃒
⃒
⃒h̃(q)

⃒
⃒
⃒

2
(21)  

to the total dissipated power, where κ′′(q,ω) is the imaginary part of κ(q,
ω). 

Fig. 2. Stress profiles σ(r) and displacements u(r) produced by a flat-punch indenter using different dynamics for the elastomer. (a) Static equilibrium, (b) regular 
GFMD, (c) mass-weighting (MW) GFMD, and (d) standard-linear-solid (SLS) GFMD. The leading edge of the contact is located near r = − L /5, the trailing edge at r =
L/5. The modes of the regular GFMD are (strongly) underdamped, except for the q0-modes, while those of the MW-GFMD are at half the critical damping. 
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3.2. Partial contact 

In Persson’s theory, a contact problem is first solved without 
considering random roughness. Thus, for flat, periodically repeated 
surfaces, the stress distribution is initially represented by a delta func
tion, Pr(σ) = δ(σ − p0). The next assumption is that the stress distribu
tion would broaden in the contact by an amount given by Eq. (20) if the 
roughness undulations of the nominally flat indenter associated with 

h(q) were resolved and included into the calculation. If all roughness 
with wave vectors of magnitude less or equal q are resolved, the 
following interfacial stress or pressure variance is obtained 

Δp2(q) =
∑

q′
,q′ ≤q

〈
|σ̃(q)|2

〉
. (22)  

Since negative stresses are forbidden in repulsive contacts, the stress 
distribution in contact, i.e., for σ > 0 is estimated by 

Pr(σ > 0, q) = 1̅̅̅̅̅̅̅̅̅̅̅̅̅
2πΔp2(q)

√

{

exp
[

−
(p− p0)

2

2 Δp2(q)

]

− exp
[

−
(p + p0)

2

2 Δp2(q)

]}

.

(23)  

This distribution is motivated by the interpretation of the stress in real 
space as a random walk, and thus as a diffusive process, in which the 
stress in a contact point increases or decreases randomly whenever an 
additional h̃(q) is resolved. In this analogy, a stress of zero is an 
absorbing barrier in the diffusive process, where the random walker 
moves out of contact. This constitutes an absorbing barrier in the 
diffusive process, whose effect is reflected by the second summand on 
the r.h.s. of Eq. (23). The latter could also be called a mirror Gaussian by 
the mathematical analogy of the diffusion equation to electrostatic 
problems, where absorbing or reflecting boundaries can be represented 
through mirror charges. For a more detailed analysis of this analogy, the 
reader is referred to the original literature [32,33] or to a derivation 
similar in spirit to the one presented here [15]. 

The relative contact area, which would be obtained if only those 
height undulations with wave vectors whose magnitude does not exceed 
q were resolved, can then be obtained by an integral over the stress 
distribution function over positive σ so that 

ar(p0, q, v) = erf
(

p0
̅̅̅
2

√
Δp(q, v)

)

. (24) 

If we now assume that forced motion and thus dissipation occurs 
predominantly in the contact area, the magnitude of the friction force 

Fig. 3. Relaxation dynamics from a rigid-punch indentation in the three different models, (a) regular GFMD, (b) mass-weighting (MW) GFDM, and (c) standard- 
linear solid (SLS) dynamics. The time evolution is shown in units of time steps, one time step corresponding to Δt = 1. 

Fig. 4. Contact geometry (top) and interfacial stress (bottom) during steady- 
state sliding of the standard-linear-solid model with E1/E2 = 1000 past a 
Hertzian indenter at different sliding velocities. Units are defined such that the 
static contact modulus E∗, the relaxation time τ, and the radius of curvature Rc 

are all unity. 
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becomes 

f =
1
v

∑

q
W[ar(p0, q, v)]Pfc

d (q, v), (25)  

where the weight function W(ar) was originally chosen to be W(ar) = ar, 
while later modifications of the theory assumed W(ar) = γ ar + (1 − γ)a3

r 
with γ being a numerical constant [33]. Reasons for why the weight 
function W(ar) might be less than the relative contact area—and not 
simply coincide with it—were proposed recently [27]. 

4. Results 

Before presenting numerical results and comparing them to Persson’s 
theory, we need to emphasize that two dimensionless numbers of order 
unity were used in the theory, which, however, remained constant 
throughout all calculations. First, for the weighting function W(ar)

introduced in Eq. (25), γ = 0.6 is used rather than 0.4, which is 
commonly assumed to accurately predict the elastic energy of semi- 
infinite elastomers [34]. The reason for the need of such a correction 
factor has recently been linked to the observation that the 
root-mean-square gradient averaged over true contact is less than its 
average over the entire domain when true contact is partial [27]. Since 
the theory is not an exact theory, except in full contact, the optimum 
numerical value for γ may thus differ for the calculation of elastic and 
kinetic energy. Second, to better match results on relative contact area, 
the prefactor α = 1.25 precedes the nominal pressure p0 when 
computing the relative contact area with Eq. (24), i.e., we use ar(α p0, q,
v) when computing W(ar). This corrections makes the predicted 
low-pressure relative contact area obey ar ≈ 2 p∗0 at small reduced 
pressure p∗0 ≡ p0/(gE∗)⪅0.1, where g is the root-mean-square gradient of 

the rigid indenter—at least when both ratios λs/λr and λr/L are very 
small [47]. 

To set the stage for further discussion, we first juxtapose theoretical 
and numerical results for a small system in Fig. 5. Its size and dynamics 
are altered with respect to the default model for illustrative purposes. 
Specifically, the ratio qs/qr is reduced by a factor of four compared to the 
default system, allowing the whole system to be visualized while still 
resolving small-scale features. Moreover, the dynamics are those ob
tained by mass weighting, which makes it possible to reveal inertial 
effects. Yet, many of the observations that can be made on the investi
gated small, inertial system repeat themselves for larger systems with 
conventional viscoelastic dynamics. 

First, it can be noticed in panel (a) of Fig. 5 that the theory re
produces the relative contact area as a function of velocity reasonably 
well up to intermediate velocities, where the contact area decreases due 
to the sliding motion. The velocity at which ar is reduced to half its static 
value is well matched. However, the theory clearly underestimates the 
relative contact area at very large velocities. At the same time, albeit, 
barely visible to the eye, a relative minimum occurs in ar at large v. This 
effect is somewhat more ascertainable in the numerical data than in the 
theory. In the theory, the minimum occurs at the point where (mostly 
short-wavelength) modes are relatively compliant due to resonance ef
fects. This happens when |κ(q, q⋅v)| passes through a minimum. 

Next, it can be seen in the bottom row of Fig. 5 that differences be
tween elastic and interfacial stress are minor at small velocities. They 
become larger with increasing sliding velocity. At very large velocities, 
the (vertical) velocity of a surface element, which is lateral velocity 
times the gradient of the steady-state displacement field, changes 
discontinuously after being impacted by a bump on the rough surface. 
Due to inertia, the maximum displacement caused by the momentum 
transfer does not peak right at the end of the impact, as it does for 

Fig. 5. Top row: (a) Relative contact area ar (left) and (b) friction coefficient μ (right) as a function of velocity v. The theoretical prediction for the force is shifted to 
the left by plotting it as F(v/2) to demonstrate qualitative similarity between theory and simulation. Bottom row: Contact geometry and elastic as well interfacial 
stresses at low (A), intermediate (B), and large (C) sliding velocity. Letters used in the bottom row correlate with those in the top row. The size of the simulation cell is 
reduced compared to that of the default model. The surface modes of a free surface are set to be critically damped, i.e., γ = 2. 
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standard dynamics, but shortly after. In either case, the elastic stress 
does not relax quasi-instantaneously so that the dissipation caused by 
the relaxation occurs at points of time when the impacted point has 
moved far away from the asperity causing the impact. As a consequence, 
at very large velocities, elastic and interfacial stress no longer resemble 
each other. In our understanding, this retardation effect is not accounted 
for in Persson’s theory, which, in our opinion, is the main reason why 
the relative differences between numerical and theoretical friction co
efficients are large as revealed in panel (b) of Fig. 5. At the same time, 
one may wonder if this deficiency in the theory needs to be fixed as 
absolute errors are small. 

It may also be worth noting that the symmetry of the interfacial stress 
revealed by the furthest most left asperity in contact changes from 
almost symmetric, at least after blurring the individual stress peaks, to 
clearly asymmetric, and back to being almost symmetric. This is quali
tatively similar to the situation described for Hertzian contacts in Fig. 4. 

To further set the stage for an anlysis of the final results, we repeat 
the representative MW-GFMD analysis with that of a system with SLS 
dynamics, which lacking inerts. Results are shown in Fig. 6. This time 
theory reflects the simulations more accurately than for the system with 
inertial terms. The key difference between the two set-ups is that the 
frequency-dependent elastic modulus has a well-defined limit E(ω→∞)

for the standard viscoelastic model, which does not exist in inertial 
systems. As a consequence, the contact topography and thus also the 
contact area of the SLS system at v→∞ is similar to that of a static system 
with modulus E(∞). Due to the finite curvature of the interfacial po
tential, this stiffening does not translate into a reduction of the contact 
area close to a factor of E(∞)/E(0) but to a distinctly smaller reduction. 
The relatively large differences for ar at large sliding velocity can be 
linked to a variety reasons: The discretization effects are relatively large 
in the simulations, in particular when the relative contact area is small 
and the mesh size is not adjusted. The ratio of system size and λr are 
relatively small as well as the ratio λr/λs. Each effect can lead to a quite 
substantial overestimation of the relative contact area from simulations 

[39,50]. In addition, Persson theory has been shown to underestimate 
contact area in line contacts at small pressures [42]. 

In the following, we wish analyze how well different aspects of the 
studied models are reflected by Persson’s theory. To this end, we will 
include a default set-up and vary either (i) the viscoelastic properties of 
the elastomer (Fig. 7) or (ii) the slider-indenter interactions (Fig. 8) or 
(iii) the substrate geometry (Fig. 9). The default system is defined as 
follows: (i) Viscoelastic properties: SLS dynamics with E1/E2 = 103 and 
τ = 1. The static contact modulus E∗ = E2E1/(E2 +E1) is set to unity. (ii) 
Slider-indenter interactions: The stiffness of the slider-indenter overlap- 
penalty potential is set to 0.2 E∗qmax, where qmax ≡

̅̅̅
8

√
π/Δa is the largest 

wave number of the discrete elastic manifold. The default value for qmax 

is ⪆8π/λs so that the mesh size satisfies Δa⪅λs/4. This discretization is 
certainly not small enough to make the calculations approach the true 
continuum limit, which, however, we see as unproblematic for mainly 
three reasons. First, nature is not continuous at the smallest scale either. 
Second, we adopt the theory to account for finite contact or overlap 
stiffness. Third, the theory is not an exact theory and meant to predict 
trends. (iii) Substrate geometry: Self-affine roughness with a Hurst 
exponent of H = 0.8 and a smooth roll-off. The ratio of roll-off wave
length and system size and that of the short wavelength cutoff and the 
roll-off wavelength are λr/L = 0.4 and λs/λr = 1/100, respectively. 

We begin the comparison between GFMD simulations and Persson’s 
theory in Fig. 7 by analyzing how different viscoelastic models affect the 
dependence of the friction coefficient μ ≡ F/L on sliding velocity v. In 
addition to the default SLS dynamics, we study regular GFMD dynamics 
as well as mass-weighted (MW) GFMD. For both additional types of 
GFMD simulations, the damping constant and the reference mass were 
set to γ = 1 and mref = qmax E∗/2 [t]2, which can be associated with the 
inertia of short wavelength modes. To remind the reader, we mention 
that inertia of long wavelength modes are decreased in MW-GFMD, in 
order to make different modes relax on similar time scales. 

Figure 7 reveals the generic behavior of rubber friction for all 

Fig. 6. As Fig. 5, however, this time for the SLS model.  
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dynamical models and at both high and low pressure: μ takes its 
maximum at intermediate v. Theory and simulations correlate quite 
well. Agreement is almost perfect at large reduced pressures and small 
sliding velocity. This is not surprising, as the theory uses the full-contact 
solution as input. The agreement remains semi-quantitative for the most 
part in the case of partial contact, which is obtained at large sliding 
velocities v and/or low reduced pressures p∗. The locations of the 
maxima, vmax, are well reflected in the theory, at least on a logarithmic 
scale. Differences between computed and predicted vmax typically 
approach a factor of two at small reduced pressures. The largest dis
crepancies between theory and simulation occur when the pressure is 
small, the sliding velocity large, and inertial effects as strong as in reg
ular GFMD. In that case, theory underestimates the maximum friction 
coefficient by no more than 50%. In contrast, theory overestimates the 
maximum friction coefficient for SLS and MW-GFMD dynamics. 

We continue our comparison between GFMD simulations and Pers
son’s theory in Fig. 8 by analyzing how different interactions models 
affect the dependence of the friction coefficient μ ≡ F/L on sliding 

velocity v. In addition to the default interfacial stiffness, κD
i , softer and 

stiffer overlap penalties are considered. The theory reflects quite accu
rately how dissipation increases with increasing interfacial stiffness. It 
also reveals quite clearly that vmax is insensitive to the precise value of κi. 
As before, agreement between theory and simulation is better at large 
than at small normal stress. 

In our interaction model between slider and elastomer, we consider 
the overlap penalty to be proportional to the qmax, which means the 
smaller the linear bin size Δa, the higher the interfacial stiffness κi. An 
interesting question to ask is how do theory and simulations converge to 
the continuum or hard-wall limit? To find an answer to this question, we 
set the sliding velocity and the reduced pressure to constant values, v/
vref = 0.05 and p∗ = 0.1, respectively, and increase the number of grid 
points in the system, so that the ratio of λs and the bin size decreases. To 
quickly approach the continuum limit, we consider one-dimensional 
interfaces, in which case C(q)∝q− 1− 2H. Figure 10 reveals that the the
ory deviates more strongly from the simulation results as the continuum 

Fig. 7. Friction coefficient μ as a function of velocity for different dynamical models: regular GFMD (triangle down, red), mass-weighted-GFMD (triangle up, blue), 
and standard-linear solid (SLS) dynamics (filled diamond, black). Velocity is expressed in units of vref = γ λr for regular and MW-GFMD dynamics and in vref = λr /τ for 
SLS dynamics. Left: Low-pressure, p∗ ≡ p/(gE∗) = 0.05, leading to roughly 10% relative contact area. Symbols represent GFMD results, lines - theory. Slider geometry 
and substrate-slider interactions are fixed to their default values. Right: High-pressure, p∗ = 5, leading to full contact at zero sliding velocity. MW and SLS curves are 
shifted vertically by 0.25 and 0.5 in (a) and by 0.1 and 0.2 in (b), respectively, to avoid overlap between lines. All curves tend to zero in the limits of zero and infinite 
velocities. . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Similar to Fig. 7, however, this time, the dynamical model is fixed to SLS dynamics and the substrate-slider interactions are varied. In addition to the default 
value of κD

i = 0.2 qmax E2 (filled diamond, black), the numerical values 0.25κD
i (triangle down, red) and 4κD

i (triangle up, blue) are considered. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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limit is reached. We rationalize this observation as follows: The theory 
does not assume displacement modes with wave vectors q > qs so that 
displacement modes ũ(q> qs) cannot dissipate energy. However, they 
do in “reality”, unless they do not exist due to the absence of sub-atomic 
atoms. Since self-affine roughness is frequently observed down to the 
smallest scales, we would argue that studying the approach to the con
tinuum limit is somewhat of a predominantly mathematical exercise. 
Yet, what can be learned from it is that the coupling of static or time- 
dependent h̃(q) modes to modes associated with larger wave vectors 
does contribute to the overall dissipation and that the coupling increases 
with the stiffness of the interactions between rigid, rough slider and 
elastomer. 

For our final comparisons between Persson’s theory and GFMD 
simulations, we varied the surface spectra. One time, we only changed 
the way how C(q)) crosses over from the self-affine branch to the small- 

wave-number domain, which were, cut-off as well as abrupt and smooth 
roll-off. Effects on the friction are marginal at small velocities. However, 
at high velocities we observe some differences between the three 
choices. This is because dissipation at large velocities is related to longer 
wavelength undulations, which is where the three approaches differ. 
The more dramatic change of surface spectrum was the substitution of 
the Hurst exponent from H = 0.8 to H = 0.3. Relative effects are again 
reproduced quite closely. Relative errors in the friction force for H = 0.3 
are slightly larger at small velocities than for H = 0.8, however, the 
overall trends are matched again quite accurately. 

To better rationalize the discrepancies between theory and simula
tions, we conducted an additional analysis, in which we resolved the 
dissipated power as a function of wave number q and velocity for the 
default set-up. This was done by computing the function < Pd(q, v) >, 
which represents the expectation value of individual summands on the r. 
h.s. of Eq. (15b). In the limit of high pressures and low velocities, the 
theory is exact, as is clearly borne out in Fig. 11(A-C). This is because full 
contact is reached and the theory assumes the full-contact solution as 
input. However, when contact starts being partial, discrepancies appear. 
Yet, at high pressure, the overall shape of the curves including the 
location of maxima are well matched, as can be seen in Fig. 11(D-E). 

For low pressures, e.g., one leading to approximately 10 % contact 
area at v = 0, the theory underestimates the friction coefficient at low 
speeds, as was revealed in Figs. 8–9. The discrepancy originates partly 
from the deformations that occur at wavelengths smaller than λs, which 
are neglected in the theory. The contribution of these modes are 
revealed most clearly by the tails of the simulation data for q/qr > 100 in 
Fig. 12 for state points A and B. Similarly, the theory ignores that an 
undulation at wave vector q can excite, for example, a time-dependent 
and thus dissipative undulation with wave vector 2q, even if 2q is less 
than 2qs. The existence of such mode coupling has already been 
demonstrated earlier for static contacts [1,24]. The observed trends 
remain robust under sliding, namely, a sharp drop in the displacement 
spectrum at q = qs. 

Significant discrepancies occur at large velocities and small pressure. 
In that limit, the shape of the theoretical and simulated Pd(q, v) differ 
and moreoever, height and location of the maxima are substantially 
shifted with respect to each other. However, except for large v and small 
p, the q-dependence of the dissipated power is predicted quite well by 
the theory in steady-state sliding. 

Fig. 9. As Fig. 7, however, this time, the dynamical model is fixed to SLS dynamics and the substrate geometry is varied. Friction as a function of velocity for H = 0.8 
with smooth roll-off (triangle up, red), H = 0.8 with regular roll-off (triangle down, blue), H = 0.8 with cut-off (diamond, green) and H = 0.3 with smooth roll-off 
(circle, black). λr/L, κi, Δa/λmax were fixed to their default values. Velocity is expressed in units of vref = λr/τ. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

Fig. 10. Dependence of the friction coefficient μ on the discretization λs /Δa at 
fixed velocity v/vref = 0.05 and fixed reduced pressure of p∗ = 0.1 for SLS- 
GFMD (black circles) and Persson’s theory (blue triangles). The geometry of 
the rough substrate corresponds to H = 0.8, λs/L = 0.04 and λr /L = 0.4. 
Substrate-slider interactions are characterized by κi = 0.2 qmax E2. (For inter
pretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 
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5. Conclusions 

In this work, we used GFMD to study various contact models with the 
goal to ascertain the validity of Persson’s contact mechanics theory for 
sliding interfaces between an elastomer and a rigid, randomly rough 
counterface. Similar earlier comparisons [2,5,24,44] were very valu
able. However, only the standard-linear solid model had been investi
gated hitherto and the focus was on large relative contact areas and/or 
low-dimensional systems, for which Persson theory may not perform as 
well as for regular two-dimensional interfaces [27,42]. The theory 

reproduces at least semi-quantitatively how friction increases with 
sliding velocity v up to the point of maximum friction. At larger sliding 
velocities, i.e., once sliding is so fast that it reduces noticeably the true 
contact area, agreement between theory and simulation is less good and 
remains only qualitative when inertial effects become important. In the 
latter case, relative errors in the predicted and the computed friction 
force can be significant at large v. This weakness of the theory is 
observed for all studied dynamical systems but is most pronounced 
when inertial effects become important. One reason for the discrepancy 
between theory and simulation results for intertial systems is that 

Fig. 11. (a) Friction coefficient μ as a function of velocity v at a pressure of p∗ = 5 for SLS-GFMD (black diamonds) and theory (full line), and the expectation value of 
the dissipated power Pd(q, v) as a function of q for several fixed values of velocities: (A) v/vref = 10− 3, (B) v/vref = 10− 2, (C) v/vref = 10− 1, (D) v /vref = 100, and (E) v 
/vref = 101. SLS-GFMD results are drawn as black circles, theoretical predictions - as blue crosses. The parameters of the rigid indenter are set to default options. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 12. Same as Fig. 11 but for lower pressure of p∗ = 0.05.  
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relaxation and thus dissipation occurs more and more outside of the 
contact close to its trailing edge as velocity increases, while the friction 
force acts increasingly at the leading edge of contact, similar to what has 
been observed in the atomistic simulation of surfactant molecules [17]. 
However, the theory assumes dissipation to occur symmetrically in the 
contact, i.e., as much at the leading as at the trailing edge, as is, in fact, 
the case at small sliding velocities. It does not include the 
sliding-induced asymmetry in displacement and stresses. Unfortunately, 
it is not clear to us yet how to encode this insight into Persson’s 
description of sliding contacts. However, it may not be particularly 
important to do so, because absolute corrections are small. 

In conclusion, Persson’s approach to time-dependent, self-affine 
contacts reproduces the observed effects on the friction coefficient at 
least semi-quantitatively, except for highly inertial systems at small 
pressure and medium to large sliding velocities. Successful predictions 
include the way how maximum friction coefficient μmax and their loca
tion vmax, change with the parameters defining the model. In general, the 
absolute values for μmax have errors of less than 50%, while vmax tends to 
be underestimated by a factor of two at small reduced pressures. Given 
the simplicity of the theory, this level of agreement can only be deemed 
remarkable. 
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