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The NTMpy code package allows for simulating the one-dimensional thermal response of multilayer 
samples after optical excitation, as in a typical pump-probe experiment. Several Python routines are 
combined and optimized to solve coupled heat diffusion equations in one dimension, on arbitrary 
piecewise homogeneous material stacks, in the framework of the so-called three-temperature model. 
The energy source deposited in the material is modelled as a light pulse of arbitrary cross-section 
and temporal profile. A transfer matrix method enables the calculation of realistic light absorption in 
presence of scattering interfaces as in multilayer samples. The open source code is fully object-oriented 
to enable a user-friendly and intuitive interface for adjusting the physically relevant input parameters. 
Here, we describe the mathematical background of the code, we lay out the workflow, and we validate 
the functionality of our package by comparing it to commercial software, as well as to experimental 
transient reflectivity data recorded in a pump-probe experiment with femtosecond light pulses.
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1. Introduction

The understanding of how heat is transported at the nanome-
ter level and at ultrafast time scales in different materials is an 
open question in modern condensed matter research. The increas-
ing availability of commercial femtosecond laser systems makes it 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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possible to study material dynamics at sub-picosecond time scales, 
allowing for investigating non-equilibrium energy transport. This 
also asks for numerical computations able to model the experi-
mental evidence and to either validate or extract a set of physical 
parameters.

A commonly used strategy to describe the highly non-equilibrium
processes induced by ultrafast laser excitation, is the N-temperature 
model (N = 2 or 3, typically) posed by Anisimov et al. [1]. This 
model is a set of coupled parabolic differential equations, which 
describe the temporal evolution of the energy of the electron, 
lattice, and spin systems as well as the transfer of energy be-
tween these systems. The N-temperature model is used to sim-
ulate a broad range of experiments in the ultrafast community, e.g. 
Ref. [2–5], but an open source implementation of it is still missing.

Here, we provide an open source, user-friendly Python pack-
age able to solve the N-temperature model in one-dimension, 
with arbitrary, piece-wise homogeneous layers with different phys-
ical properties [6]. The time-step selection to optimize the solving 
routines and guarantee their convergence, the calculation of the 
deposited energy by an arbitrarily shaped laser pulse using the 
transfer matrix method, and visualization routines, are all automa-
tized for the early-user. However, the object oriented design of the 
package, also allows for easy customization for the advanced users.

After laying out the mathematical background on which the im-
plementation of the solver is based on in Sec. 2, we introduce the 
workflow of the program by showing the most important com-
mands and the output, users can expect in Sec. 3. To validate our 
results we compare the computation of this open source pack-
age to commercial software, and further more to real experimental 
data, in Sec. 4.

2. Mathematical methods and background

When a material is illuminated by light, the energy of the 
electromagnetic radiation is partly reflected, partly transmitted 
through the material, and partly absorbed by it. The absorbed elec-
tromagnetic energy essentially heats the material, rising its tem-
perature. While this is a simple problem to solve for the case of 
a continuous light source, it becomes immediately more complex 
for the case of an ultrashort laser pulses, i.e. with sub-picosecond 
pulse duration. In this case, the concept of temperature is in it-
self an ill-defined one, because the different energy reservoirs in a 
material (the electronic E and lattice L systems, and also the spin 
S system for a magnetically ordered sample) respond on different 
time scales and are not in equilibrium among each other. Gener-
ally, only the electrons can react fast enough to the ultrashort laser 
pulse, and the energy is released from the electronic system to the 
other heat reservoirs only at a later time.

To treat this problem, three reservoirs are considered, in order 
to allow for the definition of a temperature and to solve the heat 
equation in time, and then coupled to allow for the energy to flow 
between them. This is addressed by considering three independent 
reservoirs, in order to allow for the definition of a temperature 
and to solve the heat equation in time in each of the systems. 
Finally, the three systems are coupled such that the energy can 
flow between them. This idea is generalized to a N-temperature 
model, describing the heat exchange between the systems and the 
heat diffusion along the one-dimensional, multiple layered ma-
terial. Each of the systems - electron, lattice, and spin - has its 
individual temperature T E,L,S(x, t), where x denotes the depth in 
the specimen and t is the time.

The dynamics of every system are described by a parabolic par-
tial differential equation, namely
2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C E(T E) · ρ · ∂t T E = ∂x
(
kE(T E) · ∂xT E

)+
G E L · (T L − T E) + G S E · (T S − T E) + S(x, t) ,

C L(T L) · ρ · ∂t T L = ∂x
(
kL(T L) · ∂xT L

)+
G E L · (T E − T L) + G L S · (T S − T L) ,

C S(T S) · ρ · ∂t T S = ∂x
(
kS(T S) · ∂xT S

)+
G S E · (T E − T S) + G L S · (T L − T S) .

(1)

Here C E,L,S(T ) and kE,L,S(T ) are the specific heat capacity and 
thermal conductivity, which can be defined as constants or as 
functions of the respective temperature T E,L,S . Since we consider 
a stack of multiple layers C i and ki also depend on the respec-
tive layer, hence they are C i

s(T i) and ki
s(T i), the dependence on 

the layer s will be omitted when not necessary in order to have a 
simpler notation.
The term S(x, t) is responsible for the heat injection to the elec-
tronic system and physically corresponds to a pulsed laser source 
hitting the sample at the surface. Note that in Eq. (1), we assume 
the coupling G , responsible for the heat exchange and relaxation 
between the systems, to be linear as in the formulation from Anisi-
mov et al., Ref. [7], [8] and other groups. However, it should be 
mentioned, that considering a non-constant G(T ) is current sub-
ject to research [9].

The temperature profile is expressed as a linear combination 
of basis functions Bm(x) for m = 1, . . . , M with time depending 
coefficients for every subsystem, i ∈ {E, L, S}, ci

m(t), i.e.

T i(x, t) =
M∑

m=1

ci
m(t)Bm(x) . (2)

The solution of Eq. (1) is now reduced to a finite dimensional prob-
lem and consequently the diffusion equation cannot generally be 
solved exactly in the whole domain.

The solution can be approximated by imposing Eq. (1) to be sat-
isfied on a given grid of points {x1, x2, x3, . . . , xM−1}, i.e. collocation 
points. Two additional points x0 and xM are added to the grid on 
the boundary of the domain to impose the boundary conditions.

The temperatures and their derivatives have an exact analytic 
expression at the grid points

T i(x j, t) =
M∑

m=1

ci
m(t)Bm(x j) ,

∂T i

∂x
(x j, t) =

M∑
m=1

ci
m(t)

∂ Bm

∂x
(x j) ,

∂2T i

∂x2
(x j, t) =

M∑
m=1

ci
m(t)

∂2 Bm

∂x2
(x j) .

(3)

By introducing the M × M matrices D0, D1 and D2 with generic 
elements

{D0} jm = Bm(x j) ,

{D1} jm = ∂ Bm

∂x
(x j) ,

{D2} jm = ∂2 Bm

∂x2
(x j) ,

(4)

the temperatures and their derivatives can be obtained by matrix 
products. By using the Leibnitz formula Eq. (1) can be the refor-
mulated as follows

ρC i D0
d

c i =

dt
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Fig. 1. A set of order 5-continuous B-Splines for a two layer system, used to repre-
sent the solution in space, where each layer has a length of 1.

ki(D0c i) · D2c i + dki
s

d(D0c i)
· (D1c i)2 + Si(x, t)+
∑

k∈{E,L,S}
k �=i

Gik(D0(ck − c i)) , (5)

for i = {E, L, S}, such that ci = {ci
1, c

i
2, . . . , c

i
M} is the vector of co-

efficients relative to the i-th temperature, the dot (·) denotes the 
elementwise product of two vectors and (a)2 denotes the vector 
whose elements are the squares of the elements of the vector a.

The time evolution of the coefficient vectors c i is evaluated us-
ing the explicit Euler formula, which reads

D0c i(t + �t) = D0c i(t) + �t D0
dc i

dt
(t) , (6)

where the time derivative is calculated as shown in Eq. (5) and S
is present only for i = E .

When an analytical formula for dki/dT i is unavailable, this 
derivative can be computed numerically without introducing sig-
nificant errors since the conductivity is typically a regular function. 
Equation (6) must be completed with the initial- and boundary 
conditions at the left and right end of the material under consid-
eration.

The boundary conditions in this software can be of Dirichlet 
type or of a modified Neumann type according to whether the 
temperature or the heat flux is assigned at the boundaries. Hence 
we have the two following options for the boundary conditions

Dirichlet :
{

(D0)[ 0, :] c i = T BC (x0, t)

(D0)[M, :] c i = T BC (xM , t)
, or

Neumann :
{

ki(T i(x0 ))((D0c i)D1)[ 0, :] c i = H BC (x0, t)

ki(T i(xM))((D0c i)D1)[M, :] c i = H BC (xM , t) ,

where the notation [ 0, :] and [M, :] indicates the first and the 
last row of the matrix and T BC or H BC are the assigned boundary 
conditions.

The basis functions chosen for the approximation of the solu-
tion are B-Splines realized with the Cox-de Boor algorithm. These 
splines are continuous and have continuous derivatives up to a 
chosen order. A set of B-Spline basis functions, as used in the soft-
ware, are depicted in Fig. 1, where a stack of two layers is under 
consideration.

The use of Ck-continuous functions is justified by the nature of 
the physical problem: the presence of a discontinuity in the tem-
perature would cause an infinite heat flux, while a discontinuity in 
its first derivative would imply a finite heat flux into an infinitesi-
mal control volume unless the conductivity is discontinuous.
3

Discontinuities in the conductivity can be present when the 
specimen is made of two or more different materials stacked to-
gether. In this case the heat flowing into the interface between the 
s-th and the (s + 1)-th layer, for the i-th temperature is

H Interface = ki,s(T i) lim
x→x−

I

∂xT i − ki,s+1(T i) lim
x→x+

I

∂xT i = 0 , (7)

where the second subscript of k indicates the layer, xI is the po-
sition of the interface and the superscript + and − indicates the 
limit from right and the left respectively.

In order to correctly represent the temperatures at the interface 
a different set of B-Spline is considered for each layer (see Fig. 1), 
and the continuity of the temperature and the condition Eq. (7), 
i.e. the conservation of the heat flow, are imposed at the interface.

Notice that when the coefficients cim are determined the limit 
and derivative appearing in Eq. (7) are analytically computed.

2.1. Evaluation of the time step

A crucial point for the precision, speed and stability of the code 
is the choice of an appropriate time step. When this is not supplied 
by the user, the time step is automatically determined according 
to a criterion guaranteeing stability on one side, but keeping the 
running time of the simulation as small as possible on the other 
side.

For a linear N-temperature system with a single layer the dy-
namical matrix is given by

1

ρ
diag

{
kE

C E
,

kL

C L
,

kS

C S

}
⊗ (D−1

0 D2) + 1

ρ
M ⊗ IN , (8)

with

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

− G E L + G S E

C E

G E L

C E

G S E

C E

G E L

C L
− G E L + G L S

C L

G L S

C L

G S E

C S

G L S

C S
− G L S + G S E

C S

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(9)

where IN is the N dimensional identity matrix and ⊗ denotes the 
Kronecker product. In this system, to preserve stability, the time 
step needs to satisfy the condition

�t <
2

|λ|max
, (10)

where |λ|max is the eigenvalue of the dynamical matrix with the 
largest absolute value. We note that, �t depends on the input pa-
rameters C , k, G and on the desired spatial resolution, represented 
in D0 and D2, but not on the heating source term S(x, t).

In the nonlinear context we can still use condition (10) with 
the eigenvalues of an adapted version of matrix (8). We consider 
the worst scenario for stability represented by contemporaneous 
large ki ’s (thermal conductivities) and small C i ’s (specific heats), 
which produce large eigenvalues in absolute value. To this pur-
pose, in the worst scenario matrix, the ki ’s are replaced by their 
maximum, evaluated on a set of values of T i and the C i ’s are re-
placed by their minimum evaluated on the same set. This yields 
the following matrix

1

ρ
diag

{
kE

max

C E
minρ

,
kL

max

C L
minρ

,
kS

max

C S
minρ

}
⊗ (D−1

0 D2) + 1

ρ
Mmax ⊗ IN ,

(11)
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where

Mmax =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− G E L + G S E

C E
min

G E L

C E
min

G S E

C E
min

G E L

C L
min

− G E L + G L S

C L
min

G L S

C L
min

G S E

C S
min

G L S

C S
min

− G L S + G S E

C S
min

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)

As this linearization, from ki(T ) to kmax
i , depends on the set of val-

ues chosen for T , typical values of temperatures reached in the ex-
periments on ultrafast dynamics are considered in the default case. 
That is, T ∈ [270, 3000] K, but they can be changed by the user via
sim.stability_lim([lowlimit,highlimit]). Consider-
ing the worst scenario allows to evaluate the time step only once 
at the beginning of the simulation.

In multilayer systems the above procedure is repeated for each 
layer obtaining �t1, �t2, . . . , �tL where L is the number of layers, 
the time step is �t = min{�t1, �t2, . . . , �tL}.

3. Background and implementation

The code is implemented in Python with dependence on the 
numpy and the bspline package for the numerical computation, on 
the matplotlib library for plotting of the results and the progressbar
package to monitor the elapsed time. Installation of the NTMpy 
package will automatically check if the dependencies are fulfilled 
and download the additional software if not.

In order to make the user interface friendly, the code is ob-
ject oriented and it can be used either with command line or in a 
script. The package contains three main classes which are source,
simulation, and visual: While the source class is a collec-
tion of methods for the generation of the energy injection matrix, 
the simulation class handles the computation of the solution 
and builds the core of the program. After a solution has been 
found, it can be passed on to the visual classes allowing a fast 
and easy depiction of the results respectively.

3.1. Data input

Even though in principle the source function S(x, t), injecting 
heat in space and time, can be of generic type, the most common 
types of sources are already defined in the code and one needs 
to specify only the main properties. That is, the user can choose 
between Lambert Beer’s law or the transfer matrix method (TMM) 
to calculate the absorption profile in space and independently from 
that select either a Gaussian, a repeated Gaussian or even a custom 
time profile to evaluate the shape of the heating source in time.

For example a source with a Gaussian profile in time and ex-
ponential decay in space, considering multiple reflections, incident 
angle and polarization, i.e. TMM, is introduced with the following 
lines of code.

#Define a Source
s = source()
# Set source type
s.spaceprofile = ’TMM’
s.timeprofile = ’Gaussian’
# Width of the Gaussian (in s)
s.FWHM = 0.1e-12
# Area under the Gaussian (in J/m^2)
s.fluence = 6*1e-3/1e-2**2
# Set the time of the Gaussian peak (in s)
s.t0 = 1e-12
# Wavelength in vacuum (in nm)
s.lambda_vac = 400
# Incident angle (in rad)
4

# (0 is perpendicular to the surface)
s.theta_in = pi/4
s.polarization = ’p’

Note, that there is also a predefined way to calculate the spacial 
absorption according to Lambert Beerś law via s.spaceprofile 
= ’LB’, which follows, except for the input of the incident angle 
and the polarization of the light, the same commands as above. Al-
ternatively a custom profile in time can be given for the source, if 
arrays of data, here my_time and my_intensity, are provided 
to the program. Now considering the Lambert Beer decay law in 
space, the commands to initialize a customized source are

# Set source type
s.spaceprofile = ’LB’
s.timeprofile = ’Custom’
# Set the value for the source
s.loadData = [my_time, my_intensity]

After the initialization of a source, one can proceed to initialize 
the simulation object, providing material specific parameters for 
every layer of the stack under consideration and then run the sim-
ulation. The constructor of the simulation class has a mandatory 
input which is the number N of temperatures under consideration 
and an optional input which is the source s.

# Define the simulation object
sim = simulation(N, s)

N can be 1, 2 or 3. When the properties of s are not specified as 
shown above, by default it is assumed that there is no source term 
in Eq. (1), i.e. the fluence is 0.
The properties of the media are assigned by adding sequentially 
the layers of the materials with the method addLayer(). For in-
stance

# Add a layer for a 2 temperature model
sim.addLayer(length, n, [k1, k2],

[C1, C2], density, G)

where the inputs of the method are in order the length of the layer 
(length), the complex refractive index of the layer (n), the list 
of the thermal conductivities of each temperature system ([k1, 
k2]), the list of the specific heats of each temperature system 
([C1, C2]), the mass density (density) and the exchange cou-
pling (G).

Thermal conductivities and specific heats can either be num-
bers or lambda functions when they vary with temperature. In 
case N = 3, G can be a list containing the coupling constants G12, 
G23 and G31 in this order.

Before running the simulation, a final time must be given by 
the user through the command

# Set final time (in s)
sim.final_time = final_time

The commands described so far are sufficient to run the simu-
lation. If no further input is given some default values are selected 
according to the most common conditions or models employed for 
the experiments.
By default the time step is assigned automatically through the 
procedure illustrated in Sec. 2.1. However the user can define a 
different time step by

sim.time_step = time_step

The usual initial condition for all the temperatures T i by default is 
T i = 300 K. The user can modify the initial condition through the 
command line

# Modify initial condition of i-th temp. (in K)
sim.changeInit( i, T0)

where i varies between 1 and N, indicating, that different initial 
conditions can be set for each subsystem. Furthermore the initial 
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temperature T0 can be either a number or a lambda function 
describing the space profile of the temperature T (x, 0).

By default the boundary conditions are of modified Neumann 
type with no heat flux through the boundaries, corresponding to 
an insulated system. The boundary condition type and value can 
be modified through the following methods

# Change BC type for the i-th temp
sim.changeBC_Type( i, side, Type)
# Change BC value for the i-th temp
sim.changeBC_Value( i, side, BC)

where again i is the index of the temperature system subject to 
the change, side can be either ’left’ or ’right’ depending 
on which side the change is applied to, Type is either ’dirich-
let’ or ’neumann’ respectively, and BC is a constant or a
lambda function providing the value of the boundary condition 
as the time varies.

Once the input of the data is complete the simulation is exe-
cuted by the command

# Compute temperature map
[x, t, T] = sim.run()

It yields the numpy.array containing the 2 + N-dimensional ar-
rays T of the temperature of the N subsystems on the space grid x
at the times t.

3.2. Plot results

Once the simulation has been executed the results, that is the 
dynamics of all respective temperatures in space and time, are pro-
vided to the user in array form, as described above. However, in 
order to make the visualization both, easier and quicker for the
user, a separate class with relevant plotting methods has been de-
fined. This gives the user the freedom to output the raw data and 
do post-processing on their own but also to use the visualization 
class in order to depict some properties immediately.

Among others, there are methods to visualize the heating 
source S(x, t), a contour plot of the temperature in space and time 
T E,L,S(x, t), but also some simple ready made post-process rou-
tines like the plot of the average temperature of a layer over time, 
see Fig. 2. Moreover the package provides a method to play an an-
imation of how all the temperature systems evolve in time which 
can be useful either to visually detect the impact of the funda-
mental mechanisms in the case considered, or for pedagogical use. 
Different routines can be called by following the commands

# Creating a visual object
v = visual(sim)
# Depicting results and obtaining raw data
source = v.source()
[timegrid,average_temp] = v.average()
v.contour(’1’)
v.animation(speed,save)

where the output of the first two visualization routines are ar-
rays, which allow users, to look and process the raw data them-
selves. The only visualization methods that require input argu-
ments are v.contour(’N’), where N can be 1,2 or 3, corre-
sponding to electron-, the lattice- or the spin- system, and ani-
mation(speed,save), where the speed of the animation can 
be adjusted and the user can decide whether they want to save 
the animation, with save = 1 or not, with save = 0.

This makes it easy to quickly check results and analyze proper-
ties of the dynamics of the simulation.

4. Package validation

4.1. Comparison with other simulation tools

In order to validate the results obtained from the NTMpy pack-
age, the focus is set on the two main parts of the software. First, 
5

Fig. 2. Example of a 3-temperature simulation and the output of two visualization 
methods: a) v.average() and b) v.contour(’1’) described in the text. Here 
a 20 nm ferromagnetic nickel thin film, heated by a femtosecond laser source is 
under consideration. The physical parameters are taken from Ref. [2]. (For interpre-
tation of the colours in the figure(s), the reader is referred to the web version of 
this article.)

the evaluation of the local absorption with respect to the inci-
dent laser pulse, and second, the performance of the solver itself. 
Looking at Eq. (1), we are interested of how accurately we are 
computing the source term S(x, t) responsible for heating and how 
well our obtained solution T (x, t) matches with commercial soft-
ware, when experimentally relevant cases are under investigation.

For the evaluation of the local absorption of S(x, t), we are 
considering a [Pt 3 nm|Co 15 nm|Cr 5 nm|MgO]-material stack 
and compute the local absorption per unit incident power, with 
respect to the distance from the surface, with the implemented 
transfer matrix method. The obtained profile is compared to the 
result, obtained from COMSOL Multiphysics™, Ref. [10], simula-
tions, where the same light and material parameters are consid-
ered. In Fig. 3 a), we see, that both, the commercial and our open 
source software show an overlapping result (mean relative discrep-
ancy δ(x) = 2.2%).



L. Alber, V. Scalera, V. Unikandanunni et al. Computer Physics Communications 265 (2021) 107990

Fig. 3. (a) Local absorption per incident laser power computed with NTMpy’s TMM-module and with the commercial software COMSOL Multiphysics™, Ref. [10]. For both 
simulations a three-layer material with identical parameters is considered. Line cuts for two coupled temperature systems T E,L(x, t) at (b) a fixed time t = t0 and at (c) a 
fixed point in space x = 0. NTMpy’s solutions for both systems (electronic and lattice), computed for a two-layer stack, are compared to Matlab’s built-in partial differential 
equation pdepe() solver, Ref. [11].

Table 1
Material parameters used for the TTM simulation in Fig. 5.

Parameter Symbol/units Platinum Silicon

Thickness l (nm) 10 100000
Refractive index (at 400 nm) n 1.7176 + i2.844 [13] 5.5674 + 0.38612j [14]
Electron heat conductivity ke (Wm−1 K−1) 72 [15] 130 [16]
Lattice heat conductivity kl (Wm−1 K−1) 72 [15] kl(T ) [17]
Electron heat capacity Ce(T ) (J kg−1 K−1) 740/ρPt Te [15] 150/ρSi · Te [17]
Lattice heat capacity Cl (J kg−1 K−1) 2.78E6/ρPt [15] 1.6E6/ρSi [17]
Electron phonon coupling G (Wm−3 K−1) 2.5E17 [18] 18E17 [19]
For the evaluation of computation time and accuracy of the 
obtained solution, we compare T (x, t) to Matlabś, Ref. [11], built 
in partial differential equation, pdepe(), - solver. Again we con-
sider the same light and material parameters for both software 
and obtain output that is very much in agreement, with respect 
to space Fig. 3 b) and time c) dimension. That is the relative er-
ror of the temperature enhancement T NT Mpy−T Matlab

T Matlab−300 ≤ 6%. Also the 
time needed until a solution is obtained from our free package is 
comparable to Matlab’s performance.

4.2. Comparison with experiment

Even though the software is able to solve generic coupled non 
linear 1-D diffusion equations in the form of Eq. (1), the focus is 
laid on heat transfer between systems and transport along the ma-
terial, within the framework of the two/three temperature model.

If the physical parameters of all the material layers under con-
sideration are known, the software can be used to depict the tem-
perature dynamics in space and time of the selected configuration. 
This provides an opportunity to be able to detect local phenomena 
in a material, as opposed to averaged effects, measured in most ex-
periments. However reliable data on certain parameters is sparse 
and it is a current interest of research to find those properties.

In order to demonstrate the use of this software, we mea-
sured the change in reflectivity on a 10 nm platinum thin film 
on a silicon substrate and used the NTMpy software to perform a 
simulation of the temperature dynamics of the same system. The 
experimental data was retrieved from a pump-probe transient re-
flectivity measurement. According to Refs. [7,12], a linear relation-
ship between the measured change in reflectivity and the change 
in temperature can be assumed, i.e. �R

R ∝ �T
T . This makes it possi-

ble to compare the experiment to the simulation.
In the simulation, we used the same nominal laser source pa-

rameters as in the experiment. That is a 400 nm, p-polarized laser 
pulse with a FWHM of 100 fs and a fluence of 6 mJ/cm2 of which 
53% get absorbed, which is hitting the sample in a 45° angle. The 
local absorption profile is shown in Fig. 4. For the platinum film 
and the silicon substrate the parameters from Table 1 are used.
6

Fig. 4. Local power absorption for the platinum/silicon system under considera-
tion, calculated via the transfer matrix method implemented in NTMpy. Here a 
p-polarized laser pulse with a wavelength of 400 nm, hitting the sample at a 45◦
angle with a fluence of 6 mJ/cm2 and a FWHM of 0.1 ps is considered.

The simulation is set up as follows:

sim = simulation(2,s)
sim.addLayer(length_Pt,n_Pt,[k_el,k_lat],

[C_el,C_lat],rho,[G_Pt])
sim.addSubstrate("Si")
sim.final_time = 7*u.ps
[x,t,T] = sim.run()

To compare the simulated data with the experimental case, we 
computed the exponentially weighted temperature data T E,L(x, t)
with respect to the depth of the material. This mimics the effect of 
limited optical penetration depth of the probe laser. In Fig. 5, we 
show a comparison between a simulation with and without the 
silicon substrate.

The results, depicted in Fig. 5 show that the multilayer solu-
tion obtained from the NTMpy software is able to reproduce the 
experimental data to a very good degree. Furthermore, one can 
clearly see that disregarding the substrate in the simulation, which 
is the simplest way to solve the two-temperature model, leads to 
a considerably different results. In this case, a four times larger 
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Fig. 5. Experimental data of a reflectivity measurement (symbols) compared to the 
simulated temperature dynamics of a platinum thin film on a silicon substrate (solid 
line) and free-standing (dashed line). A linear relation between the change in tem-
perature and change in reflectivity is assumed, and they are normalized to the 
maximum change. The simulation parameters for the materials are taken from Ta-
ble 1.

electron-lattice coupling constant from G = 2.5 · 1017 (Wm−3 K−1)

to G ≈ 11 ·1017 (Wm−3 K−1) would be needed to reestablish agree-
ment with the experiment.

5. Conclusion

We implemented NTMpy, an open source Python based soft-
ware package for solving coupled parabolic differential equations 
in one dimension. Along with the mathematical background of the 
algorithm, we introduced the structure and the work flow of the 
program. The object oriented way in which the program is de-
signed gives the user the freedom to run tailor-made simulations, 
without having to worry about coding details, which are automa-
tized or ready-made. This helps to focus more on the output and 
analysis of the fundamental dynamics. Together with the visual-
ization class, the software can not only be used by researchers to 
investigate relaxation and diffusion dynamics, but also for educa-
tional purpose. Finally, a comparison of the output of NTMpy with 
the one of both commercial software and also of new experimen-
tal data, demonstrated the numerical reliability of the software, 
and its ability to produce physically realistic results.
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