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Abstract  
 
In this article, the optimal control of a cooling line for production of dual phase steel in a hot 
rolling process is discussed. In order to achieve a desired dual phase steel microstructure an 
optimal cooling strategy has to be found. The cooling strategy should be such that a desired 
final distribution of ferrite in the steel slab is reached most accurately. This problem has been 
solved by means of mathematical control theory. The results of the optimal control of the 
cooling line have been verified in hot rolling experiments at the pilot hot rolling mill at the 
Institute for Metal Forming (IMF), TU Bergakademie Freiberg.   
 
 
 
 
 
Introduction 
 
Dual Phase steels (DP steels) have shown high potential for automotive applications due to 
their remarkable property combination with high strength and good formability [1]. The hot 
rolling process as illustrated in Figure 1 has been proven to offer economical benefit for the 
production of DP steel as it provides good microstructure homogeneity with acceptable 
surface quality for many applications. 
 
The hot rolling process of dual phase steel consists of 4 steps as shown in Figure 1:  
 

1. Rolling in roughing and finishing stands, which results in the refinement of austenite 
grain size due to the repeating static recrystallization plus an activation of austenite by 
increasing dislocation density in (partially) non-recristallized fractions, 

2. Laminar cooling into two phase region, 

3. Isothermal holding at ferrite transformation region temperatures, where the 
temperatures remain relatively constant, 

4. Fast continuous cooling to the required coiling temperature, during which martensite 
transformation takes place and bainite transformation can be avoided. 

 
The process window in hot rolling of dual phase steel is shown to be tight as only very short 
time in order of less than 10 s is allowed on the run out table (ROT) according to its limited 
length. In this time on the ROT the steps 2, 3 and 4 have to be performed before coiling. 
The goal of this paper is to derive and validate a mathematical optimal control approach to 
compute the optimal cooling strategy for steps 2 and 3 in Figure 1 to achieve a desired 
temperature and microstructure distribution prior to quenching in step 4. 
To this end we rely on a model for ferrite growth in dual phase steels, which has been 
developed in a previous paper [1] and includes also the effect of austenite conditioning in step 
1 of the process.  

 
The main novelty of this paper is the derivation and utilization of a mathematical optimal 
control algorithm to compute the desired ferrite fraction and temperature at the end of step 3 
of the process. Existing optimal control approaches for run-out tables up to now solely focus 



2 
 

on the evolution of temperature, see, e.g., [2, 3]. To validate our approach the computed 
optimal amount of water was used for a hot-rolling experiment at the pilot hot rolling mill at 
IMF at TU Bergakademie Freiberg.  

 
Figure 1: A sketch of the processing scheme for hot rolled dual phase steel. 

 
 
Experimental procedure 
 
In this study an alloying concepts based on Mn-Mo was selected for the hot rolled dual phase 
steels as shown in Table 1 [4]. The material was laboratory casted in a 80 kg block, pre-
forged on the Semi-Product-Simulation-Center (SPSC) at IEHK into a format of 60 x 60 mm² 
and cooled to room temperature by air cooling. 

 

Table 1:  Chemical compositions of the investigated steel grades (in wt.%) 

 C Si Mn P S Cr Mo N 

Mn-Mo 0,08 0,03 1,44 0,004 0,002 0,02 0,15 0,003 

 
A series of hot deformation experiments has been performed at the dilatometer (Baehr DIL-
805A/D) in order to simulate the hot rolling process and the effect of austenite conditioning 
on the later ferrite transformation kinetics. The details of the hot deformation dilatometer tests 
including the dilatometer cycles and the test parameters can be found in a former article [4]. 
Based on the dilatometer results on the phase transformation kinetics and the final phase 
fractions after deformation and controlled cooling the model parameter of the phase 
transformation model have been adjusted. Again the details of this work including the final 
parameter identification procedure can be found in the above mentioned article [4].  
 
Pilot scale hot rolling was performed at Institute for Metal Forming (IMF), TU Freiberg. The 
hot rolling experiment started with reheating the slabs at 1150 °C for 15 minutes, followed by 
mechanical descaling, and finally rolling in a four-stand mill to the final thickness of 3.5 mm. 
During rolling, the slab temperatures at each rolling stand were determined by five 
pyrometers at the entrance and/or exit of the stands above the slab surface (approximately 350 
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mm above), shown in Figure 2. In order to improve the pyrometer accuracy the steam was 
eliminated by a pressured air curtain. On the ROT the sheet velocity was 0.85 m/s. Sheets 
were cooled down from the final rolling temperature to the aimed temperature 700 °C within 
2 s by a high pressure cooling unit. Further, the sheets were kept quasi isothermally on the 
ROT for 7-10 s, followed by quenching into 20 °C water bath. The process details like final 
rolling parameters of the hot rolling experiments have been reported in [5]. The necessary 
model parameters of the cooling section of the pilot plant in Freiberg have been identified in 
[6]. 
 

 
Figure 2: Pilot hot rolling mill at IMF, TU Bergakademie Freiberg, Germany [6]. 

 
 
A mathematical model for phase transition and temperature on ROT 
 
After the last deformation step, steel is cooled by water jets on the run out table, where ferrite 
starts to grow. The austenite-ferrite phase transformation can be described by the following 
ordinary differential equation (ODE): 
 

1 2( ) ( ) ( ) ( , )eq f ff t f T f g T g Dγ ε
+

 = − ⋅ ⋅ 
&  (1a) 

                                                                            (1b) 
 
where ( )f t  denotes the ferrite fraction and T is the temperature. 

The expression [ ]+u  in the model equations describes the positive part of a value u, i.e. 
[ ] { }0,max uu =+ . The term ( )eqf T  describes the asymptotic equilibrium fraction of ferrite as a 

function of temperature T after isothermal holding. The function relates to the isothermal 
transformation behaviour of ferrite, starting from homogeneous austenite state. The function 

2( , )fg Dγ ε  couples the influence of austenite grain size Dγ and the effect of retained strain ε  

on the isothermal ferrite transformation kinetics. Details about the austenite-ferrite 
transformation model on the run out table can be found in [1]. 
 
To describe the evolution of temperature on ROT we have to complement (1a)-(1b) with the 
heat equation. To this end we assume heat conduction to be negligible in the feeding direction 
of the specimen and write down the system for a 2D cross section, which yields the system 
 

                                       1 2( ) ( ) ( ) ( , )eq f ff t f T f g T g Dγ ε
+

 = − ⋅ ⋅ 
&   (2a) 

                                      (0) 0,f =  (2b) 

(0) 0,f =
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∂

&                       in  (0, )EtΩ×  (2c) 

                                   ( )( )water

T
k = u t T T

n
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       on ),0(1 Et×Γ  (2d) 

                                   0
T

k =
n

∂−
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                          on ),0(2 Et×Γ  (2e) 

                              0)0,,( TyxT =                            in Ω , (2f) 

 
where 
          κ - the thermal conductivity, 
          c  - the specific heat, 
         ρ  - the density, 

     waterT  - is the temperature of the coolant.    

 
Here, the end-time Et  is calculated as a sum of the time in cooling segment and holding time 

on ROT after the cooling.  The termLfρ & on the right-hand side of (2c) describes the latent 
heat of the phase transition. As has been found in [6], the spatial variation of the heat transfer 
coefficient is negligible due to the special nozzle geometry. Hence the function u(t)  denotes 
an only time-dependent heat transfer coefficient.  
 
For solving the optimal control problem in the next section, this coefficient will act as the 
unknown control. But finally, we have to relate this expression to the amount of water )(tw , 
which is the real control quantity in the Freiberg plant. In [6] we have derived the following 
expression for u(t) in terms of )(tw  and the strip speed v  of the hot rolling mill at IMF: 
 
                                                                           (3) 
 
 
 
Optimal control of the cooling line  
 
Our aim is to compute on optimal amount of water for the cooling line to achieve a desired 
distribution of ferrite df  at the end-time Et . At the same time we want to realize a desired end 

temperature dT . This will be done in a two-stage approach. Firstly, we use an optimal control 

strategy to compute an optimal time-dependent heat transfer coefficient u(t). Then, we use 
eqn. (3) to compute the corresponding optimal amount of water w(t), which serves as the 
control quantity at the pilot mill.  
 

To this end, we define the cost functional 

2 2 231 2

0

( , , ) ( ( , ) ( )) ( ( , ) ( ))
2 2 2

Et

E d E dJ T f u T x t T x dx f x t f x dx u dt
αα α

Ω Ω

= − + − +∫ ∫ ∫  

 
 

− − ⋅ ⋅ − −=
2 2(1.48 0.28 )( 0.8) 0.63 0.45( ) ( ) ( )

0.05 100
v t v v w

u t e
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where the last regularizing term penalizes high costs. Then we consider the control problem  
(CP) 
 
               min ( , , )J T f u  
                     such that ( , , )T f u  satisfy the state system (2) 

                             and the control constraint ba uuu ≤≤ , (0, )Et t∈ . 

 
(CP) is a nonlinear boundary control problem, where a cost functional is minimized while at 
the same time the state equations for temperature evolution and ferrite growth have to be 
satisfied. The numerical solution is quite intricate, since it requires the iterative solution of the 
state system and an additional adjoint system which is used to compute the gradient. To 
achieve the solution within reasonable computing time, we have developed a sequential 
quadratic programming (SQP) algorithm for this problem, which shows quadratic conver-
gence in contrast to the linear convergence of standard gradient algorithms. For algorithmic 
details we refer to the forthcoming paper [7]. For the implementation we have used the Finite 
Element toolbox pdelib, which has been developed at WIAS. Numerical results will be 
discussed in the following section. 
 
 
Numerical results for Mo-Mn dual phase steel    
 
We solve the (CP) in order to obtain the optimal cooling strategy for a Mo-Mn DP-steel with 
90% ferrite and a desired end temperature on the ROT 680dT =  °C. The process parameters 

are the following:  the holding time on the ROT is 10s, the strip speed in the cooling line is 
0,85 m/s.  
 
Table 1 shows the convergence behavior of the SQP algorithm, which roughly approximates 
the problem by a sequence of quadratic subproblems Ν∈iQP i ,)( , thereby achieving 

quadratic convergence as in Newton’s method. The columns show the iteration number, value 
of the cost functional, norm of the difference of two subsequent solutions and the number of 
iteration steps in each quadratic sub-problem. 
 

 

Table 1: Value of objective function iJ  and relative error in i-iteration of SQP method. 

 
 
 
The calculated optimal heat transfer coefficient is depicted in Figure 3.  
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Figure 3: Optimal heat transfer coefficient )(tu . 
 
 
The control is nearly constant during the duration of 2 s in the cooling line.  
 

 
 

Figure 4: Optimal amount of water ( )w t . 
 
 
 
Experimental validation  
 
To validate our approach, experiments have been carried out at the IMF Freiberg. Here, the 
defining control parameter is the flow-rate of cooling water w(t), which is related to the heat 
transfer coefficient u(t) via eqn. (3). Figure 4 depicts the resulting optimal flow rate. Due to 
the construction of the cooling line at IMF only a constant value of the flow-rate can be 
adjusted. Thus we derived the average amount of water  
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0

1
( ) 70 [l/min]

Et

E

w w t dt
t

= =∫  . 

This quantity can be prescribed in the cooling line. This is of course only an average of the 
optimal solution. Since the state system is nonlinear, the simulation result for this quantity fed 
back into the state equation will differ from the optimal one as computed in the last section. 
Indeed, Figure 5 shows a resulting end temperature of 617 °C and a ferrite fraction of 82.7%. 
These values differ from the computed ones in the last section, however, a ferrite fraction of 
this order is satisfactory for dual phase steel.   
 

 
Figure 5: The simulated final temperature (left) and phase distribution (right) 

 in the cross-section of the slab. 
 
 
Now we are in a position to compare the numerical results with the experimental ones. To this 
end, the samples have been investigated at IEHK Aachen in terms of phase fractions by 
means of light optical metallography. Here, the microsections of the processed sample have 
been analyzed using automatic picture analysis system based on black-white contrast.  
 

 

 
 

Figure 6: Microsection of the sample for the Mo-Mn steel. 
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Figure 6 shows a microsection of the sample for the Mo-Mn DP steel. The quantitative 
analysis yielded a ferrite fraction of 87% and 13% martensite. Hence, the difference between 
the experimentally achieved ferrite fraction and the numerically predicted one of 82,7% is of 
order 5%, which in view of many uncertainties in the semi-manual process guidance at the 
pilot plant is a very satisfactory result. 
 
 
 
Conclusion and outlook 
 
The goal of this paper was to show how mathematics can be used for the computation of 
process conditions to develop multiphase steels with desired composition by controlled 
cooling on the run-out table of a hot rolling mill. The results have been verified in practice 
and can be used for the offline optimization of run-out tables.  
 
There are two challenging directions of future research:  
 

- On the one hand the phase transition models have to be complemented with an 
additional equation for bainite in order to extend the model to other multiphase steels, 
e.g., TRIP steel. Concerning bainite in TRIP steels new a second isothermal holding 
step or a controlled cooling strategy has to be implemented in the ROT processing 
strategy.  

- On the other hand regarding the industrial employment the development of real-time 
process control strategies based on (CP) is a very important task. Here, recent 
developments in model reduction techniques seem to be a promising tool and will be 
subject of future research of the authors. 
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