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Abstract

In this paper, an epidemic model with spatial dependence is studied and results regarding its stability and numerical
pproximation are presented. We consider a generalization of the original Kermack and McKendrick model in which the size
f the populations differs in space. The use of local spatial dependence yields a system of partial-differential equations with
ntegral terms. The uniqueness and qualitative properties of the continuous model are analyzed. Furthermore, different spatial and
emporal discretizations are employed, and step-size restrictions for the discrete model’s positivity, monotonicity preservation,
nd population conservation are investigated. We provide sufficient conditions under which high-order numerical schemes
reserve the stability of the computational process and provide sufficiently accurate numerical approximations. Computational
xperiments verify the convergence and accuracy of the numerical methods.
2022 The Authors. Published by Elsevier B.V. on behalf of International Association for Mathematics and Computers in Simulation

IMACS). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

During the course of human history, many epidemics have ravaged the population. Since the plague of Athens
n 430 BC described by historian Thucydides (one of the earliest descriptions of such epidemics), researchers tried
o model and explain the outbreak of illnesses. More recently, the outbreak of the COVID-19 pandemic revealed
he importance of epidemic research and the development of models to describe the public health impact of major
irus diseases.

Nowadays, many of the models used in science are derived from the original ideas of Kermack and McK-
ndrick [26] in 1927, who constructed a compartment model to study the process of epidemic propagation. In their
odel, usually referred to as the SIR model, the population is split into three classes: S being the group of healthy
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ndividuals who are susceptible to infection; I is the compartment of the ill species who can infect other individuals;
nd R being the class of recovered or immune individuals. The original model of Kermack and McKendrick took
nto account constant rates of change and neglected any natural deaths and births or vaccination. In this work, we
lso consider constant rates of change, and in addition, we include the term c S(t) to describe immunization effects
hrough vaccination. The SIR model takes the form⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d
dt

S(t) = −a S(t)I (t) − c S(t),

d
dt

I (t) = a S(t)I (t) − b I (t),

d
dt

R(t) = b I (t) + c S(t),

(1.1)

where the positive constant parameters a, b and c correspond to the rate of infection, recovery and vaccination,
respectively.

Since the introduction of the model (1.1) in 1927, numerous extensions were constructed to describe biological
processes more efficiently and realistically. A natural extension is to take into account the heterogeneity of the
domain so that we examine not only the change of the populations in time but also observe the spatial movements.
Kendall introduced such models that transformed the system of ordinary differential Eqs. (1.1) into a system of
partial differential equations [24,25].

The time-dependent functions in (1.1) represent the number of individuals in each class but contain no information
about their spatial distribution. Instead, one can replace these concentration functions with spatial-dependent
functions describing the density of healthy, infectious, and recovered species over some domain Ω ⊂ Rd [36].
In this paper, we consider a bounded domain in R2; hence the system (1.1) is recast as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂

∂t
S(t, x, y) = −a S(t, x, y)I (t, x, y) − c S(t, x, y),

∂

∂t
I (t, x, y) = a S(t, x, y)I (t, x, y) − b I (t, x, y),

∂

∂t
R(t, x, y) = b I (t, x, y) + c S(t, x, y).

(1.2)

owever, the model (1.2) is still insufficient as it does not allow the disease to spread in the domain but only
ccounts for a point-wise infection. Spatial points do not interact with each other but infect species only at their
ocation. To allow a realistic propagation of the infection, we assume that an infected individual can spread the
isease on susceptible species in a certain area around its location. Let us define a non-negative function with
ompact support

G(x, y, r, θ) =

{
g1(r )g2(θ, x, y), if

(
x̄(r, θ), ȳ(r, θ)

)
∈ Bδ(x, y),

0, otherwise,
(1.3)

that describes the effect of a single point (x, y) in a δ-radius neighborhood Bδ(x, y), and set x̄(r, θ) = x + r cos(θ )
and ȳ(r, θ) = y+r sin(θ ). The function G(x, y, r, θ) demonstrates how healthy individuals at points (x̄(r, θ), ȳ(r, θ))
are infected by the center point (x, y), where r ∈ [0, δ] is the distance from the center and θ ∈ [0, 2π ) is the angle.
In this work we consider G(x, y, r, θ) to be a separable function. The effect the center point (x, y) has at a distance

is described by g1(r ); a decreasing, non-negative function that is equal to zero for values r ≥ δ (since there is
o effect outside Bδ(x, y)). The function g2(θ, x, y) characterizes the angular effect, i.e., the effect at an angle θ
ith respect to the center point (x, y). The case of a spatially independent function g2(θ, x, y), that is the same for

ll (x, y) ∈ Ω , is widely studied in [12,13]. A more generic function the depends on spatial coordinates could be
seful in the case of epidemic diseases with a given direction of propagation, or in the case of wildfires when the
ind profile is known. Such a function with a constant wind direction was described in [36]. In both cases it is

upposed that g2 is bounded and periodic in the sense that g2(0, x, y) = limθ→2π g2(θ, x, y), for each (x, y) ∈ Ω .
The nonlinear terms of the right-hand side of (1.2) describe the interaction of susceptible and infected species.

e can now utilize (1.3) and replace the density of infected species in these nonlinear terms by∫ δ ∫ 2π

G(x, y, r, θ)I
(
t, x̄(r, θ), ȳ(r, θ)

)
r dθ dr,
0 0
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here we used the fact that G(x, y, r, θ) = 0 outside the ball Bδ(x, y). Therefore, the model (1.2) can be extended
s a system of integro-differential equations⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂S(t, x, y)
∂t

= −S(t, x, y)
∫ δ

0

∫ 2π

0
g1(r )g2(θ, x, y)I

(
t, x̄(r, θ), ȳ(r, θ)

)
r dθ dr − cS(t, x, y),

∂ I (t, x, y)
∂t

= S(t, x, y)
∫ δ

0

∫ 2π

0
g1(r )g2(θ, x, y)I

(
t, x̄(r, θ), ȳ(r, θ)

)
r dθ dr − bI (t, x, y),

∂R(t, x, y)
∂t

= bI (t, x, y) + cS(t, x, y).

(1.4)

e consider homogeneous Dirichlet conditions since we assume that there is no susceptible population outside of
he domain Ω , and there is no diffusion in (1.4).

.1. Outline and scope of the paper

The aim of this paper is twofold. First, in Section 2 we analyze the stability of the continuous model (1.4) and
rove that a unique solution exists under some Lipschitz continuity and boundedness assumptions. Secondly, in
ections 3 and 4 we seek numerical schemes that approximate the solution of (1.4) and maintain its qualitative
roperties.

We verify that the analytic solution satisfies biologically reasonable properties; however, as shown in Section 2.1
he solution can only be expressed implicitly in terms of S, I , and R, and thus cannot be obtained. Therefore, the
roblem must be handled with stable and accurate numerical methods. A numerical approximation is presented
n Section 2.2 that provably satisfies the solution’s properties. The first order accuracy of this approximation

otivates the search for suitable high order numerical methods that preserve a discrete analog of the properties
f the continuous model. In Section 3 we use quadrature formulas to reduce the integro-differential system (1.4) to
n ODE system. We study the accuracy of different quadratures and interpolation techniques for approximating the
ultiple integrals in (1.4). Furthermore, the employment of time integration methods yields a system of difference

quations. Section 4 shows that a time-step restriction is sufficient and necessary such that the forward Euler method
aintains the stability properties of the ODE system. We prove that high order strong-stability-preserving (SSP)
unge–Kutta methods can be used under appropriate restrictions; thus, we can obtain a high order stable scheme
oth in space and time. Finally, in Section 5 we demonstrate that the numerical experiments confirm the theoretical
onclusions. The reader can also find a list of symbols and notations used in the paper in the appendix.

. Stability of the analytic solution

Analytic results for deterministic epidemic models have been studied by several authors, see for example, [4,
5,37]. Such models lie in the larger class of reaction–diffusion problems and therefore one can obtain theoretical
esults by studying the more general problem. In [31], de Mottoni et al. considered a diffusion–reaction epidemic
odel with a spatial spread of infection and proved the existence of a unique local solution for arbitrary initial

onditions. Moreover, they proved that if the initial conditions are non-negative, then the solution is global and also
on-negative for all times. In their paper, the authors assumed a non-vanishing viscosity model and described the
pread of the infection by a non-negative function with compact support in L1(R2) and bounded by unity. In this
ection, we prove the uniqueness and global existence of the solution of (1.4) without the above assumptions and
or any initial conditions. Instead of [31] we follow the work of Capasso and Fortunato [6], and assume that the
onlinear part of system (1.4) satisfies certain continuity and boundedness properties.

We consider the following semilinear autonomous evolution problem
du
dt

(t) = −Au(t) + F(u(t)),

u0 = u(0) ∈ D(A),
(2.1)

where A is a self-adjoint and positive-definite operator in a real Hilbert space E with domain D(A). Define
λ0 = inf σ (A), where σ (A) denotes the spectrum of A. Let Ω be a bounded domain in R2 and let us choose
the space E := L2(Ω ) × L2(Ω ) with a norm ∥·∥ defined by

(
u1

u

) :=
(
∥u1∥

2
L2 + ∥u2∥

2
L2

) 1
2 . (2.2)
2
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ere u(t) = (u1(t), u2(t))⊺ ∈ C1
(
[0, tf), D(A)

)
, for some final time tf. We also equip D(A) with the norm

∥u(t)∥A := ∥Au(t)∥ . (2.3)

Note that it is sufficient to consider only the first two equations in (1.4), since R(t, x, y) can be obtained by
sing that the sum S(t, x, y) + I (t, x, y) + R(t, x, y) is constant in time for every point (x, y). Hence, in view of
roblem (1.4), the linear operator A is defined as

A

(
u1

u2

)
:=

(
c 0
0 b

)(
u1

u2

)
, (2.4)

nd D(A) = E . Because b and c are positive constants, it is easy to see that A is a self-adjoint and positive-definite
perator. Similarly, F : D(A) → E consists of the nonlinear terms, and is defined as

F(u(t)) = F (u1(t), u2(t)) :=

(
−u1(t)F(u2(t))

u1(t)F(u2(t))

)
. (2.5)

he function F : L2(Ω ) → L2(Ω ) contains the integral part of (1.4) and is given by

F
(
u2(t; x, y)

)
:=

∫ δ

0

∫ 2π

0
g1(r )g2(θ, x, y)u2

(
t, x̄(r, θ), ȳ(r, θ)

)
r dθ dr. (2.6)

emark 2.1. Note that in (2.6) the function u2(t) maps t ↦−→ u2(t; x, y) ∈ L2(Ω ), and hence u2(t; x, y) can be
nderstood as a function of (t, x, y), such that

∫
Ω |u2(t, x, y)|2 dx dy < ∞.

The main result of this section is Theorem 2.1 stating that a unique strong solution of system (1.4) exists.
heorem 2.1 considers the system (2.1) as a generalization of (1.4) and its proof relies on the fact that the function

F in (2.5) is Lipschitz-continuous and bounded in ∥·∥A. Therefore, we define the following conditions [6]:

(A1) F is locally Lipschitz-continuous from D(A) to D(A), i.e.,

∥F(u) − F(v)∥A ≤ ζ (d) ∥u − v∥A

for all u, v ∈ D(A) such that d ≥ 0, and ∥u∥A ≤ d , ∥v∥A ≤ d.
(A2) F is bounded, i.e., there exist ν ≥ 0 and γ ≥ 0 such that

∥F(u)∥A ≤ ν ∥u∥
1+γ

A , ∀u ∈ D(A).

e also denote the Lebesgue measure of Ω by µ(Ω ), and let

κ1 = max
r∈(0,δ)

{g1(r )}, κ2 = max
θ∈[0,2π ),
(x,y)∈Ω

{g2(θ, x, y)},

nd ψ = max{b, c}/min{b2, c2
}.

heorem 2.1. Consider the system (1.4) and assume that conditions (A1) and (A2) hold. Then, a unique strong
olution of system (1.4) exists on some interval [0, tf). Moreover, if any initial condition u0 belongs to the set

K =

{
u ∈ E

⏐⏐⏐ ∥u∥A <
min{b, c}

√
2ψ κ1 κ2 µ(Ω )

}
,

hen the zero solution is the unique equilibrium solution of the first two equations in (1.4).

The proof of Theorem 2.1 is a direct consequence of two main results by Capasso and Fortunato [6]. For clarity,
e state these two theorems below.

heorem 2.2 ([6, Theorem 1.1]). If assumption (A1) holds, then a unique strong solution in D(A) of problem (2.1)

xists in some interval [0, tf).

214
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heorem 2.3 ([6, Theorem 1.3]). Let us assume that (A1) and (A2) hold. Then for any u0 ∈ K̃ a global strong
olution in D(A), u(t), of (2.1) exists. Moreover the zero solution is asymptotically stable in

K̃ =

{ {
u ∈ D(A)

⏐⏐ ∥u∥A < (λ0/ν)1/γ
}
, if γ > 0,

D(A), if γ = 0 and λ0 > ν.

In the rest of this section we show that the function F , as defined in (2.5), satisfies conditions (A1) and (A2).
irst, to prove that (A2) holds, we make use of some auxiliary lemmas; their proofs appear in Appendix A.

emma 2.1. Let matrix A defined by (2.4), where b and c are positive constants. The norms ∥·∥ and ∥·∥A are
quivalent, i.e.,

∥u∥ ≤
1

min{b, c}
∥u∥A , and ∥u∥A ≤ max{b, c} ∥u∥ .

Lemma 2.2. Let F be given by (2.6). Then, we have that ∥F(u2)∥L2 ≤ νF ∥u2∥L2 , where νF = κ1 κ2 µ(Ω ).

orollary 2.1. Consider F given by (2.5). Then, the condition (A1) holds with ζ (d) =
√

2/λ0 κ1 κ2 µ(Ω ) d.

roof. Due to Lemma 2.1, it is sufficient to prove

∥F(u) − F(v)∥ ≤ ζ̃ ∥u − v∥ , (2.7)

for some constant ζ̃ . First, notice that

∥F(u) − F(v)∥ =


(

−u1F(u2) + v1F(v2)
u1F(u2) − v1F(v2)

) ≤
√

2 ∥u1F(u2) − v1F(v2)∥L2 .

e can further bound the right-hand-side of the above inequality, yielding

∥u1F(u2) − v1F(v2)∥2
L2 = ∥u1F(u2) − v1F(u2) + v1F(u2) − v1F(v2)∥2

L2

≤ ∥u1F(u2) − v1F(u2)∥2
L2 + ∥v1F(u2) − v1F(v2)∥2

L2

≤ ∥F(u2)∥2
L2 ∥u1 − v1∥

2
L2 + ∥F(u2) − F(v2)∥2

L2 ∥v1∥
2
L2 .

y Lemma 2.2 and the linearity of F , we respectively have

∥F(u2)∥2
L2 ∥u1 − v1∥

2
L2 ≤ ν2

F ∥u2∥
2
L2 ∥u1 − v1∥

2
L2 ,

∥F(u2) − F(v2)∥2
L2 ∥v1∥

2
L2 ≤ ν2

F ∥u2 − v2∥
2
L2 ∥v1∥

2
L2 .

et us use the notation d ∈ R+ for such a number d ≥ 0 for which ∥u∥A ≤ d and ∥v∥A ≤ d. Then, by definition
f norm (2.2) we have that ∥v1∥L2 ≤ d̃ and ∥u2∥L2 ≤ d̃, where d̃ = d/max{b, c}. Putting all together and using
F = κ1 κ2 µ(Ω ), we get

∥F(u) − F(v)∥ ≤
√

2 ∥u1F(u2) − v1F(v2)∥L2

≤
√

2 d̃ νF
(
∥u1 − v1∥

2
L2 + ∥u2 − v2∥

2
L2

)1/2

≤
√

2 d̃ κ1 κ2 µ(Ω ) ∥u − v∥ .

herefore, the inequality (2.7) holds with ζ̃ =

(√
2/max{b, c}

)
κ1 κ2 µ(Ω ) d , and condition (A1) is satisfied with

Lipschitz constant ζ (d) =
√

2/λ0 κ1 κ2 µ(Ω ) d, where λ0 = inf σ (A) = min{b, c}. □

Corollary 2.2. Consider F given by (2.5). Then, the condition (A2) holds with ν =
√

2ψ κ1 κ2 µ(Ω ) and γ = 1.

roof. Because of Lemma 2.1, it is enough to prove

∥F(u)∥ ≤ ν̃ ∥u∥
2 , (2.8)
for some constant ν̃. We first have that
215
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∥F(u)∥ =


(

−u1F(u2)
u1F(u2)

) = (∥u1F(u2)∥2
L2 + ∥u1F(u2)∥2

L2 )1/2

≤
√

2 ∥u1∥L2 ∥F(u2)∥L2 .

bserve that Lemma 2.2 can be used to bound ∥F(u2)∥L2 from above, yielding

∥F(u)∥ ≤
√

2 νF ∥u1∥L2 ∥u2∥L2 ,

where νF is defined in Lemma 2.2. Finally, we have that ∥u1∥L2 ∥u2∥L2 ≤ ∥u1∥
2
L2 + ∥u2∥

2
L2 = ∥u∥

2, and thus
nequality (2.8) holds with ν̃ =

√
2 νF =

√
2 κ1 κ2 µ(Ω ). The result follows by using the equivalence of norms

rom Lemma 2.1. □

Corollaries 2.1 and 2.2 show that function (2.5) satisfies conditions (A1) and (A2). We also know from
orollary 2.2 that γ = 1, so the set K̃ in Theorem 2.3 can be computed by using that D(A) = E and(

λ0

ν

)1/γ

=
min{b, c}

√
2ψ κ1 κ2 µ(Ω )

,

here b and c are the diagonal elements of matrix A in (2.4), λ0 = inf σ (A), and ψ , κ1, κ2 are as defined before.
Finally, it is evident that Theorem 2.1 follows from Theorems 2.2 and 2.3.

2.1. Qualitative behavior of the model

When deriving a mathematical model to describe the spread of an epidemic in both space and time, it is essential
that the real-life processes are being represented as accurately as possible. More precisely, numerical discretizations
applied to such models should preserve the qualitative properties of the original epidemic model.

The first and perhaps the most natural property is that the number of each species is non-negative at every
time and point of the domain. Next, assuming that the births and natural deaths are the same, the total number of
species of all classes should be conserved. Finally, the last properties describe the monotonicity of susceptible and
recovered species. Since an individual moves to the recovered class after the infection, the number of susceptibles
cannot increase in time. Similarly, the number of recovered species cannot decrease in time. The above properties
are expressed as follows:

C1: The densities X (t, x, y), X ∈ {S, I, R}, are non-negative at every point (x, y) ∈ Ω .
C2: The sum S(t, x, y) + I (t, x, y) + R(t, x, y) is constant in time for all points (x, y) ∈ Ω .
C3: Function S(t, x, y) is non-increasing in time at every (x, y) ∈ Ω .
C4: Function R(t, x, y) is non-decreasing in time at every (x, y) ∈ Ω .

Before we discuss the preservation of properties C1–C4, we consider the following auxiliary system⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂Sε(t, x, y)
∂t

= −Sε(t, x, y)F
(
Iε(t; x, y)

)
− cSε(t, x, y), (2.9a)

∂ Iε(t, x, y)
∂t

= Sε(t, x, y)F
(
Iε(t; x, y)

)
− bIε(t, x, y) + ε, (2.9b)

∂Rε(t, x, y)
∂t

= bIε(t, x, y) + cSε(t, x, y),

here 0 < ε ≪ 1. Because of Remark 2.1, Iε(t; x, y) is equivalent to Iε(t, x, y) and there is no ambiguity in (2.9).
he next theorem shows that the solution of (2.9) satisfies properties C1–C4.

heorem 2.4. Suppose that the initial conditions of the system (2.9) are non-negative, i.e. Xε(0, x, y) ≥ 0,
(x, y) ∈ Ω , X ∈ {S, I, R}. In such case, the properties C1–C4 hold for the solution of (2.9) without any restrictions
n the time interval t ∈ [0, tf].
216
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Let us suppose that the initial conditions assigned to (2.9) are all non-negative. First, we would like to prove

he non-negativity of Iε(t, x, y) by contradiction. Assume that the function takes negative values for some time t
t some point (x, y) ∈ Ω . Define by t0 the last moment in time for which Iε(t, x, y) takes non-negative values, i.e.,

t0 := inf{t | ∃(x, y) ∈ Ω : Iε(t, x, y) < 0}.

y our assumptions, this t0 exists because Iε is continuous and the initial conditions are not negative,
.e., Iε(0, x, y) ≥ 0. Because of the continuity of Iε and the definition of t0, there is a point (x0, y0) for which
Iε(t0, x0, y0) = 0, and

∂ Iε(t0, x0, y0)
∂t

≤ 0. (2.10)

e know that all the values of Iε at t0 inside Bδ(x0, y0) are non-negative by the definition of t0, and(
Iε(t0; x0, y0)

)
≥ 0 also holds. Observe that if we consider Eq. (2.9b) at point (t0, x0, y0), then the term

b Iε(t0, x0, y0) is zero. If F
(
Iε(t0; x0, y0)

)
= 0, then ∂ Iε(t0,x0,y0)

∂t = ε > 0, which is a contradiction; hence
F
(
Iε(t0; x0, y0)

)
> 0. A necessary condition for (2.10) to hold is Sε(t0, x0, y0)F

(
Iε(t0; x0, y0)

)
≤ −ε; therefore,

t must be that Sε(t0, x0, y0) < 0. Now, dividing (2.9a) by Sε and integrating it with respect to time t from 0 to t0,
ields

log (Sε(t0, x, y)) − log (Sε(0, x, y)) = −

∫ t0

0
F
(
Iε(t0; x, y)

)
dt − ct0.

y reformulating, and evaluating at point (x0, y0) we get that

Sε(t0, x0, y0) = Sε(0, x0, y0) exp
(

−

∫ t0

0
F
(
Iε(t0; x, y)

)
dt − ct0

)
. (2.11)

herefore, Sε(t0, x0, y0) cannot be non-negative so we arrive to a contradiction.
As a result, Iε(t, x, y) ≥ 0 for every t ∈ [0, tf] and (x, y) ∈ Ω . Consequently, since Rε(0, x, y) is non-negative,

e have that Rε(t, x, y) is a non-decreasing and a non-negative function. Note also that the derivations leading
n formula (2.11) are also true for any time t and point (x, y) ∈ Ω , meaning that Sε is also non-negative. Since(

Iε(t0; x, y)
)

is non-negative, we also get from (2.9a) that Sε(t, x, y) is non-increasing. □

The following Lemma links the systems (1.4) and (2.9) and its proof can be found in Appendix A.

emma 2.3. Consider a set of systems (2.9) with parameters εi , where i ∈ {1, 2, . . . }. Assume that the sequence
εi } tends to zero. Then, the solutions Sεi , Iεi and Rεi converge in norm to the same limit regardless of the choice
f the sequence {εi }.

roposition 2.1. Suppose that the initial conditions of the system (1.4) are non-negative. Then, the properties
1–C4 hold for the solution of (1.4) without any restrictions on the time interval t ∈ [0, tf].

roof. From Lemma 2.3 we have that

lim
ε→0

Xε(t, x, y)
⏐⏐
t∈[0,tf]

− X (t, x, y)
⏐⏐
t∈[0,tf]

= 0

olds for every X ∈ {S, I, R}. Therefore, the solution of (1.4) depends continuously on the right-hand side of the
ystem of equations and hence properties C1–C4 are also satisfied for the system (1.4). □

emark 2.2. The non-negativity of solutions S and I in (1.4) implies exponential convergence to zero by taking
he sum of the first two equations. This confirms the second part of Theorem 2.1.

Due to the complicated form of the equations in (1.4), one can suspect that no analytic solution can be derived for
his system. Because of this, we are going to use numerical methods to approximate the solution of these equations.
owever, the analytic solution of the original SIR model (1.1) has been described in the papers by Harko et al. [22]
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nd Miller [29,30]. Thus, we can get similar results applying their observations to our modified model (1.4). The
nalytic solution of system (1.4) can be written as⎧⎪⎪⎪⎨⎪⎪⎪⎩

S(t, x, y) = S(0, x, y)e−φ(t,x,y)−ct ,

I (t, x, y) = M0(x, y) − S(t, x, y) − R(t, x, y),

R(t, x, y) = R(0, x, y) + b
∫ t

0
I (s, x, y) ds + c

∫ t

0
S(s, x, y) ds,

(2.12)

here we use the notations

M0(x, y) := S(0, x, y) + I (0, x, y) + R(0, x, y),

φ(t, x, y) :=

∫ t

0
F
(
I (s; x, y)

)
ds,

nd F is given by (2.6).
It is evident that in (2.12), the values of the functions at a given time t∗ can only be computed if the values in

he interval [0, t∗) are known. Consequently, these formulas are not useful in practice, since (2.12) is an implicit
ystem in the solutions S(t, x, y), I (t, x, y) and R(t, x, y). Later (see Table 5.2 in Section 5.2), an approximation
f the solution of (2.12) will be compared to the numerical solution of first-order forward Euler scheme.

Since the values of the functions in (2.12) cannot be calculated directly, numerical methods are needed to
pproximate them. We can take two possible paths:

1. approximate the values of φ(t, x, y) and the integrals in the third equation of (2.12) by numerical integration;
or

2. approximate the solution of the original Eq. (1.4) by a numerical method.

he first approach is discussed in Section 2.2, while the rest of the paper considers the second case. We focus on the
rder and convergence rate of our numerical methods and ensure that qualitative properties C1–C4 of the analytic
olution are preserved by the numerical method. For that, a discrete analogue of conditions C1–C4 is required; see
ection 4.

.2. Numerical approximation of the integral solution

As noted before, if we would like to use the solution (2.12) then we have to approximate the involved integrals.
his can be achieved by partitioning the time interval [0, tf] into uniform spaced sections by using a constant time
tep τ . With this approach, the integrals can be approximated by a left (right) Riemann sum, and thus consider
he values of densities X (t, x, y), X ∈ {S, I, R}, at the left endpoint of each section. Therefore, for any integer
≤ n ≤ N such that tf = τN , the integral of X (t, x, y) can be approximated by

∫ nτ

0
X (s, x, y) ds ≈

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
τ

n−1∑
k=0

X (kτ, x, y) (left Riemann sum),

τ

n∑
k=1

X (kτ, x, y) (right Riemann sum).

n important observation is that the integral Eqs. (2.12) can be rewritten in a recursive form⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
S
(
nτ, x, y

)
= S((n − 1)τ, x, y) exp

(
−

∫ nτ

(n−1)τ
F
(
I (s; x, y)

)
ds − cτ

)
,

R
(
nτ, x, y

)
= R((n − 1)τ, x, y) + b

∫ nτ

(n−1)τ
I (s, x, y) ds + c

∫ nτ

(n−1)τ
S(s, x, y) ds,

I (nτ, x, y) = M0(x, y) − S(nτ, x, y) − R(nτ, x, y).

(2.13)

et Xn(x, y) ≈ X (nτ, x, y), X ∈ {S, I, R}, and define Fn
:= F(I n). Using the approximations∫ nτ

F
(
I (s; x, y)

)
ds ≈ τFn−1,

∫ nτ

I (s, x, y) ds ≈ τ I n−1,

∫ nτ

S(s, x, y) ds ≈ τ Sn,

(n−1)τ (n−1)τ (n−1)τ
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note that the first two are left Riemann sum, while the third a right Riemann sum) we get an approximating scheme
or (2.12), given by⎧⎪⎪⎨⎪⎪⎩

Sn
= Sn−1e−τFn−1

−cτ , (2.14a)

Rn
= Rn−1

+ bτ I n−1
+ cτ Sn, (2.14b)

I n
= (Sn−1

+ I n−1
+ Rn−1) − Sn

− Rn. (2.14c)

ote that in this case, the order of the equations in (2.14) is important as estimates at time tn = nτ are used to
pdate the rest of solution’s components.

heorem 2.5. Consider the solution Xn(x, y), X ∈ {S, I, R} of scheme (2.14) on the time interval [0, tf], where
1 ≤ n ≤ N . Let N be the total number of steps such that tf = τN , where τ denotes the time step. If the step-size
restriction 0 < τ ≤ 1/b holds, then the solution of (2.14) satisfies properties C1–C4 at times tn = nτ , 1 ≤ n ≤ N .

roof. We prove the theorem by induction. Consider the system (2.14) at an arbitrary step n and assume that
he properties C1–C4 hold for the first n − 1 steps. First, it is easy to see that the conservation property C2 is

satisfied by (2.14c). Moreover, by assumption Sn−1, I n−1, and Rn−1 are non-negative and hence by definition Fn−1

is also non-negative. As a result, e−τ (Fn−1
+c) < 1, and therefore Sn is non-negative and monotonically decreasing.

imilarly, the right-hand side terms of (2.14b) are also non-negative, thus Rn is non-negative and monotonically
ncreasing. To show that I n is non-negative, we substitute (2.14a) and (2.14b) into (2.14c) to get

I n
= Sn−1

(
1 − (1 + cτ )e−τ (Fn−1

+c)
)

+ I n−1 (1 − bτ) .

e have by assumption that Sn−1 and I n−1 are non-negative; therefore if

1 − (1 + cτ )e−τ (Fn−1
+c)

≥ 0 and 1 − bτ ≥ 0,

hen I n is non-negative. The function (1 + cτ )e−τ (Fn−1
+c) is monotonically decreasing for τ ≥ 0 (its derivative is

egative) and lies in (0, 1]; thus 1 − (1 + cτ )e−τ (Fn
+c)

≥ 0 for any τ > 0. As a result, the sufficient condition
or I n to remain non-negative is 0 < τ ≤ 1/b. Note that by using the same arguments as above we can show
hat conditions C1–C4 hold at the first step, i.e., n = 1, assuming that the initial conditions are non-negative. This
ompletes the proof. □

emark 2.3. Using left Riemann sums to approximate the integrals in (2.13) results in local errors of order O(τ 2).
herefore, the solution of (2.13) can only be first order accurate. Notice that it is not possible to use any high order
ewton–Cotes formulas since the values of X (t, x, y), X ∈ {S, I, R}, are only known at discrete times t = nτ .

In the next two sections, we discretize (1.4) by first using a numerical approximation of the integral on the
ight-hand side of the system, and then applying a time integration method. This approach results in numerical
chemes that are high order accurate, both in space and time.

. Spatial discretization

It is evident that the key element of the numerical solution of problem (1.4) is the approximation of F
(
I (t, x, y)

)
.

his can be done in two different ways. The first approach is to approximate the function I (t, x̄(r, θ), ȳ(r, θ)) by
Taylor expansion, and then proceed further. This method is studied in [12,13], but is not efficient in the case of

on-constant function g2(θ, x, y) as shown in [36]. The other approach is to use a combination of interpolation and
umerical integration (by using quadrature formulas) to obtain an approximation of F

(
I (t, x, y)

)
.

We consider two-dimensional quadrature formulas on the disc of radius δ with positive coefficients. Denote by
δ(x, y) the set of quadrature nodes in the disk Bδ(x, y) parametrized by polar coordinates (see [36]), i.e.,{ ( ) }
Qδ(x, y) := (xi j , yi j ) = x + ri cos(θ j ), y + ri sin(θ j ) ∈ Bδ(x, y), i ∈ I, j ∈ J ,
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here ri denotes the distance from center point (x, y), θ j is the angle, and I and J are the set of indices of
uadrature nodes. Using numerical integration, we get the system⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂S(t, x, y)
∂t

= −S(t, x, y)T
(
t,Qδ(x, y)

)
− cS(t, x, y),

∂ I (t, x, y)
∂t

= S(t, x, y)T
(
t,Qδ(x, y)

)
− bI (t, x, y),

∂R(t, x, y)
∂t

= bI (t, x, y) + cS(t, x, y),

(3.1)

here

T
(
t,Qδ(x, y)

)
=

∑
(xi j ,yi j )∈Qδ (x,y)

wi, j g1(ri )g2(θ j , x, y)I
(
t, x + ri cos(θ j ), y + ri sin(θ j )

)
, (3.2)

nd wi, j > 0 are the weights of the quadrature formula.

emark 3.1. Similar arguments as those used in the proof of Theorem 2.4 can be applied to system (3.1); hence, the
roperties C1–C4 hold without any restrictions for the analytic solution of this system. Moreover, it can be easily
hown that T (t,Qδ(x, y)) satisfies properties (A1) and (A2), by following the proof of Lemma 2.2 and linearity
rguments. As a result system (3.1) admits a unique strong solution.

.1. The semi-discretized system

Now we would like to solve (3.1) numerically. The first step is to discretize the problem in space. Let us suppose
hat we would like to solve our problem on a rectangle-shaped domain, namely Ω := [0,L1] × [0,L2]. For our

numerical solutions we will discretize this domain by using a spatial grid

G := {(xk, yl) ∈ Ω | 1 ≤ k ≤ P1, 1 ≤ l ≤ P2} ,

which consists of P1 × P2 points with spatial step sizes h1 and h2, and approximate the continuous solutions by a
ector of the values at the grid points. After this semi-discretization, we get the following set of equations⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d Sk,l(t)
dt

= −Sk,l(t)Tk,l
(
t,Qδ(xk, yl)

)
− cSk,l(t),

d Ik,l(t)
dt

= Sk,l(t)Tk,l
(
t,Qδ(xk, yl)

)
− bIk,l(t),

d Rk,l(t)
dt

= bIk,l(t) + cSk,l(t),

(3.3)

where Xk,l(t), X ∈ {S, I, R}, denotes the approximation of the function at grid point (xk, yl). The approximation
of F

(
I (t; xk, yl)

)
is denoted by Tk,l(t,Qδ(xk, yl)) and defined as

Tk,l
(

t,Qδ(xk, yl)
)
:=

∑
(x̄k ,ȳl )∈Qδ (xk ,yl )

wi, j g1(ri )g2(θ j , xk, yl) Ĩ (t, x̄k, ȳl), (3.4)

where x̄k = xk + ri cos(θ j ) and ȳl = yl + ri sin(θ j ). Note that the points (x̄k, ȳl) might not be included in G; in
such case there are no Ik,l values assigned to them. Because of this, we approximate I (t, x̄k, ȳl) by using positivity
preserving interpolation (e.g. bilinear interpolation) with the nearest known Ik,l values and positive coefficients. This
is the reason why Ĩ is used in (3.4) instead of I .

Proposition 3.1. A unique strong solution for system (3.3) exists, for which properties C1–C4 hold locally at a
given point (xk, yl).

Proof. The proof of existence and uniqueness comes from the Lipschitz continuity and boundness of the right-hand
side, which can be proved similarly as in Corollaries 2.1 and 2.2. Properties C1–C4 can be proved in a similar manner
as in Theorem 2.4. □
The next theorem characterizes the accuracy of interpolation and quadrature techniques of system (3.3).

220
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heorem 3.1. Suppose that a quadrature rule approximates the integral (2.6) to order p, i.e.,F(I (t; x, y)
)
− T

(
t,Q(x, y)

)
L2 = O(δ p), (3.5)

where δ is the radius of the disk in which the integration takes place. Let us suppose that the (positivity preserving)
spatial interpolation Ĩ approximates the values of I to order q, i.e.,I (t, x, y) − Ĩ (t, x, y)


L2

= O(hq ), (3.6)

where h = min{h1, h2} is the minimum of the spatial step sizes. Then if ũ is the solution of (1.4) evaluated at the
grid points of G and ṽ is the solution of (3.3), it follows that

∥ũ − ṽ∥l2 = O(δ p) + O(hq ),

where l2 denotes the discrete L2 norm taken with respect to the spatial variables.

Proof. It is sufficient to prove that if w is the solution of (3.1) evaluated at the grid points of G, then

∥ũ − w∥l2 = O(δ p) and ∥w − ṽ∥l2 = O(hq )

hold. Let us rewrite the first two equations of (3.1) in the form

dw(t)
dt

= −Aw(t) +

(
−w1Fd (w2)

w1Fd (w2)

)
, (3.7)

here

Fd (w2) =

∑
(xi j ,yi j )∈Q(x,y)

wi, j g1(ri )g2(θ j , x, y)w2
(
t, x + ri cos(θ j ), y + ri sin(θ j )

)
,

s the quadrature discretization of F(w2). Note that Fd (w2) has the same form as T
(
t,Q(x, y)

)
in (3.2), where

I (t, x, y) is replaced by w2(t, x, y). Then, by assumption (3.5), Eq. (3.7) can be rewritten as

dw(t)
dt

= −Aw(t) +

(
−w1

(
F(w2) + O(δ p)

)
w1
(
F(w2) + O(δ p)

)) .
t can be shown that Corollary 2.1 also holds for Fd . Therefore, by similar arguments as presented in the proof of
emma 2.3, the equality ∥ũ − w∥l2 = O(δ p) holds. The other estimate, ∥w − ṽ∥l2 = O(hq ), can be also similarly

proved by rewriting the first two equations of (3.3) (as we did with (3.1)) and using the assumption (3.6). □

A natural question arises: what is the best type of quadrature and interpolation for solving the system (3.3)?
n the rest of the section, we describe two numerical integration procedures and also discuss suitable interpolation
echniques.

.1.1. Elhay–Kautsky quadrature
One can use a direct quadrature rule on the general disk, see for example [9,35]. In such case the integral of a

unction f (x, y) over the disk with radius δ can be approximated by

Q( f ) = πδ2
Nr ·Nθ∑
i=1

wi f (xi , yi ) = πδ2
Nr∑

i=1

Nθ∑
j=1

w̃i f
(
ri cos(θ j ), ri sin(θ j )

)
, (3.8)

where Nr is the number of radial nodes, Nθ is the number of equally spaced angles, and wi and w̃i are weights in the
0, 1] interval. We use Nθ = 2Nr to have a quadrature rule that is equally powerful in both r and θ . The weights and
uadrature nodes are calculated by a modification of the Elhay–Kautsky Legendre quadrature method [11,23,28].
he top panel of Fig. 3.1 shows the distribution of quadrature nodes for Nr ∈ {3, 6, 12}. The Elhay–Kautsky
uadrature results in nodes that are evenly spaced in the θ direction.
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Fig. 3.1. Top panel: The distribution of quadrature nodes (Nr × Nθ ) in the unit disk using the Elhay–Kautsky quadrature rule. Bottom panel:
he distribution of quadrature nodes (Nξ × Nη) in the unit disk using the Gauss–Legendre quadrature rule.

.1.2. Gauss–Legendre Quadrature
Alternatively, we can transform the disk into a square, and then use a one-dimensional Gauss–Legendre rule to

pproximate the integral. First, we transform the disk with radius δ to the rectangle [0, δ]×[0, 2π ] in the r −θ plane.
ext, the rectangle [0, δ]× [0, 2π ] is mapped to [0, 1]× [0, 1] on the ξ −η plane by using the linear transformation

r = δξ, θ = 2πη,

hat has a Jacobian 2πδ. Using these transformations, the original integral∫ δ

0

∫ 2π

0
f
(
r cos(θ ), r sin(θ )

)
r dθ dr

akes the form∫ 1

0

∫ 1

0
f
(
δξ cos(2πη), δξ sin(2πη)

)
δξ 2πδ dη dξ. (3.9)

There are several approaches for computing multiple integrals based on numerical integration of one-dimensional
integrals. In this paper, we use the Gauss–Legendre quadrature rule on the unit interval [38]; other options include
generalized Gaussian quadrature rules as described in [27]. The integral (3.9) can be approximated by

Q( f ) =

Nξ∑ Nη∑
wiw j 2πδ2ξi f

(
δξi cos(2πη j ), δξi sin(2πη j )

)
=

Nξ ·Nη∑
w̃m f (xm, ym), (3.10)
i=1 j=1 m=1
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g

Fig. 3.2. Numerical integration errors of quadrature formulas (3.8) and (3.10) applied to the integral in (3.11). The colored curves correspond
to different choices of quadrature nodes in the δ-radius disk. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

where ξi and ηi are the i th quadrature nodes corresponding to the Gauss–Legendre quadrature with weights wi .
The number of quadrature nodes in the ξ and η direction are denoted by Nξ and Nη, respectively, and we let
xm = δξi cos(2πη j ), ym = δξi sin(2πη j ) and w̃m = wiw j 2πδ2ξi . The distribution of the quadrature nodes in the
unit disk is not uniform as with the Elhay–Kautsky quadrature and can be seen in the bottom panel of Fig. 3.1. For
a fair comparison we use Nη = 2Nξ . Experimental results reveal that the Elhay–Kautsky quadrature (3.8) performs
better in cases the interpolated function f (x, y) is a bivariate polynomial, whereas the Gauss–Legendre quadrature
(3.10) or the generalized Gaussian quadrature rule (see [27]) when f (x, y) is an arbitrary nonlinear function.

In order to determine which quadrature rule performs better for the system (3.3), we perform a conver-
ence test by applying the quadrature formulas (3.8) and (3.10) to the function g1(r )g2(θ, x, y)I0(r, θ)r , where

g1(r ) = 100(−r + δ), g2(θ, x, y) = sin(θ ) + 1, and

I0(r, θ) =
100

2πσ 2 exp
(

−
r2

2σ 2

)
is a Gaussian distribution with deviation σ and centered at zero. This resembles the initial conditions for I at the
origin, as we will use later in Section 5. The exact solution of the integral over a disk of radius δ is given by∫ δ

0

∫ 2π

0
g1(r )g2(θ )I0 r dθ dr = 5000

(
2δ −

√
2π σ erf

(
δ

√
2σ

))
, (3.11)

where erf(x) is the Gauss error function [3,20]. Fig. 3.2 shows the convergence of the two quadrature rules over
the disk of radius δ, as δ goes to zero (σ = 1/10). We observe that the Gauss–Legendre quadrature (3.10) gives
much smaller errors (close to machine precision) when more than 12 × 24 nodes are used, compared to the Elhay–
Kautsky quadrature (3.8) which is third-order accurate. The performance of the quadrature formulas depends also on
the choice and accuracy of interpolation. As mentioned before, bilinear interpolation can be used since it preserves
the non-negativity of the interpolant. One possibility is to use higher order interpolations, like cubic or spline, but
in these cases the preservation of the required properties cannot be guaranteed. However, numerical experiments
show that piecewise cubic spline interpolation results in a positive interpolant for a sufficiently fine spatial grid. A
better choice is the use of a shape-preserving interpolation, to ensure that negative values are not generated and
the interpolant of I (t, x̄k, ȳl) in (3.4) is bounded by maxk,l{Sk,l + Ik,l + Rk,l} for every point (xk, yl). This can be
accomplished by a monotone interpolation that uses piecewise cubic Hermite interpolating polynomials [10,14]. In
MATLAB (version R2021a) the relevant function is called pchip but is only available for one-dimensional problems.
Extensions to bivariate shape-preserving interpolation have been studied in [7,8,15]; however, this topic goes beyond
the purposes of this paper. Another choice is the modified Akima piecewise cubic Hermite interpolation, makima.
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umerical experiments demonstrate good performance as it avoids overshoots when more than two consecutive
odes are constant [1,2], and hence preserves non-negativity in areas where I (t, x̄k, ȳl) is close to zero.

4. Time integration methods

The next step is to use time integration methods to solve the system of ordinary differential Eqs. (3.3). First, we
study sufficient and necessary time-step restrictions such that the forward Euler method satisfies a discrete analogue
of properties C1–C4, denoted below by D1–D4. Then, we discuss how high order SSP Runge–Kutta methods can
be applied to (3.3).

Let Xn
= {Xn

k,l}, X ∈ {S, I, R}, be the numerical approximation of Xk,l(tn) for all 1 ≤ k ≤ P1, 1 ≤ l ≤ P2, and
0 ≤ n ≤ N , where N is the total number of steps. The numerical solution should satisfy the following properties:

D1: The densities {Xn
k,l}, X ∈ {S, I, R}, are non-negative for every 1 ≤ k ≤ P1, 1 ≤ l ≤ P2, and for all

0 ≤ n ≤ N .
D2: The sum Sn

k,l + I n
k,l + Rn

k,l is constant for all 0 ≤ n ≤ N and for every 1 ≤ k ≤ P1, 1 ≤ l ≤ P2.
D3: The density Sn

k,l is non-increasing, i.e., Sn
k,l ≤ Sn−1

k,l for every 1 ≤ k ≤ P1, 1 ≤ l ≤ P2, and for all 1 ≤ n ≤ N .
D4: The density Rn

k,l is non-decreasing i.e., Rn
k,l ≥ Rn−1

k,l for every 1 ≤ k ≤ P1, 1 ≤ l ≤ P2, and for all 1 ≤ n ≤ N .

.1. Explicit Euler scheme and qualitative properties

Let us apply the explicit Euler method to the system (3.3) on the interval [0, tf], and choose an adaptive time
tep τn > 0 such that tn = tn−1 + τn , n ≥ 1. After the full discretization we get the set of algebraic equalities⎧⎪⎪⎨⎪⎪⎩

Sn
= Sn−1

− τn Sn−1
◦ T n−1

− cτn Sn−1, (4.1a)

I n
= I n−1

+ τn Sn−1
◦ T n−1

− bτn I n−1, (4.1b)

Rn
= Rn−1

+ bτn I n−1
+ cτn Sn−1. (4.1c)

ere, the operator ◦ denotes the element-by-element or Hadamard product of matrices. The matrix T n−1 is an
pproximation of (3.4) at all points (xk, yl) ∈ G, and its components can be expressed by

T n−1
k,l =

∑
(x̄k ,ȳl )∈Qδ (xk ,yl )

wi, j g1(ri )g2(θ j , xk, yl) Ĩ n−1(x̄k, ȳl). (4.2)

Now we examine the bounds of time step τn such that the method (4.1) gives solutions which are qualitatively
dequate and satisfy conditions D1–D4.

heorem 4.1. Consider the numerical solution (4.1) obtained by the forward Euler method applied to (3.3) with
non-negative initial data. Then, the solution satisfies property D2 without any step-size restrictions. Moreover,
properties D1, D3 and D4 hold if the time step satisfies

τn ≤ min

{
1

maxk,l{T n−1
k,l } + c

,
1
b

}
. (4.3)

Proof. The proof is similar to the one of [36, Theorem 2]. We prove the statement by induction on the number of
steps.

First, assume that the properties D1–D4 hold up to step n − 1; we will prove that they also hold true for step n.
Property D2 can be easily verified by adding all equations in (4.1). To show the monotonicity and non-negativity

f Sn , consider (4.1a) at point (xk, yl) ∈ G

Sn
k,l =

(
1 − τn(T n−1

k,l + c)
)
Sn−1

k,l .

y our assumption I n−1
k,l ≥ 0, and a positivity-preserving interpolation guarantees that the interpolated values

Ĩ n−1(x̄k, ȳl) = Ĩ n−1
(
xk + ri cos(θ j ), yl + ri sin(θ j )

)
are non-negative. Therefore, by (4.2) we get T n−1

k,l ≥ 0 for

ach 1 ≤ k ≤ P1, 1 ≤ l ≤ P2 since the weights wi, j are positive, and functions g1 and g2 are non-negative. As
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result, τn(T n−1
k,l + c) ≥ 0 and thus Sn

k,l ≤ Sn−1
k,l . Moreover, if τn ≤ 1/(T n−1

k,l + c) then Sn
k,l remains non-negative.

4.1b) yields

I n
k,l = (1 − bτn)I n−1

k,l + τn Sn−1
k,l T n−1

k,l ,

nd hence I n is non-negative if τn ≤ 1/b. Finally from (4.1c) we have

Rn
k,l = Rn−1

k,l + bτn I n−1
k,l + cτn Sn−1

k,l ,

herefore Rn is non-negative and Rn
≥ Rn−1. Putting all together we conclude that properties D1–D4 are satisfied

f the time step is bounded by (4.3). By using the above argument it can be shown that D1–D4 also hold at the first
tep, n = 1, if the initial data are non-negative and the time step satisfies (4.3). □

A drawback of the time-step restriction (4.3) is that it depends on the solution at the previous step. This has
mportant complications for higher order methods as we will see in Section 4.2. For any multistage method,
he adaptive time step bound (4.3) depends not only on the previous solution but also on the internal stage
pproximations. Consequently, an adaptive time-step restriction based on (4.3) cannot be the same for all stages of
Runge–Kutta method; instead it needs to be recalculated at every stage to guarantee that conditions D1–D4 hold.
herefore, such bound has no practical use because it is prone to rejected steps and will likely tend to zero.

A remedy is to use a constant time step that is less strict than (4.3), but still guarantee τ ≤ 1/(T n−1
k,l + c) holds

for all 1 ≤ k ≤ P1, 1 ≤ l ≤ P2 and at every step n. At a given point (xk, yl) ∈ G the weights and quadrature
nodes in Bδ(xk, yl) are the same regardless of the location of (xk, yl) in the domain. Therefore, we can find an upper
bound for each element of the matrix T n−1 in (4.2). Let

T̂ :=

∑
(x̄k ,ȳl )∈Qδ (xk ,yl )

wi, j g1(ri )κ2 M0, (4.4)

where

M0 = max
(xk ,yl )∈G

{S(0, xk, yl) + I (0, xk, yl) + R(0, xk, yl)} , (4.5)

and κ2 was defined before. Since T n−1
k,l ≤ T̂ for all 1 ≤ k ≤ P1, 1 ≤ l ≤ P2 then if

τ̂ := min
{

1
T̂ + c

,
1
b

}
, (4.6)

the condition

τ̂ ≤ min

{
1

maxk,l{T n−1
k,l } + c

,
1
b

}
holds at every step n. Moreover, T̂ ≤ w̃ κ2 M0 N , where

κ = max{κ1, κ2} = max

⎧⎨⎩max
r∈(0,δ)

{g1(r )}, max
θ∈[0,2π )
(x,y)∈Ω

{g2(θ, x, y)}

⎫⎬⎭ ,
˜ = maxi, j {wi, j }, and N is the number of the quadrature nodes in Qδ(xk, yl). Hence, the time step (4.6) is larger
than the rather pessimistic time step

τ̃ := min
{

1
w̃ κ2 M0 N + c

,
1
b

}
, (4.7)

proposed in [36, Theorem 2]. Numerical experiments show that τ̂ is very close to the theoretical bound in (4.3),
and thus a relatively small increase of time step beyond the bound (4.6) may produce qualitatively bad solutions
which violate one of the conditions D1–D4 (see Section 5.1).

.2. SSP Runge–Kutta methods

The forward Euler method is only first-order accurate; hence, we would like to obtain time-step restrictions for

igher order Runge–Kutta methods. Note that the spatial discretizations discussed in Section 3 can be chosen so
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hat errors from quadrature formulas and interpolation are very small; therefore, it is substantial to have a high-order
ccurate time integration method.

Consider a Runge–Kutta method in the Butcher form [5] with coefficients (ai j ) ∈ Rm×m and b ∈ Rm . Let K be
the matrix given by

K =

[
(ai j ) 0
b⊺ 0

]
,

and denote by I the (m + 1)-dimensional identity matrix. If there exists r > 0 such that (I + rK) is invertible, then
the Runge–Kutta method can be expressed in the canonical Shu–Osher form

Q(i)
= vi Qn−1

+

m∑
j=1

αi j

(
Q( j)

+
τ

r
F
(
Q( j))) , 1 ≤ i ≤ m + 1,

Qn
= Q(m+1),

(4.8)

here the coefficient arrays (αi j ) and (vi ) have non-negative components. Such methods are called strong-stability
reserving (SSP) Runge–Kutta methods and have been introduced by Shu as total-variation diminishing (TVD)
iscretizations [32], and by Shu and Osher in relation to high order spatial discretizations [33,34]. The choice of
arameter r gives rise to different Shu–Osher representations; thus we denote the Shu–Osher coefficients of (4.8)
y αr = (αi j ) and vr = (vi ) to emphasize the dependence on the parameter r . The Shu–Osher representation with
he largest value of r such that (I + rK)−1 exists and αr , vr have non-negative components is called optimal and
ttains the SSP coefficient

C = max
{
r ≥ 0 | ∃ (I + rK)−1 and αr ≥ 0, vr ≥ 0

}
.

he interested reader may consult [16,18,19], as well as the monograph [17] and the references within, for a
hroughout review of SSP methods.

We would like to investigate time-step restrictions such that the numerical solution obtained by applying method
4.8) to the problem (3.3) satisfies properties D1–D4. The following theorem provides the theoretical upper bound
or the time step such that these properties are satisfied.

heorem 4.2. Consider the numerical solution obtained by applying an explicit Runge–Kutta method (4.8) with
SP coefficient C > 0 to the semi-discrete problem (3.3) with non-negative initial data. Then property D2 holds
ithout any time-step restrictions. Moreover, the properties D1, D3 and D4 hold if the time step satisfies

τ ≤ C min
{

1
T̂ + c

,
1
b

}
, (4.9)

where T̂ is given by (4.4).

Proof. Consider an arbitrary stage i , 1 ≤ i ≤ m +1, of a Runge–Kutta method (4.8) with non-negative coefficients
and SSP coefficient C > 0. Applying the method to (3.3) we get

S(i)
= vi Sn−1

+

i−1∑
j=1

αi j

(
S( j)

−
τ

C
(
S( j)

◦ T ( j)
− cS( j))) , (4.10a)

I (i)
= vi I n−1

+

i−1∑
j=1

αi j

(
I ( j)

+
τ

C
(
S( j)

◦ T ( j)
− bI ( j))) , (4.10b)

R(i)
= vi Rn−1

+

i−1∑
j=1

αi j

(
R( j)

+
τ

C
(
bI ( j)

+ cS( j))) . (4.10c)

Since all Runge–Kutta methods preserve linear invariants the property D2, i.e.,

Sn
+ I n

+ Rn
= Sn−1

+ I n−1
+ Rn−1, ∀n

is trivially satisfied.
226
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The remainder of the proof deals with properties D1, D3 and D4. We show that all quantities Sn, I n, Rn remain
non-negative, while Sn is non-increasing and Rn is increasing. From (4.10a) and (4.10b) we have, respectively,

S(i)
= vi Sn−1

+

i−1∑
j=1

αi j S( j)
◦

(
1 −

τ

C
(
T ( j)

+ c1
))
,

I (i)
= vi I n−1

+
τ

r

i−1∑
j=1

αi j S( j)
◦ T ( j)

+

(
1 −

τ

r
b
) i−1∑

j=1

αi j I ( j),

where 1 is the P1 × P2 all-ones matrix.
By definition,

T (i)
k,l =

∑
(x̄k ,ȳl )∈Qδ (xk ,yl )

wi, j g1(ri )g2(θ j , xk, yl) Ĩ (i)(x̄k, ȳl), 1 ≤ i ≤ m + 1,

here Ĩ (i) are interpolated values. Since the initial data are non-negative and the chosen interpolation is
ositivity-preserving, we have that S(1)

= Sn−1, I (1)
= I n−1 and T (1) are all non-negative. If

0 ≤ 1 −
τ

r
b, and 0 ≤ 1 −

τ

C
(
T ( j)

+ c1
)

for 1 ≤ j ≤ i − 1, (4.11)

then the explicit Runge–Kutta method inductively results in non-negative T (i), S(i), and I (i) for each 2 ≤ i ≤ m +1.
ince Ĩ (i)(x̄k, ȳl) is an interpolated value of I (i)(x̄k, ȳl) it is bounded by M0 (see (4.5)). Then by using (4.4), it holds

hat T (i)
k,l ≤ T̂ , for 1 ≤ i ≤ m + 1 and for every (xk, yl) ∈ G. Therefore,

T (i)
≤ T̂ 1, 1 ≤ i ≤ m + 1. (4.12)

Moreover, the non-negativity of T (i) implies that

1 −
τ

C
(
T (i)

+ c1
)

≤ 1, 1 ≤ i ≤ m + 1,

and thus (4.10a) yields S(i)
≤ vi Sn−1

+
∑i−s

j=1 αi j S( j). Consistency requires that vi +
∑i−1

j=1 αi j = 1 for each
1 ≤ i ≤ m + 1 and hence

S(i)
≤ (1 −

i−1∑
j=1

αi j )Sn−1
+

i−1∑
j=1

αi j S( j)

≤ Sn
−

i−1∑
j=1

αi j
(
Sn−1

− S( j)) . (4.13)

Let 1 ≤ q ≤ m + 1 be the stage index such that S(i)
≤ S(q) for all 1 ≤ i ≤ m + 1. Then, taking i = q in (4.13)

yields

S(q)
≤ vi Sn−1

+

i−1∑
j=1

αq j S(q)

⎛⎝1 −

i−1∑
j=1

αq j

⎞⎠ S(q)
≤

⎛⎝1 −

i−1∑
j=1

αq j

⎞⎠ Sn−1

S(q)
≤ Sn−1.

Therefore, S(i)
≤ Sn−1 for all 1 ≤ i ≤ m + 1. In particular for i = m + 1 we have Sn

= S(m+1)
≤ Sn−1.

Finally, the non-negativity of initial data, S( j) and I ( j) implies that from (4.10c) we have R(i)
≥ Rn−1 for all

≤ i ≤ m + 1, and hence Rn
= R(m+1)

≥ Rn−1.
Combining (4.11) and (4.12) we conclude that the step-size restriction (4.9) is sufficient for satisfying properties
D1–D4. □
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. Numerical experiments

In this section, we confirm the results proved previously by using several numerical experiments. Computational
ests are defined in a bounded domain and thus the choice of boundary conditions is important. Because we have no
iffusion in our problem, we consider homogeneous Dirichlet conditions and we assume that there is no susceptible
opulation outside of the domain. This means that we are going to assign a zero value to any point which lies outside
f the rectangular domain in which the problem is defined. In most cases, the nodes of the quadrature rules (3.8)
nd (3.10) do not belong to the spatial grid. Special attention must be given to the corners and boundaries of the
omain where quadrature nodes, assigned to grid points near the boundary, lie outside of the domain. In order to
andle solution estimates at corners and the boundary of the domain, we use ghost cells which are set to zero Thus,
e can calculate the values corresponding to the quadrature nodes lying outside of the domain without violating

he qualitative properties. All code to generate the figures and tables discussed in this section is available at https:/
github.com/hadjimy/spatial-SIR RR.

For the numerical experiments we are choosing the following functions. Let g1(r ) be a linearly decreasing
unction, which takes its maximum at r = 0 and becomes zero at r = δ, i.e.,

g1(r ) := a(−r + δ),

here a is the same parameter as in (1.1). The g2(θ, xk, yl) function is given by

g2(θ, xk, yl) := βk,l

(
sin
(π

2
+ θ − αk,l

)
+ β0

)
, (5.1)

where αk,l describes the wind’s direction at point (xk, yl) and βk,l is the strength of the wind. The parameter β0 is
et to 11/10 to ensure that g2(θ, xk, yl) is strictly positive. We use a differentiable velocity field to resemble a wind
rofile on the domain Ω = [0,L1] × [0,L2], and hence at each grid point (k, l) the wind direction is given by a
ector υk,l = (υ1

k,l , υ
2
k,l), (see Fig. 5.1(c)). The parameter αk,l denotes the angle of the wind vector υk,l with the

ositive x-axis, and βk,l is calculated by the L2-norm of υk,l .
The initial conditions resemble the eruption of a wildfire, i.e., having infected cases located in a small area. For

he infected species, we use a Gaussian distribution concentrated at the middle point (L1/2,L2/2) of the domain
, with standard deviation σ = min{L1,L2}/10. The spatial step sizes are h1 = L1/(P1 −1) and h2 = L2/(P2 −1),
here P1 and P2 are the number of grid points in each direction. We assume that the number of susceptibles is

onstant except at the middle of the domain, and there are no recovered species at the beginning. Therefore, for
very 1 ≤ k ≤ P1, 1 ≤ l ≤ P2 the initial conditions are given by

I 0
k,l =

1
2πσ 2 exp

⎛⎜⎜⎝−
1
2

⎡⎢⎢⎣
⎛⎜⎝h1(k − 1) −

L1

2
σ

⎞⎟⎠
2

+

⎛⎜⎝h2(l − 1) −
L2

2
σ

⎞⎟⎠
2⎤⎥⎥⎦
⎞⎟⎟⎠ ,

S0
k,l =

1
2πσ 2 − I 0

k,l ,

R0
k,l = 0.

In all numerical experiments – unless otherwise stated – we use the parameter values a = 100, b = 0.05, c = 0.01,
nd δ = 0.05. The computational domain is Ω = [0, 1] × [0, 1] with 30 grid points in each direction, and we use
× 12 quadrature nodes. We also choose the tenth-stage, fourth-order SSP Runge–Kutta method (SSPRK104) for

he time integration.
First we would like to study the behavior of our numerical solution. Fig. 5.1 depicts the numerical solution at

imes t = 50 and t = 1000. As we can see, the number of susceptibles is decreased, and the number of infected
oves towards the boundaries, while forming a wave. Both densities S and I tend to zero, which confirms that the

ero solution is indeed an asymptotically stable equilibrium for the first two equations of (1.4).

.1. Comparison of the step size bounds for the Euler method

As seen in Section 4.1, the improved bound τ̂ (see (4.6)) is larger than the pessimistic bound τ̃ (see (4.7)), and

hus closer to the best theoretically bound (4.3) that guarantees the preservation of properties D1–D4. We would
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Fig. 5.1. The number of susceptibles S (left), infected I (middle) and recovered R (right) at times t = 50 (top panel) and t = 1000 (bottom
panel). The Gauss–Legendre quadrature (3.10) has been used combined with the makima interpolation. Plot (c) shows the wind velocity
field used.

like to determine how close the bound τ̂ is to the adaptive step-size restriction, and compare it with the pessimistic
bound τ̃ . In Table 5.1 we have tested several different values of a and δ, for which both the bounds τ̂ and τ̃ were
computed. For comparison we calculated the minimum of the adaptive step bound (4.3), denoted by τe. As we can
see, varying the parameter a or δ the time-step bound τ̂ results in about 50% increase in efficiency compared to τ̃ .
Also, the time-step restriction τ̂ is much closer to the theoretical bound for which the properties D1–D4 hold. From
Table 5.1 we conclude that in the case of a small increase in the time step τ̂ , the forward Euler method continues
to preserve the desired properties. However, for values of τ bigger than (4.9), there is no guarantee that properties

D1–D4 will be satisfied by a high-order time integration method.
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Table 5.1
Step-size bounds τ̂ and τ̃ (see (4.6) and (4.7) respectively), and their comparison
with the adaptive bound τe (see (4.3)) for the forward Euler method for different
values of a and δ. The computation uses the Elhay–Kautsky quadrature rule (3.10)
combined with bilinear interpolation, and the final time is tf = 100.

a τ̃ τ̃ /τe τ̂ τ̂ /τe τe

50 2.7934 0.4267 6.0609 0.9259 6.5462
100 1.4165 0.4186 3.1252 0.9235 3.3839
250 0.5715 0.4136 1.2740 0.9221 1.3816
500 0.2865 0.4193 0.6411 0.9381 0.6833

δ τ̃ τ̃ /τe τ̂ τ̂ /τe τe

0.025 10.310 0.5155 20.000 1.0000 20.000
0.050 1.4165 0.4186 3.1252 0.9235 3.3839
0.075 0.4239 0.4096 0.9468 0.9149 1.0349
0.100 0.1793 0.4168 0.4016 0.9337 0.4301

Fig. 5.2. L2-norm errors using quadrature formulas (3.8) and (3.10) with n × 2n quadrature nodes, n ∈ {4, 5, 6, 7, 8, 9, 10} and different
nterpolations. The final time is tf = 50 and the reference solution for each quadrature rule and interpolation is computed by using 20 × 40
uadrature nodes.

.2. Convergence

Since we cannot approximate the exact solution accurately, we are going to compute the numerical errors for
ifferent methods by using a reference solution. To have a fair comparison the reference solution is computed by
sing the same parameters and method, but with either a large number of quadrature nodes or a very small time
tep.

We first observe how well the different quadratures behave. As seen in Section 3, using more nodes in quadrature
3.10) results in smaller errors, and also faster convergence. Numerical experiments show that this is also the case
or the system (3.3). The L2-norm errors for the different quadrature formulas and interpolations are plotted in
ig. 5.2. It is clear that for a small number of quadrature nodes there is no remarkable difference between the

nterpolations, but for more quadrature nodes makima and spline interpolation perform better. Bilinear interpolation
esults in similar errors for both quadratures (3.8) and (3.10). The makima and spline interpolations have a similar
erformance for the Elhay–Kautsky quadrature (3.8) and smaller errors are observed with spline interpolation and
auss–Legendre quadrature (3.10). Notice, thought that spline interpolation does not guarantee the preservation of
roperties D1–D4, e.g., setting β0 = 1 in (5.1) yields negative values for the infected density I .
Equally important is the order of the different time integration methods.
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Table 5.2
L2-norm errors and convergence rates of forward Euler method (FE) and the method
(2.14) denoted by “IM”. The solution is computed at time tf = 50 with the
Gauss–Legendre quadrature rule (3.10) combined with spline interpolation.

τ FE IM

0.8250 4.35 × 10−1 1.74 × 100

0.4125 2.26 × 10−1 0.94 1.19 × 100 0.54
0.2062 1.14 × 10−1 0.99 7.32 × 10−1 0.70
0.1031 5.59 × 10−2 1.03 4.07 × 10−1 0.85
0.0516 2.62 × 10−2 1.09 2.06 × 10−1 0.98
0.0258 1.13 × 10−2 1.22 9.22 × 10−2 1.16

Table 5.3
L2-norm errors and convergence rates of high-order integration methods. The solution
is computed at time tf = 50 with the Gauss–Legendre quadrature rule (3.10)
combined with spline interpolation.

τ SSPRK22 SSPRK33 SSPRK104

3.3000 2.93 × 10−1 4.45 × 10−2 4.71 × 10−4

1.6500 9.08 × 10−2 1.69 7.13 × 10−3 2.64 3.30 × 10−5 3.84
0.8250 2.53 × 10−2 1.84 1.01 × 10−3 2.82 2.18 × 10−6 3.92
0.4125 6.63 × 10−3 1.93 1.35 × 10−4 2.91 1.40 × 10−7 3.96
0.2062 1.63 × 10−3 2.03 1.72 × 10−5 2.97 8.82 × 10−9 3.99
0.1031 3.29 × 10−4 2.30 1.94 × 10−6 3.15 5.19 × 10−10 4.09

Table 5.2 shows that the forward Euler method behaves similarly when compared to the first-order integral
olution described in Section 2.2. Numerical experiments show that the higher order schemes work as expected,
amely that by using enough quadrature nodes and grid points, a reasonably small error can be achieved with the
esired accuracy order.

Table 5.3 shows the convergence rates for second-, third- and fourth-order SSP Runge–Kutta methods when the
auss–Legendre quadrature rule (3.10) is used with spline interpolation. The numerical solution is computed at time

f = 50 using 30 grid points and 6 × 12 quadrature nodes. We start with a reasonable time step 4.7, which is slightly
below the minimum of the adaptive bound (4.3) when forward Euler method is used, and then successively divide
by 2. For the reference solution we use a time step that is the half of the smallest time step in our computations. It
is evident that using higher order methods is better than solving the integral Eq. (2.12) numerically. Moreover the
fourth-order SSP Runge–Kutta method (SSPRK104) attends a six times larger time step than lower order methods
since it has an SSP coefficient C = 6.

.3. Runtime comparison

The spatial discretization (interpolation and quadrature rule) is expected to be the dominant computation load for
he numerical solution of (3.3). We estimate the elapsed time of the numerical solvers for the spatial discretizations;
his includes the calculation of the improved step-size bound τ̂ (see (4.6)) at the setup of the simulation and all

calculations per step for the interpolation and quadrature formulas.
Table 5.4 compares the time required (in seconds) for the spatial discretization and the overall computation time.

The parameters, initial conditions, computational domain, and the number of grid points and quadrature nodes are
the same as at the beginning of this section. We use three Runge–Kutta methods (forward Euler, SSPRK33, and
SSPRK104) combined with the bilinear and makima interpolation and compute the solution at a final time tf = 50.
We choose the Gauss–Legendre quadrature (3.10) with for all tests as it is slightly faster than the Elhay–Kautsky
quadrature. As shown in Table 5.4 the time needed for the spatial discretization is almost equal to the overall time
of the simulations. Also, the bilinear interpolation is twice as fast as the makima interpolation. The forward Euler
method uses a single function evaluation per step; hence it is the fastest among all methods. There is a linear
increase in computation time with the three-stage SSPRK33 method because it has the same SSP coefficient as the

forward Euler method but requires three function evaluations per step. The SSPRK104 method uses ten function

231
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Table 5.4
Elapsed time of the spatial discretization compared to the overall simulation time.
The computations use different Runge–Kutta methods and interpolations, combined
with the Gauss–Legendre quadrature (3.10) with 30 grid points in each direction and
6 × 12 quadrature nodes. The final time is tf = 50.

Method Interpolation Time (s)

Spatial discretization Total runtime

FE
Bilinear 1.417 1.453
Makima 3.599 3.607

SSPRK33
Bilinear 3.964 3.974
Makima 10.596 10.606

SSPRK104
Bilinear 2.579 2.593
Makima 6.871 6.878

evaluations per step; however, it has six times larger step-size bound than forward Euler and thus it takes only about
twice as much time. The additional computation effort of the SSPRK104 method is compensated by a fourth-order
accurate solution.

6. Conclusions and further work

In this paper, the SIR model for epidemic propagation is extended to include spatial dependence. The
xistence and uniqueness of the continuous solution are proved, along with properties corresponding to biological
bservations. For the numerical solution, different choices of quadrature, interpolation, and time integration methods
re studied. It is shown that for a sufficiently small time-step restriction, the numerical solution preserves a discrete
nalog of the properties of the original continuous system. The step-size bound is improved compared to previous
esults. An adaptive step-size technique is also suggested for the explicit Euler method, and we have determined
tep-size bounds for higher order methods. Analytic results are confirmed by numerical experiments, while the
rrors of quadrature formulas and the order of accuracy of the time discretization methods are also discussed.

The work presented in this paper can be extended to diffusion spatial-dependent SIR systems, and also include
he effect of fractional diffusion. Results for the preservation of qualitative properties of such a system could be
otentially obtained in a similar fashion as in the current manuscript. Moreover, the inclusion of the births and
atural deaths in the system and dropping the conservation property could make the model more realistic. Several
iological and epidemiological metrics, for instance, the basic reproduction number, could be also estimated. It
ould be interesting to study the influence of such modification in the behavior of the continuous and also the
umerical solution.
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Appendix A. Proofs of lemmata in Section 2

We present the proofs of some technical lemmata that were omitted in the previous sections.
Proof of Lemma 2.1. The statement simply follows from

∥u∥
2

= c2 1
c2

∥u1∥
2
L2 + b2 1

b2
∥u2∥

2
L2 ≤ max

{
1
b2 ,

1
c2

} (
c2

∥u1∥
2
L2 + b2

∥u2∥
2
L2

)
=

(
1

min{b, c}

)2

∥u∥
2
A ,
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∥u1∥
2
L2 + b2

∥u2∥
2
L2 ≤ max{b2, c2

}(∥u1∥
2
L2 + ∥u2∥

2
L2 ) = max{b, c}2

∥u∥
2 . □

roof of Lemma 2.2. We are going to derive an upper bound to the term

∥F(u2)∥2
L2 =

∫
Ω

⏐⏐⏐⏐ ∫ δ

0

∫ 2π

0
g1(r )g2(θ, x, y)u2

(
t, x̄(r, θ), ȳ(r, θ)

)
r dθ dr

⏐⏐⏐⏐2dx dy

=

∫
Ω

⏐⏐⏐⏐ ∫
Bδ (x)

g1(r )g2(θ, x, y)u2(t, x̄) dx̄
⏐⏐⏐⏐2dx,

here we used the notation x̄ :=
(
x̄(r, θ), ȳ(r, θ)

)
=
(
x + r cos(θ ), y + r sin(θ )

)
, and Bδ(x) is the ball with radius

around x. By the definition of g1 and g2, we have that

∥F(u2)∥2
L2 =

∫
Ω

⏐⏐⏐⏐ ∫
Ω

g1(r )g2(θ, x)u2(t, x̃) dx̃
⏐⏐⏐⏐2 dx.

e also know that g1 and g2 are bounded. Using the notations κ1 = maxr∈(0,δ){g1(r )} and κ2 =

axθ∈[0,2π ),x∈Ω {g2(θ, x)}, yields

∥F(u2)∥2
L2 =

∫
Ω

⏐⏐⏐⏐ ∫
Ω

1 · g1(r )g2(θ, x)u2(t, x̃) dx̃
⏐⏐⏐⏐2dx

≤

∫
Ω

⏐⏐⏐⏐
√∫

Ω

12 dx̃

√∫
Ω

(
g1(r )g2(θ, x)u2(t, x̃)

)2 dx̃
⏐⏐⏐⏐2dx

≤ µ(Ω )
∫
Ω

∫
Ω

⏐⏐g1(r )g2(θ, x)u2(t, x̃)
⏐⏐2 dx̃ dx

≤ κ2
1 κ

2
2 µ(Ω )

∫
Ω

∫
Ω

⏐⏐u2(t, x̃)
⏐⏐2 dx̃ dx,

here we used the Cauchy–Schwarz inequality, and µ(Ω ) is the Lebesgue measure of Ω . It holds that∫
Ω

∫
Ω

⏐⏐u2(t, x̃)
⏐⏐2 dx̃ dx =

∫
Ω

∥u2∥
2
L2 dx = µ(Ω ) ∥u2∥

2
L2 .

onsequently,

∥F(u2)∥L2 ≤ κ1 κ2 µ(Ω ) ∥u2∥L2 ,

nd setting νF = κ1κ2 µ(Ω ) we get the result of the lemma. □

roof of Lemma 2.3. Consider the system (2.9a)–(2.9b) written in the compact form (2.1), where A is given by
2.4), F is defined in (2.5), and the corresponding norm ∥·∥ is given by (2.2). Let {εi } and {ε j } be two sequences
uch that limi→∞ εi = 0 and lim j→∞ ε j = 0. Assume that uεi (t) and uε j (t) are solutions of (2.9a)–(2.9b), and
efine the vectors ε̂i := (0, εi )⊺ and ε̂ j := (0, ε j )⊺ Then

u′

εi
(t) − u′

ε j
(t) = A(uεi (t) − uε j (t)) + F(uεi (t)) − F(uε j (t)) + ε̂i − ε̂ j .

sing the definition of A and Corollary 2.1, yieldsu′

εi
(t) − u′

ε j
(t)
 ≤

A(uεi (t) − uε j (t))
+

F(uεi (t)) − F(uε j (t))
+

ε̂i − ε̂ j


≤
(
∥A∥ + ζ (d)

) uεi (t) − uε j (t)
+

ε̂i − ε̂ j
 ,

here ζ (d) is defined in Corollary 2.1. By Grönwall’s inequality (see [21, Lemma 1.6]), we haveuεi (t) − uε j (t)
 ≤

ε̂i − ε̂ j
 t +

∫ t(
∥A∥ + ζ (d)

)
(ε̂i − ε̂ j ) t exp

(∫ t(
∥A∥ + ζ (d)

)
dw
)

ds
 .
0 s
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ince we assume that limi, j→∞ εi − ε j = 0, the statement is proved. □

ppendix B. List of symbols and notations

See Table B.1.

Table B.1

Symbol Description

S(t, x, y), I (t, x, y), R(t, x, y) Density functions of susceptible, infected and recovered
species

a, b, c Parameters describing the rate of infection, recovery, and
vaccination

δ Parameter describing the radius of the effect of an
infectious individual

g1(r ), g2(θ, x, y) Functions describing the effect of an infectious individual
to its surroundings

E = L2(Ω ) × L2(Ω ) Hilbert-space for the solution of system (2.1)

∥·∥ Norm of Hilbert-space E defined in (2.2)

∥·∥A Operator norm of D(A) defined in (2.3)

A : D(A) → E Linear part of Eq. (1.4)

F : D(A) → E Non-linear part of Eq. (1.4)

F The integral term in (1.4)

φ(t, x, y) Time integral of the term F used in the integral solution
(2.12)

M0(x, y) Initial sum of densities at point (x, y) ∈ Ω

Qδ(x, y) Points of the quadrature used to approximate the term F
defined in the ball Bδ(x, y)

wi, j Weights of the quadrature Qδ(x, y)

T (t,Qδ(x, y)) Approximation of the term F using the quadrature
Qδ(x, y) defined in (3.2)

Ω = [0,L1] × [0,L2] Spatial domain of the semi-discretization problem (3.1)

G Spatial grid for the domain Ω

Sk,l (t), Ik,l (t), Rk,l (t) Approximations of the continuous solution at point
(xk , yl ) ∈ G

Q( f ) Numerical approximation of the integral of function f over
the disc with radius δ

Sn
k,l , I n

k,l , Rn
k,l Approximations of Sk,l (t), Ik,l (t) and Rk,l (t) at time tn

Sn , I n , Rn Matrices containing the elements Sn
k,l , I n

k,l and Rn
k,l

T n Matrix containing the approximations of T (t,Qδ(x, y)) at
time tn defined in (4.2)

τn Time step of the time integration method

M0 Constant describing the maximum of the initial density of
the population

τ̂ , τ̃ Time step bounds for the forward Euler method

ai j , b Coefficients of the Runge–Kutta method in the Butcher
form

(continued on next page)
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Table B.1 (continued).

Symbol Description

vi , αi j , r Coefficients of the Runge–Kutta method in the Shu–Osher
form

C SSP coefficient of the Runge–Kutta method

S(i), I (i), R(i) Matrices containing the approximations of the solution at
internal stages of the Runge–Kutta method

T (i) Matrix containing the values of the approximations of
T (t,Qδ(x, y)) at internal stages of the Runge–Kutta
method

αk,l , βk,l , β0, v1
k,l , v

2
k,l Constants related to the wind profile
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