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Abstract

We experimentally demonstrate the precise localization of
spherical Pt-Silica Janus micromotors (diameter 5 µm)
under the influence of controlled magnetic fields. First, we
control the motion of the Janus micromotors in two-
dimensional (2D) space. The control system achieves
precise localization within an average region-of-conver‐
gence of 7 µm. Second, we show that these micromotors
provide sufficient propulsion force, allowing them to
overcome drag and gravitational forces and move both
downwards and upwards. This propulsion is studied by
moving the micromotors in three-dimensional (3D) space.
The micromotors move downwards and upwards at
average speeds of 19.1 µm/s and 9.8 µm/s, respectively.
Moreover, our closed-loop control system achieves locali‐
zation in 3D space within an average region-of-conver‐
gence of 6.3 µm in diameter. The precise motion control and
localization of the Janus micromotors in 2D and 3D spaces

provides broad possibilities for nanotechnology applica‐
tions.

Keywords micromotors, magnetic control, localization, 3D
space, self-propulsion

1. Introduction

Self-propelled micromotors demonstrate fully autono‐
mous motion and are attractive devices for various tasks on
the microscale. They show promise for diverse biomedical
applications, such as targeted drug delivery, cleaning
clogged arteries, cell sorting, biopsy [1] and other applica‐
tions, such as micromanipulation [2], microassembly [3]
and microactuation [4]. Magnetic Janus micromotors
consist of a platinum-covered hemisphere and a second
non-catalytic hemisphere. The platinum cap provides the
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particle with a propulsion force due to the catalysis of
hydrogen peroxide to oxygen and water on the platinum
surface. In addition to the propulsion feature, the Janus
particles possess a magnetic cobalt/platinum multilayer
cap underneath the platinum that allows the particle to
align its magnetic moment along the main symmetry axis
of the cap [5]. This feature provides the Janus micromotor
with controlled motion when exposed to an external
magnetic field.

Self-driven Janus micromotors have been shown to be
useful in several applications, such as DNA hybridization
[6], hydrazine detection [7], environmental remediation [8]
and micro-cargo delivery [5]. However, there exist at least
three challenges that must be overcome before utilization
can be made of Janus micromotors in biomedical applica‐
tions. These challenges are the precise localization and
motion control of the Janus micromotors in 2D and 3D
spaces [9], the visualization of these micromotors using a
clinical imaging modality [10, 11], and their biocompatibil‐
ity for in vivo applications [12].

Controlled magnetic fields have been used to steer and
drive self-propelled [13]-[19] and magnetically-driven
microrobots [20]-[23]. Baraban et al. have experimentally
demonstrated the transportation of colloidal cargoes using
single and pairs of Janus micromotors as carriers [24]. It has
also been shown that the application of a weak homogene‐
ous magnetic field achieves the directed motion of the Janus
micromotors [25]. This motion control has been done in 2D
space without feedback to achieve the precise localization
that is required for in vivo applications.

In this study, we present advances in the motion control of
self-driven Janus micromotors in 2D and 3D spaces. We
show that the Janus micromotors can be precisely localized
using point-to-point motion control. Furthermore, we
show that the propulsion force generated using the Janus

Figure 1. Schematic representation of the autonomous motion of catalytic
Janus micromotors (5 µm in diameter) and steering under the influence of
the controlled magnetic fields. The Janus micromotors can be used to achieve
targeted drug delivery by controlling their motion in relation to diseased
cells (red) so as to decrease negative side-effects on healthy cells (grey). The
magnetic fields are generated using the electromagnetic system shown in
the bottom-right corner. The inset in the upper-left corner shows a scanning
electron microscopy image of a Janus micromotor.

micromotors overcomes drag and gravitational forces,
hence allowing them to achieve upwards and downwards
controlled motion in relation to a reference position in 3D
space.

The remainder of this paper is organized as follows: Section
2 provides descriptions pertaining to the manufacturing,
modelling and motion control of the Janus micromotors.
The localization and motion control experiments of the
Janus micromotors in 2D and 3D spaces are included in
Section 3. Finally, Section 4 concludes and provides
directions for future work.

2. Fabrication and control of Janus micromotors

The manufacturing of Janus micromotors has been report‐
ed by Baraban et al. [5]. They are synthesized using silica
colloids (SiO2) and capped with multiple layers of cobalt/
platinum. It has also been reported that these motors move
in hydrogen peroxide due to the catalytic decomposition at
the platinum surface. The magnetic layer system offers the
directional control of the Janus particle when external
magnetic fields are applied.

2.1 Fabrication of the Janus micromotors

A suspension of spherical silica colloids (Bangs Laborato‐
ries) with a diameter of 5 µm is dropped onto an oxygen-
plasma-cleaned 15 mm×15 mm glass substrate so that a
monolayer of particles forms on the glass slide. The glass
slides are dried under ambient conditions to remove the
solvent. Afterwards, the glass slides are introduced to the
vacuum chamber (base pressure of 1×107 mbar) of a
sputtering machine where the deposition of the magnetic
cap consisting of 1 nm platinum, eight alternating layers of
0.3 nm cobalt and 0.8 nm platinum, and a finishing catalytic
layer of 5 nm platinum, is carried out as described by

Figure 2. Autonomous motion of the Janus micromotors along the external
magnetic field lines (B). The magnetic dipole moment (m) of the Janus
micromotor allows for orientation along the field lines, whereas the catalytic
decomposition of the hydrogen peroxide (H2O2) solution allows for its
propulsion. The magnetic torque exerted on the magnetic dipole of the Janus
micromotors aligns them along the field lines. The angle between the
magnetic dipole and the magnetic field is denoted by θ.
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Baraban et al. [5]. The Janus particles where released from
the glass substrate by scratching with tweezers and by
dipping the particles in 10% (v/v) hydrogen peroxide
solution (in which the experiments were conducted).

2.2 Modelling and control of the Janus micromotors

Under the influence of uniform magnetic fields, the Janus
micromotor is subjected to a pure magnetic torque that
aligns its magnetic dipole along the field lines. Therefore,
the rotational dynamics of the Janus micromotors are given
by:

|B| |m|sinθ + αω =0, (1)

where B and m are the induced magnetic field and the
magnetic dipole moment of the Janus micromotor, respec‐
tively. Further, θ is the angle between the induced magnetic
field and the magnetic dipole moment, as shown in Fig. 2.
α and ω are the rotational drag coefficient and the angular
velocity of the Janus micromotor, respectively. The first
term in (1) allows the Janus micromotors to orient, whereas
the catalytic decomposition of the hydrogen peroxide at the
platinum surface allows them to move.

Fig. 4 demonstrates experimentally that the motion of the
Janus micromotors is only due to their self-propulsive
force. At time t = 0.5 seconds and before t = 1.0 seconds, zero
magnetic field is applied. At time t = 1.0 seconds, uniform
magnetic fields are applied with an orientation towards the
first reference position (small blue circle). We observe that
the Janus micromotor reverses its direction and moves at
the same speed towards the reference position once the
magnetic field is applied. The speed of the Janus micromo‐
tor is calculated to be 6 µm/s before and after the magnetic
fields. Therefore, the motion of the Janus micromotor is
attributed only to its self-propulsive force.

We also compare the maximum drag force and magnetic
force exerted on the Janus micromotor. The drag force (Fd)
is calculated to be 1.32 × 10-12 N using:

Fd =6πηrpv, (2)

where η, rp and v are the dynamic viscosity of the hydrogen
peroxide solution, the radius of the Janus micromotor and
its speed, respectively. The magnetic force (F) exerted on
its magnetic dipole is given by [28]-[30]:

F=(m⋅∇)B. (3)

This magnetic force is generated using two electromagnetic
systems for the motion control in 2D and 3D spaces. The 2D
electromagnetic system generates a maximum magnetic
field gradient of 0.06 T/m [27], whereas the 3D electromag‐
netic system generates a maximum magnetic field gradient
of 1.64 T/m [9]. The upper limit of the magnetic dipole
moment of our Janus micromotors is calculated using the
volume integral of the saturation magnetization of the
cobalt/platinum layers. This upper limit is calculated to be
6.0 × 10-13 Am2. Therefore, the maximum magnetic force
exerted on Janus micromotors using the 2D and 3D
electromagnetic systems is 3.60 × 10-14 N and 9.83 × 10-13 N,
respectively. This calculation indicates that the drag force
on the Janus micromotors is overcome using its propulsion
force (Table 1).

Maximum drag force [N] 1.32x10-12

Maximum magnetic force in 2D [N] 3.60x10-14

Maximum magnetic force in 3D [N] 9.83x10-13

Table 1. Maximum drag and magnetic forces on the Janus micromotors. The
drag force is calculated using a speed of 14 µm/s. The magnetic forces in 2D
and 3D are calculated using magnetic field gradients of 0.06 T/m and 1.64 T/
m, respectively. The drag and magnetic forces are calculated using (2) and
(3).

Motion control of the Janus micromotors is achieved in 2D
and 3D spaces by orienting the magnetic field lines towards
the reference position. The magnetic field lines are control‐
led based on the position of the Janus micromotor with

Figure 3. Electromagnetic systems for the motion control of Janus micromotors in 2D and 3D spaces. Left: An electromagnetic system with an orthogonal
configuration of coils ① for the 2D motion control of the Janus micromotors using microscopic feedback ② inside a capillary tube ③. Right: An electromagnetic
system for 3D motion control inside a capillary tube (not shown). The system consists of eight electromagnetic coils ④ (bottom-right inset) and two microscopic
systems ⑤ with auto-focusing.
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respect to the reference position [9, 20]. This control is
designed using (3) by devising a desired magnetic force
that points towards the reference position:

KDė + KPe=(m⋅∇)B̃I, (4)

where e and ė are the position-tracking error and velocity
of the Janus micromotors (reference position is fixed),
respectively. Further, KD and KP are positive-definite gain
matrices, and B̃ is a constant matrix that maps the current
input (I) onto magnetic fields. The matrices KD and KP must
be selected such that (6πηrp Π + KD)-1KP is positive-definite
[27], where Π is the identity matrix. Solving (4) for the
current vector allows us to control the magnetic fields
towards a reference position [26, 27]. This control is
achieved using (4), since the magnetic force lines have the
same direction as the magnetic field lines within the
workspace of our magnetic systems [26]. Therefore, (4)
allows us to control the direction of the Janus micromotor
towards the reference position.

3. Localization of the Janus micromotors

The motion control of the Janus micromotors is achieved
using two electromagnetic systems. A 2D electromagnetic
system is used to achieve the planar manipulation of the
Janus micromotor, whereas a 3D electromagnetic system is
used to demonstrate that the Janus micromotors can
overcome the gravitational force and move upwards and
downwards. Characteristics of these magnetic systems are
provided in Table 2. In these experiments, the Janus
micromotors are contained inside capillary tubes (Vitro‐
Com, VitroTubes 3520-050, Mountain Lakes, USA) with a
10% (v/v) hydrogen peroxide solution.

3.1 Localization of the Janus micromotors in 2D space

An electromagnetic system (inset in Fig. 4) with an orthog‐
onal configuration of four electromagnetic coils is used to
manipulate the Janus micromotors in 2D space. Fig. 4
shows a representative motion control result of a Janus

micromotor towards five reference positions. The control‐
led magnetic fields are applied after t = 1 seconds. At this
time instant, the Janus micromotor reverses its direction
and moves towards the reference position at the same
speed (6 µm/s). We repeated this experiment five times, and
the average speed is calculated as 13±7 µm/s. Further, due
to the self-propulsive force of the Janus micromotors, our
closed-loop control system localizes the Janus micromotors
within the vicinity of the reference position, as shown in
Fig. 4. The localization is evaluated using the area in which
the Janus micromotors are localized. This area is defined as
a region of convergence (ROC). The average ROC is
calculated as 7±1.5 µm.

3.2 Localization of the Janus micromotors in 3D space

Full autonomous motion in 3D space is demonstrated for
the Janus micromotors using an electromagnetic system
with eight electromagnetic coils (inset in Fig. 5). The Janus
micromotors are contained inside a capillary tube within
the centre of the electromagnetic system. The eight electro‐
magnetic coils allow for the orienting of the Janus micro‐
motor in all directions in 3D. The average speed along the
x-, y- and z-axis are calculated as 14.5 µm/s, 14.0 µm/s and
14.4 µm/s, respectively. Further, we observe that the Janus
micromotors move downwards and upwards at average
speeds of 19.1 µm/s and 9.8 µm/s, respectively. The closed-
loop control in 3D space allows us to localize the Janus
micromotors within a ROC of 6.3 µm.

The x and y velocity components of the Janus micromotor
in 3D space indicate that the motion of the Janus micromo‐
tor is due to its propulsion force. These components
provide an average speed of 14.2 µm/s using the 3D
magnetic system, as opposed to 13.6 µm/s using the 2D
magnetic system. The slight increase in the average speed
is due to the magnetic field gradient generated using the
3D magnetic system (1.64 T/m), which is approximately 27
times greater than that (0.06 T /m) generated using the 2D
magnetic system. Therefore, the motion of the Janus
micromotors depends mainly on their self-propulsive
force.

Figure 4. A representative closed-loop motion control result of a Janus micromotor (diameter of 5 µm). Before time t = 1 seconds, no magnetic fields are applied
and the Janus micromotors move using their propulsive force. The Janus micromotors move at a speed of 6 µm/s. At time t= 1 seconds, magnetic fields are
applied to orient the Janus micromotors towards the first reference position ①. The Janus micromotors reverse their direction and moves towards the reference
position (at the same speed) once the magnetic fields are applied. The right figure shows the localization of the Janus micromotors within the vicinity of three
reference positions (vertical blue lines represent the position references ③, ④ and ⑤).
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Figure 5. A representative closed-loop motion control result of a Janus micromotor (diameter of 5 µm) in 3D space. Motion control is accomplished in 3D space
using the electromagnetic system shown in the inset. The Janus micromotor is contained inside a capillary tube within the centre of the electromagnetic system.
After t = 1 seconds, a reference position ① is given. The reference position is shown in the xy- and yz-views using a cross-hair. The black square indicates the
Janus micromotor and is assigned using our feature-tracking algorithm.

In these experiments, the concentration of the H2O2 used
for the propulsion of the Janus micromotors is beyond
biocompatible limits. At 0.25% H2O2, mammalian cells have
been shown to be viable only for 30 minutes [31]. Research‐
ers are trying to tackle the challenge of the biocompatibility
of the fuel in order to achieve real biomedical applications.
Once an alternative fuel is provided, it could either be taken
from the body fluid or injected together with the Janus
micromotors.

4. Conclusions

The autonomous motion of Janus micromotors in 2D and
3D spaces is demonstrated experimentally using two
electromagnetic systems that generate relatively weak (0.06
T/m) and strong (1.64 T/m) magnetic field gradients. We
observe that using a relatively large magnetic field gradient
results in a slight increase in the planar components of the
velocity vector of the Janus micromotor. Therefore, the
motion of the Janus micromotors is attributed to the
propulsion force that is generated due to the catalytic
decomposition of H2O2. Moreover, we show the automatic
control of the Janus micromotors in 2D and 3D spaces,
which allows us to achieve precise localization within the
vicinity of the reference positions.

Parameter Value Parameter Value

max li [A] 1.0 Workspace [mm2] 2.4x1.8

|B|[mT] 15 ∇|B|[mT-1] 0.06

Coils 4 Frame per second 15

max li [A] 2.0 Workspace [mm3] 10x10x10

|B|[mT] 85 ∇|B|[mT-1] 1.64

Coils 8 Frame per second 120

Table 2. Characteristics of the 2D and 3D magnetic systems. li is the current
at the ith coil, and (i = 1,...,4) and (i = 1,..., 8) for the 2D and 3D magnetic
systems, respectively.
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