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Abstract
Soil acidification is caused by natural paedogenetic processes and anthropogenic impacts 
but can be counteracted by regular lime application. Although sensors and applicators for 
variable-rate liming (VRL) exist, there are no established strategies for using these tools or 
helping to implement VRL in practice. Therefore, this study aimed to provide guidelines 
for site-specific liming based on proximal soil sensing. First, high-resolution soil maps of 
the liming-relevant indicators (pH, soil texture and soil organic matter content) were gener-
ated using on-the-go sensors. The soil acidity was predicted by two ion-selective antimony 
electrodes  (RMSEpH: 0.37); the soil texture was predicted by a combination of apparent 
electrical resistivity measurements and natural soil-borne gamma emissions  (RMSEclay: 
0.046  kg  kg−1); and the soil organic matter (SOM) status was predicted by a combina-
tion of red (660  nm) and near-infrared (NIR, 970  nm) optical reflection measurements 
 (RMSESOM: 6.4 g kg−1). Second, to address the high within-field soil variability (pH var-
ied by 2.9 units, clay content by 0.44 kg kg−1 and SOM by 5.5 g kg−1), a well-established 
empirical lime recommendation algorithm that represents the best management practices 
for liming in Germany was adapted, and the lime requirements (LRs) were determined. The 
generated workflow was applied to a 25.6 ha test field in north-eastern Germany, and the 
variable LR was compared to the conventional uniform LR. The comparison showed that 
under the uniform liming approach, 63% of the field would be over-fertilized by approxi-
mately 12 t of lime, 6% would receive approximately 6 t too little lime and 31% would still 
be adequately limed.
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Introduction

The productivity of agricultural soils is highly controlled by their acidity and buffering 
capacity. Soil acidity results from the release of  H+ from dissolved and solid acids to form 
 H3O+ ions in the soil solution and is measured as pH. Soil acidity is a key factor in soil fer-
tility that concurrently influences several yield-relevant soil properties, such as:

 (i) Nutrient availability (particularly P) and pollutant mobility (especially Al, Mn, Cd) 
(Dahiya and Singh 1982; Goulding and Blake 1998; Gray et al. 2006),

 (ii) Nutrient utilization and use efficiency (particularly N) (Ahmad et al. 2016; Edmeades 
et al. 1986),

 (iii) Biological activity (Cheng et al. 2013; Ekenler and Tabatabai 2003; Larink and 
Joschko 2014; Stöven and Schnug 2005),

 (iv) Soil humus content and type (Briedis et al. 2012; Haynes and Naidu 1998; Paradelo 
et al. 2015),

 (v) Soil structure, porosity and aggregate stability (aeration, water availability, root 
growth) (Fiedler and Bergmann 1955; Hartge 1959; Schachtschabel and Hartge 
1958), and

 (vi) Water infiltration, water storage and soil erosion (Ahn et al. 2013; Cuisinier et al. 
2011; Horsnell 1984).

For these reasons, farmers strive to obtain and maintain an optimal soil pH to improve 
crop growth in their fields (Tunney et al. 2010). As soil acidification is a pedogenetic pro-
cess in humid climates, more protons  (H+ ions) are added or liberated by precipitation and 
internal soil processes over time than the soil is able to neutralize (Fujii et al. 2012; Blume 
et al. 2016). The physico-chemical processes that are relevant to acidification include the 
dissociation of carbonic acids, the atmospheric deposition of acidic gases and/or acidic pre-
cipitation, microbial respiration and/or root exudates, oxidation reactions and the formation 
of organic acids and anthropogenic activities, e.g., fertilization, or the removal of alkalis by 
harvesting crops (Holland et al. 2018; Goulding 2016). Hence, in soils that do not contain 
geogenic carbonates, farmers need to apply lime to their fields to maintain soil fertility.

However, even in countries with intensive agricultural production, such as Germany, the 
soil pH of agricultural fields is often not within the optimum range. According to a recent 
national soil pH survey by Jacobs et al. (2018) in Germany, only 35% of the arable soils 
and 24% of the grassland soils were in the optimum range, whereas the pH of approxi-
mately 42% of the mineral soils under arable farming and 57% of the grassland soils was 
too low. Apparently, lime management on farms in Germany is not sufficient. One reason 
is that most farmers do not manage soil heterogeneity at the field scale. They try to avoid 
(i) the additional effort required for soil sampling, (ii) the uncertainties concerning the 
interpretation of soil information and fertilization decision making and, (iii) the problems 
related to the availability and use of appropriate fertilizer application technology.

Since crops vary in their tolerance to soil acidity, the optimum pH at which maximum 
yields are achieved ranges between 5.3 and 6.6 (Goulding 2016). Below this range, yields 
of crops with high lime demand may decrease by approximately 20–40% (Holland et al. 
2018; Kerschberger 1996; Kerschberger and Marks 2007; Manna et al. 2007). Hence, the 
main goal of liming is to reduce the total acidity of a specified soil volume (e.g., the plough 
layer) by increasing the pH value to a target value that is optimal for crop growth (Sims 
1996). In contrast, pH values that are too high may also have negative effects on nutrient 
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availability and reduce crop yields by 5–10% (von Wulffen et al. 2008). To determine the 
lime requirement (LR) of a soil to achieve its target pH value, several practical techniques 
have been developed. The most commonly used LR tests are as follows:

i Soil–lime incubations involving increasing rates of liming material applied to a fixed 
quantity of soil, equilibration for a certain duration and deriving a lime-response curve 
from the pH changes,

ii Soil-base titrations with the titration of a soil suspension with a basic solution (e.g., 
Ca(OH)2 or NaOH) (McLean 1978; Alley and Zelazny 1987) and pH measurement after 
a certain equilibration time, followed by the conversion of the added basic solution into 
a lime requirement,

iii Soil-buffer equilibration (the most widespread approach in the USA), adding a chemical 
buffer solution to a soil sample, allowing them to equilibrate and measuring the buffer 
pH decrease to assess the amount of soil acidity to be neutralized by liming (McLean 
1978), and.

iv Estimates based on algorithms developed in empirical studies that use soil pH and other 
soil properties such as soil texture, soil organic matter, soil type or CEC as indicators of 
the soil carbon buffer capacity; this method is mainly used in the UK and Germany.

In this study, an empirical algorithm (LR test type iv, above) was used as a standard and 
adapted to precision farming by including mappings from proximal soil sensors. The 
empirical algorithm was developed by the Association of German Agricultural Investiga-
tion and Research Institutions (VDLUFA) and has been established as the best manage-
ment practice for liming in Germany (von Wulffen et  al. 2008). The procedure is based 
on 30 years of fertilization trials studying the correlation between soil pH and agricultural 
yield, brought into a simplified management structure (Kerschberger 1996; Kerschberger 
et  al. 2000; Kerschberger and Marks 2007). The approach involves two steps: (i) a soil 
sampling of one mixed soil sample that is composed of several sub-samples from either 
the whole field or from sub-plots of 3–5 ha of assumed soil homogeneity and (ii) a look-up 
table system that defines the target pH value for the management unit from the analysed 
soil texture, soil organic matter (SOM) content and the current pH value (Methods). How-
ever, the VDLUFA guidelines for liming are limited because they are based on relatively 
rough classifications of soil texture and SOM into five and four classes, respectively. How-
ever, the algorithms that are needed in the context of the present-day requirements of preci-
sion farming should be continuous and stepless.

Furthermore, site-specific and variable-rate liming (VRL), which is a precondition for 
optimizing soil acidity management, requires soil data at a very fine spatial scale (von Cos-
sel et al. 2019). High-resolution maps can therefore help to assess internal field variations 
in soil properties and reduce the decision uncertainty caused by this unknown spatial vari-
ation (Schellberg et al. 2008; Zhang et al. 2016). Various soil proximal sensors are avail-
able that can provide information on relevant input parameters for lime requirement cal-
culations, including geo-electrical and gamma-ray sensors for soil texture, optical sensors 
for organic matter content and ion-selective pH electrodes for pH values (Adamchuk et al. 
2018; Gebbers 2018).

Most sensors do not measure the soil property of interest directly but provide read-
ings from a proxy that can be related to the soil property of interest by analysing refer-
ence soil samples and establishing statistical models. Sensors for measuring electrical 
resistivity (ERa) and its reciprocal, bulk electrical conductivity (ECa), are commonly 
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used for mapping soil properties that are affected by soil texture, water content and 
bulk density as well as by mineralogy, porosity, salinity, temperature and organic mat-
ter (Corwin and Lesch 2005). The natural variation in total γ-activity in soils is mainly 
related to the decay of K, U and Th isotopes. Since K is usually associated with clay 
minerals, γ-activity is a good indicator of clay content and soil texture. Compared to the 
spatial variations in ERa (ECa), the spatial variation in soil moisture has little effect on 
γ-activity. Thus, a multiple-sensor approach combining electrical and γ measurements 
can improve the determination of soil properties (Castrignano et  al. 2012; Mahmood 
et  al. 2013). Optical sensors that obtain visible and near-infrared (Vis–NIR) spectra 
can provide information on soil properties such as the clay, iron oxide, SOM content 
and carbon mineralogy (Rossel and Chen 2011), and electrochemical sensors that use 
ion-selective membranes can detect the activity of ions such as hydrogen, potassium or 
nitrate (Gebbers and Adamchuk 2010; Adamchuk and Viscarra Rossel 2011).

However, the successful adoption of these systems in practice is often hindered by 
the lack of knowledge on (i) how the sensors work and how reliable they are, (ii) how 
the sensor data should be calibrated, and (iii) how the sensor data should be further 
processed to produce site-specific liming recommendations that are in line with best 
management practices. These questions are related to the scientific foundations of meas-
urement principles, soil buffering, technical possibilities and restrictions, and socio-eco-
nomic aspects, including cost efficiency and official regulations.

Moreover, only a few studies have compared VRL with conventional approaches 
(Borgelt et  al. 1994; Zaman et  al. 2003; Bianchini and Mallarino 2002). For North 
American soils, Borgelt et al. (1994) found that mean liming rates would have resulted 
in over-fertilization of 9 to 12% and under-fertilization of 37 to 41%, whereas Bianchini 
and Mallarino (2002) found that much less lime (56–61%) needed to be applied with 
the VRL approach. In a similar study in the UK, Zaman et al. (2003) found that 35% 
of the tested field required more than the average liming rate, 56% required less and 
only 9% was adequately limed. However, none of these studies used high-resolution soil 
maps based on proximal soil sensing. This kind of sensor-based approach was explored 
by Kuang et  al. 2014, 2015. They used on-the-go visible and near infrared (vis–NIR) 
spectroscopy sensors and two statistical methods (artificial neuronal networks and par-
tial least square regression) to generate high-resolution SOC, pH and clay content maps 
as inputs for VRL on two fields in Denmark. For one of these fields, Kuang et al. 2014 
compared sensor based VRL with uniform liming and observed increase in spring bar-
ley yields under VRL. However, Kuang et al. 2014 used a high number of soil reference 
samples (132 samples on 18 ha) and the proximal soil sensing system was operating at a 
slow speed of 2 km/h. This might not be accepted for practical farm management. Lime 
recommendations were calculated by an algorithm from the “Danish Centre for Food 
and Agriculture”, but no bibliographical references or other details were provided.

With practical application in mind, the overarching objective of this paper is to pro-
vide guidelines/a protocol for deriving high-resolution lime recommendation maps from 
the following mobile proximal soil sensor systems: pH electrode, electrical conductivity, 
gamma ray and optical dual wavelength systems. The specific objectives were (i) to test 
different proximal soil sensors and sensor combinations to predict the target parameters 
of soil pH, texture and soil organic matter (SOM) content, (ii) to apply an adapted and 
currently well-accepted lime recommendation algorithm to the demands of site-specific 
acidity management and (iii) to compare the results of the novel variable-rate liming 
approach with a uniform-rate liming strategy developed with the conventional protocol.
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Materials and methods

Workflow for producing the variable lime requirement maps

To produce the variable lime requirement maps, extensive guidelines were established, 
including the proximal soil sensing as well as the whole data processing method, from 
generating maps of soil pH, texture and SOM to the calculation of the precise lime demand 
to the aggregation of the data to potential working widths (Fig. 1). All data processing and 
statistical analyses were carried out in the free R software environment for statistical com-
puting and graphics (version 3.6.1) (R Core Team 2018).

Fig. 1  Flow chart visualizing the workflow from the proximal soil sensing to the calculation of the final 
lime requirement/application maps
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Applied on‑the‑go sensors for generating high‑resolution maps of pH, texture 
and SOM

In this study, the non-commercially available Geophilus measurement system (Lück and 
Rühlmann 2013) and the commercially available Veris MSP (VERIS Technologies, Sali-
nas, KS, USA) (Fig. 2) to generate high-resolution soil ancillary data and subsequent pre-
dictions of the parameters soil pH, texture and SOM.

Geophilus measurement system

The Geophilus system is merely built for scientific purposes and includes a multi-depth 
electrical resistivity sensor and a gamma ray sensor (Lück and Rühlmann 2013) (Fig. 2a). 
The Geophilus system consists of seven pairs of rolling electrodes. One pair directs an 
electrical current into the soil, and the other six pairs measure the voltage drop. Electrical 
resistivity (ERa) is explored at six depth levels, from the soil surface to a depth of inves-
tigation of 1.5  m. The γ-sensor measures the soil-borne γ-radiation activity as the total 
counts per second (cps) in approximately the upper 0.3 m soil layer. The system logs the 
sensor values each second along with the co-ordinates tracked with a differential Global 
Navigation Satellite System (dGNSS). When mapping with a typical speed of 10  km/h, 
the sampling interval is approximately 3 m. When the distance between the tracks is 18 m 
(Fig. 3a), approximately 200 data points are measured per hectare.

The Geophilus system enables the fusion of sensor data to produce additional informa-
tion. Because the γ-radiation is less sensitive to soil moisture than the ERa readings, the 
ratio between the γ-activity and the ERa of the array with the smallest electrode spacing 
(investigation depth: 0–0.25 m) represents the influence of the soil water on the ERa read-
ings. This ratio is expressed as the dimensionless soil water index (SWI):

where SWI increases with increasing soil moisture.

Veris multisensor platform

Currently, there is only one commercially available automated on-the-go pH sensor system. 
The Soil pH Manager™ is part of the Veris MSP (Fig. 2b, c) and was developed based on 
the work of Adamchuk et al. (1999), and described and applied by Lund et al. (2005) and 
Schirrmann et al. (2011a, b).

Soil pH manager

The pH value was measured on-the-go by two ion selective antimony electrodes on nat-
urally moist soil material. While driving across the field, a sampler was lowered into the 
soil to approximately 0.12 m depth, and the soil flowed through the sampler’s orifice. 
When the soil sampler was raised out of the soil, the soil inside the sampler was pressed 
against the two ion-selective antimony electrodes. Measurements were recorded if they 
were sufficiently stable within a maximum time of 20  s. A logger recorded the raw 
potential data along with the dGNSS co-ordinates. Additionally, an online conversion 

(1)SWI =
�

ERa
⋅ 100
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Fig. 2  Applied soil sensing platforms: a The non-commercially available Geophilus system with 7 rolling 
electrode pairs (1) and a γ probe (2), b the commercially available Veris mobile sensor platform (Veris 
MSP) by VERIS Technologies with the ERa instrument (3), c the Soil pH Manager™ (water tank (4), soil 
sampler (5) and pH electrodes (6)) and d the OpticMapper (opening coulter (7) and optical module between 
depth-sensing side wheels (8))
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of the voltage data into pH values was conducted based on a preceding calibration with 
pH 4 and 7 standard solutions. After each measurement, the sampler was pushed into 
the soil again, and the old soil sample was replaced by new material that entered the 
sampler trough. In the meantime, the pH electrodes were cleaned with tap water from 
two spray nozzles to prepare them for the next measurement cycle. Typically, pH values 
were recorded every 10–12  s. Geographic co-ordinates were recorded when the sam-
pler shank was raised out of the soil. This sensor can be operated at an approximate 
speed of 7.5 km/h. With measurements taken every 10 s and a track distance of 12 m, 
approximately 30 measurements per hectare can be obtained (Fig.  3b). After calibra-
tion, the estimated total error of the soil pH maps is less than 0.3 pH (Adamchuk and 
Lund 2008). In addition, ERa is measured by the sensor platform at a rate of 1 Hz with 
a galvanic coupled resistivity instrument using six parallel rolling coulter electrodes. 
This electrode configuration provided readings from two depths with a median depth 
of exploration of 0.12 and 0.37 m, and the data are expressed as the apparent electrical 
conductivity (ECa) (Gebbers et al. 2009).

Fig. 3  Spatial resolution of the proximal soil sensor measurements of the Geophilus system (a), the Soil pH 
Manager (b) and the OpticMapper (c) and the sampled soil reference points (black triangles) and yield pat-
tern (d) in the test field (KL60)
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OpticMapper

The soil organic matter (SOM) content was estimated using data generated from the Optic-
Mapper (Veris Technologies, Salinas, KS, USA) (Fig. 2d). It is an on-the-go optical soil 
sensor that basically consists of a single photodiode and two light sources (LED) that ena-
ble reflectance measurements at 660 nm (red) and 940 nm (near-infrared NIR), each with 
a bandwidth of 20 nm. According to Kweon et al. (2013) and Kweon and Maxton (2013), 
absorption at these two wavelengths is particularly sensitive to organic matter content. At 
the front, the OpticMapper has an opening coulter that cuts crop residues. The optical mod-
ule is mounted on the bottom of a furrow ‘shoe’ between two side wheels that control the 
sensing depth. The wear plate is pressed against the bottom of the furrow approximately 
0.04 m below the soil surface with a consistent pressure to provide a self-cleaning function. 
Light is emitted alternately from the two LEDs and passes through a sapphire window onto 
the soil. The reflected light is captured by a photodiode, and the light intensity is stored in 
dimensionless values. The digital reflectance data and GNSS co-ordinates are recorded at 
a rate of 1 Hz. At a speed of 10–12 km/h and 12 m track distance, an average of 260 reflec-
tion data points per hectare can be collected (Fig. 3c).

Test field

The selected test field is part of the farm Komturei Lietzen (KL) and is located approxi-
mately 40 km east of Berlin (Germany) in the eastern North German Plain (5831100N, 
450100E; UTM ETRS89 33N). While the Geophilus system and the Soil pH Manager 
were applied in April 2018, the OpticMapper campaign was conducted in August 2018. 
Records were taken along the field’s working tracks. This driving path caused fewer errors 
than driving against the actual working tracks and addressing their spatial irregularities.

The soils at the agricultural study site developed on morainic landscapes shaped by the 
Pleistocene glaciation processes as well as by fluvial processes in the river valley of the 
Oder River (Krbetschek et al. 2008). The patterns of spring wheat yield from 2018 there-
fore reflect the natural geological conditions of the current test field (Fig. 3d). In accord-
ance with the German soil classification system KA5 (Eckelmann et al. 2005), the soil tex-
tures at the study site range from pure sand (class: Ss) to loamy sands (classes: St2, Su2, 
Sl2 and Sl3) and loams (classes: Lt2, Ls2, Ls3 and Ls4). Hence, the soil cover is highly 
heterogeneous at the test site and in the selected field (field 60 of KL, henceforth called 
KL60) and is therefore a good example for demonstrating the potential of proximal soil 
sensing for site-specific lime management. Climatically, the test site is located in the transi-
tion zone of the humid oceanic and dry continental climates. The annual mean temperature 
is 9 °C, and the total mean annual precipitation is 550 mm.

Interpolation of the point‑based sensor data

Data cleaning and pre‑processing

Before data interpolation, the raw sensor data were observed visually in advance (e.g., for 
points with strong deviations from the surrounding observations), and obvious measure-
ment errors were removed if necessary. These errors may occur due to insufficient sensor 
connectivity to the soil or recording issues related to the handling of the sensor platforms. 
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For example, the OpticMapper still records measurements while the sensor shoe is being 
lifted out of the soil. Thus, records from residual soil –for example, those taken while driv-
ing from one tracking line to the next at the end of the field – were removed from the over-
all data set. To avoid errors in building the covariance matrices used in kriging, observa-
tions that shared identical spatial locations were identified, and duplicates were removed in 
advance.

Variography

The theoretical semivariogram models were fitted as global variograms to the empirical 
semivariograms, which provided the spatial weighting function for the subsequent krig-
ing interpolation. The empirical semivariogram calculations were performed by selecting 
robust variogram estimates to prevent effects from extreme outliers (Cressie 1993). The 
theoretical variograms were additionally fitted with localized cut-offs to meet the criteria of 
obtaining good fits at distances smaller than the whole plot. Furthermore, the model fitting 
was performed by weighted least squares approximation (fit method 7 in gstat), dividing 
the number of pairs in one bin by the square of the bin’s metric distance (Pebesma 2004). 
After an initial fit of the semivariogram model, a leave-one-out cross-validation procedure 
was applied (Webster and Oliver 2007) using the initial semivariogram model to predict 
the values by ordinary kriging at each measurement location after excluding the sample 
value at that particular point.

Interpolation

Two geostatistical methods were applied: The Geophilus’ point-based sensor data were 
interpolated using the geostatistical method of ordinary kriging, and block kriging was 
applied for the soil pH and OpticMapper data (R package ‘gstat’; Pebesma (2004)). The 
smoothing procedure block kriging eliminates spatial outliers that show a strong deviation 
from the surrounding observations. Block kriging produces averaged values within a pre-
defined neighbourhood (block) around the prediction location (Olea 2012). To maintain an 
appropriate ratio between the prediction of real spatial micro-patterns and the elimination 
of erroneous sensor measurements, different block sizes were tested, and a suitable block 
size of 20 × 20 m with low root mean square error (RMSE) values was chosen. This block 
size allows for inclusion of measurements along one track and measurements from neigh-
bouring tracks.

Due to the sensor high measurement intervals and the consequent high spatial resolu-
tion, two criteria (whichever applies first) were established to reduce the number of neigh-
bouring points in the ordinary kriging procedure to considerably reduce the computation 
time: (i) the maximum distance from the prediction location was set to 100  m and (ii) 
the maximum number of nearest observations was set to 100. To facilitate automation of 
the applied processes, this localized kriging approach allows the computation time to be 
reduced and avoids the complexity of filtering model variograms for local prediction mod-
els (Hengl 2009). The final raster data sets created had a spatial resolution of 2 × 2 m for 
each parameter and were clipped to the boundary of the field.

More advanced geostatistical methods could have been used (e.g., kriging with local 
variograms, external drift kriging or modelling of spatial anisotropy). However, the geo-
statistical methods were restricted to simple methods here to keep the focus on the main 
topic of this research, which is the complete workflow of sensor-based site-specific liming. 
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Moreover, considering their feasibility under practical conditions, geostatistical model-
ling efforts should be reasonable regarding the extent to which interpolation errors can be 
minimized. For experts, it would be easy to integrate more advanced geostatistical meth-
ods. However, in addition to being time intensive, more advanced methods introduce some 
problems (e.g., overfitting). Furthermore, ordinary kriging with a large amount of data is 
relatively robust according to Webster and Oliver (2007) and Goovaerts (1997). That is, 
kriging results will not differ substantially regardless of the variogram modelling and krig-
ing approaches.

Reference soil sampling

Reference soil sampling locations were selected based on the proximal soil sensor data 
(sensor-guided sampling). To relate the sensor data to the target parameters, 30 reference 
soil samples were taken from the field for soil texture analysis, 15 for pH and 25 for SOM 
at locations that met the following three criteria (Adamchuk et al. 2011):

(i) The targeted samples cover the entire range of the sensor data (feature space):
(ii) From the sensor data, high and low values were selected using the 30% and 70% 

quantiles. This was in order to have the calibration model be based on a wide range of 
values.

(iii) The location is spatially homogeneous:
(iv) To avoid the sampling of outliers or erroneous sensor measurements, high and low 

values should be clustered within a radius of 30 m around the reference sampling point.
(v) The samples are well distributed throughout the area of investigation:
  Conditioned Latin hypercube sampling by Minasny and McBratney (2006) (using 

R package ‘clhs’; Roudier (2011)) was applied to spread the sampling points evenly 
over the field by maximizing the distance between them. This was done by means of 
stratified sampling using x and y co-ordinates and the consecutive point ID of the sen-
sor measurements.

Soil samples were taken along the soil sensing trajectory. At each reference sampling point, 
five subsamples were taken with an auger from 0 to 0.3 m depth within a radius of 0.5 m. 
The bulked samples were oven-dried at 75 °C and sieved to less than 2 mm in the labo-
ratory. The pH value was measured in 10 g of soil and 25 ml of 0.01 M  CaCl2 solution 
according to DIN ISO 10390 with a glass electrode after 60 min. The particle size distri-
bution of the < 2 mm fraction was determined according to the German standard for soil 
science (DIN ISO 11277) by wet sieving and sedimentation after the removal of organic 
matter with  H2O2 and dispersion by 0.2 N  Na4P2O7. The soil organic carbon (SOC) was 
analysed by elementary analysis using the dry combustion method (DIN ISO 10694) after 
removing the inorganic carbon with hydrochloric acid. To calculate the amount of SOM, 
the SOC was multiplied by 1.72 (Peverill et al. 1999).

Spatial prediction of soil texture, pH and SOM

To construct relationship models between the sensor data and the lab-analysed soil proper-
ties, the interpolated on-the-go sensor data were extracted at the reference sampling loca-
tions. Calibrating the interpolated sensor data (particularly the pH data) resulted in better 
models (lower RMSE, higher  R2) than the models developed by calibrating the sensor point 
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data first and interpolating afterwards because pre-processing and interpolation removes 
some noise from the sensor data.

Since the calibration of the pH sensor data is solely related to the lab-analysed pH val-
ues, a univariate linear regression (ULR) model was generated. The predictions of the three 
soil texture fractions and SOM, on the other hand, were based on the Geophilus (ERa, 
γ, DEM, SWI) and OpticMapper (Red, IR) data, respectively. Hence, multi-variate linear 
regression (MLR) models were applied as:

where z is the dependent variable at the ith site; X
1
,X

2
 , …, Xn are the ancillary data meas-

ured at the same site; b
0
 , b

1
 , b

2
 , …, bn are the n + 1 regression coefficients; and � is the ran-

dom error. Before MLR modelling was applied, the interpolated sensor data were checked 
for their predictive power. If Pearson’s correlation coefficient (R) of two variables was 
found to be larger than 0.65, the variable that correlated best with the target soil property 
was chosen. Based on the reduced data set of independent variables, a backward stepwise 
selection (R package ‘caret’; Kuhn et al. (2019)) was conducted to find the best set of pre-
dictive variables for the MLR model. To assess the accuracy of the MLR models, a k-fold 
cross-validation was applied one hundred times with k = 3 for SOM and k = 4 for the soil 
texture prediction. The accuracy of each model was determined using the root mean square 
error (RMSE) and the coefficient of determination  (R2).

Here, clay, silt and sand were considered as fractions summing to 100% or 1 kg kg−1 
and having non-negative values (De Gruijter et al. 1997). Hence, when the soil fractions 
are estimated individually from MLR models, compositional data rules apply to the pre-
dicted values (Huang et al. 2014; Muzzamal et al. 2018). To meet these requirements, an 
additive log-ratio (ALR) transformation was performed (R package ‘compositions’; van 
den Boogaart and Tolosana-Delgado (2008)) following the approaches of Chayes (1960) 
and Aitchison (1982). In ALR, no fraction is interpreted as isolated from the others. The 
two advantages of this approach are (i) the removal of closure effects and (ii) the produc-
tion of suitable data for classical statistical analysis, such as MLR, because the transformed 
values may be closer to a normal distribution than the untransformed data through pertur-
bation (Odeh et al. 2003).

Determination of variable lime requirements (CaO amounts)

In this study, an empirical lime requirement algorithm was utilized and was adapted to 
the needs of high-resolution soil data. The conventional VDLUFA approach consists of 
a look-up table system that allows farmers in Germany to very easily determine the lime 
requirement (LR) as the amount of CaO that needs to be applied to adjust the soil pH value 
towards the optimum level and maintain that level until the next fertilization cycle (von 
Wulffen et al. 2008). This approach defines five pH/lime supply classes for five mineral soil 
texture classes (Table 1) and for a peat soil class as well as four SOM classes (≤ 4 g kg−1, 
4.1…8 g kg−1, 8.1…15 g kg−1, 15.1…30 g kg−1) for arable land. The current pH values in 
classes A and B are further subdivided into small 1/10 pH unit steps.

This rough soil texture and SOM classification system contrasts with the sensitivity and 
density of the information mapped with mobile on-field sensor systems. Thus, the conven-
tional VDLUFA approach was improved by deriving a continuous or ‘stepless’ algorithm, 
i.e., using real values for the three soil properties instead of classified integer values. The 
adaptation is briefly summarized here. First, a central value was defined for each VDLUFA 

(2)z = b
0
+ b

1
X
1
+ b
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soil group (SG) and SOM class. For the soil groups, the mean clay contents were consid-
ered according to the KA5 classes that are assigned to the particular VDLUFA soil groups 
in kg  kg−1: SG1: 0.025, SG2: 0.085, SG3: 0.165, SG4: 0.175 and SG5: 0.625. For the 
SOM classes, the median values 2, 6, 11.5 and 22.5 were set as references in g  kg−1. Sec-
ond, the pH values of the corresponding five lime supply levels A–E (Table 2) were related 
to both the five clay contents and the four SOM contents as reported above. Third, non-lin-
ear regressions were used to calculate the functional relationships that allow the estimation 
of the respective lime supply level (A–E) for any combination of clay and SOM content. 
Finally, the lime fertilization recommendation can be calculated depending on the differ-
ence between the current and the target pH (lime supply level C, Table 2) as well as the 
actual clay and SOM content.

Data aggregation and evaluation of the variable lime requirements

Because accurate GNSS receivers and auto-guidance systems are available at reasonable 
prices, controlled trafficking has gained much popularity and can almost be seen as an inte-
gral part of precision agriculture in practice. Consequently, prescription maps for liming 
should consider the fixed tramlines and working widths used in controlled trafficking. The 
results were therefore not only shown for the potentially highest resolution of 2 × 2 m but 
were also aggregated for possible lime spreader working widths of 18 × 18 m and 36 × 36 m 
for management purposes.

To evaluate the novel VRL approach, the lime amounts from the generalized variable 
LR maps were compared with possible LRs from a uniform liming strategy, and each 
management unit (e.g., 18 × 18 m) was determined to be either under-, adequately or over-
fertilized by the uniform liming approach. Therefore, the pH range for each management 
unit was computed by subtracting or adding the pH RMSE from each modelled pH value. 
Afterwards, these pH ranges were used to calculate CaO threshold values for over- and 
under-fertilization using the stepless algorithm described above. For simplicity, the esti-
mates are based on the error (RMSE) of the derived pH map only, as pH has been deter-
mined to be the most important soil property for LR estimation in the investigated soils 
(Vogel et al. 2020).

The uniform lime demand was determined from the VDLUFA look-up table system 
using the average pH, SOM and soil texture values for the corresponding SOM and soil 
texture groups as derived from the sensor-based soil maps of the test field. To account for 
the coarse classification system of the conventional VDLUFA approach, the uniform esti-
mated LR based on the known soil texture group was additionally compared to estimated 
LRs based on other potentially selectable soil texture groups.

Table 2  Content ranges (kg  kg−1) 
of the VDLUFA soil texture 
groups

VDLUFA soil group (SG) Clay Silt Sand

Sand (1) 0–0.05 0–0.25 0.7–1
Weak loamy sand (2) 0–0.17 0–0.5 0.42–0.95
Strong loamy sand (3) 0.08–0.25 0–0.5 0.33–0.83
Sandy to silty loam (4) 0–0.35 0–1 0–0.75
Clayey loam to clay (5) 0.25–1 0–0.75 0–0.65
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Results and discussion

Geostatistics

The empirical semivariograms and the fitted models for all on-the-go sensor data formed 
the basis for the interpolation of the sensor point measurements by ordinary kriging 
(Fig.  4). The selected semivariogram models and the derived variogram parameters sill, 
nugget and range are summarized in Table  3. The nugget indicates that the sensor data 
show no or very low spatial micro-variance and random error in their measurements. The 
spatial correlation structure of the sensor data on the test field can be best characterized by 
circular (γ, elevation, pH, ECa), exponential (Red, IR) and Gaussian (ERa) models. Cut-
offs were set at a distance when a first local maxima is reached or became slightly visible. 
Due to the exponential character of the fitted semivariogram model for the OpticMapper 
sensor data, the sill, i.e., the limit of spatial correlation, is reached at rather low ranges of 

Fig. 4  Semivariogram analysis of the sensor point data for ordinary kriging analysis of the field KL60: 
Electrical resistivity (a), Gamma (b), Elevation (c), Electrical conductivity (d), pH (e), Red (f) and Infrared 
(g) (Model parameters found in Table 3). Dashed lines (red) represent the spatial separation distance up to 
which point pairs are included in the semivariance estimates (Color figure online)

Table 3  Parameters of the semivariogram models of the on-the-go sensor data

Parameter Model Cut-off, m Sill Nugget Range, m

Electrical resistivity Gaussian 380 32362.72 942.259 171.2
Gamma Circular 250 0.05 0 211.7
Elevation Circular 240 0.3 0 198.1
Electrical conductivity Circular 240 13.15 0 231.9
pH sensor Circular 320 0.15 0.03 306.2
Red Exponential 120 24.97 0 54.9
Infrared Exponential 120 965.59 0 52.2
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55 (Infrared) and 60 m (Red), indicating very high spatial variability in that optical soil 
characteristic. The remaining sensor data showed slightly lower spatial variability with 
higher ranges of 170 (ERa) to 316 m (pH).

Regionalized sensor data

The interpolated mapping results are shown in Fig. 5. They have a spatial resolution of 2 m 
and show distinct spatial patterns. The colour scales (and displayed value ranges) of the 
ERa, ECa and γ data as well as those for the SWI indicate the moisture and/or textural con-
dition at the specific location. For example, for ERa, while values of < 100 Ω m indicate 
areas with high soil moisture and/or higher clay content, values of > 150 Ω m represent the 

Fig. 5  Mapping results from the sensors available in this study: a electrical resistivity (ERa, first channel 
of the Geophilus system, 0–0.25 m), b γ-activity (0–0.3 m), c calculated soil moisture index, SWI (dimen-
sionless), d digital elevation model, e pH, f electrical conductivity (ECa-shallow of the Veris MSP; median 
depth 0.12 m), g) red (dimensionless, from the Optic mapper of the Veris MSP), h infrared (IR, dimension-
less) and i IR/Red ratio (dimensionless) (Color figure online)
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driest and/or most sandy areas (Fig. 5). Since both ERa and soil γ are strongly related to 
soil texture, the low-resistivity areas correspond well to the high γ-activity areas, and vice 
versa. Differences between the patterns in the two maps can be explained by the different 
soil moisture sensitivities of the two sensors, as shown in the SWI map, with lower values 
indicating dryer areas and higher values indicating wetter areas. ERa and ECa represent 
the same content, as they are reciprocal values, and the scales and colours are arranged 
accordingly to provide similar interpretations. Lower values of ECa (< 3  mS  m−1) indi-
cate dryer and more sandy areas, and higher ECa values (> 6 mS  m−1) indicate higher soil 
moisture and clay contents. The OpticMapper sensor data are characterised by a large clus-
ter of high red and IR values (dimensionless) in the southern and south-western parts of the 
field. Lower values can be found in the immediate surroundings to the north and to the east 
as well as in the northernmost part of the field. The spatial patterns of the IR map show 
more contrasts than those of the red map, whereas the IR/red ratio map shows patterns that 
are almost identical to the IR patterns. The sensor pH values in field KL60 show four dif-
ferent zones. The northern part of the field is characterized by the highest pH values. To 
the southeast, there are intermediate pH values and, farther to the south, the pH increases 
slightly. In the southernmost part of the field, however, the pH values reach their minimum.

Calibration of sensor data

The sensor-based spatial prediction models for pH, soil texture and SOM were calibrated 
and validated using the lab analysed soil samples selected based on the sensor maps. The 
descriptive statistics for the reference soil samples are summarized in Table 4.

The prediction performance of the univariate linear regression model for pH was very 
good, with an  R2 of 0.91 and an RMSE of 0.37 (Table 5). The calibrated pH values are 
lower than the field-measured sensor pH values (Fig. 6). This occurred for the following 
three reasons:

 i. The field pH was measured with antimony electrodes instead of with the glass elec-
trodes that are standard in the laboratory.

 ii. The field pH was measured in tap water, which has a neutral to slightly alkaline pH 
value, whereas the lab analysis was performed with 0.01 M  CaCl2 solution. Due to the 
exchange processes of  Al3+ by  Ca2+ at the surface of soil colloids, the pH measured 
in salt solution is generally lower by 0.6 (± 0.2) pH units. Furthermore, in salt solu-
tion, there is no suspension effect to balance the diffusion potential between the pH 
electrode and the soil solution (Blume et al. 2016).

 iii. The exposure time between the soil and the solution in which the pH value is meas-
ured is a maximum of 20 s (Lund et al. 2005) in the field compared to 60 min during 

Table 4  Overview of the 
laboratory results for the soil 
properties measured in this study

Parameter n Min Max Mean Median SD

pH 15 4.3 6.6 6 6.4 0.8
SOC (g  kg−1) 25 5.8 29.1 15.4 16.2 8
Clay (kg  kg−1) 30 0.012 0.461 0.191 0.175 0.128
Silt (kg  kg−1) 30 0.022 0.289 0.134 0.11 0.088
Sand (kg  kg−1) 30 0.301 0.961 0.675 0.716 0.21
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the laboratory procedure. During that time, many more protons can be emitted and 
measured by the pH electrode.

MLR models were used to regionalize the SOM content and soil texture with the sen-
sor data. After testing the proxy variables for independence, the SOM content was pre-
dicted using the covariates IR, SWI and ECa. These and the lab-analysed SOC results 
multiplied by 1.72 were used to calibrate the sensor data. The prediction performance 
is shown in Fig.  6, showing that the RMSE for SOM was 6.4 g kg−1 with a range of 
approximately 55 g kg−1.

Table 5  Validation results and descriptive statistics for the predicted soil properties from the (uni- and 
multi-variate) linear models

SOM soil organic matter, SD standard deviation, CV% percentage of coefficient of variation, R2 coefficient 
of determination, RMSE root mean square error, ULR univariate linear regression, MLR multi-variate linear 
regression, ALR additive log-ratio model
*Calculated with exponentiated values

Parameter Min Max Mean Median SD CV% R2 RMSE Model

Clay (kg  kg−1) 0.01 0.45 0.17 0.17 0.1 57.9 0.87 0.046 ALR-MLR
Silt (kg  kg−1) 0.03 0.29 0.12 0.11 0.06 51.9 0.79 0.039 ALR-MLR
Sand (kg  kg−1) 0.26 0.96 0.71 0.72 0.16 23 0.88 0.072 ALR-MLR
pH 4.2 7.1 5.7* 6.4 5.2* 8.9 0.91 0.37 LM
SOM (g  kg−1) 6.6 62.1 30 30.2 10.5 34.9 0.82 6.4 MLR

Fig. 6  Calibration model qualities for the predicted soil parameters pH (a), soil organic matter (SOM) (b), 
clay (c), silt (d) and sand (e)
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After analysing ERa, γ, SWI and elevation for interdependence, only γ and ERa were 
used as independent variables for predicting the soil texture fractions of sand and clay in 
the combined MLR and ALR approach. The soil texture prediction results are shown in 
Figs. 6c-e. The good performance of the models is reflected by, e.g., the prediction of the 
clay and sand fraction; 87 and 88% of the variability could be explained, and the corre-
sponding RMSE values were 0.046 kg kg−1 and 0.072 kg kg−1, respectively. Due to the 
log-ratio transformation of the two predictors, the sand and clay fractions, the prediction of 
the silt fraction was poor, with an RMSE of 0.039 kg kg−1.

Generated soil maps

The soil maps of the pH, clay and SOM in KL60 are the basis for the calculation of the 
site-specific lime requirement of the field following the VDLUFA guidelines for liming 
in Germany. The descriptive statistics for the predicted soil properties can be found in 
Table 5.

Regarding the soil texture, derived regression models were applied to the interpolated 
Geophilus raster data sets, and the soil texture fractions were predicted for the entire field 
(Fig. 7). Sand is the dominant soil texture fraction, followed by the clay fraction and a com-
paratively low mean silt content. However, the sand and clay fraction values have relatively 
large ranges of 0.7 kg kg−1 and 0.44 kg kg−1, respectively, whereas the silt fraction values 
have a comparatively low range of 0.26 kg kg−1. Larger portions of sand were found in the 
more elevated areas to the south, the south-western part of the field and near the eastern 
and north-eastern borders. A more linear sandy zone stretches out from the southeast to 
the northwest in the centre of the field. This might have been formed by streams as part 
of the (post-) Palaeozoic glacial landscapes, which are well known for their high soil and 
sediment variability (Krbetschek et al. 2008). Glacial, periglacial and interglacial processes 
created a mosaic of landforms and unconsolidated sediments that vary over short distances. 
Clayey areas dominate the lower elevated flanks along the sandy areas from the southeast 
to the northwest, indicating lower water drainage. The silt fraction in this field shows less 
pronounced variation than the sand and clay fractions.

Fig. 7  Predicted clay content (left), silt content (middle) and sand content (right) from the Geophilus sensor 
platform
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The classified soil texture map (Fig. 8a) shows that the classes, according to the German 
soil classification system KA5, cover a relatively wide range from pure sand (Ss) to slightly 
loamy sand (St2), highly loamy sand (Sl4), medium clayey sand (St3), highly sandy loam 
(Ls4) and clayey sandy loam (Lts). The distribution of the classes corresponds well to the 
findings of the clay, silt and sand distribution and provides some clarification. An area of 
approximately 4 ha is covered by pure sand only in the southern part of the field. Slightly 
loamy sand (St2) covers a total area of approximately 7 ha. The classes Sl4 and Ls4 are 
only visible in tiny patches of less than 5 ha combined. They occur as transition areas to 
clayey sandy loam (Lts, which covers three larger areas of approximately 5.5  ha in the 
centre, the west and the north of the field) and very slightly loamy sand (St2, which covers 
approximately 7.7 ha in total). The KA5 soil classification was chosen to avoid the insuf-
ficient spatial resolution of the VDLUFA soil texture classification system.

Fig. 8  Geophilus mapped soil texture classes (derived from the German KA5 soil texture classification 
(Eckelmann et al. 2005)) Ss pure sand, St2 slightly loamy sand, St3 medium clayey sand, Sl4 highly sandy 
loam, Ls4 highly sandy loam, Lts clayey sandy loam (a), the MSP-mapped pH values (b) and SOM content 
(c) and the lime supply level at 2 × 2 m resolution



513Precision Agriculture (2021) 22:493–523 

1 3

In other studies, Boenecke et al. (2018) and Meyer et al. (2019) used data from the Geo-
philus system to successfully generate predictive soil texture maps of the clay, silt and sand 
fractions of the topsoil for practical purposes. Meyer et al. (2019) achieved the best predic-
tion results by deriving the soil texture of the topsoil using the gamma mapping results and 
by calculating the dimensionless relationship between the gamma and electrical resistivity 
mapping results.

The calibrated pH values in field KL60 ranged between 4.2 and 7.1 (Fig.  8b) with a 
median of 6.4. Since the pH calibration is based on a univariate linear regression model, 
the spatial patterns of the calibrated data were identical to the sensor data and indicated 
four different zones of soil acidity. The error of the pH measurements was 0.07 pH units 
larger than that determined by Adamchuk and Lund (2008). It is striking that the lowest pH 
values were found in the sandy regions of the field, which also showed the lowest amounts 
of SOM. In contrast, pH values were highest in the loamy parts of the field that had higher 
SOM contents.

The field KL60 is characterized by low SOM content, showing a mean of 30 g kg−1, a 
range of 55.5 g kg−1 and a standard deviation of 10.5 g kg−1. The spatial patterns of the 
SOM map show many similarities to those of the soil texture map (Fig. 8c). The slightly 
elevated sandy hilltops in the southern and central parts of the field are characterized by 
lower amounts of SOM. In contrast, higher amounts can be found in the lower-lying areas, 
coinciding with a loamy soil texture and higher pH values.

In a study by Kuang et al. (2015), artificial neuronal network (ANN) and partial least 
square regression (PLSR) were used for the calibration of a visible and near infrared 
(vis–NIR) sensor data to generate high-resolution maps of pH, SOC and clay. Using a 
high number of soil reference samples for their two test fields (n = 132 and n = 80), cali-
bration with ANN outperformed the PLSR method. For example, the root mean square 
error (RMSE) for the ANN calibrated sensor data was 12.5  g  kg−1 for SOC, 0.12 for 
pH and 0.0096  kg  kg−1 for the clay content (PLSR: 14.8  g  kg−1 for SOC, 0.13 for pH, 
0.0105 kg kg−1 for clay content).

Regarding the lime supply status of KL60, approximately 20% of the field requires 
recovery or build-up liming (levels A and B), and 16.5% requires no liming at all (levels D 
and E). Nearly two-thirds of the field is within the optimal lime supply range (level C) and 
only requires maintenance liming (Fig. 8d). By decreasing the resolution to management 
conform units, the areal percentages did not change considerably (Table 6).

Determined lime requirements and data aggregation

The high-resolution LR map (expressed in t CaO  ha−1) was used to generate a prescrip-
tion map for liming whose spatial resolution was adapted to the working width of a lime 
spreader (Fig. 9). For that, the CaO data were resampled to an 18 × 18 m raster grid and 

Table 6  Areal percentages of the VDLUFA lime supply levels (A, B, C, D, E, description in Table 2) at the 
spatial resolutions of potential lime spreader working widths (18 × 18 m and 36 × 36)

Resolution (m) A B C D E

2 × 2 2.1 18.2 63.2 15.8 0.7
18 × 18 2.4 17.8 64.9 14.3 0.6
36 × 36 2.2 18.5 64.3 15 –
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aligned to the appropriate management direction of the field (Fig.  9b). For spreaders 
with larger working widths, e.g., 36 × 36, the creation of maps with larger raster widths 
leads to information losses and increasingly over- or under-limed portions of the field 
(Fig. 9c). The map shows that the total LR of field KL60 is rather low. Nevertheless, 
relatively high spatial variability exists that can only be well explained by the combina-
tion of all three soil maps: pH, soil texture and SOM (Table 7). The 2 × 2 m resolution 
map shows that CaO values had a range of more than 7 t  ha−1, with some areas requiring 
no lime at all and some areas showing very high demand. Low lime requirements were 
identified in the northern and central parts of the field where pH values are high, SOM 
content is low and the soil texture is dominated by sand. In contrast, the higher lime 
requirements in the northern central areas are particularly caused by the loamy soil tex-
tures that increase the target pH value according to the VDLUFA guidelines for liming. 
As mentioned above, this is because soils with a higher clay content require more lime 
to stabilize their soil structure. Furthermore, clayey soils can be prone to aluminium 
toxicity, which can be counteracted by liming (Schilling 2000; Blume et al. 2016). The 
highest lime requirements on field KL60 can be seen in the south and southeast. These 
areas coincide with the lowest pH values and sandy soil textures.

The aggregation of the 2 × 2 m resolution map to management units of 18 × 18 m and 
36 × 36  m revealed that the maximum LRs decreased by approximately 6% and 13%, 
respectively. The cumulative LR amounts increased by 11% and 25%, respectively.

Fig. 9  Final CaO requirements calculated at 2 × 2  m resolution (a) and aggregated for potential lime 
spreader working widths of 18 × 18 m (b) and 36 × 36 m (c) aligned in the management direction

Table 7  Summary statistics for the final lime requirements at the three different map resolutions

Resolution (m) Min Max Mean Median SD CV% Cumulative (t)

2 × 2 0 7.4 1.03 0.8 1.17 113.9 28.4
18 × 18 0 6.97 1.06 0.8 1.21 113.9 31.5
36 × 36 0 6.51 1.11 0.8 1.27 114.2 35.4
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Evaluation and comparison of the variable‑rate lime requirements

The variable liming results were compared with a uniform liming approach in which 
the lime demands were determined following the conventional VDLUFA guidelines. 
Assuming that the sensor based LR map most closely reflects the actual LR conditions 
in the field, uniform liming would result in certain areas of the field being under-, ade-
quately or over-fertilized (Table 8, Fig. 10). According to the mean values for the clay, 
silt and sand fractions in the test field (Table 5), VDLUFA soil texture group 2 (Table 1) 
would be most suitable for assessing the LR in the uniform fertilization strategy. The 
errors and uncertainties of the conventional approach can hardly be quantified. While 
the pH and SOM content can be more easily assessed by laboratory analysis, the texture 
values are often measured by quick on-field methods in conventional farming practices. 
However, this method is highly prone to error (Stocker and Walthert 2013) and may 
lead to the potential selection of adjacent soil groups (e.g., in this study, soil group 1 or 
3). Moreover, these errors and variances are usually not considered in practice. Within 
this study, the uncertainties of the conventional approach were therefore expressed by 

Table 8  Comparison between the variable and uniform liming approach for all possible VDLUFA soil 
groups with data aggregation to 18 × 18 m

¹Content ranges of clay, silt and sand are shown in Table 1
²as per humus class 1 (≤ 4 g kg−1) and a mean pH value of 5.7

Soil group¹ VDLUFA target 
CaO amount²

Total CaO amount Adequately 
fertilized 
area

Over-ferti-
lized area

Under-ferti-
lized area

Uniform approach Variable 
approach

t  ha−1 t t % t % t % t

SG1 0.6 17.8 31.5 53.4 − 7.4 34.2 4.6 12.3 − 11.1
SG2 1.1 32.7 31.5 31.1 − 4.5 61.5 12.3 7.4 − 7.2
SG3 2.9 86.2 31.5 8.7 − 3.3 91.1 57.9 0.2 − 0.2
SG4 4.7 139.6 31.5 4.1 − 0.9 95.9 108.9 0 0
SG5 6.7 199.1 31.5 0.9 0 99.1 167.4 0 0

Fig. 10  Distribution of the over-, adequately and under-fertilized areas with uniform LRs (estimates for soil 
groups 1 (a), 2 (b) and 3 (c) in the VDLUFA classification) compared with the example estimated variable 
LR for 18 × 18 m management units. 
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comparing the lime demands of the potentially selectable soil groups as per the VDL-
UFA soil classification system (Table 1).

It also needs to be emphasized that a soil mapping process is also not free from error. A 
digital soil map is the outcome of several consecutive steps that are associated with uncer-
tainties. These steps include soil sampling, laboratory analysis and final digital soil map-
ping (comprising sensor data interpolation and parameter calibration). Uncertainties can be 
caused by several factors, such as the measurement methods and tools as well as the natural 
variability of the soil. For example, even high-resolution surveys suffer from the fact that a 
field cannot be measured at each individual point. Such uncertainties are discussed widely 
in the literature (Brendan et al. 2017; Piiki and Söderström 2019). Due to the complexity of 
error propagation, only a few studies have tried to compare the impacts of sources of errors 
to optimize the soil mapping process (Mueller et al. 2004; Gebbers and De Bruin 2010). 
Gebbers and De Bruin (2010) have shown how the relevance of factor uncertainties (e.g., 
sampling design and interval, positioning error, regionalisation method) can be quantified 
by global sensitivity analyses of a stochastic simulation model of the soil mapping process. 
They found that uncertainties due to the sampling density, the spatial variation of soil prop-
erties and the prediction method had the greatest influence on the results. Compared to the 
errors of these factors, the error of the soil chemical analysis had little impact when it was 
increased from 0 to 20%. Hence, the accuracy of the entire soil mapping process can most 
efficiently be improved by increasing the sampling density (e.g., by using mobile sensor 
platforms), while improving the precision of chemical and physical laboratory analyses has 
a smaller effect.

Regarding the estimates of the uniform LR map based on VDLUFA soil group 2 (SG2), 
1.1 t CaO  ha−1 should be applied according to the VDLUFA look-up scheme. The total 
CaO demand based on this soil group is only approximately 1 t different from the total lime 
demand of the variable LR map (Table 8). While this difference is relatively low, a uni-
form LR determination using soil group 1 or 3 would lead to nearly half the CaO demand 
or an almost three times higher CaO demand, respectively, than the total LR determined 
by the variable approach. While approximately one-third of the field would be adequately 
fertilized using SG2 for lime demand determination, the adequately fertilized area would 
increase to approximately half of the field with SG1 and decrease to less than 10% with 
SG3 (Fig. 10). In contrast, nearly two-thirds of the field would be over-fertilized by approx-
imately 12 t CaO with SG2, and slightly more than 10% would be under-fertilized. With 
SG1, in comparison, only one-third of the field would be over-fertilized, and 11% would 
be under-fertilized. Interestingly, by choosing SG3, the over-fertilized areas of the field 
would increase to more than 90% of the field, and a total of approximately 55 t too much 
CaO would be applied to the field. Making up less than 1% of the area, the under-fertilized 
areas might be neglected. Although SG4 and SG5 would most likely not be chosen in this 
example, the over-fertilized areas would increase by merely 5% and 7%, respectively, in 
comparison to those under SG3. However, the determined CaO amounts would therefore 
double or triple.

Only a few studies have compared variable-rate LR approaches with uniform LR 
approaches based on mean values. In North America, Borgelt et al. (1994), for example, 
compared variable lime rates with a uniform mean liming approach as well as with LRs 
estimated by a soil-buffer and a rule-based method. The latter was based on the parameters 
crop type, soil pH and soil texture. They produced variable-rate liming maps using geosta-
tistical analysis and soil samples taken from a modified soil sampling design. Although the 
8.8 ha test field in their study was less heterogeneous than that in this study, showing only 
two soil texture classes compared to KL60 (5 main groups, 6 subclasses), the mean liming 
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rates would have resulted in over-fertilization of 9 to 12% and under-fertilization of 37 to 
41% of the field. Overall, the uniform (mean-based) liming approach would have resulted 
in an 8 to 28% lower total lime application. In another study by Zaman et al. (2003) from 
the UK, 35% of the tested field required more lime under the variable approach than the 
average amount, 56% less and 9% of the field was adequately limed. The field, however, 
had low ranges of sand (mean = 0.5  kg  kg−1, range = 0.1  kg  kg−1), silt (0.24  kg  kg−1, 
0.11 kg kg−1) and clay (0.26 kg kg−1, 0.11 kg kg−1) contents, and the LRs were estimated 
based on pH only. In two fields in North America, Bianchini and Mallarino (2002) found 
that 56–61% less lime needed to be applied under a variable lime rate approach based on 
a very dense sampling grid than under uniform application. Determination of variable 
LR in all these studies was, however, based on regular sampling grids for soil texture and 
pH and none of these studies used spatial interpolation methods or high-resolution soil 
maps based on proximal soil sensing. In a study by Kuang et al. (2014), conducted on an 
18 ha field in Denmark, variable liming rates were derived from high resolution mapping 
with a Vis–NIR spectrometer system and a recommendation algorithm from the Danish 
Centre for Food and Agriculture (DCA). They found that the VRL consumed the largest 
amount of lime (37 t) for the entire field, while the uniform treatment required just 25.3 t 
for entire field. However, for variable lime management the yield of spring barley of 7.57 
t  ha−1 was slightly but significantly better than the yield of 7.51 t  ha−1 under uniform lime 
management.

Outlook

The success of lime applications based on this approach is currently being studied in field 
trials at different study sites and will be verified within the project period by repeated sen-
sor campaigns with the multi-sensor platform and yield measurements. Moreover, the 
fusion of the sensor data within the project will be tested to enhance the predictability 
of the required soil parameters for liming. The financial aspects of this approach have 
not been addressed so far. It is evident that the costs to calibrate the sensors through soil 
sampling and soil analysis should be as low as possible. The number of reference sam-
ples taken in this study was relatively high. Part of the ongoing research is to reduce the 
number of reference samples to a maximum of 5 to 10 per field for pH, soil texture and 
SOC together while keeping prediction accuracy at a sufficient level. On the other hand, 
the economic and environmental value of precise liming must be highlighted. This value 
will only be perceived in the long term, and the adoption of precision liming will likely be 
supported by the relevant authorities. Farmers, advisors and service providers need training 
and accessible software tools to obtain the full benefits of existing soil mapping systems.

Conclusions

The present study presents a developed procedure that allows the easy and semi-automated 
generation of topsoil pH, texture and soil organic matter maps based on proximal soil sens-
ing. This can be used for soil acidity management practices that respect the natural soil 
variability at a high level of detail and improve the currently available best practices as 
described above. Moreover, this study provides guidelines for implementation in practice 
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and, for scientists and advisors, information for the comparison and further development of 
approaches to variable-rate liming.

It was shown that high-resolution soil maps of pH, soil texture and soil organic mat-
ter could be generated through sensor-based digital soil mapping using two multi-sensor 
platforms and semi-automated (geo-) statistical methods. These soil maps exhibited small-
scale spatial patterns and spatial interrelations between the target variables. More elevated 
parts of the field are characterized by a sandy soil texture, low amounts of SOM and low 
pH values. Zones at low elevations, which most likely developed from fluvial processes, 
are characterized by loamy soil textures, higher SOM contents and higher pH values.

Based on the high-resolution soil maps, a lime requirement map at 2 × 2 m spatial reso-
lution was calculated following an adapted approach to the conventional VDLUFA guide-
lines for liming in Germany. However, to generate a lime prescription map that can be 
processed by a currently available lime spreader as used in the present study, the spatial 
resolution needed to be changed to 18 × 18 m. Given the high resolution of input data that 
proximal soil sensors can provide, the lack of precision in the currently available lime 
applicators is probably a bottleneck for the improvement of soil acidity management.

The combined average soil map error was used as a threshold value for identifying over, 
adequately and under-limed areas, and the LRs of the precision and the uniform liming 
approaches were compared. The results showed that 59% of the field would be over-ferti-
lized by approximately 12 t of lime, 24% would receive approximately 10 t too little lime 
and merely 17% would be adequately limed with the uniform approach.
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