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Abstract We study product regular conditional probabilities under measures of two
coordinates with respect to the second coordinate that are weakly continuous on the
support of themarginal of the second coordinate.Assuming that there exists a sequence
of probability measures on the product space that satisfies a large deviation princi-
ple, we present necessary and sufficient conditions for the conditional probabilities
under these measures to satisfy a large deviation principle. The arguments of these
conditional probabilities are assumed to converge. A way to view regular conditional
probabilities as a special case of product regular conditional probabilities is presented.
This is used to derive conditions for large deviations of regular conditional probabili-
ties. In addition, we derive a Sanov-type theorem for large deviations of the empirical
distribution of the first coordinate conditioned on fixing the empirical distribution of
the second coordinate.
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deviations
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1 Introduction and Main Results

In the present paper, we study large deviations of probabilities “of the form”

P(Xn ∈ A | Yn = yn), (1.1)
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where ((Xn,Yn))n∈N is a sequence of couples of random variables that satisfies a
large deviation principle and yn → y for some y. As the event [Yn = yn] may have
probability zero, we make sense of (1.1) in terms of a kernel ηn , so that

ηn(yn, A)

“represents” (1.1).
Such kernels are called regular conditional probabilities and form an important

object in probability theory. The existence of regular conditional probabilities has been
studied extensively, for example, by Faden [12] or by Leao et al. [21]. There exist in
fact various forms of regular conditional probabilities, namely either with respect to a
σ -algebra, with respect to a measurable map or with respect to the projection on one
of the coordinates (in case of a product space).

In order to consider large deviations of conditional probabilities, we have to specify
which conditional probability we are considering; the conditional probability may not
be unique.However, if a (product) regular conditional probability isweakly continuous
on the support of the measure composed with the inverse of the measurable map
(or projection), it is unique on that domain. For these (product) regular conditional
probabilities, it is natural to study their large deviations whenever the argument of
the probability is in the domain on which it is unique. In this paper, we study the
large deviations in the case when the arguments of these kernels converge, i.e. we
study large deviations of (ηn(yn, ·))n∈N for the case that yn → y. To the best of our
knowledge, current literature does not provide a general condition under which such
kernels satisfy a large deviation principle.

1.1 Literature

Some examples in this direction are present. For example in Adams et al. [1], the
large deviation principle is proved for the empirical distribution that is evolved by
independent Brownian motions conditioned on their initial empirical distribution to
lie in a ball (see [1, Theorem 1]). They proceed by proving that the large deviation
principle rate function converges as the radius of the ball converges to zero. For the
purpose of this paper, we have to show that the limit of the radius of the ball and
the limit belonging to the large deviation principle can be interchanged. Léonard
[22] proves the large deviation principle of the empirical distribution that is evolved
by independent Brownian motions conditioned on their initial empirical distribution;
those initial empirical distributions are assumed to be converging (see [22, Proposition
2.19]). In both papers, the evolved state is conditioned on the initial state, while there is
also interest in large deviations of the initial state conditioned on the evolved state. In
this paper, we prove the large deviation principle in this setting for finite state spaces.

There exist various results on quenched large deviations, i.e. large deviations for
regular conditional probabilities in the sense that for almost all realisations of the
disorder, the conditional probabilities satisfy the large deviation principle with a rate
function that does not depend on the disorder. Examples of papers on quenched large
deviations are Comets [5] for conditional large deviations of i.i.d. random fields,
Greven and den Hollander [14] and Comets et al. [6] for random walks in random
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environments, Kosygina–Rezakhanlou–Varadhan [18] for a diffusion with a random
drift and Rassoul-Agha et al. [24] for polymers in a random potential.

Biggins [2] obtains the large deviation principle for mixtures of probability mea-
sures that satisfy the large deviation principle with kernels that satisfy the large
deviation principle as their arguments converge. To some extent, we complement
the article in the opposite direction, in the sense that we assume the large deviation
principle of the mixture and derive the large deviation principle of the kernels.

Our main motivation to study the above large deviations lies in the theory of Gibbs–
non-Gibbs transitions. There is a correspondence between the large deviation rate
function of the conditional probability with respect to the evolved coordinate and the
evolved state (measure or sequence) being Gibbs (see van Enter et al. [9]). We refer
to Sect. 1.4 for further discussions on Gibbs–non-Gibbs transitions.

1.2 Large Deviations

In the literature on large deviations, two dominant definitions of large deviation prin-
ciples are used. One is in terms of a σ -algebra on the topological space, as is done in
the book by Dembo and Zeitouni [7] and in the book by Deuschel and Stroock [8];
the other is in terms of the topology, i.e. in terms of open and closed sets, as is done
in the book by den Hollander [16] and in the book by Rassoul-Agha and Seppäläinen
[25]. Whenever one considers the Borel σ -algebra on the topological space, the two
definitions agree.

We define the large deviation lower bound and the large deviation upper bound
separately, as in Sect. 1.3, and in Sect. 6, we describe the necessary and sufficient
conditions for each of the bounds separately. Moreover, we define them on a set of
subsets of the topological space,which is not required to be aσ -algebra. InRemark 7.4,
we motivate the choice for this definition.

Definition 1.1 Let X be a topological space and A be a set of subsets of X . Let
I : X → [0,∞] be lower semicontinuous. Let (μn)n∈N be a sequence of probability
measures on A. Let (rn)n∈N be an increasing sequence in (0,∞) with limn→∞ rn =
∞.We say that (μn)n∈N satisfies a large deviation lower bound onAwith rate function
I and rates (rn)n∈N if

lim inf
n→∞

1
rn
logμn(A) ≥ − inf I (A◦) (A ∈ A). (1.2)

We say that (μn)n∈N satisfies a large deviation upper bound on A with rate function
I and rates (rn)n∈N if

lim sup
n→∞

1
rn
logμn(A) ≤ − inf I (A) (A ∈ A). (1.3)

In the rest of the paperweonly consider the rates rn = n. However, the theory presented
is still valid for general rates (rn)n∈N. We say that (μn)n∈N satisfies a large deviation
principle onAwith rate function I whenever it satisfies both the large deviation lower
bound and the large deviation upper bound with rate function I .
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We omit “on A” whenever A is the Borel σ -algebra B(X ) on X . In this case, the
large deviation lower bound is satisfied if and only if the inequality in (1.2) holds for
all open subsets of X and the large deviation upper bound is satisfied if and only if
the inequality in (1.3) holds for all closed subsets of X .

1.3 Main Results

See Sects. 3 and 4 for the definitions of the objects in the statements of the following
theorems. In Sects. 6 and 7, we consider a more general situation. Theorem 1.2 is a
consequence of Theorem 6.9, and Theorem 1.3 is a consequence of Theorem 7.5.

In this section X and Y are metric spaces.

Theorem 1.2 Let π : X ×Y → Y be given by π(x, y) = y. Suppose that (μn)n∈N is
a sequence of probability measures on B(X )⊗B(Y) that satisfies the large deviation
principle with rate function J : X × Y → [0,∞] that has compact sublevel sets.
Suppose that for each n ∈ N, there exists a product regular conditional probability
ηn : Y × B(X ) → [0, 1] under μn with respect to π that is weakly continuous
on supp(μn ◦ π−1), which we assume to be non-empty. Let y ∈ Y be such that
inf J (X × {y}) < ∞. Define I : X → [0,∞] by

I (x) = J (x, y) − inf J (X × {y}). (1.4)

I has compact sublevel sets, and, for each n ∈ N, ηn is unique on supp(μn ◦ π−1).
Moreover,

(A1) ⇐⇒ (A2) and (B1) ⇐⇒ (B2),

where

(A1) For all (yn)n∈N with yn → y and yn ∈ supp(μn ◦ π−1) for all n large
enough,1 the sequence (ηn(yn, ·))n∈N satisfies the large deviation lower bound
with rate function I .
(A2) For all x ∈ X and r > 0, with U = B(x, r),

sup
ε>0

lim inf
n→∞ inf

z∈Y,δ∈(0,ε)
B(z,δ)⊂B(y,ε)

1
n logμn

(
U × Y

∣∣∣X × B(z, δ)
)

≥ − inf I (U ). (1.5)

(B1) For all (yn)n∈N with yn → y and yn ∈ supp(μn ◦ π−1) for all n large
enough, the sequence (ηn(yn, ·))n∈N satisfies the large deviation upper bound
with rate function I .
(B2) For all x1, . . . , xk ∈ X and r1, . . . , rk > 0, with W = X \ [B(x1, r1)∪ · · · ∪
B(xk, rk)],

1 Meaning that there exists an N ∈ N such that yn ∈ supp(μn ◦ π−1) for all n ≥ N .
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inf
ε>0

lim sup
n→∞

sup
z∈Y,δ∈(0,ε)
B(z,δ)⊂B(y,ε)

1
n logμn

(
W ◦ × Y

∣∣∣X × B(z, δ)
)

≤ − inf I (W ). (1.6)

The next theorem is similar to Theorem1.2, but considers the large deviation bounds
for regular conditional kernels instead of product regular conditional probabilities.

Theorem 1.3 Let τ : X → Y be continuous. Suppose that (νn)n∈N is a sequence
of probability measures on B(X ) that satisfies the large deviation principle with rate
function J : X → [0,∞] that has compact sublevel sets. Suppose that for each n ∈ N

there exists a regular conditional probability ηn : Y × B(X ) → [0, 1] under νn with
respect to τ that is weakly continuous on supp(νn ◦ τ−1), which is assumed to be
non-empty. Let y ∈ Y be such that inf J (τ−1({y})) < ∞. Define I : X → [0,∞] by

I (x) =
{
J (x) − inf J (τ−1({y})) τ (x) = y,

∞ τ(x) 
= y.
(1.7)

I has compact sublevel sets, and, for each n ∈ N, ηn is unique on supp(νn ◦ τ−1).
Moreover,

(A1) ⇐⇒ (A2) and (B1) ⇐⇒ (B2),

where

(A1) For all (yn)n∈N with yn → y and yn ∈ supp(νn ◦π−1) for all n large enough,
the sequence (ηn(yn, ·))n∈N satisfies the large deviation lower bound with rate
function I .
(A2) For all x ∈ X and r > 0, with U = B(x, r),

sup
ε>0

lim inf
n→∞ inf

z∈Y,δ∈(0,ε)
B(z,δ)⊂B(y,ε)

1
n log νn

(
U
∣∣∣ τ−1(B(z, δ))

)
≥ − inf I (U ). (1.8)

(B1) For all (yn)n∈N with yn → y and yn ∈ supp(νn ◦π−1) for all n large enough,
the sequence (ηn(yn, ·))n∈N satisfies the large deviation upper bound with rate
function I .
(B2) For all x1, . . . , xk ∈ X and r1, . . . , rk > 0, with W = X \ [B(x1, r1)∪ · · · ∪
B(xk, rk)],

inf
ε>0

lim sup
n→∞

sup
z∈Y,δ∈(0,ε)
B(z,δ)⊂B(y,ε)

1
n log νn

(
W ◦

∣∣∣ τ−1(B(z, δ))
)

≤ − inf I (W ). (1.9)

1.4 Gibbs–non-Gibbs Transitions and Future Research

In this section we discuss the relation between the large deviation results in this paper
and Gibbs–non-Gibbs transitions in more detail. In particular, we discuss possible
future directions regarding large deviations of conditional kernels.
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The following situation for interacting particle systems occurs in the mean-field
context (a similar context holds in the context of lattices). The initial system of so-
called spins consists of distributions describing the interaction between spins via a
potential V (for each n there is a distribution describing the law of n spins). This
initial system is assumed to be Gibbs, which is called sequentially Gibbs in the mean-
field context. Allowing the initial state to be transformed, for example, by an evolution
of the spins, a question of interest is whether the transformed state is (sequentially)
Gibbs. This question has been addressed in the mean-field context by Ermoleav and
Külske [11] and by Fernández et al. [13] for {−1,+1}-valued spins, by den Hollander
et al. [17] for R-valued spins and by Külske and Opoku [19] and van Enter et al. [10]
for compactly valued spins. In these papers, independent dynamics of the spins are
considered (the evolution of each spin is independent of the evolution of the other
spins). Independent dynamics simplify the situation. Namely, the evolved measure on
either the product space of the initial and the final space, or—in case of an evolution—
the space of trajectories, is a tilted measure of the evolved measure when considering
V = 0. In this case the measure is a product measure, which means that the spins
are independent. As a consequence (this will be clarified in a forthcoming paper), the
conditional kernel ηn of the initial state on n spins with respect to the final state (for
a fixed potential V ) is a tilted version of the conditional kernel η0n of the initial state
with respect to the final state of independent spins (i.e. V = 0). Because of this tilting,
by Varadhan’s lemma, (ηn(yn, ·))n∈N satisfies the large deviation principle with rate
function V + Iy − inf(V + Iy) if (η0n(yn, ·))n∈N satisfies the large deviation principle
with rate function Iy . In the forthcoming paper, wewill prove that the evolved sequence
is sequentially Gibbs if V + Iζ has a unique global minimiser.

The large deviation principle of (ηn(yn, ·))n∈N has been mentioned in the case of
trajectories in [11, Corollary 2.4] and—as a corollary of that theorem—for the case of
the product space of the initial and the final space in [13, Corollary 1.3]. However, no
proof was given. Theorem 8.2 provides a rigorous proof of the large deviation principle
statement in [13, Corollary 1.3]. In this paper, we do not provide a rigorous proof of
[11, Corollary 2.4]. But Theorem 1.3 may be used, as the conditioning on the final
state is a regular conditional kernel with respect to the map τ : C([0, T ],X ) → X ,
τ( f ) = f (T ).

In order to deal with empirical distributions (and not with magnetisations as is
done in [17]), in future research we strive to “extend” the statement of Theorem 8.2
to infinite and possibly non-compact state spaces. In the case of non-compact spaces,
it may be that topologies on the space of probability measures are considered that are
not metrisable.

1.5 Outline

We list some notations, definitions and assumptions in Sect. 2. In Sect. 3, we give and
compare the notions of regular conditional kernels, and we show that a regular condi-
tional kernel under a measure ν is in fact a product regular conditional kernel under
a measure that is related to ν. In Sect. 4, we introduce and study weakly continuous
regular conditional kernels. In Sect. 5, we present some facts about lower semicontin-
uous functions with compact sublevel sets. Relying on the results of Sects. 4 and 5, in
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Sect. 6, we present results on large deviation bounds for product regular conditional
probabilities, in particular necessary and sufficient conditions for these bounds to hold.
In Sect. 7, we discuss how to obtain large deviation bounds for regular conditional
probabilities from the results in Sect. 6. In Sect. 8, we apply the theory to obtain
the large deviation principle for the empirical density of the first coordinate given
the empirical density of the second coordinate, for independent and identically dis-
tributed pairs of random variables. In Sect. 9, we give some examples. We also include
an example for which the conditions are not satisfied. For this example we compare
the quenched large deviations with large deviations of the weakly continuous regular
conditional probabilities and comment on the difference with an example by La Cour
and Schieve [20]. In “Appendices 1 and 2” we state some general results considering
large deviations bounds that are used in the different sections. In “Appendix 3” we
provide the proof of a theorem on which the examples of Sect. 9 rely.

2 Notations and Conventions

N = {1, 2, 3, . . . }. For a topological space X , we write B(X ) for the Borel σ -algebra
and P(X ) and M(X ) for the spaces of probability and signed measures on B(X ),
respectively. For A ⊂ X we write A◦ for the interior of A and A for the closure
of A. For x ∈ X we write δx for the element in P(X ) with δx (A) = 1 if x ∈ A
and δx (A) = 0 otherwise. For x ∈ X we write Nx for the set of B(X )-measurable
neighbourhoods of x . For a μ ∈ M(X ) we write supp μ = {x ∈ X : |μ|(V ) >

0 for all V ∈ Nx } and call this the support of μ. For a function f from a set X into
R and c ∈ R we write [ f ≥ c] = {x ∈ X : f (x) ≥ c}. Similarly, we use the
notations [ f > c], [ f ≤ c] and [ f < c]. Whenever (xι)ι∈I is a net, where I is a
directed set by (a direction) �, we write lim inf ι∈I xι = supι0∈I inf ι�ι0,ι∈I xι (similarly
lim sup). In particular, if V ⊂ Nx and

⋂V = {x} and f : V → R, we write
lim infV∈V f (V ) = supV0∈V infV⊂V0,V∈V f (V ) (i.e. we consider ( f (V ))V∈V as a
net where V is directed by ⊃ (as �)).

Whenever we write μ(A|B), we implicitly assume that it is well defined (as μ(A∩
B)/μ(B)), i.e. that μ(B) 
= 0.

We use the conventions log 0 = −∞ and inf I (∅) = ∞ whenever I is a function
with values in [0,∞].

All measures in this paper are signed measures, unless mentioned otherwise.

3 Regular Conditional Kernels Being Product Regular Conditional
Kernels

In this section we introduce the notion of a (product) regular conditional kernel. For
an extensive study on regular conditional kernels, see Bogachev [4, Section 10.4].
The notion of a product regular conditional kernel does not appear in [4], but it does
in Faden [12] and in Leao et al. [21]. Besides giving definitions, we make a few
observations, of which Theorem 3.6 is used later on to derive statements of regular
conditional kernels from statements of product regular conditional kernels.
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In this section (X,A), (Y,B) are measurable spaces, ν is a measure on A and μ

is a measure on A ⊗ B, τ : X → Y is measurable, and π : X × Y → Y is given by
π(x, y) = y.

Definition 3.1 A function η : Y × A → R is called a (B-)kernel if η(·, A) is (B-
)measurable for all A ∈ A and η(y, ·) is a measure for all y ∈ Y . A kernel η is called
a probability kernel if η(y, ·) is a probability measure for all y ∈ Y .

Definition 3.2 Let η : Y × A → R be a (probability) kernel.

(a) η is called a regular conditional kernel (regular conditional probability) under ν

with respect to τ if

ν(A ∩ τ−1(B)) =
∫

Y
1B(y)η(y, A) d

[
|ν| ◦ τ−1

]
(y) (A ∈ A, B ∈ B). (3.1)

(b) η is called a product regular conditional kernel (product regular conditional prob-
ability) under μ with respect to π if

μ(A × B) =
∫

Y
1B(y)η(y, A) d

[
|μ| ◦ π−1

]
(y) (A ∈ A, B ∈ B). (3.2)

3.3 Suppose that E is a sub-σ -algebra of F . Let (Y,B) = (X, E) and Id : (X,A) →
(Y,B) be the identitymap. In agreement of [4, Definition 10.4.1] a kernel η : Y×A →
R is a regular conditional kernel under μ with respect to E if and only if η is a regular
conditional kernel under μ with respect to Id.

3.4 Consider the two kernelsη : Y×A → R and ξ : Y×(A⊗B) → R, corresponding
to each other by the formulas ξ(y, F) = ∫

X 1F (x, y) d[η(y, ·)](x) and η(y, A) =
ξ(y, A × Y ). Then ξ is a regular conditional kernel under μ given π if and only if η

is a product regular conditional kernel under μ given π .
In general, X×Y may be equipped with a σ -algebraF different fromA⊗B. In this

situation,whereμ is ameasure onF andπ isF-measurable, the above correspondence
cannot be used in general to reduce statements about product regular conditional
kernels to statements about regular conditional kernels. See also example 4.5.

On the other hand, regular conditional probabilities can be seen as special cases of
product regular conditional probabilities; see Theorem 3.6. In the present paper we use
this to derive Theorem 1.3 from Theorem 1.2 but also Theorem 7.5 from Theorem 6.9.

Remark 3.5 IfA is generated by a countable set, two regular conditional probabilities
under a measure with respect to a σ -algebra (see 3.3) are almost everywhere equal (see
Bogachev [4, Theorem 10.4.3]). Similarly one could state an analogous statement for
regular conditional kernels with respect to measurable maps and for product regular
conditional kernels. In Theorem4.3we prove that (product) regular conditional kernels
are unique on the domain on which they are weakly continuous, in case the underlying
topological space is perfectly normal. For such space the Borel σ -algebra may not be
generated by a countable set.2

2 The Sorgenfrey line, the space R with the right half-open interval topology, is perfectly normal but not
second countable (see Steen and Seebach [27, Example 51]).
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Theorem 3.6 (a) There exists a measure μ̃ on (X ×Y,A⊗B) for which μ̃(A× B) =
ν(A ∩ τ−1(B)).

(b) η : Y × A → R is a regular conditional kernel under ν with respect to τ if and
only if η is a product conditional kernel under μ̃ with respect to π .

Proof (a) We may assume ν to be positive, since ν = ν+ − ν−. Let E be the
set that consists of

⋃n
i=1 Ai × Bi , where n ∈ N and Ai ∈ A, Bi ∈ B

are such that A1 × B1, . . . , An × Bn are disjoint. Define ν∗ : E → [0,∞)

by ν∗ (⋃n
i=1 Ai × Bi

) = ν
(⋃n

i=1 Ai ∩ τ−1(Bi )
)
for A1, . . . , An ∈ A and

B1, . . . , Bn ∈ B as above. Checking that E is a ring of sets and that ν∗ is σ -
additive is left for the reader. The existence and unicity of the extension μ̃ follow
from the Carathéodory theorem (see Halmos [15, Section 13, Theorem A]).

(b) It follows from by definition of μ̃ (note that ν ◦ τ−1 = μ̃ ◦ π−1). ��

4 Weakly Continuous Kernels

In this section we introduce the notion of weak continuity for kernels on topological
spaces. In Theorem 4.3 we show uniqueness of (product) regular conditional kernels
that are weakly continuous. In Theorems 4.6 and 4.8 we describe conditions that imply
the existence of weakly continuous regular conditional probabilities. Similarly as is
done in the Portmanteau theoremwhen one considersmetric spaces,weak convergence
implies lower bounds for open sets and upper bounds for closed sets, as is shown in
Theorem4.10.Asdescribed inLemmas4.11 and4.12, these lim inf and lim supbounds
imply bounds for (product) regular conditional probabilities on which the results of
Sects. 6 and 7 are based.

In this section X and Y are topological spaces, ν is a measure on B(X ), μ is a
measure on B(X ) ⊗ B(Y), τ : X → Y is measurable, and π : X × Y → Y is given
by π(x, y) = y.

Definition 4.1 We equip the space of measures,M(X ), with the weak topology (gen-
erated by Cb(X ), which we denote by σ(M(X ),Cb(X )) as in the book of Schaefer
[26, Chapter II, Section 5]). In this topology, a net (μι)ι∈I inM(X ) converges to a μ

inM(X ) if and only if
∫
X f dμι → ∫

X f dμ for all f ∈ Cb(X ).
Let D ⊂ Y . A kernel η : Y×B(X ) → R is called weakly continuous on D if the map
D → M(X ) given by y �→ η(y, ·) is continuous in the weak topology. η is called
weakly continuous if η is weakly continuous on Y .

Theorem 4.2 Let X be a perfectly normal3 space and μ ∈ M(X ). Then

supp μ =
{
x ∈ X :

∫

X
f d|μ| > 0 for all f ∈ C(X , [0, 1]) with f (x) > 0

}
.

(4.1)

3 Perfectly normal means that every open set inX is equal to f −1((0, ∞)) for some f ∈ C(X ). All metric
spaces are perfectly normal; Bogachev [4, Proposition 6.3.5].
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Moreover, |μ|(X \supp(μ)) = 0.4 As a consequence,μ = 0 if and only if
∫
X f d|μ| =

0 for all f ∈ Cb(X ).

Proof Wemay assumeμ is positive. Let x ∈ supp μ. Thenμ(V ) > 0 for all V ∈ Nx .
Let f ∈ C(X , [0, 1]) be such that f (x) > 0. Then V = f −1(0,∞) has strictly
positive measure. Since μ(V ) = limn→∞

∫
X min{n f, 1} dμ, there exists an n such

that
∫
X min{n f, 1} dμ > 0. Consequently, as f ≥ 1

n min{n f, 1}, we have ∫X f dμ >

0.
Let x ∈ X be such that

∫
X f dμ > 0 for all f ∈ C(X , [0, 1]) with f (x) > 0.

Let V ∈ Nx . As V = f −1(0,∞) for some f ∈ C(X , [0, 1]), we have μ(V ) ≥∫
X f dμ > 0. ��
Theorem 4.3 Suppose that X is a perfectly normal space.

(a) Let η and ζ be regular conditional kernels under ν with respect to τ that areweakly
continuous on supp(|ν| ◦ τ−1). Then η(y, ·) = ζ(y, ·) for all y ∈ supp(|ν| ◦ τ−1).
If ν is a probability measure, then η(y, ·) is a probability measure for all y ∈
supp(|ν| ◦ τ−1).

(b) Let η and ζ be product regular conditional kernels under μ with respect to π

that are weakly continuous on supp(|μ| ◦ π−1). Then η(y, ·) = ζ(y, ·) for all
y ∈ supp(|μ| ◦ π−1). If μ is a probability measure, then η(y, ·) is a probability
measure for all y ∈ supp(|μ| ◦ π−1).

Proof We prove (a), and the proof of (b) is similar (replace “|ν|◦τ−1” by “|μ|◦π−1”).
To prove η = ζ on D = supp(|ν| ◦ τ−1), by Theorem 4.2, it is sufficient to prove∫
X f dη(y, ·) = ∫

X f dζ(y, ·) for all y ∈ D and all f ∈ Cb(X ). Let f ∈ Cb(X ).
Because f is the uniform limit of simple functions, one has for all B ∈ B(Y)

∫

Y
1B(y)

[∫

X
f dη(y, ·)

]
d[|ν| ◦ τ−1](y)=

∫

Y
1B(y)

[∫

X
f dζ(y, ·)

]
d[|ν| ◦ τ−1](y).

(4.2)

Therefore there exists a set Z ∈ B(Y) with |ν| ◦ τ−1(Y \ Z) = 0 such that

∫

X
f dη(z, ·) =

∫

X
f dζ(z, ·) (z ∈ Z). (4.3)

Since both y �→ ∫
X f dη(y, ·) and y �→ ∫

X f dζ(y, ·) are weakly continuous on D,
and Z is dense in D by Theorem 4.2, we have

∫
X f dη(y, ·) = ∫

X f dζ(y, ·) for all
y ∈ D. The second statement is proved by taking f = 1X . ��
4.4 When η is a regular conditional kernel under ν with respect to τ , the value of the
function η(·, A) on the complement of supp(|ν| ◦ τ−1) is not determined, in the sense
that if η̃ is a kernel with η̃(y, ·) = η(y, ·) for all y ∈ supp(|ν| ◦ τ−1), then η̃ is also a
regular conditional kernel under ν with respect to τ .

4 This is not true in general. For an example, see Bogachev [4, Example 7.1.3].
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For example η̃ given by η̃(y, ·) = η(y, ·) for y ∈ supp(|ν| ◦ τ−1) and η̃(y, ·) = δx
for y ∈ supp(|ν| ◦ τ−1)c for some chosen x ∈ X , is such regular conditional kernel.

Whence if ν is a probability measure and there exists a regular conditional kernel
under ν with respect to τ that is weakly continuous on supp(|ν| ◦ τ−1), then we may
as well assume this kernel to be a probability kernel. A similar statement is true for
product regular conditional kernels.

4.5 By Theorem 3.6, statement (a) of Theorem 4.3 is a consequence of statement
(b). In an attempt to reduce statement (b) to statement (a), the following problem
occurs to the correspondence between regular conditional kernels and product regular
conditional kernels that is mentioned in 3.4.

The Borel σ -algebra of X ×Y , i.e. B(X ×Y), may be strictly larger than B(X ) ⊗
B(Y) (see, e.g. Bogachev [4, Lemma 6.4.1 and Example 6.4.3]). If this is the case, i.e.
B(X )⊗B(Y) � B(X ×Y), and B(X ×Y) equals the Baire-σ -algebra onX ×Y , i.e.
the smallest σ -algebra that makes all continuous function X × Y → R measurable,
then there exists a continuous function f ∈ C(X × Y) that is not B(X ) ⊗ B(Y)-
measurable. Composing the function f with arctan, we obtain a g ∈ Cb(X × Y) that
is not measurable with respect to B(X )⊗B(Y). So if η : Y ×B(X ) → R is a product
regular conditional kernel under μ with respect to π , and ξ : Y ×B(X )⊗B(Y) → R

is as in Example 3.4, then g is not integrable with respect to ξ(y, ·) for any y ∈ Y .
B(X × Y) equals the Baire-σ -algebra if X × Y is a metric space (Bogachev [4,

Proposition 6.3.4]). Therefore X = Y = R
R equipped with the discrete topology

form an example for which the above is the case.

We state two theorems (Theorems 4.6 and 4.8) showing the existence of product
regular conditional probabilities that are weakly continuous on supp(|μ| ◦ π−1).

Theorem 4.6 Suppose that Y is countable and equipped with the discrete topology.
Then η : Y × B(X ) → R defined by

η(y, A) =
{

μ(A × Y|X × {y}) μ(X × {y}) 
= 0,

0 μ(X × {y}) = 0,
(4.4)

is a product regular conditional kernel under μ with respect to π that is weakly
continuous on supp(|μ| ◦ π−1).

Proof It follows from the fact that μ(A × B) = ∑
y∈B μ(A × {y}) for A ∈ B(X ),

B ∈ B(Y). ��
4.7 In case Y is first countable, the notion of open and closed sets and continuity of
functions Y → R is characterised by the convergence of sequences. Therefore the
following are equivalent for a kernel η : Y × B(X ) → R

(a) η is weakly continuous in y.
(b) For all (yn)n∈N in Y with yn → y, one has η(yn, ·) w−→ η(y, ·).

The following theorem is an easy consequence of Lebesgue dominated convergence
theorem.
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Theorem 4.8 Let Y be first countable. Let λ be a probability measure on B(X ). Let
D ⊂ Y . Let f : X × Y → [0,∞) be a bounded B(X ) ⊗ B(Y)-measurable function
such that y �→ f (x, y) is continuous on D and equal to zero onY \D for λ-almost all
x ∈ X . Suppose that

∫
X f (x, y) dλ(x) > 0 for all y ∈ D. If η : Y × B(X ) → [0, 1]

is given by

η(y, A) =
{∫

X 1A(x) f (x,y) dλ(x)∫
X f (x,y) dλ(x)

y ∈ D,

0 y /∈ D.
(4.5)

then η is weakly continuous on D (even strongly continuous, i.e. y �→ η(y, A) is
continuous for all A ∈ B(X )). Let κ be a probability measure on B(Y) and assume
D = supp κ . Then η is a product regular conditional kernel under

μ : B(X ) ⊗ B(Y) → [0, 1], μ(A) =
∫
X×Y 1A f d[λ ⊗ κ]∫
X×Y f d[λ ⊗ κ] (4.6)

with respect to π , that is weakly continuous on D = supp(|μ| ◦ π−1).

Remark 4.9 In the above theorem the conditions may be weakened. Instead of assum-
ing f to be bounded and λ, κ to be probability measures, we may as well assume that
λ and κ are positive non-zero measures; that for all y ∈ D there exists a V ∈ Ny

and a λ-integrable h : X → [0,∞) such that f (x, z) ≤ h(x) for all x ∈ X ; and all
z ∈ V ∩ D and that f is λ ⊗ κ-integrable.

In Sect. 6, the condition (b) of Theorem 4.10 is one of the key assumptions. If X
is a metric space, this property follows from weak continuity as in the Portmanteau
theorem. We state this in Theorem 4.10.

Theorem 4.10 Let η : Y × B(X ) → R be a probability kernel. Let D ⊂ Y , y ∈ D
and V ⊂ Ny be such that

⋂V = {y}. Consider the following conditions.

(a) D → M(X ), y �→ η(y, ·) is weakly continuous in y.
(b) lim inf ι∈I η(yι,G) ≥ η(y,G) for all open G ⊂ X and (yι)ι∈I in D with yι → y.
(c) lim supι∈I η(yι, F) ≤ η(y, F) for all closed F ⊂ X and (yι)ι∈I in D with yι → y.
(d) supV∈V infv∈V∩D η(v,G) ≥ η(y,G) for all open sets G ⊂ X .
(e) infV∈V supv∈V∩D η(v, F) ≤ η(y, F) for all closed sets F ⊂ X .

(b), (c), (d), (e) are equivalent. IfX is metrisable, then (a) implies (b). IfX is metrisable
and Y is first countable, then (a) is equivalent to (b) and hence to (c), (d), and (e).

Proof We leave it to the reader to check the equivalences between (b), (c), (d), (e). If
X is a metric space, one can follow the lines of the Portmanteau theorem in the book
of Billingsley [3, Theorem 2.1] for the implication (a) implies (b); the fact that the
measures in the proof are indexed by the natural numbers instead of a general directed
set I does not affect the argument. The proof of (b)�⇒(a) in the book of Billingsley
relies on the Lebesgue dominated convergence theorem. But whenY is first countable,
one can restrict to sequences (see 4.7) and obtain the implication (b)�⇒(a) as is done
in the book of Billingsley. ��
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Lemma 4.11 Assume that μ is a probability measure. Let η be a product regular
conditional probability under μ with respect to π . Write D = supp(μ ◦ π−1) and let
y ∈ D. Then for every U ∈ Ny , one has μ(X ×U ) > 0 and

inf
v∈U∩D

η(v, A) ≤ μ(A × Y|X ×U ) ≤ sup
v∈U∩D

η(v, A) (A ∈ B(X )). (4.7)

Moreover, if V ⊂ Ny is such that
⋂V = {y} and η satisfies (b) of Theorem 4.10, then

lim inf
V∈V

μ(G × Y|X × V ) ≥ η(y,G) for all open G ⊂ X , (4.8)

lim sup
V∈V

μ(F × Y|X × V ) ≤ η(y, F) for all closed F ⊂ X . (4.9)

Proof Let U ∈ Ny . Since y ∈ D = supp(μ ◦ π−1), one has μ(X × U ) > 0. (4.7)
follows from the fact that for all A ∈ B(X )

μ(A ×U )

μ(X ×U )
=
∫
Y 1U (y)η(y, A) d[μ ◦ π−1](y)∫

Y 1U (y) d[μ ◦ π−1](y)

=
∫
Y 1U∩D(y)η(y, A) d[μ ◦ π−1](y)∫

Y 1U∩D(y) d[μ ◦ π−1](y) . (4.10)

For an open G ⊂ X we have for V as above

lim inf
V∈V

μ(G × Y|X × V ) ≥ lim inf
V∈V

inf
v∈V∩D

η(v,G) = sup
V∈V

inf
v∈V∩D

η(v,G). (4.11)

Thus (4.8) follows when assuming (d) of Theorem 4.10. Similarly, one obtains (4.9).
��

For a regular conditional probability we have a similar statement; see Lemma 4.12.
The proof can be done following the lines of the proof of Lemma 4.11 or as a conse-
quence of Lemma 4.11 using Theorem 3.6.

Lemma 4.12 Assume that ν is a probability measure. Let η be a regular conditional
probability under ν with respect to τ . Write D = supp(ν ◦ τ−1) and let y ∈ D. Then
for every U ∈ Ny , one has ν(τ−1(U )) > 0 and

inf
v∈U∩D

η(v, A) ≤ ν(A|τ−1(U )) ≤ sup
v∈U∩D

η(v, A) (A ∈ B(X )). (4.12)

Moreover, if V ⊂ Ny is such that
⋂V = {y} and η satisfies (b) of Theorem 4.10, then

lim inf
V∈V

ν(G|τ−1(V )) ≥ η(y,G) for all open G ⊂ X , (4.13)

lim sup
V∈V

ν(F |τ−1(V )) ≤ η(y, F) for all closed F ⊂ X . (4.14)
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5 Some Facts About Functions with Compact Sublevel Sets

In this section we present some facts for functions with compact sublevel sets which
are used in Sects. 6, 7 and 8.

In this section X ,Y and Z are topological spaces.

Definition 5.1 Let J : X → [0,∞]. We call the set [J ≤ α] (see Sect. 2) a sublevel
set of J for α ∈ [0,∞). J is said to be lower semicontinuous if all sublevels of J are
closed. J is said to have compact sublevel sets if all sublevels of J are compact.

5.2 Let J : X → [0,∞] be lower semicontinuous. Then

J (x) = sup
G∈Nx

inf J (G). (5.1)

Indeed, for all α < J (x) the set [J > α] is open and contains x .
Hence, a function J : X → [0,∞] is lower semicontinuous if and only if

lim inf
ι∈I J (xι) ≥ J (x) (5.2)

for all x ∈ X and all nets (xι)ι∈I in X that converge to x .

Lemma 5.3 Let τ : Z → Y be continuous. Let J : Z → [0,∞] have compact
sublevel sets. Let y ∈ Y and V ⊂ Ny ,

⋂V = {y}. Let F ⊂ Z be closed. Then

lim inf
V∈V

inf J (F ∩ τ−1(V )) = inf J (F ∩ τ−1({y})). (5.3)

Consequently, if Z = X × Y , then, for all closed F ⊂ X with inf J (F × {y}) < ∞,

lim inf
V∈V

inf J (F × V ) = inf J (F × {y}). (5.4)

Proof The ≤ inequality in (5.3) is immediate. Because lim infV∈V inf J (F ∩
τ−1(V )) ≥ lim infV∈Ny inf J (F ∩ τ−1(V )), it is sufficient to prove

α := lim inf
V∈Ny

inf J (F ∩ τ−1(V )) ≥ inf J (F ∩ τ−1({y})). (5.5)

Note that α = supV∈Ny
inf J (F ∩ τ−1(V )). If α = ∞, there is nothing to prove.

Suppose that α < ∞. Whence F ∩ τ−1(V )∩ [J ≤ α + ε] 
= ∅ for all V ∈ Ny and all
ε > 0. Since [J ≤ α + ε] is compact, this implies that

⋂
V∈Ny

F ∩ τ−1(V ) ∩ [J ≤
α + ε] 
= ∅, i.e. inf J (F ∩ τ−1({y})) ≤ α + ε for all ε > 0. ��
5.4 The assumption that τ be continuous is not redundant, e.g. consider Y = Z =
[0, 1] and J = 1( 12 ,1] and τ given by τ(0) = 0, τ(1) = 1 and τ(x) = 1 − x for

x ∈ (0, 1), F = [0, 1] and y = 1. Then, for all neighbourhoods V of y, τ−1(V )

contains the interval (0, ε) for some ε > 0, whence inf J (F ∩ τ−1(V )) = 0 but
inf J (F ∩ τ−1({y})) = J (1) = 1.
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Lemma 5.5 Let X be normal and let G be a basis for the topology of X . Let J :
X × Y → [0,∞] have compact sublevel sets.
(a) For all open G ⊂ X and ε > 0, there exists a U ∈ G with U ⊂ U ⊂ G such that

inf J (G × {y}) + ε ≥ inf J (U × {y}). (5.6)

(b) For all closed F ⊂ X and α < inf J (F × {y}), there exists U1, . . . ,Uk ∈ G such
that with W = X \ (U1 ∪ · · · ∪Uk) one has F ⊂ W ◦ ⊂ W and

α < inf J (W × {y}) ≤ inf J (W ◦ × {y}) ≤ inf J (F × {y}). (5.7)

Proof (a) Let ε > 0. Let x ∈ G be such that J (x, y) ≤ inf J (G × {y}) + ε. Since X
is a normal topological space, there exists an open set U with x ∈ U ⊂ U ⊂ G.
Because G is a basis,U may be chosen in G. Then inf J (G×{y})+ε ≥ J (x, y) ≥
inf J (U × {y}).

(b) Let β > α be such that β < inf J (F ×{y}). The set K := {x ∈ X : J (x, y) ≤ β}
is a compact set that is disjoint from F . Whence there exists disjoint openU, V ⊂
X with K ⊂ U and F ⊂ V . Since G is a basis and K is compact, there exists
U1, . . . ,Uk in G with K ⊂ U1 ∪ · · · ∪ Uk ⊂ U . Then U1 ∪ · · · ∪Uk ∩ V = ∅.
Whence withW := X \U1 ∪ · · · ∪Uk , one has F ⊂ W ◦ andW ⊂ X \ K , which
implies inf J (W × {y}) ≥ β > α. ��

6 Large Deviations for Product Regular Conditional Probabilities

In this section we consider the following situation.

(i) X and Y are topological spaces, where X is normal.
(ii) G is a basis for the topology of X and H is a basis for the topology of Y .
(iii) π : X × Y → Y is given by π(x, y) = y.
(iv) (μn)n∈N is a sequence of probability measures on B(X ) ⊗ B(Y) satisfying the

large deviation principle on {A× B : A ∈ B(X ), B ∈ B(Y)}with a rate function
J : X × Y → [0,∞] that has compact sublevel sets.

(v) For each n ∈ N we assume the following: supp(μn ◦ π−1) 
= ∅,5 there exists
a product regular conditional probability ηn : Y × B(X ) → [0, 1] under μn

with respect to π , which satisfies the following continuity condition (see Theo-
rem 4.10):

lim inf
ι∈I ηn(yι,G) ≥ ηn(y,G) for all open G ⊂ X

and (yι)ι∈I in supp(μn ◦ π−1)with yι → y. (6.1)

(vi) Let y ∈ Y . We assume that inf J (X × {y}) < ∞ and that there exist yn ∈
supp(μn ◦ π−1) with yn → y. We define I : X → [0,∞] by

I (x) = J (x, y) − inf J (X × {y}). (6.2)

5 As we are considering large deviation bound for (ηn(yn , ·))n∈N with yn ∈ supp(μn ◦π−1), we want such
yn to exist. Instead of this condition, one could of course deal with the situation where supp(μn ◦π−1) 
= ∅
for some large N and consider sequences (yn)n∈N with yn ∈ supp(μn ◦ π−1) for n ≥ N .
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In this section we derive necessary and sufficient conditions for the large deviation
bounds with rate function I for sequences of the form (ηn(yn, ·))n∈N. We prove this
for general topological spaces instead of metric spaces as it does not cost more effort.

In Theorem 6.3 we consider a fixed sequence (yn)n∈N with yn → y and describe
equivalent conditions for the lower and upper large deviation bound to hold.

We are interested in the question whether for all sequences (yn)n∈N with yn → y
the sequence (ηn(yn, ·))n∈N satisfies the lower and upper large deviation bound with
rate function I . In Theorem 6.9 we give equivalent6 and sufficient conditions for these
bounds in a way that does not depend on sequences (yn)n∈N and the sets (Vn)n∈N as
in Theorem 6.3.

Finally in 6.12 we comment on deriving Theorem 1.2 from Theorem 6.9.
But first we consider specific situations, providing a simple proof of the large devi-

ation bounds with rate function I for sequences of the form (ηn(yn, ·))n∈N. Namely,
we consider the case that Y is a discrete space (Theorem 6.1) and the case where μn

is a product measure for all n ∈ N (Theorem 6.2).

Theorem 6.1 Suppose that Y is countable and equipped with the discrete topology.
Let y ∈ Y be such that inf J (X × {y}) < ∞. For all (yn)n∈N in Y with yn ∈
supp(μn ◦π−1) and yn → y, the sequence (ηn(yn, ·))n∈N satisfies the large deviation
principle with rate function I .

Proof This basically follows from the following inequalities which follow from the
large deviation principle and from Theorem 4.6.

lim inf
n→∞

1
n logμn(G × {y}) ≥ − inf J (G × {y}) for all open G ⊂ X , (6.3)

lim sup
n→∞

1
n logμn(F × {y}) ≤ − inf J (F × {y}) for all closed F ⊂ X . (6.4)

��
Theorem 6.2 (Independent coordinates) Suppose thatX andY are second countable
and Y is regular. Suppose that μn = μ1

n ⊗ μ2
n for some μ1

n on B(X ) and μ2
n on

B(Y) for all n ∈ N. Then (ηn(yn, ·))n∈N satisfies the large deviation principle with
rate function I for all sequences (yn)n∈N in Y . In particular, ηn(yn, ·) = μ1

n and
I (x) = inf J ({x} × Y).

Proof I is lower semicontinuous (e.g. by 5.2) and for c ∈ R the set [I ≤ c] is a subset
of the compact set {x ∈ X : ∃z ∈ Y, J (x, z) ≤ c − inf J (X × {y})}.

[I ≤ c] = π([J ≤ c + inf J (X × {y})]). ��
Theorem 6.3 Let (yn)n∈N bea sequence inY with yn ∈ supp(μn◦π−1) that converges
to y. For n ∈ N let Vn ⊂ Nyn be such that

⋂Vn = {yn}. Then (a2) ⇐⇒ (a3)
⇐⇒ (a1) and (b2) ⇐⇒ (b3) ⇐⇒ (b1)

(a1) For all open G ⊂ X

lim inf
n→∞

1
n log ηn(yn,G) ≥ − inf I (G). (6.5)

6 Under the condition that Y is first countable.
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(a2) For all U ∈ G7

lim inf
n→∞ lim sup

V∈Vn

1
n logμn(U × Y|X × V ) ≥ − inf I (U ). (6.6)

(a3) For all open U ⊂ X , one has

lim inf
n→∞ lim inf

V∈Vn

1
n logμn(U × Y|X × V ) ≥ − inf I (U ). (6.7)

(b1) For all closed F ⊂ X

lim sup
n→∞

1
n log ηn(yn, F) ≤ − inf I (F). (6.8)

(b2) For all U1, . . . ,Uk ∈ G, one has for W = X \ (U1 ∪ · · · ∪Uk)

lim sup
n→∞

lim inf
V∈Vn

1
n logμn(W

◦ × Y|X × V ) ≤ − inf I (W ). (6.9)

(b3) For all closed W ⊂ X

lim sup
n→∞

lim sup
V∈Vn

1
n logμn(W × Y|X × V ) ≤ − inf I (W ). (6.10)

Proof The implications (a3) �⇒ (a2) and (b3) �⇒ (b2) are immediate.
(a1) �⇒ (a3) Let U ⊂ X be an open set. By Lemma 4.11, (4.8),

lim inf
n→∞ lim inf

V∈Vn

1
n logμn(U × Y|X × V ) ≥ lim inf

n→∞
1
n log ηn(yn,U ). (6.11)

(b1) �⇒ (b3) Let W ⊂ X be a closed set. By Lemma 4.11, (4.9),

lim sup
n→∞

lim sup
V∈Vn

1
n logμn(W × Y|X × V ) ≤ lim sup

n→∞
1
n log ηn(yn,W ). (6.12)

(a2) �⇒ (a1). Let G ⊂ X be open. Let ε > 0 and U be as in Lemma 5.5(a). Then
we obtain using Lemma 4.11

lim inf
n→∞

1
n log ηn(yn,G) ≥ lim inf

n→∞
1
n log ηn(yn,U )

≥ lim inf
n→∞ lim sup

V∈Vn

1
n logμn(U × Y|X × V )

≥ − inf I (U ) = − inf J (U × {y}) + inf J (X × {y})
≥ − inf J (G × {y}) + inf J (X × {y}) − ε. (6.13)

As this holds for all ε > 0, we conclude (6.5).

7 Note that μn(X × V ) > 0 for all n ∈ N and V ∈ Nyn , as yn ∈ supp(μn ◦ π−1).
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(b2)�⇒ (b1). Letα < inf J (F×{y}) andU1, . . . ,Uk andW be as inLemma5.5(b).
Then we obtain using Lemma 4.11

lim sup
n→∞

1
n log ηn(yn, F) ≤ lim sup

n→∞
1
n log ηn(yn,W

◦)

≤ lim sup
n→∞

lim inf
V∈Vn

1
n logμn(W

◦ × Y|X × V )

≤ − inf I (W ) ≤ −α + inf J (X × {y}). (6.14)

As this holds for all α < inf J (F × {y}), we conclude (6.8). ��
6.4 (Fixed y)Note that if yn = y for all n ∈ N, one can takeVn = V for aV ⊂ Ny with⋂V = {y}. Then Theorem 6.3 implies that (ηn(y, ·))n∈N satisfies the large deviation
principle with rate function I if and only if (a2) and (b2) hold (with Vn = V).
6.5 Let (yn)n∈N inY be such that yn ∈ supp(μn◦π−1) and yn → y. FromTheorem6.3
we derive that (a2) holds for some Vn ⊂ Nyn with

⋂Vn = {yn} if and only if (a2)
holds for all such Vn . Similarly, (b2) holds for some Vn ⊂ Nyn with

⋂Vn = {yn} if
and only if (b2) holds for all such Vn ⊂ Nyn .

In Lemma 6.7, we give a consequence of the large deviation principle of (μn)n∈N.
In Theorems 6.9 and 6.10 we use this to formulate sufficient conditions for upper or
lower large deviation bounds on sequences (ηn(yn, ·))n∈N with yn → y and sequences
(ηn(y, ·))n∈N.

We assumed X to be normal in this section. For Lemma 6.7 this assumption can be
dropped.

6.6 For all neighbourhoods V of y one has by the large deviation principle

lim inf
n→∞

1
n logμn(X × V ) ≥ − inf J (X × V ◦) ≥ − inf J (X × {y}) > −∞. (6.15)

In particular, there exists an N ∈ N such thatμn(X ×V ) > 0 for all n ≥ N . Therefore
μn(G × Y|X × V ) is well defined for large n.

Lemma 6.7 (a) For open G ⊂ X

lim inf
V∈Ny

lim inf
n→∞

n∈N:μn (X×V )>0

1
n logμn(G × Y|X × V ) ≥ − inf I (G). (6.16)

(b) For closed F ⊂ X

lim sup
V∈Ny

lim sup
n→∞

n∈N:μn (X×V )>0

1
n logμn(F × Y|X × V ) ≤ − inf I (F). (6.17)

Proof (a) Let ε > 0. By Lemma 5.3, there exists a V0 ∈ Ny such that for all V ∈ Ny

with V ⊂ V0

inf J (X × {y}) ≥ inf J (X × V ) ≥ inf J (X × V 0) ≥ inf J (X × {y}) − ε.

(6.18)
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Let V ∈ Ny be such that V ⊂ V0. As lim supn→∞ 1
n logμn(X × V ) > −∞

(see 6.6), we can “split the lim inf in two” and we get by the large deviation
principle and by (6.18)

lim inf
n→∞

n∈N:μn (X×V )>0

1
n logμn(G × Y|X × V )

= lim inf
n→∞

1
n logμn(G × V ) − lim sup

n→∞
1
n logμn(X × V )

≥ − inf J (G × {y}) + inf J (X × V ) ≥ − inf I (G) − ε. (6.19)

(b) Let α < inf J (F × {y}). There exists a neighbourhood V0 of y such that for all
neighbourhoods V of y with V ⊂ V0

inf J (F × {y}) ≥ inf J (F × V ) ≥ inf J (F × V 0) ≥ α. (6.20)

Let V ∈ Ny be such that y ∈ V ⊂ V0. Similarly as above, we get

lim sup
n→∞

n∈N:μn (X×V )>0

1
n logμn(F × Y|X × V ) ≤ −α + inf J (X × {y}). (6.21)

��
Theorem 6.8 I has compact sublevel sets.

Proof [I ≤ c] = π([J ≤ c + inf J (X × {y})]). ��
Theorem 6.9 We have

(A5) �⇒ (A4) ⇐⇒ (A3) �⇒ (A2) �⇒ (A1),

and, if Y is first countable, then

(A1) ⇐⇒ (A2),

where

(A1) For all (yn)n∈N with yn ∈ supp(μn ◦ π−1) and yn → y, the sequence
(ηn(yn, ·))n∈N satisfies the large deviation lower bound with rate function I .
(A2) For all U ∈ G

sup
V0∈Ny

lim inf
n→∞ inf

V∈H,V⊂V0
V∩supp(μn◦π−1) 
=∅

1
n logμn(U × Y|X × V ) ≥ − inf I (U ). (6.22)

(A3) For all U ∈ G

sup
V0∈Ny

lim inf
n→∞ inf

V∈H,V⊂V0
V∩supp(μn◦π−1) 
=∅

1
n logμn(U × Y|X × V )

≥ lim inf
V∈Ny

lim inf
n→∞

n∈N:μn (X×V )>0

1
n logμn(U × Y|X × V ). (6.23)
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(A4) For all U ∈ G we have ∀Z0 ∈ Ny ∀ε > 0∃V0 ∈ Ny ∃Z ∈ Ny, Z ⊂
Z0 ∀M ∃m ≥ M ∃N ∀n ≥ N ∀V ∈ H, V ⊂ V0, V ∩ supp(μn ◦ π−1) 
= ∅:

1
n logμn(U × Y|X × V ) ≥ 1

m logμm(U × Y|X × Z) − ε. (6.24)

(A5) For all U ∈ G we have ∀ε > 0 ∀V0 ∈ Ny∃N ∈ N ∀n ≥ N ∀V ∈ H, V ⊂
V0, V ∩ supp(μn ◦ π−1) 
= ∅:

μn(U × Y|X × V ) ≥ e−nεμn(U × Y|X × V0). (6.25)

Moreover,

(B5) �⇒ (B4) ⇐⇒ (B3) �⇒ (B2) �⇒ (B1),

and, if Y is first countable, then

(B1) ⇐⇒ (B2),

where

(B1) For all (yn)n∈N with yn ∈ supp(μn ◦ π−1) and yn → y the sequence
(ηn(yn, ·))n∈N satisfies the large deviation upper bound with rate function I .
(B2) For all U1, . . . ,Uk ∈ G one has for W = X \ (U1 ∪ · · · ∪Uk)

inf
V0∈Ny

lim sup
n→∞

sup
V∈H,V⊂V0

V∩supp(μn◦π−1) 
=∅

1
n logμn(W

◦ × Y|X × V ) ≤ − inf I (W ). (6.26)

(B3) For all U1, . . . ,Uk ∈ G with W = X \ (U1 ∪ · · · ∪Uk)

inf
V0∈Ny

lim sup
n→∞

sup
V∈H,V⊂V0

V∩supp(μn◦π−1) 
=∅

1
n logμn(W

◦ × Y|X × V )

≤ lim sup
V∈Ny

lim sup
n→∞

n∈N:μn (X×V )>0

1
n logμn(W × Y|X × V ). (6.27)

(B4) For all U1, . . . ,Uk ∈ G with W = X \ (U1 ∪ · · · ∪ Uk) we have ∀Z0 ∈
Ny ∀ε > 0 ∃V0 ∈ Ny ∃Z ∈ Ny, Z ⊂ Z0 ∀M ∃m ≥ M ∃N ∀n ≥ N ∀V ∈
H, V ⊂ V0, V ∩ supp(μn ◦ π−1) 
= ∅:

1
n logμn(U × Y|X × V ) ≤ 1

m logμm(U × Y|X × Z) + ε. (6.28)

(B5) For all U1, . . . ,Uk ∈ G with W = X \(U1∪· · ·∪Uk)we have ∀ε > 0 ∀V0 ∈
Ny ∃N ∈ N ∀n ≥ N ∀V ∈ H, V ⊂ V0, V ∩ supp(μn ◦ π−1) 
= ∅:

μn(W
◦ × Y|X × V ) ≤ enεμn(W × Y|X × V0) (6.29)
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Proof The proofs of (B5) �⇒ (B4) ⇐⇒ (B3) �⇒ (B2) �⇒ (B1) and of (B1) �⇒
(B2) are similar to the proofs of the following implications.

(A4) ⇐⇒ (A3) follows by definition of sup, inf, lim sup and lim inf.
(A5) �⇒ (A3) Let U ∈ G. Assuming (A5) we obtain ∀ε > 0 ∀V0 ∈ Ny ∃N ∈

N ∀n ≥ N and one has μn(X × V0) > 0 and

inf
V∈H,V⊂V0

V∩supp(μn◦π−1) 
=∅

1
n logμn(U × Y|X × V ) ≥ 1

n logμn(U × Y|X × V0) − ε. (6.30)

So ∀ε > 0 ∀V0 ∈ Ny

sup
Z∈Ny

lim inf
n→∞ inf

V∈H,V⊂Z
V∩supp(μn◦π−1) 
=∅

1
n logμn(U × Y|X × V )

≥ lim inf
n→∞

n∈N:μn (X×V0)>0

1
n logμn(U × Y|X × V0) − ε. (6.31)

(A3) �⇒ (A2) Follows by Lemma 6.7.
(A2) �⇒ (A1). Suppose that (A2) holds. Let U ∈ G with inf J (U × {y}) < ∞

and let ε > 0. Let V0 ∈ Ny and N ∈ N be such that 1
n logμn(U × Y|X × V ) ≥

− inf I (U )−ε for all n ≥ N and all V ∈ Hwith V ⊂ V0 and V ∩supp(μn◦π−1) 
= ∅.
Let (yn)n∈N be such that yn ∈ supp(μn ◦ π−1) and yn → y. Let N0 ≥ N be such that
yn ∈ V0 for all n ≥ N0. Then for all n ≥ N0 and V ∈ Nyn ∩H with V ⊂ V0 we have
1
n logμn(U × Y|X × V ) ≥ − inf I (U ) − ε. This implies (a2) of Theorem 6.3 (with
Vn = Nyn ∩ H).

(A1) �⇒ (A2) (assuming Y is first countable). Suppose that (A2) does not hold.
Let (Vm)m∈N be a decreasing sequence inH with

⋂
m∈N Vm = {y}. Then there exists

a U ∈ G with inf J (U × {y}) < ∞ and an α > inf I (U ) such that for all M ∈ N and
N ∈ N there exist an n ≥ N and a V ∈ Hwith V ⊂ VM and V ∩ supp(μn ◦π−1) 
= ∅
such that

1
n logμn(U × Y|X × V ) ≤ −α. (6.32)

Let β < α be such that β > inf I (U ). By Lemma 4.11 we have

inf
z∈V∩supp(μn◦π−1)

1
n log ηn(z,U ) ≤ 1

n logμn(U × Y|X × V ). (6.33)

For each m ∈ N there exist an nm and a ynm ∈ Vm ∩ supp(μnm ◦ π−1) such that

1
nm

log ηnm (ynm ,U ) ≤ −β. (6.34)

We may choose n1 < n2 < n3 < · · · . With yk = y for k /∈ {nm : m ∈ N} we have
yn → y and

lim inf
n→∞

1
n log ηn(yn,U ) ≤ lim inf

m→∞
1
nm

log ηnm (ynm ,U ) ≤ −β. (6.35)
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Therefore (a1) of Theorem 6.3 does not hold, which implies that (A1) does not hold.
��

We can also use Lemma 6.7 and Theorem 6.3 (see also 6.4) to obtain sufficient
conditions for the lower or upper large deviation bounds for (ηn(y, ·))n∈N.

Theorem 6.10 Let V ⊂ Ny be such that
⋂V = {y}.

(a) Suppose that for all U ∈ G with inf J (U × {y}) < ∞

lim inf
n→∞ lim sup

V∈V
1
n logμn(U × Y|X × V )

≥ lim inf
V∈Ny

lim inf
n→∞

n∈N:μn (X×V )>0

1
n logμn(U × Y|X × V ). (6.36)

Then (ηn(y, ·))n∈N satisfies the large deviation lower bound with rate function I .
(b) Suppose that for all U1, . . . ,Uk ∈ G with W = X \ (U1 ∪ · · · ∪Uk)

lim sup
n→∞

lim inf
V∈V

1
n logμn(W

◦ × Y|X × V )

≤ lim sup
V∈Ny

lim sup
n→∞

n∈N:μn (X×V )>0

1
n logμn(W × Y|X × V ). (6.37)

Then (ηn(y, ·))n∈N satisfies the large deviation upper bound with rate function I .

6.11 (6.36) and (6.37) hold for example when ∀ε > 0 ∀V0 ∈ V ∃N ∈ N ∀n ≥
N ∀V ∈ V, V ⊂ V0 :

μn(U × Y|X × V ) ≥ e−nεμn(U × Y|X × V0), (6.38)

μn(W
◦ × Y|X × V ) ≤ enεμn(W × Y|X × V0), (6.39)

respectively.

6.12 Theorem 1.2 is a consequence of Theorems 4.10, 6.8 and 6.9 withG = {B(x, r) :
x ∈ X , r > 0} and H = {B(y, δ) : y ∈ Y, δ > 0}.

7 Large Deviations for Regular Conditional Probabilities

In this section X and Y are topological spaces, (νn)n∈N is a sequence of probability
measures on B(X ) that satisfies the large deviation principle with rate function K :
X → [0,∞], and τ : X → Y is continuous. For more assumptions, see 7.2.

We derive the analogous statements as in Sect. 6 but for regular conditional kernels
instead of product regular conditional kernels (7.3 andTheorem7.5). Firstwe show that
with μn the probability measure corresponding on the product space corresponding
to νn as in Theorem 3.6, the sequence (μn)n∈N satisfies the large deviation principle
with a rate function described in terms of K (Theorem 7.1).

If (ηn)n∈N are regular conditional probabilities under (νn)n∈N given τ , then one
could also follow the proofs in Sect. 6 for the product regular conditional probabilities
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to obtain similar results for large deviations for sequences of the form (ηn(yn, ·))n∈N.
Instead, we make the approach via Theorem 3.6 to translate the results to the setting
of regular conditional probabilities.

Theorem 7.1 For all n ∈ N let μn be the probability measure on B(X ) ⊗ B(Y) for
which μn(A × B) = νn(A ∩ τ−1(B)) for A ∈ B(X ), B ∈ B(Y) (as in Theorem 3.6).
Then (μn)n∈N satisfies the large deviation principle on {A × B : A ∈ B(X ), B ∈
B(Y)} with rate function J : X × Y → [0,∞] given by

J (x, y) =
{
K (x) τ (x) = y,

∞ τ(x) 
= y.
(7.1)

If K has compact sublevel sets, then so does J .

Proof By definition of J we have

inf K (A ∩ τ−1(B)) = inf J (A × B)
(
A ∈ B(X ), B ∈ B(Y)

)
. (7.2)

Let A ∈ B(X ) and B ∈ B(Y). Then

lim inf
n→∞

1
n logμn(A × B) = lim inf

n→∞
1
n log νn(A ∩ τ−1(B))

≥ − inf K ((A ∩ τ−1(B))◦). (7.3)

We have (A ∩ τ−1(B))◦ = A◦ ∩ τ−1(B)◦ and τ−1(B)◦ ⊃ τ−1(B◦), whence

inf K ((A ∩ τ−1(B))◦) ≤ inf K (A◦ ∩ τ−1(B◦))
= inf J (A◦ × B◦) = inf J ((A × B)◦). (7.4)

Similarly

lim sup
n→∞

1
n logμn(A × B) = lim sup

n→∞
1
n log νn(A ∩ τ−1(B))

≤ − inf K (A ∩ τ−1(B)). (7.5)

We have A ∩ τ−1(B) ⊂ A ∩ τ−1(B) and τ−1(B) ⊂ τ−1(B), whence

inf K (A ∩ τ−1(B)) ≥ inf K (A ∩ τ−1(B)) = inf J (A × B). (7.6)

Suppose that K has compact sublevel sets. Let c ≥ 0. Then [J ≤ c] is contained in
the compact set [K ≤ c] × τ([K ≤ c]). By Theorem 6.8 I has compact sublevel sets.

��
7.2 In the rest of this sectionX is normal, and G,H, π are as in (ii) and (iii) of Sect. 6.
Furthermore similarly to (v) and (vi) of Sect. 6, we assume the following.
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(v)* For each n ∈ N we assume the following: supp(νn ◦ τ−1) 
= ∅, there exists a
regular conditional probability ηn : Y × B(X ) → [0, 1] under νn with respect
to τ , satisfying the continuity condition (6.1).

(vi)* Let y ∈ Y . We assume that inf K (τ−1({y})) < ∞ and that there exists yn ∈
supp(νn ◦ τ−1) with yn → y. Let I : X → [0,∞] be given by

I (x) = J (x, y) − inf J (X × {y})

=
{
K (x) − inf K (τ−1({y})) τ (x) = y,

∞ τ(x) 
= y.
(7.7)

7.3 As by Theorem 3.6 ηn is the product regular conditional kernel under μn with
respect toπ ; by Theorem7.1 (μn)n∈N satisfies the large deviation principle on {A×B :
A ∈ B(X ), B ∈ B(Y)} with rate function J , and inf J (X × {y}) = inf K (τ−1(y)) <

∞ and μn and ηn are as in Sect. 6 (in the sense that (iv), (v), (vi) hold). Therefore
we can translate the results of Sect. 6, but also the results of Sects. 4 and 5, using, for
example (7.2), νn ◦ τ−1 = μn ◦ π−1 and that for V ∈ B(Y) with νn(τ

−1(V )) > 0
and for A ∈ B(X )

νn(A|τ−1(V )) = μn(A × X |X × V ). (7.8)

In this sense also Theorem 1.3 follows from Theorem 1.2. We present some of the
equivalent statements of Theorem 6.9 in Theorem 7.5.

Remark 7.4 Because of the relation between μn and νn and between K and J , in
Theorem 7.1 we were able to prove the large deviation principle on {A × B : A ∈
B(X ), B ∈ B(Y)}. Whether it can be extended to the large deviation principle on
B(X ) ⊗ B(Y) is a priori not clear. However, for the purpose of using the results of
Sect. 6, this is not required (as only (iv) of Sect. 6 is required). This is the main reason
to define the large deviation bounds as in Definition 1.1.

Theorem 7.5 (A3)�⇒ (A2)�⇒ (A1). IfY is first countable, then (A1) ⇐⇒ (A2).

(A1) For all (yn)n∈N with yn ∈ supp(νn ◦ τ−1) and yn → y the sequence
(ηn(yn, ·))n∈N satisfies the large deviation lower bound with rate function I .

(A2) For all U ∈ G

sup
V0∈Ny

lim inf
n→∞ inf

V∈H,V⊂V0
V∩supp(νn◦τ−1) 
=∅

1
n log νn(U |τ−1(V )) ≥ − inf I (U ). (7.9)

(A3) For all U ∈ G

sup
V0∈Ny

lim inf
n→∞ inf

V∈H,V⊂V0
V∩supp(νn◦τ−1) 
=∅

1
n log νn(U |τ−1(V ))

≥ lim inf
V∈Ny

lim inf
n→∞

n∈N:νn (τ−1(V ))>0

1
n log νn(U |τ−1(V )). (7.10)
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(B3) �⇒ (B2) �⇒ (B1). If Y is first countable, then (B1) ⇐⇒ (B2).

(B1) For all (yn)n∈N with yn ∈ supp(νn ◦ τ−1) and yn → y the sequence
(ηn(yn, ·))n∈N satisfies the large deviation upper bound with rate function I .

(B2) For all U1, . . . ,Uk ∈ G one has for W = X \ (U1 ∪ · · · ∪Uk)

inf
V0∈Ny

lim sup
n→∞

sup
V∈H,V⊂V0

V∩supp(νn◦τ−1) 
=∅

1
n log νn(W

◦|τ−1(V )) ≤ − inf I (W ). (7.11)

(B3) For all U1, . . . ,Uk ∈ G with W = X \ (U1 ∪ · · · ∪Uk)

inf
V0∈Ny

lim sup
n→∞

sup
V∈H,V⊂V0

V∩supp(νn◦τ−1) 
=∅

1
n log νn(W

◦|τ−1(V ))

≤ lim sup
V∈Ny

lim sup
n→∞

n∈N:νn (τ−1(V ))>0

1
n log νn(W |τ−1(V )). (7.12)

8 An Application to Conditional Probabilities of Empirical Distributions
on Finite Sets

In terms of random variables, Sanov’s theorem gives us the large deviation principle
of empirical densities 1

n

∑n
i=1 δXi , where X1, X2, . . . are independent and identically

distributed randomvariables.We consider large deviations of 1
n

∑n
i=1 δXi conditioning

on 1
n

∑n
i=1 δYi = ψn , where (X1,Y1), (X2,Y2), . . . are independent and identically

distributed couples of random variables, both random variables attaining their values
in a finite set. This large deviation principle is formalised in Theorem 8.2.

In this section we consider the following.

• Let R and S be finite sets equipped with the discrete topology (discrete metric).
LetP(R),P(S) andP(R×S) be equipped by theweak topology, and let d denote
the Prohorov metric (see Billingsley [3, Appendix III]) on each of the spaces.

• Let λ ∈ P(R × S). We assume λ(R × {s}) > 0 for all s ∈ S.
• For n ∈ N let Ln : Rn → P(R) be given by Ln(r) = 1

n

∑n
i=1 δri for r =

(r1, . . . , rn) ∈ Rn .
• Write Pn

emp(R) = Ln(Rn) = { 1n
∑n

i=1 δri : r1, . . . , rn ∈ R}, similarly
Pn
emp(S) = Ln(Sn) and Pn

emp(R × S) = Ln((R × S)n).
• Letm : P(R×S) → P(R)×P(S) be the map that maps a measure inP(R×S)

onto the pair of its marginals, i.e. m is given by

m(ξ) = (
ξ(· × S), ξ(R × ·)). (8.1)

• Let π : P(R) × P(S) → P(S) be the map given by π(ξ, ζ ) = ζ .
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• Let μn be the probability measure on B(P(R)) ⊗ B(P(S)) defined by
μn = (⊗n

i=1 λ
) ◦ L−1

n ◦ m−1, so that for A ∈ B(P(R)) and B ∈ B(P(S))

μn(A × B) =
(

n⊗
i=1

λ

)
(L−1

n (A) × L−1
n (B)). (8.2)

• Define θ : S × B(R) → [0, 1] by θ(s, A) = λ(A × S|R × {s}).
• Define ηn : P(S) × B(P(R)) → [0, 1] by

ηn(ξ, A) =

⎧
⎪⎨
⎪⎩

[⊗n
i=1 θ(si , ·)

] ◦ L−1
n (A) ξ ∈ Pn

emp(S), ξ = Ln(s1, . . . , sn)

for s1, . . . , sn ∈ S,

0 ξ /∈ Pn
emp(S).

(8.3)

• Let J : P(R) × P(S) → [0,∞] be given by

J (ρ, σ ) = inf
ξ∈m−1({(ρ,σ )})

H(ξ |λ). (8.4)

where H(ξ |λ) is the relative entropy of ξ with respect to λ ([7, Definition 2.1.5]).
• Let ψ ∈ P(S) be such that

inf
ξ∈m−1(P(R)×{ψ})

H(ξ |λ) < ∞. (8.5)

8.1 We present some facts which follow from the assumptions with little effort; to
some facts we give some explanation or references.

(a) Pn
emp(S) is closed inP(S).Moreover, if ξk and ξ inPn

emp(S) are such that ξk → ξ ,
then there exist ski andqi inS for i ∈ {1, . . . , n} such that ξk = Ln((sk1, . . . , skn)),
ξ = Ln((q1, . . . , qn)) and ski → qi for all i ∈ {1, . . . , n}.

(b) supp(μn ◦ π−1) = Pn
emp(S).

(c) ηn is a product regular conditional kernel underμn with respect toπ that is weakly
continuous on Pn

emp(S).
(d) (

⊗
λn ◦ L−1

n )n∈N satisfies the large deviation principle with rate function H(·|λ).
(e) m is continuous.
(f) (μn)n∈N satisfies the large deviation principle with rate function J .

(a) follows from the fact that S is a finite space. (b) follows from (a), from the
fact that the complement of Pn

emp(S) has μn ◦ π−1-measure zero and because
μn ◦ π−1({Ln(s)}) > 0 for all s ∈ Sn , which is due to the assumptions on λ. (c)
follows by a straightforward calculation, and the continuity follows from (a). For (d)
see Sanov’s theorem (Dembo and Zeitouni [7, Theorem 6.2.10]). (e) follows from the
fact that if ξn → ξ in P(R × S), then the R- and S-marginals of ξn converge to
the R- and S-marginals of ξ , respectively. Then (f) follows from (a) and (d) by the
contraction principle [7, Theorem 4.2.1].

123



1084 J Theor Probab (2018) 31:1058–1096

In the rest of this section, we prove the following theorem.

Theorem 8.2 For all (ψn)n∈N with ψn ∈ Pn
emp(S) and ψn → ψ , the sequence

(ηn(ψn, ·))n∈N satisfies the large deviation principle with rate function I : P(R) →
[0,∞], given by

I (φ) = inf
ξ∈m−1({(φ,ψ)})

H(ξ |λ) − inf
ξ∈m−1(P(R)×{ψ})

H(ξ |λ). (8.6)

I is continuous on [I < ∞].

As P(S) is first countable, it is sufficient to show that (A2) and (B2) of Theo-
rem 6.9 hold. In 8.4 we use the bounds of Lemma 8.3 to derive other bounds which
imply (A2) and (B2). The continuity of I follows by continuity of themap ν �→ H(ν|λ)

(Lemma 8.5).

Lemma 8.3 [7, Lemma 2.1.9] For ν ∈ Pn
emp(R × S) one has, with M = (#R)(#S),

(n + 1)−Me−nH(ν|λ) ≤
[

n⊗
i=1

λ

]
(L−1

n ({ν})) ≤ e−nH(ν|λ). (8.7)

8.4 From Lemma 8.3 we obtain the following bounds for A ∈ B(P(R)) and B ∈
B(P(S)).

μn(A × B) ≤ #L−1
n (A)#L−1

n (B)e
−n inf

ν∈m−1(A×B)∩Pn
emp (R×S)

H(ν|λ)

≤ (n + 1)Me−n inf
ν∈m−1(A×B)

H(ν|λ)
, (8.8)

μn(A × B) ≥ (n + 1)−Me
−n inf

ν∈m−1(A×B)∩Pn
emp (R×S)

H(ν|λ)
. (8.9)

Whence

1
n log

[
(n + 1)−2M

]
−
[

inf
ν∈m−1(A×B)∩Pn

emp(R×S)
H(ν|λ) − inf

ξ∈m−1(R×B)
H(ξ |λ)

]

≤ 1
n logμn(A × S|R × B)

≤ 1
n log

[
(n + 1)2M

]
−
[

inf
ν∈m−1(A×B)

H(ν|λ) − inf
ξ∈m−1(R×B)∩Pn

emp(R×S)
H(ξ |λ)

]
.

(8.10)

In order to derive (A2) and (B2) of Theorem 6.9, we make the following observation.
By (8.10) we have for an open U and a closed W that if for both A = U and C = R

123



J Theor Probab (2018) 31:1058–1096 1085

as well as A = R and C = W we have

inf
V0∈Nψ

lim sup
n→∞

sup
V∈H,V⊂V0

V∩Pn
emp (S) 
=∅

[
inf

ν∈m−1(A×V )∩Pn
emp(R×S)

H(ν|λ) − inf
ξ∈m−1(C◦×V )

H(ξ |λ)

]

≤ inf
ν∈m−1(A×{ψ})

H(ν|λ) − inf
ξ∈m−1(C×{ψ})

H(ξ |λ), (8.11)

then

sup
V0∈Nψ

lim inf
n→∞ inf

V∈H,V⊂V0
V∩supp(μn◦π−1) 
=∅

1
n logμn(U × S|R × V ) ≥ − inf I (U ), (8.12)

inf
V0∈Nψ

lim sup
n→∞

sup
V∈H,V⊂V0

V∩supp(μn◦π−1) 
=∅

1
n logμn(W

◦ × S|R × V ) ≤ − inf I (W ), (8.13)

As

inf
V0∈Nψ

lim sup
n→∞

sup
V∈H,V⊂V0

V∩Pn
emp (S) 
=∅

[
inf

ν∈m−1(A×V )∩Pn
emp(R×S)

H(ν|λ) − inf
ξ∈m−1(C×V )

H(ξ |λ)

]

≤ inf
V0∈Nψ

lim sup
n→∞

sup
V∈H,V⊂V0

V∩Pn
emp (S) 
=∅

inf
ν∈m−1(A×V )∩Pn

emp(R×S)
H(ν|λ)

− sup
V0∈Nψ

inf
V∈H,V⊂V0

V∩supp(μn◦π−1) 
=∅

inf
ξ∈m−1(C×V )

H(ξ |λ)

≤ inf
V0∈Nψ

lim sup
n→∞

sup
ζ∈Pn

emp(S)∩V0
inf

ν∈m−1(A×{ζ })∩Pn
emp(R×S)

H(ν|λ)

− sup
V∈Nψ

inf
ξ∈m−1(C×V )

H(ξ |λ), (8.14)

(8.11) holds (for both A = U and C = R as well as for A = R and C = W , where
U is open and W is closed) if for all open U and all closed W

inf
V0∈Nψ

lim sup
n→∞

sup
ζ∈Pn

emp(S)∩V0
inf

ν∈m−1(U×{ζ })∩Pn
emp(R×S)

H(ν|λ)

≤ inf
ν∈m−1(U×{ψ})

H(ν|λ), (8.15)

sup
V∈Nψ

inf
ξ∈m−1(W×V )

H(ξ |λ) ≥ inf
ξ∈m−1(W×{ψ})

H(ξ |λ). (8.16)

(8.16) is a consequence of Lemma 5.3, as m−1(W × V ) = m−1(W × P(S)) ∩
m−1(P(R)×V ), the set F = m−1(W ×P(S)) is closed for closedW ,m−1(P(R)×
V ) = (π ◦m)−1(V ), and π ◦m is continuous. The proof of inequality (8.15) requires a
littlemore attention. First we present some facts which are used to prove this inequality
in Lemma 8.8.
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Lemma 8.5 [7, Remark below Definition 2.1.5] The map ν �→ H(ν|λ) is continuous
on [H(·|λ) < ∞]. In particular, for all ε > 0 and ξ ∈ P(R × S) there exists a
� ∈ Nξ such that

H(ν|λ) − ε ≤ H(ξ |λ) (ν ∈ � ∩ [H(·|λ) < ∞]). (8.17)

Consequently, I as in (8.6) is continuous on [J < ∞].
Lemma 8.6 (a) Let k, l ∈ N and ζ ∈ Pk

emp(S). For all m ≥ kl there exists a ν ∈
Pm
emp(S) such that d(ν, ζ ) < 1

l .
(b) For all open � ⊂ P(S) there exists an N ∈ N such that Pn

emp(S) ∩ � 
= ∅ for all
n ≥ N.

Proof (a) Let i ∈ {1, . . . , k}. Let ξ ∈ P i
emp(S). Then the measure lk

lk+i ζ + i
lk+i ξ is

an element of P lk+i
emp (S). For every A ⊂ S
∣∣∣[ lk

lk+i ζ + i
lk+i ξ ](A) − ζ(A)

∣∣∣ ≤ 2 i
lk+i ≤ 2 k

lk = 2
l . (8.18)

By definition of the Prohorov metric, this implies d([ lk
lk+i ζ + i

lk+i ξ ], ζ ) ≤ 2
l .

(b) Let ξ ∈ P(S) and δ > 0 be such that B(ξ, δ) ⊂ �. For each ξ ∈ P(S) there
is a k ∈ N and a ζ ∈ Pk

emp(S) such that d(ζ, ξ) < δ
2 . Because of this, (b) follows

from (a) by letting l be such that 1
l < δ

2 and N = lk. ��
Lemma 8.7 Let ξ ∈ P(R×S), π ◦m(ξ) = ψ and ξ � λ. For all δ > 0 there exist a
κ > 0 and an N ∈ N such that for all n ≥ N and all ζ ∈ Pn

emp(S) with d(ζ, ψ) < κ

there is a ν ∈ Pn
emp(R × S) with

π ◦ m(ν) = ζ, ν � λ, d(ν, ξ) < δ, d
(
ν(· × S), ξ(· × S)

)
< δ. (8.19)

Proof In this proof, for a measure ξ ∈ P(R × S), we write ξrs = ξ({(r, s)}), so that
ξ = ∑

rs ξrsδ(r,s) where we use the shorthand notation “
∑

rs” instead of “
∑

r∈R,s∈S”.
Let M = #R#S. Note that

d(ξ, ν) ≤ M max
r∈R,s∈S

|ξrs − νrs |
(
ξ, ν ∈ P(R × S)

)
. (8.20)

Let κ > 0 and n ∈ N. We first give an estimation by which it is clear which κ and
N one should choose. By the assumptions on λ for every s ∈ S there exists a rs ∈ R
with λrs s > 0.

First we show that there exists a ξ∗ ∈ Pn
emp(X×Y)with ξ∗ � ξ and |ξ∗

rs−ξrs | ≤ 2
n

for all r ∈ R and s ∈ S. For each pair (r, s) ∈ R × S with ξrs > 0 we can choose a
ξ ′
rs ∈ {0, 1

n , 2
n , . . . , 1} such that |ξrs − ξ ′

rs | < 1
n . By letting ξ∗

rs = 0 when ξrs = 0 and
add or subtract 1

n to some of the ξ ′
rs we obtain a collection of ξ∗

rs ∈ {0, 1
n , 2

n , . . . , 1}
with

∑
rs ξ∗

rs = 1 and |ξ∗
rs − ξrs | ≤ 2

n and ξ∗
rs = 0 whenever ξrs = 0 for all r ∈ R

and s ∈ S.
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Let ξ ∈ P(R × S). Suppose that ζ ∈ Pn
emp(S) is such that |ζs − ∑

r ξrs | < κ .

Then |ζs − ∑
r ξ∗

rs | < κ + 2
n M . We construct a ν ∈ Pn

emp(R × S) by defining the
νrs by each s separately. Let s ∈ S. If ζs − ∑

r ξ∗
rs < 0, then we choose νrs ≤ ξ∗

rs
with νrs ∈ {0, 1

n , . . . , 1} in such way that
∑

r νrs = ζs (note that |νrs − ξ∗
rs | ≤

|ζs −∑
r ξ∗

rs |). While, if ζs −∑
r ξ∗

rs ≥ 0, then we let νrs = ξ∗
rs for all r 
= rs and we

let νrs s = ξ∗
rs s + ζs −∑

r ξ∗
rs (so that

∑
r νrs = ζs). As ξ∗ � ξ and ξ � λ, by the

construction of ν we have ν � λ. Moreover, we have π ◦ m(ν) = ζ and

max
r∈R,s∈S

∣∣νrs − ξrs
∣∣ ≤ max

s∈S

∣∣∣ζs −
∑
r

ξ∗
rs

∣∣∣+ max
r∈R,s∈S

|ξ∗
rs − ξrs |

≤ κ + 2
n M + 2

n . (8.21)

which implies by (8.20)

d(ν, ξ) ≤ Mκ + 2
n (M2 + M). (8.22)

Moreover, as |∑s νrs −∑
s ξrs | ≤ M maxs∈S |νrs − ξrs |,

d
(
ν(· × S), ξ(· × S)

)
≤ M max

r∈R

∣∣∣
∑
s

νrs −
∑
s

ξrs

∣∣∣ ≤ M2κ + 2
n (M3 + M2).

(8.23)

By choosing κ > 0 and N ∈ N such that M2κ + 2
n (M3 + M2) < δ the proof is

complete. ��
Lemma 8.8 For all open U ⊂ R

0 ≤ inf
V0∈Nψ

lim sup
n→∞

sup
ζ∈Pn

emp(S)∩V0
inf

ν∈m−1(U×{ζ })∩Pn
emp(R×S)

H(ν|λ)

≤ inf
ν∈m−1(U×{ψ})

H(ν|λ). (8.24)

Proof We assume infν∈m−1(U×{ψ}) H(ν|λ) < ∞. Let ξ ∈ m−1(U × {ψ}) be such
that H(ξ |λ) < ∞. Let ε > 0. We show there exists a V0 ∈ Nψ and an N ∈ N such
that for all n ≥ N the set Pn

emp(S) ∩ V0 is not empty and for all ζ ∈ Pn
emp(S) ∩ V0

there exists a ν ∈ m−1(U × {ζ }) ∩ Pn
emp(R × S) with

H(ν|λ) − ε ≤ H(ξ |λ). (8.25)

Let δ be such that (see Lemma 8.5)

B(ξ(· × S), δ) ⊂ U, (8.26)

H(ν|λ) − ε ≤ H(ξ |λ) (ν ∈ B(ξ, δ) ∩ [H(·|λ) < ∞]). (8.27)
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Then let κ > 0 and N ∈ N be as in Lemma 8.7. Let V0 = B(ψ, κ). By Lemma 8.6
we may assume that N is large enough such that Pn

emp(S) ∩ V0 
= ∅. Let n ≥ N and
ζ ∈ Pn

emp(S)∩V0. By Lemma 8.7 there exists a ν ∈ Pn
emp(R×S)with π ◦m(ν) = ζ ,

ν � λ and ν(· ×S) ∈ B(ξ(· ×S), δ), ν ∈ B(ξ, δ), i.e. by (8.26), ν ∈ m−1(U × {ζ }).
ν � λ implies ν ∈ [H(·|λ) < ∞]; thus with (8.27) we obtain (8.25). ��

9 Examples

In Sect. 8, we showed that the regular conditional kernel ηn as in (8.3) satisfies (A1)
and (B1) of Theorem 6.9 by showing that (A2) and (B2) of that theorem hold. This
is not always the most optimal approach; in Example 9.1 we show that for a specific
example of Gaussian measures the expression of ηn allows us to derive (A1) and (B1)
directly.

Furthermore, relying on Theorem 9.2, in Example 9.4, we give an example of a
(ηn)n∈N for which (A1) of Theorem 6.9 does not hold. In Remark 9.5 we mention that
for the one choice of measures in Example 9.4 a quenched large deviation principle is
satisfied, while for the other choice of measures there is no quenched large deviation
principle. In Example 9.6 we show that for a choice of measures as in Example 9.4 the
conditional regular kernel in a specific chosen point does not satisfy any large deviation
principle. In Remark 9.7 we discuss exponential tightness of the regular conditional
kernel. In Remark 9.8 we discuss the differences between the present paper and the
paper of La Cour and Schieve [20].

Example 9.1 Let r 
= 0, Zn := ∫
R

∫
R
e− n

2 (x2−2r xy+y2) dx dy and consider (μn)n∈N
the sequence of probability measures on B(R × R) determined by

μn(A × B) = 1

Zn

∫

R

∫

R

1A×B(x, y)e− n
2 (x2−2r xy+y2) dx dy (A, B ∈ B(R)).

(9.1)

The sequence satisfies the large deviationprinciplewith rate function J : R
2 → [0,∞]

given by J (x, y) = 1
2 (x

2 − 2r xy + y2). By Theorem 4.8 ηn given by

ηn(y, A) =
∫
A e

− n
2 (x2−2r xy) dx∫

R
e− n

2 (x2−2r xy) dx
=
∫
A e

− n
2 (x−r y)2 dx∫

R
e− n

2 (x−r y)2 dx
, (9.2)

is theweakly continuous product regular conditional probability underμn with respect
to the projection on the Y-coordinate. If yn → y, one can show that for λ ∈ R

lim
n→∞

1
n log

∫

R

enλx d[ηn(yn, ·)](x) = lim
n→∞

1
n log

∫

R

enλx d[ηn(y, ·)](x)
= λr y + 1

2λ
2. (9.3)

Then by the Gärtner–Ellis theorem (see for example Dembo and Zeitouni [7, Theorem
2.3.6]) we conclude that (ηn(yn, ·))n∈N satisfies the large deviation principle with the
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same rate function as the one of the large deviation principle of (ηn(y, ·))n∈N, which is
x �→ (x −r y)2. Note that this equals J (x, y)− inf J (R×{y}) because of the equality
x2 − 2r xy + y2 = (x − r y)2 + (1 − r2)y2.

The proof of the following theorem can be found in “Appendix 3”.

Theorem 9.2 Let X and Y be separable metric spaces. Let (μ1
n)n∈N and (μ2

n)n∈N be
sequences of probability measures on B(X ). Let (νn)n∈N be a sequence of probability
measures on B(Y) that satisfies the large deviation principle with a rate function
L : Y → [0,∞]. Suppose that y ∈ Y and Wn ∈ Ny are such that

⋂
n∈N Wn = {y}

and αn : Y → [0, 1] is a continuous function with αn(y) = 0 and αn = 1 on Y \ Wn

such that

lim inf
n→∞

1
n log

(∫

Wn

αn dνn

)
= 0, lim inf

n→∞
1
n log

(∫

Wn

(1 − αn) dνn

)
= 0. (9.4)

Assume (μ1
n)n∈N satisfies the large deviation principle with rate function I . Assume

furthermore that for all open A ⊂ X

lim inf
n→∞

1
n logμ1

n(A) ≥ lim inf
n→∞

1
n logμ2

n(A), (9.5)

lim sup
n→∞

1
n logμ1

n(X \ A) ≥ lim sup
n→∞

1
n logμ2

n(X \ A). (9.6)

Letμn be the probabilitymeasure onB(X )⊗B(Y) forwhich for A ∈ B(X ), B ∈ B(Y)

μn(A × B) = μ1
n(A)

∫

Y
1Bαn dνn + μ2

n(A)

∫

Y
1B(1 − αn) dνn . (9.7)

Then (μn)n∈N satisfies the large deviation principle with rate function J : X × Y →
[0,∞] given by J (x, y) = I (x) + L(y). ηn : Y × B(X ) → [0, 1] defined by

ηn(y, A) = αn(y)μ
1
n(A) + (1 − αn(y))μ

2
n(A) (9.8)

is theweakly continuous product regular conditional probability underμn with respect
to π : X × Y → Y given by π(x, y) = y.

Note that I (x) = J (x, y) − inf J (X × {y}) for all x ∈ X , y ∈ Y .

Example 9.3 Wegive examples ofY,Wn, αn, νn and L such that (9.4) of Theorem 9.2
is satisfied and (νn)n∈N satisfies the large deviation principle with rate function L .

(a) Let Y = [0,∞), αn(y) = min{ny, 1} for y ∈ Y and let νn(B) =∫∞
0 1B(y)ne−ny dy for B ∈ B([0,∞)). Then

∫ 1
n
0 αn dνn = 1 − 2e−1 and

∫ 1
n
0 (1 − αn) dνn = e−1. Therefore with this νn , αn and Wn = [− 1

n , 1
n ] (9.4) is

satisfied. Moreover (νn)n∈N satisfies the large deviation principle with rate func-
tion L : Y → [0,∞], L(y) = y (this follows from example by the Gärtner–Ellis
theorem [7, Theorem 2.3.6]).
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(b) Let Y = R and νn = μN (0, 1n ) (the Gaussian measure corresponding to aN (0, 1
n )

distributed random variable). Then there exists a decreasing sequence (εn)n∈N
in (0,∞) with εn ↓ 0, such that with Wn = [−εn, εn] there exist functions αn

as in Theorem 9.2 such that (9.4) is satisfied (see the postscript). With ν0n =
1
2δ0 + 1

2νn instead of νn , (9.4) is also satisfied. Moreover, (νn)n∈N and (ν0n )n∈N
(use Lemma 9.9) satisfy the large deviation principle with rate function L : Y →
[0,∞], L(y) = 1

2 y
2.

Postscript.

Let β = ν1([−1, 1]). Let κn = 1√
n
. Then νn[−κn, κn] = β for all n ∈ N. Let φε :

R → [0, 1] be defined byφε(z) = min{ε−1|z|, 1}. Then limε↓0
∫
[−κn ,κn ] φε dν1 =

β, limε↓0
∫
[−κn ,κn ] 1 − φε dν1 = 0 and

∫

[−κn ,κn ]
φκn dνn <

∫

[−κn ,κn ]
1 − φκn dνn . (9.9)

Therefore, for all n ∈ N, there exists an εn ∈ (0, κn) such that∫

[−κn ,κn ]
φεn dνn = 1

2β =
∫

[−κn ,κn ]
1 − φεn dνn, (9.10)

With αn = φεn , (9.4) as in Theorem 9.2 is satisfied.

Example 9.4 With X = R, μ1
n = μN (0, 1n ), μ

2
n = δ 1

n
and I (x) = 1

2 x
2 for x ∈ R and

Y, νn (or ν0n ), αn ,Wn and L as in Examples 9.3 (a) or (b) the conditions of Theorem 9.2
are satisfied (note that (δ 1

n
)n∈N satisfies the large deviation principle with rate function

H : R → [0,∞] given by H(0) = 0 and H(x) = ∞ for x 
= 0).
Then ηn(0, ·) = δ 1

n
and ηn(εn, ·) = μN (0, 1n ) for all n ∈ N. Whence (ηn(0, ·))n∈N

satisfies the large deviation principle with rate function H and (ηn(εn, ·))n∈N (and
also (ηn(y, ·))n∈N for y > 0) satisfies the large deviation principle with rate function
I . Because I ≤ H , the sequence (ηn(0, ·))n∈N satisfies the large deviation upper
bound not only with H but also with I instead of H . Therefore (b1) of Theorem 6.3
holds in case yn = 0 for all n. Since (ηn(0, ·))n∈N does not satisfy the large deviation
principle with rate function I , (a1) of Theorem 6.3 does not hold. Therefore for any
decreasing sequence (Vm)m∈N inN0 with

⋂
m∈N Vm = {0} there exists an open setU

with inf I (U ) < ∞ with

lim inf
n→∞ lim sup

m→∞
1
n logμn(U × Y|X × Vm) < − inf I (U ). (9.11)

We illustrate this for Y, αn,Wn, νn and L as in Examples 9.3(a): For Vm = [0, 1
m ),

U = (1,∞) we get for m ≥ n

μn(U × Vm) = μN (0, 1n )(U )

∫ 1
m

0
ny · ne−ny dy, (9.12)

μn(X × Vm) =
∫ 1

m

0
ne−ny dy. (9.13)
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Since
∫ 1

m
0 ny · ne−ny dy ≤ n

m

∫ 1
m
0 ne−ny dy, we get

μn(U × Y|X × Vm) ≤ n
mμN (0, 1n )(U ) (9.14)

which converges to zero as m → ∞, which implies

lim sup
m→∞

1
n logμn(U × Y|X × Vm) = −∞ < − 1

2 = − inf I (U ). (9.15)

Remark 9.5 (Quenched large deviations) Consider the situation as in Example 9.4.
For all n ∈ N we have the following. If ζn : Y × B(X ) → [0, 1] is a product
regular conditional probability under μn with respect to π , then ζn(y, ·) = ηn(y, ·)
for [μn ◦ π−1]-almost all y (see Remark 3.5).

Whence, with νn as in Examples 9.3 (a) or (b), we have a quenched large deviation
principle of the conditional probability with respect to the second coordinate with rate
function I ; for every product regular conditional probability ζn under μn with respect
to π there exists a Z ⊂ Y with μn ◦ π−1(Z) = νn(Z) = 1 such that (ζn(y, ·))n∈N
satisfies the large deviation principle with rate function I for all y ∈ Z .

However, with ν0n as in Examples 9.3 (b) instead of νn for such ζ one has ζn(0, ·) =
ηn(0, ·) as ν0n ({0}) > 0. Thus in this case we do not have such a quenched large
deviation principle.

Example 9.6 WithX = N,μ1
n = ∑

k∈N 2−kδk ,μ2
n = δn and I (x) = 0 for x ∈ N as in

Example 9.4, and Y,Wn, αn, νn and L as in Examples 9.3 (a) or (b), the conditions of
Theorem 9.2 are satisfied. In this case, (ηn(0, ·))n∈N does not satisfy a large deviation
principle.

Remark 9.7 (Exponential tightness of the regular conditional kernel) Considering the
situation as in Theorem 9.2, we would like to mention that if (μ1

n)n∈N is exponentially
tight, then so is (μn)n∈N since μn(Kc

1 × Kc
2) = μ1

n(K
c
1)νn(K

c
2) for large n and

(compact) K1 ⊂ X , K2 ⊂ Y . Similarly (ηn(y, ·))n∈N is exponentially tight for all
y > 0 since ηn(y, Kc) = μ1

n(K
c) for large n and compact K ⊂ X . However, as is the

case in Example 9.6, (ηn(yn, )̇)n∈N need not be exponentially tight for all converging
sequences (yn)n∈N (e.g. if (μ2

n)n∈N is not exponentially tight, then (ηn(0, ·))n∈N is
neither).

Remark 9.8 Example 9.4with νn (or ν0n ) andαn as in Examples 9.3 (b) fits the assump-
tionsmade in Sect. 4 of La Cour and Schieve [20].8 In Sect. 4 of that paper, it is claimed
that the law of the first coordinate conditioned on the second coordinate satisfies the
large deviation principle with the rate function I . Their notion of conditioning on y is
“condition on an arbitrarily small neighbourhood around y”. This approach needs to
be justified. Our results are different, as by Example 9.4 the conditioned kernel in 0,

8 The logarithmic moment generating function (see Dembo and Zeitouni [7, Assumption 2.3.2]) is given
by (x, y) �→ 1

2 x
2 + 1

2 y
2, whence the Hessian of it equals the identity matrix and is therefore invertible.

In [20], it is mentioned that one cannot proceed the conditioning on all elements, but only those that equal
the derivative of y �→ 1

2 y
2 at a certain point are considered, of which 0 is an example.
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ηn(0, ·) does not satisfy the large deviation principle with the rate function I (even in
the sense of quenched large deviations as discussed in Remark 9.5).
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Appendix 1: An Elementary Fact About Limsup and Liminf

Lemma 9.9 Let k ∈ N and ain ∈ [0,∞) for all n ∈ N and i ∈ {1, . . . , k}. If there
exists an N ∈ N such that maxi∈{1,...,k} ain > 0 for all n ≥ N, then9

lim
n→∞

(
1
n log

( k∑
i=1

ain

)
− max

i∈{1,...,k}
1
n log a

i
n

)
= 0, (9.16)

lim sup
n→∞

1
n log

( k∑
i=1

ain

)
= max

i∈{1,...,k} lim sup
n→∞

1
n log a

i
n, (9.17)

lim inf
n→∞

1
n log

( k∑
i=1

ain

)
= max

i∈{1,...,k} lim inf
n→∞

1
n log a

i
n . (9.18)

Proof (9.16), (9.17) and (9.18) follow from the inequality

max
i∈{1,...,k}

1
n log a

i
n ≤ 1

n log

( k∑
i=1

ain

)
≤ 1

n log(k max
i∈{1,...,k} a

i
n)

≤ 1
n log k + max

i∈{1,...,k}
1
n log(a

i
n). (9.19)

��

Appendix 2: Sufficient Bounds for Large Deviation Bounds

Let X be a topological space. Let I : X → [0,∞] have compact sublevel sets. Let
(μn)n∈N be a sequence of probability measures on B(X ).

Lemma 9.10 Let (Fm)m∈N be a decreasing sequence of closed sets with F =⋂
m∈N Fm. Then

sup
m∈N

inf I (Fm) = inf I (F). (9.20)

9 Equation (9.17) can also be found in Dembo and Zeitouni [7, Theorem 1.2.15].
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Proof Let c := supm∈N inf I (Fm). Note that c ≤ inf I (F). If c = ∞, there is nothing
to prove. Assume that c < ∞. Let K be the compact set [I ≤ c]. Then Fm ∩ K 
= ∅
for all m ∈ N, whence F ∩ K 
= ∅ and thus inf I (F) ≤ c. ��
9.11 For Lemma 9.10 the condition that I has compact sublevel sets is not redundant.
For example: Let I : N∪{0} → [0,∞] be given by I (0) = 1 and I (x) = 0 for x ∈ N.
Then for Fm = {0} ∪ {m,m + 1, . . . } and F = {0} one has supm∈N inf I (Fm) = 0
and inf I (F) = 1.

Lemma 9.12 (a) U be a set of open subsets of X . Suppose that for all G ∈ U

lim inf
n→∞

1
n logμn(G) ≥ − inf I (G). (9.21)

Then G = ⋃U satisfies (9.21) as well.10

(b) Let F1, F2, . . . be closed. Suppose that for all F ∈ {Fm : m ∈ N}

lim sup
n→∞

1
n logμn(F) ≤ − inf I (F). (9.22)

Then F = ⋂
m∈N Fm satisfies (9.22) as well.

Proof

lim inf
n→∞

1
n logμn

(⋃U) ≥ sup
G∈U

lim inf
n→∞

1
n logμn(G) ≥ sup

G∈U
(− inf I (G)), (9.23)

lim sup
n→∞

1
n logμn

( ⋂
m∈N

Fm
)

≤ inf
m∈N lim sup

n→∞
1
n logμn(Fm) ≤ inf

m∈N(− inf I (Fm)).

(9.24)

Now apply Lemma 9.10. ��
As a consequence of Lemma 9.12 we obtain the following.

Theorem 9.13 Suppose that G is a basis for the topology onX , such that (9.21) holds
for all G ∈ G and (9.22) holds for F = X \ G. Suppose that every open G can be
written as countable union of elements in G. Then (μn)n∈N satisfies the large deviation
principle with rate function I .

Appendix 3: Proof of Theorem 9.2

Proof of Theorem 9.2 As X and Y are separable metric spaces, every open subset of
X ×Y is a countable union of elements of the form A× B where A ⊂ X is open and
B ∈ H, where (with dY the metric on Y)

H = {B(y, δ) : δ > 0} ∪ {B(z, δ) : z 
= y, 0 < δ < dY (y, z)}. (9.25)

10 This can also be found in O’Brien [23, Proposition 2.1].
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We use Theorem 9.13 to prove the large deviation bounds. Note first that (X × Y) \
(A × B) = (X × (Y \ B)) ∪ ((X \ A) ×Y), that min{inf I (X \ A), inf L(Y \ B)} =
inf(x,y)∈(X×Y)\(A×B) I (x) + L(y) and that by (9.17)

lim sup
n→∞

1
n logμn((X × Y) \ (A × B))

≤ max
{
lim sup
n→∞

1
n logμn(X × (Y \ B)), lim sup

n→∞
1
n logμn((X \ A) × Y)

}
.

Using this and Theorem 9.13 it is sufficient to show that for all open sets A ⊂ X and
B ⊂ Y

lim sup
n→∞

1
n logμn(X × (Y \ B)) ≤ − inf L(Y \ B), (9.26)

lim sup
n→∞

1
n logμn((X \ A) × Y) ≤ − inf I (X \ A) (9.27)

lim inf
n→∞

1
n logμn(A × B) ≥ − inf I (A) − inf L(B). (9.28)

Let A ⊂ X be open and B ∈ H.

• (9.26) follows from the fact that μn(X × (Y \ B)) = νn(Y \ B).
• (9.27) follows from the fact that by (9.4), (9.6) and (9.17) we have

lim sup
n→∞

1
n logμn((X \ A) × Y)

= max
{
lim sup
n→∞

1
n logμ1

n(X \ A), lim sup
n→∞

1
n logμ2

n(X \ A)
}

= lim sup
n→∞

1
n logμ1

n(X \ A) ≤ − inf I (X \ A), (9.29)

• (9.28) follows by separating two cases (as either y ∈ B or y /∈ B): If y /∈ B, then
Wn ∩ B = ∅ and so μn(A × B) = μ1

n(A)νn(B) for large n, whence

lim inf
n→∞

1
n logμn(A × B) = lim inf

n→∞

(
1
n logμ1

n(A) + 1
n log νn(B)

)
. (9.30)

Suppose that y ∈ B, i.e. Wn ⊂ B for large n. By (9.18) we obtain

lim inf
n→∞

1
n logμn(A × B)

= max

{
lim inf
n→∞

(
1
n logμ1

n(A) + 1
n log

(∫

Wn

αn dνn

))
,

lim inf
n→∞

(
1
n logμ2

n(A) + 1
n log

(∫

Wn

(1 − αn) dνn

))
,

lim inf
n→∞

(
1
n logμ1

n(A) + 1
n log

(∫

Wc
n

1B dνn

))}
(9.31)
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Using that lim infn→∞ 1
n log(

∫
Wc

n
1B dνn) ≤ 0 togetherwith (9.4) and (9.5),weobtain

lim inf
n→∞

1
n logμn(A × B) = max

{
lim inf
n→∞

1
n logμ1

n(A), lim inf
n→∞

1
n logμ2

n(A)
}

≥ − inf I (A). (9.32)

Because inf L(B) ≥ 0, we conclude (9.28).
We leave it to the reader to check that ηn is the weakly continuous product regular

conditional probability under μn with respect to π . ��
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