Cite this: Chem. Commun., 2015, 51, 13834

Received 2nd June 2015, Accepted 22nd July 2015

DOI: 10.1039/c5cc04516a
www.rsc.org/chemcomm

A neutral low-coordinate heterocyclic bismuth-tin species \dagger

C. Hering-Junghans, ${ }^{a}$ A. Schulz*ab ${ }^{* a n d}$ A. Villinger ${ }^{a}$

Abstract

The reaction of distannadiazane bearing bulky ${ }^{\mathrm{R}} \mathrm{Ar}{ }^{*}$-groups (${ }^{\mathrm{R}} \mathrm{Ar}{ }^{*}=$ $\left.\mathrm{C}_{6} \mathrm{H}_{2}\left\{\mathrm{C}(\mathrm{H}) \mathrm{Ph}_{2}\right\}_{2} \mathrm{R}-2,6,4 ; \mathrm{R}=\mathrm{iPr}, \mathrm{tBu}\right)$ with $\mathrm{ECl}_{3}(\mathrm{E}=\mathrm{Sb}, \mathrm{Bi})$ was studied resulting in the isolation of previously unknown N, N-bis(dichloropnictino)amines (3) and a novel heterocyclic carbenoid bismuth species (4) bearing a $\mathrm{Bi}^{(\mathrm{III})}$ and a $\mathrm{Sn}^{(\mathrm{IV})}$ center. The structure and bonding was investigated by means of X-ray structure elucidations and DFT calculations.

Pnictogen-nitrogen heterocycles of the type $[\mathrm{XE}(\mu-\mathrm{NR})]_{2}(\mathrm{E}=\mathrm{P}$, $\mathrm{As}, \mathrm{Sb}, \mathrm{Bi}$; species I in Fig. 1) are valuable starting materials for preparative $\mathrm{E}-\mathrm{N}$ chemistry. ${ }^{1}$ Usually, $[\mathrm{ClE}(\mu-\mathrm{NR})]_{2}(\mathrm{E}=\mathrm{P}, \mathrm{As})$ is prepared from $\mathrm{RN}\left(\mathrm{ECl}_{2}\right) \mathrm{H}$ in a base-assisted (e.g. $\left.\mathrm{NEt}_{3}\right)$ cyclization, ${ }^{2}$ however, for the heavier analogs this strategy works poorly. For example, $[\mathrm{ClBi}(\mu-\mathrm{NTer})]_{2}$ (Ter $=$ terphenyl $=2,6$-bis-(2,4,6trimethylphenyl)phenyl) was initially obtained in moderate yields of 45% besides large amounts of $\mathrm{ClBi}(\mathrm{N}(\mathrm{H}) \mathrm{Ter})_{2} .{ }^{3}$ In analogy to Veith's synthesis of $\left[\mathrm{Me}_{2} \mathrm{SiE}(\mu-\mathrm{N} t \mathrm{Bu})_{2}\right]^{+}$(II in Fig. 1), ${ }^{4}$ our group succeeded in establishing a straightforward route towards the synthesis of $[\operatorname{ClE}(\mu-\mathrm{NTer})]_{2}(\mathrm{E}=\mathrm{Sb}, \mathrm{Bi})$, based on the transmetalation of the respective tin precursor. ${ }^{5}$ Now highly reactive cyclo-1,3-dipnicta-2,4-diazenium salts of the type $\left[\mathrm{E}(\mathrm{ClE})(\mu-\mathrm{NTer})_{2}\right]^{+}$ ($\mathrm{E}=\mathrm{P}, \mathrm{As},{ }^{6} \mathrm{Sb}, \mathrm{Bi} ;{ }^{5}$ III in Fig. 1) can be obtained by chloride abstraction from $[\mathrm{ClE}(\mu-\mathrm{NTer})]_{2}$ by means of Lewis acids such as GaCl_{3}. A new area of research opened up with the isolation of thermally stable biradicaloids of the type $[\mathrm{E}(\mu-\mathrm{NTer})]_{2}(\mathrm{E}=\mathrm{P}$, As; IV in Fig. 1) which can easily be accessed by reduction of $[\mathrm{ClE}(\mu \text {-NTer })]_{2}$ with activated magnesium chips. ${ }^{7}$

Just recently, we described the synthesis of stable acyclic chloropnictenium ion salts, with an exceedingly bulky ${ }^{\mathrm{R}} \mathrm{Ar}^{*}$-group ($\mathrm{Ar}^{*}=$ $\left.\mathrm{C}_{6} \mathrm{H}_{2}\left\{\mathrm{C}(\mathrm{H}) \mathrm{Ph}_{2}\right\}_{2} \mathrm{R}-2,6,4 ; \mathrm{R}=\mathrm{Me}, t \mathrm{Bu}\right)$ attached to the nitrogen atom. ${ }^{8}$

[^0]This sterically demanding moiety offers two flanking phenyl groups for arene-interactions with the low-coordinate reactive site of the molecules. Jones and co-workers realized new bonding situations with the aid of the ${ }^{\mathrm{R}} \mathrm{Ar}{ }^{*}$-moiety, ${ }^{9}$ such as mono-coordinate Ge or Sn cations, ${ }^{10}$ singly bonded distannyene and Ge and Sn hydride complexes, ${ }^{11,12}$ that showed magnificent activity as a catalyst in hydroboration reactions. ${ }^{13}$ Just recently, the first example of an amido-distibene in $\left[{ }^{[\mathrm{Pr}} \mathrm{Ar}^{*} \mathrm{~N}\left(\mathrm{SiiPr}_{3}\right) \mathrm{Sb}\right]_{2}$ was reported. ${ }^{14}$ Herein we describe the synthesis of an unprecedented distannadiazane $\left[\operatorname{Sn}\left(\mu-\mathrm{N}^{\mathrm{R}} \mathrm{Ar}^{*}\right)\right]_{2}$ with a planar $\mathrm{N}_{2} \mathrm{Sn}_{2}$-core and its trans-metalation with $\mathrm{ECl}_{3}(\mathrm{E}=\mathrm{Sb}, \mathrm{Bi})$, resulting in the isolation of the first N, N-bis(dichlorostibino)amine and an elusive four-membered ring system with a $\mathrm{N}_{2} \mathrm{Bi}^{(\mathrm{III})} \mathrm{Sn}^{(\mathrm{IV})}$ unit.

In analogy to a procedure described by Power et al., leading to the first isolable distannadiazane $[\mathrm{Sn}(\mu-\mathrm{NTer})]_{2},{ }^{15}$ the exceedingly bulky amine ${ }^{t \mathrm{Bu}} \mathrm{Ar}^{*} \mathrm{NH}_{2}$ and $\mathrm{Sn}\left\{\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right\}_{2}$ were combined in a Schlenk flask without solvent and heated to $160{ }^{\circ} \mathrm{C}$ over a period of 45 min , affording a deep red solid. $\mathrm{HN}\left(\mathrm{SiMe}_{3}\right)_{2}$ and excess $\operatorname{Sn}\left\{\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right\}_{2}$ were removed in vacuo and the crude product was recrystallized from $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}$ to obtain red crystals of $\left[\operatorname{Sn}\left(\mu-\mathrm{N}^{t \mathrm{Bu}} \mathrm{Ar}^{*}\right)\right]_{2}(\mathbf{1 R}, \mathrm{R}=t \mathrm{Bu})$ in moderate yields (64\%). The synthesis of $\mathbf{1 M e}$ and $\mathbf{1 i P r}$ suffered from low solubility of the products in common organic solvents, however, minimal amounts of X-ray quality crystals of $\mathbf{1 i P r}$ were obtained from $\mathrm{C}_{6} \mathrm{H}_{6}$. In the ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectrum $\mathbf{1 i P r}$ and $1 t \mathrm{Bu}$ can be easily identified by the signals of the para-substituent of the inner phenyl group and their diagnostic ${ }^{119} \mathrm{Sn}$ NMR shifts

$\mathrm{E}=\mathrm{P}, \mathrm{As}, \mathrm{Sb}, \mathrm{Bi}$
R = Mes*, Ter
$X=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$

II
$\mathrm{E}=\mathrm{P}, \mathrm{As}, \mathrm{Sb}, \mathrm{Bi}$
$\mathrm{E}=\mathrm{P}, \mathrm{As}, \mathrm{Sb}, \mathrm{Bi}$
R = Ter
$\mathrm{X}=\mathrm{Cl}, \mathrm{I}, \mathrm{N}_{3}$

IV
$\mathrm{E}=\mathrm{P}, \mathrm{As}$,
$\mathrm{R}=\mathrm{Ter}$
(1iPr $\left.783.1 \mathrm{ppm}, \mathbf{1 t B u} 789.2 \mathrm{ppm} ; c f .[\operatorname{Sn}(\mu-\mathrm{NTer})]_{2} 738.9 \mathrm{ppm}\right)$. 1iPr and $\mathbf{1 t B u}$ crystallize as solvates of $\mathrm{C}_{6} \mathrm{H}_{6}$ or $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}$ (see Fig. S1 and S4 in the ESI \dagger), respectively, in the triclinic space group $P \overline{1}$ with one molecule in the asymmetric unit, which lies on a crystallographically imposed centre of inversion. In contrast to $[\operatorname{Sn}(\mu-\mathrm{NTer})]_{2}$, in which the $\mathrm{Sn}_{2} \mathrm{~N}_{2}$ ring is characterized by a folding about the $\mathrm{Sn} \cdots \mathrm{Sn}$ axis of 148°, the $\mathrm{Sn}_{2} \mathrm{~N}_{2}$-core is planar with slightly different $\mathrm{N} 1-\mathrm{Sn} 1$ and N^{\prime}-Sn1 ${ }^{\prime}$ distances (1iPr 2.076(2), 2.086(2); 1tBu 2.075(2), 2.090(2) Å; cf. [Sn(μ-NTer) $]_{2} 2.09,2.11 \AA$), a transannular $\operatorname{Sn} 1 \cdots$ Sn1 ${ }^{\prime}$ separation of 3.2304(4) (1iPr) and $3.2318(3) \AA(1 t \mathrm{Bu})$ and rather acute angles at the tin center (1iPr 78.27(7), $\mathbf{1 t B u} 78.22(6)^{\circ}$, cf. $\left.[\operatorname{Sn}(\mu-\mathrm{NTer})]_{2} 77.6^{\circ}\right) .{ }^{15}$ The nitrogen atoms are in a planar environment as expected for a formal sp^{2}-hybridized center with a p-type lone pair (LP) of electrons. Hence, the planarity of the core is imposed by the increasing bulkiness of the $t \mathrm{BuAr}^{*}$-moieties, as a bend core would result in pyramidalization about the N atoms to fit both ${ }^{\mathrm{R}} \mathrm{Ar}{ }^{*}$-groups in. Just recently, the bonding in $[\mathrm{E}(\mu-\mathrm{NTer})]_{2}(\mathrm{E}=\mathrm{Ge}$, Sn, Pb) was studied in detail by Ziegler et al., who analysed the interaction of the monomeric units $\mathrm{E}(\mu$-NTer) in the dimeric structure, with the result that the dimer is kept together by two σ - and π-bonds. ${ }^{16}$

Combining red $\mathbf{1 t} \mathbf{B u}$ with two equivalents of SbCl_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ resulted in an immediate decolourisation, accompanied by a colourless precipitate (Scheme 1, reaction (ii)), which was removed by filtration and from the filtrate X-ray quality crystals of trans $-[\mathrm{ClSb}(\mu-\mathrm{NTer})]_{2}$ (2) were grown overnight at room temperature. This metathesis route gives 2 reproducibly in good yields, while using the elimination of SnCl_{2} as the driving force, which dates back to the seminal work of Veith, ${ }^{17}$ who established this route to prepare $\left[\mathrm{Me}_{2} \operatorname{SiECl}(\mu-\mathrm{N} t \mathrm{Bu})_{2}\right]$ ring systems (vide supra, Fig. 1 species II). ${ }^{18}$

Pale yellow crystals of 2 are moisture-sensitive, but indefinitely stable in an inert gas atmosphere and can be heated above $270{ }^{\circ} \mathrm{C}$ without decomposition. 2 crystallizes solvent-free in the triclinic space group $P \overline{1}$ with one molecule in the unit cell and displays a trans-substituted centrosymmetric dimer with a planar $\mathrm{Sb}_{2} \mathrm{~N}_{2}$ core protected by two bulky ${ }^{t \mathrm{Bu}} \mathrm{Ar}^{*}$ groups similar to the molecular structures of $\left[\mathrm{XSb}\left(\mu-\mathrm{NMes}^{*}\right)\right]_{2} \mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$; trans $-[\mathrm{ClSb}(\mu-\mathrm{N} t \mathrm{Bu})]_{2} .{ }^{19,20}$ As expected the Sb atoms are trigonal

Scheme 1 Preparation of 1R-4: (i) $2{ }^{\mathrm{R}} \mathrm{Ar}^{*} \mathrm{NH}_{2},-2 \mathrm{HN}\left(\mathrm{SiMe}_{3}\right)_{2}$, (ii) $2 \mathrm{SbCl}_{3}$, $-2 \mathrm{SnCl}_{2}$, (iii) $4 \mathrm{SbCl}_{3},-2 \mathrm{SnCl}_{2}$, (iv) $2 \mathrm{SbCl}_{3}$, and (v) $\mathrm{BiCl}_{3},-\mathrm{Sn}$.

Fig. 2 Molecular structures of $\mathbf{1 t B u}$ (left), $\mathbf{2}$ (middle) and $\mathbf{3}$ (right). Thermal ellipsoids drawn at 50% probability and $-100{ }^{\circ} \mathrm{C}$. ${ }^{\text {tBu }} \mathrm{Ar}$ * substituents rendered as wire-frame and H atoms omitted for clarity. Selected bond lengths (\AA) and angles (${ }^{\circ}$) of 1tBu: Sn1-N1 2.0752(16), 2.0897(16); N1-Sn1N1' 78.22(6); 2: Sb1-N1 2.033(2), Sb1-N1' 2.034(2), Sb1-Cl1 2.4327(7), Sb1Sb1 3.1749(3), N1-C1 1.430(3) $\AA, \sum(<\mathrm{Sb})$ 273.05; $\sum(<\mathrm{N}) 359.83$, C1-C2-N1-Sb1 77.6(2); 3: Sb1-N1 2.030(2), Sb1-Cl1 2.3709(7), Sb1Cl2 2.4338(7), Sb2-N1 2.039(2), Sb2-Cl3 2.3731(7), Sb2-Cl4 2.4199(7), N1C1 1.434(3), $\sum\left(<\right.$ Sb1 280.08, $\sum(<$ Sb2) 281.47, Sb1-N1-C1-C6 80.0(2).
pyramidally coordinated, with an s-type LP located on Sb and a trigonal planar coordination environment about the N atom. Additionally, one rather weak dipolar interaction between Sb and a flanking phenyl group ($\mathrm{Sb} \cdots \mathrm{C}_{\mathrm{Ct}}=3.29 \AA, \mathrm{C}_{\mathrm{Ct}}=$ centroid) is detected (Fig. 2, left). ${ }^{21}$ The formation of 2 can be reproduced, however, if an excess of SbCl_{3} is used, a new product ${ }^{t \mathrm{Bu}} \mathrm{Ar}^{*} \mathrm{~N}\left(\mathrm{SbCl}_{2}\right)_{2}$ (3) was isolated. Consequently, we reasoned that 3 was accessible directly from $\mathbf{1 t B u}$ (reaction (iii) in Scheme 1) when combined with four equiv. of SbCl_{3}, which yielded pure 3. Moreover, treatment of 2 with two additional equiv. of SbCl_{3} also afforded (reaction (iv) in Scheme 1) 3 in good yields (78%). 3 is thermally stable and melts without decomposition at $236{ }^{\circ} \mathrm{C}$ and also shows distinct ${ }^{1} \mathrm{H}$ NMR shifts for the $p-t \mathrm{Bu}$, the CHPh_{2} and the inner phenyl H atoms. Furthermore, 3 belongs to the family of N, N-bis(dichloropnictino)amines, which are well documented for phosphorus $\left(\mathrm{RN}\left(\mathrm{PCl}_{2}\right)_{2}, \mathrm{R}=\mathrm{Dipp}\right.$, Trip, Ph$) .{ }^{2}$ Compound 3 was found to be monoclinic $\left(P 2_{1} / n\right)$ with one molecule of 3 and two disordered $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}$ solvents molecules in the asymmetric unit. The $\mathrm{Sb}-\mathrm{N}$ distances of $2.030(2)$ and $2.039(2) \AA$ are shorter than the sum of the covalent radii for Sb and $\mathrm{N}\left(c f . \sum r_{\text {cov }}(\mathrm{N}-\mathrm{Sb})=2.11 \AA\right)^{22}$ representing highly polarized $\mathrm{Sb}-\mathrm{N}$ single bonds. The trigonal planar N atom lies between both pyramidal SbCl_{2} units, which adopt a trans configuration with respect to the SbCl_{2} moieties (Fig. 2 right). Interestingly, two intramolecular $\mathrm{Sb} \cdots \mathrm{Cl}$ contacts ($\mathrm{Sb} 1 \cdots \mathrm{Cl} 4$, $\left.\mathrm{Sb} 2 \cdots \mathrm{Cl} 2 c a .3 .35 \AA ; c f . \sum r_{\mathrm{vdw}}(\mathrm{N}-\mathrm{Sb})=3.81 \AA\right),{ }^{23}$ stabilizing this trans configuration, but no intermolecular contacts are observed.

In addition, the reaction of $1 t \mathbf{B u}$ with two equiv. of BiCl_{3} was studied in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, resulting in a black reaction mixture (reaction (v) in Scheme 1). After multiple filtrations a clear orange solution was obtained. Recrystallization yielded small amounts of orange crystals that were identified as the hitherto unknown $\left[\operatorname{BiSnCl}_{3}\left(\mu-\mathrm{N}^{t \mathrm{Bu}} \mathrm{Ar}^{*}\right)_{2}\right]$ (4). The black residue could not be conclusively identified and we assume that elemental tin is formed in a complex redox process that might also involve the formation of elemental bismuth (vide infra). It has been shown before that the $\operatorname{Sn}(\mathrm{II})$ center in $\left[\mathrm{Me}_{2} \operatorname{SiSn}(\mu-\mathrm{N} t \mathrm{Bu})_{2}\right]$ acts as a chloride acceptor in the coupling of phosphaalkenes ${ }^{24}$ and in the reaction with chlorophosphanes. ${ }^{25}$

Revision of the reaction conditions prompted us to repeat the experiment in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}$ with one equivalent of BiCl_{3}
(with respect to $\mathbf{1 t B u}$), to exclude a chloride-shift from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. This again resulted after filtration over a celite-padded frit and concentration of the filtrate in the deposition of orange crystals of 4 as a $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}$ solvate. Only small amounts of pure 4 could be isolated, therefore we cannot provide a comprehensive characterization. Nevertheless, the ${ }^{119}$ Sn NMR spectrum of these isolated crystals revealed a signal at 115.5 ppm (Fig. S13, ESI \dagger), which is in the expected range for a hypercoordinate $\mathrm{N}_{2} \mathrm{Sn}^{(\mathrm{IV})} \mathrm{Cl}_{3}$ moiety (cf. $\mathrm{Me}_{3} \mathrm{SnCl}_{2}^{-}: 47.7, \mathrm{Me}_{2} \mathrm{SnCl}_{3}{ }^{-}: 128 \mathrm{ppm}, \mathrm{MeSnCl}_{4}{ }^{-}: 274 \mathrm{ppm}$). ${ }^{26}$ It should be noted that ${ }^{119} \mathrm{Sn}$ NMR data strongly depend on substitution, coordination number and solvent giving rise to large chemical shift differences $\left(c f\right.$. $\left[\mathrm{SnCl}_{3}\left\{\kappa^{2}-\operatorname{DippN}(\mathrm{H}) \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{~N}(\mathrm{Dipp})\right\}\right]$ $-303 \mathrm{ppm}) .{ }^{27}$ According to MO and NBO analyses of the truncated model $\left[\mathrm{BiSnCl}_{3}(\mu-\mathrm{NPh})_{2}\right]$, 4 can either be described as zwitterionic bismaallyl species (Lewis representation A/C in Fig. 4), as a bismuthenium species (E) or as an iminobismutane (B and D), and therefore represents the first neutral compound with a $\mathbf{4 e}-3 \mathbf{c}$ double bond delocalized along $\mathrm{N}-\mathrm{Bi}-\mathrm{N}$ (Fig. 4). In addition, an s-type lone pair (93%, see Fig. S14 and S15, ESI \dagger) is located at the Bi center. Lewis representations A/C represent the best Lewis structures according to NBO analysis. Along with structures of type E / F, which also possess a rather large weight, since the π bonds are dominantly located at the N atoms (81%), this situation resembles that of N -heterocyclic carbenes (NHC), ${ }^{28}$ which are stabilized by intramolecular π-donor- π-acceptor interactions (population of the $\left.p_{z}(\mathrm{Bi})=0.47 \mathrm{e}\right)$ to stabilize the dicoordinate carbene C atom. It should be noted that also $\mathrm{Bi}-\mathrm{N} \sigma$ bonds (78%) are highly polar, as well as the $\mathrm{Sn}-\mathrm{Cl}$ or $\mathrm{Sn}-\mathrm{N}$ bonds (N, Cl : ca. 80%). The computed large positive charges at the Bi and Sn centers are very similar with values of +1.67 and 1.77 e supporting the picture of highly polarized $\mathrm{Bi}-\mathrm{N}$ and $\mathrm{Sn}-\mathrm{Y}(\mathrm{Y}=\mathrm{Cl}, \mathrm{N})$ bonds.

4 crystallizes as $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvate $\left(\mathbf{4} \cdot\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)_{2}\right)$ in the triclinic space group $P \overline{1}$ with two molecules of 4 and four $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ molecules (disordered on their positions) in the cell. Moreover, from $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}$ species 4 crystallizes as a solvate of fluorobenzene solvate $\left(4 \cdot \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}\right)$ in the orthorhombic space group $\mathrm{Pna2}_{1}$ (the discussion is led for $\mathbf{4} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$). The most prominent structural feature is the planar 4 -membered $\mathrm{Sn}-\mathrm{N}-\mathrm{Bi}-\mathrm{N}$ heterocycle featuring two different heavy main group metals (deviation from planarity $<2.3^{\circ}$, Fig. 3). Both $\mathrm{Bi}-\mathrm{N}$ bond lengths are rather short with $2.106(3)$ and $2.108(3) \AA\left(c f . \sum r_{\text {cov }}(\mathrm{N}-\mathrm{Bi})=2.22\right.$, $(\mathrm{N}=\mathrm{Bi})=2.01 \AA \AA^{22}\left[\mathrm{Me}_{2} \operatorname{SiBi}(\mu-\mathrm{N} t \mathrm{Bu})_{2}\right]^{+} 2.08 \AA,\left[\operatorname{Bi}(\mathrm{IBi})(\mu-\mathrm{NTer})_{2}\right]^{+}$ $2.13 \AA$, and $\left[\mathrm{Me}_{2} \operatorname{SiBi}(\mu-\mathrm{NDipp})_{2}\right] 2.12 \AA$, where Dipp $=2,6-$ $\left.\mathrm{iPrC}_{6} \mathrm{H}_{3}\right)^{4,5,29}$ clearly displaying some $\mathrm{Bi}-\mathrm{N}$ double bond character in accord with our computation (Fig. 4). Interestingly, both $\mathrm{Sn}-\mathrm{N}$ bond lengths (2.094(3) and 2.107(3) $\AA, c f . \sum r_{\text {cov }}(\mathrm{N}-\mathrm{Sn})=2.11$, $(\mathrm{N}=\mathrm{Sn})=1.90 \AA)$ are in the similar range like the $\mathrm{Bi}-\mathrm{N}$ distances, however, describing typical highly polarized $\mathrm{Sn}^{(\mathrm{IV})}-\mathrm{N}$ single bonds. Both the $\mathrm{N}-\mathrm{Bi}-\mathrm{N}$ angle and $\mathrm{N}-\mathrm{Sn}-\mathrm{N}$ angles are rather acute with $c a .78^{\circ}\left(c f .\left[\mathrm{Me}_{2} \mathrm{SiBi}(\mu-\mathrm{N} t \mathrm{Bu})_{2}\right]^{+} 72.9,\left[\mathrm{Bi}(\mathrm{IBi})(\mu-\mathrm{NTer})_{2}\right]^{+} 77.4^{\circ}\right.$, and $\left.\left[\mathrm{Me}_{2} \mathrm{SiBi}(\mu-\mathrm{NDipp})_{2}\right]^{+} 73.7\right),{ }^{4,5,29}$ while the two $\mathrm{Bi}-\mathrm{N}-\mathrm{Sn}$ angles are much larger with $101-102^{\circ}$. A closer look at the secondary interactions revealed that the $\mathrm{Sn}-\mathrm{N}-\mathrm{Bi}-\mathrm{N}$ heterocycle is well protected inside the pocket formed by the two ${ }^{t \mathrm{Bu}} \mathrm{Ar}^{*}$-phenyl substituents. However, the dicoordinate bismuth is stabilized by strong secondary interactions (Menshutkin type π complexes) ${ }^{21}$

Fig. 3 Molecular structures of 4. Thermal ellipsoids drawn at 50\% probability and $-100{ }^{\circ} \mathrm{C}$. ${ }^{t B u} \mathrm{Ar}{ }^{*}$ substituents rendered as wire-frame and H atoms omitted for clarity. Selected bond lengths ((\AA) and angles $\left({ }^{\circ}\right)$ of 4 : Sn1-N1 2.094(3), Sn1-N2 2.107(3), Sn1-Cl1 2.353(1), Sn1-Cl3 2.387(1), Sn1-Cl2 2.403(1), Sn1…Bi1 3.2631(4), Bi1-N1 2.106(3), Bi1-N2 2.108(3), N1-C37 1.425(5), N2-C1 1.426(5), N1-Sn1-N2 78.41(12), N1-Bi1-N2 78.10(12), $\sum(<\mathrm{N} 1) 358.0, \sum(<\mathrm{N} 2) 353.4, \mathrm{Bi} 1-\mathrm{C}_{\mathrm{Ct}_{1}} 2.891, \mathrm{Bi} 1-\mathrm{C}_{\mathrm{Ct}_{2}} 2.978 \AA$.

Fig. 4 Selected Lewis representations of 4.
with two phenyl groups as indicated by very short $\mathrm{Bi} \cdots$ centroid distances (2.891/2.978 \AA; cf. $\left[{ }^{\mathrm{Me}} \mathrm{Ar}{ }^{*} \mathrm{~N}\left(\mathrm{SiMe}_{3}\right) \mathrm{BiCl}\right]\left[\mathrm{Al}\left(\mathrm{OR}^{\mathrm{F}}\right)_{4}\right]^{+} 2.86 /$ $2.94 \AA)^{8}$ which are well within the range of van-der-Waals radii $\left(\sum r_{\mathrm{vdw}}(\mathbf{C} \cdots \mathrm{Bi})=3.77 \AA\right) .{ }^{23}$

In conclusion, we succeeded in the preparation of the first N, N^{\prime}-bis(dichlorostibinino)amine and an unusual heterocycle containing $\mathrm{Sn}^{(\mathrm{IV})}$ and a dicoordinate Bi-center, which is protected by arene-interactions to flanking phenyl groups of the bulky Ar* moiety. These species might be useful starting materials for the preparation of pnictadiazonium salts of Sb and Bi . In comparison to stable N -heterocyclic carbenes, ${ }^{28}$ the dicoordinated Bi species 4 can be regarded as a heavy atom analog of NHCs.

DFG (SCHU 1170/11-1) is gratefully acknowledged for financial support. C. H.-J. thanks the Fonds der chemischen Industrie for financial support. The authors thank MSc Jonas Bresien for setting up and maintaining Gaussian and NBO software on the cluster computer.

Notes and references

1 (a) G. He, O. Shynkaruk, M. W. Lui and E. Rivard, Chem. Rev., 2014, 44, 7815-7880; (b) M. S. Balakrishna, D. J. Eisler and T. Chivers, Chem. Soc. Rev., 2007, 36, 650-664.
2 (a) F. Reiß, A. Schulz, A. Villinger and N. Weding, Dalton Trans., 2010, 39, 9962; (b) C. Ganesamoorthy, M. S. Balakrishna, J. T. Mague and H. M. Tuononen, Inorg. Chem., 2008, 47, 7035-7047; (c) N. Burford, C. T. Stanley, K. D. Conroy, B. Ellis, C. L. B. MacDonald, R. Ovans,
A. D. Phillips, P. Ragogna and D. Walsh, Can. J. Chem., 2002, 80, 1404-1409; (d) V. D. Romanenko, A. B. Drapailo, A. N. Chernega and L. N. Markovskii, Zh. Obshch. Khim., 1991, 61, 2434-2441; (e) S. Goldschmidt and H.-L. Krauß, Liebigs Ann. Chem., 1955, 595, 193-202.
3 D. Michalik, A. Schulz and A. Villinger, Angew. Chem., Int. Ed., 2010, 46, 7575-7577 (Angew. Chem., 2010, 122, 7737-7740).
4 M. Veith, B. Bertsch and V. Huch, Z. Anorg. Allg. Chem., 1988, 559, 73-88.
5 M. Lehmann, A. Schulz and A. Villinger, Angew. Chem., Int. Ed., 2012, 51, 8087-8091 (Angew. Chem., 2012, 124, 8211-8215).
6 (a) D. Michalik, A. Schulz, A. Villinger and N. Weding, Angew. Chem., Int. Ed., 2008, 47, 6465-6468 (Angew. Chem., 2008, 120, 6565-6568);
(b) A. Schulz and A. Villinger, Inorg. Chem., 2009, 48, 7359-7367.

7 (a) T. Beweries, R. Kuzora, U. Rosenthal, A. Schulz and A. Villinger, Angew. Chem., Int. Ed., 2011, 50, 8974-8978 (Angew. Chem., 2011, 123, 9136-9140); (b) S. Demeshko, C. Godemann, R. Kuzora, A. Schulz and A. Villinger, Angew. Chem., Int. Ed., 2013, 52, 2105-2108 (Angew. Chem., 2013, 125, 2159-2162); (c) A. Hinz, A. Schulz and A. Villinger, Chem. Eur. J., 2014, 20, 3913-3916; (d) A. Hinz, R. Kuzora, A. Schulz and A. Villinger, Chem. - Eur. J., 2014, 20, 14659-16673; (e) A. Hinz, A. Schulz and A. Villinger, Chem. Comтun., 2015, 51, 1363-1366.
8 C. Hering-Junghans, M. Thomas, A. Schulz and A. Villinger, Chem. Eur. J., 2015, 21, 6713-6717.
9 J. Li, A. Stasch, C. Schenk and C. Jones, Dalton Trans., 2011, 40, 10448-10456.
10 J. Li, C. Schenk, F. Winter, H. Scherer, N. Trapp, A. Higelin, S. Keller, R. Pöttgen, I. Krossing and C. Jones, Angew. Chem., Int. Ed., 2012, 51, 9557-9561 (Angew. Chem., 2012, 124, 9695-9699).
11 J. Li, C. Schenk, C. Goedecke, G. Frenking and C. Jones, J. Am. Chem. Soc., 2011, 133, 18622-18625.
12 T. J. Hadlington and C. Jones, Chem. Commun., 2014, 50, 2321.
13 (a) T. J. Hadlington, M. Hermann, J. Li, G. Frenking and C. Jones, Angew. Chem., Int. Ed., 2013, 52, 10199-10203 (Angew. Chem., 2013,

125, 10389-10393); (b) T. J. Hadlington, M. Hermann, G. Frenking and C. Jones, J. Am. Chem. Soc., 2014, 136, 3028-3031.
14 D. Dange, A. Davey, J. A. B. Abdalla, S. Aldridge and C. Jones, Chem. Соттип., 2015, 51, 7128-7131.
15 W. A. Merrill, R. J. Wright, C. S. Stanciu, M. M. Olmstead, J. C. Fettinger and P. P. Power, Inorg. Chem., 2010, 49, 7097-7105.
16 M. Brela, A. Michalak, P. P. Power and T. Ziegler, Inorg. Chem., 2014, 53, 2325-2332.
17 M. Veith, Angew. Chem., Int. Ed. Engl., 1975, 14, 265-266 (Angew. Chem., 1975, 87, 287-288).
18 M. Veith and B. Bertsch, Z. Anorg. Allg. Chem., 1988, 557, 7-22.
19 M. Lehmann, A. Schulz and A. Villinger, Eur. J. Inorg. Chem., 2010, 5501-5508.
20 D. J. Eisler and T. Chivers, Inorg. Chem., 2006, 45, 10734-10742.
21 H. Schmidbaur and A. Schier, Organometallics, 2008, 27, 2361-2395.
22 P. Pyykkö and M. Atsumi, Chem. - Eur. J., 2009, 15, 12770-12779.
23 M. Mantina, A. C. Chamberlin, R. Valero, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. A, 2009, 113, 5806-5812.

24 E. Niecke, H. J. Metternich and R. Streubel, Eur. J. Inorg. Chem., 1990, 67-69.
25 J. K. West and L. Stahl, Organometallics, 2012, 31, 2042-2052.
26 (a) P. J. Smith and A. P. Tupciauskas, Annu. Rep. NMR Spectrosc., 1978, 8, 291; (b) G. F. Hewitson, Master thesis, Durham University, 1980; (c) J. Ortera, J. Org. Chem., 1981, 221, 57.
27 S. M. Mansell, C. A. Russell and D. F. Wass, Dalton Trans., 2015, 44, 9756-9765.
28 (a) D. Bourissou, O. Guerret, F. P. Gabbaï and G. Bertrand, Chem. Rev., 2000, 100, 39-92; (b) N. Marion and S. P. Nolan, Acc. Chem. Res., 2008, 41, 1440-1449; (c) D. Bézier, J.-B. Sortais and C. Darcel, Adv. Synth. Catal., 2013, 355, 19-33.
29 R. J. Schwamm, B. M. Day, M. P. Coles and C. M. Fitchett, Inorg. Chem., 2014, 53, 3778.

[^0]: ${ }^{a}$ Institut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany. E-mail: axel.schulz@uni-rostock.de
 ${ }^{b}$ Abteilung Materialdesign, Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
 \dagger Electronic supplementary information (ESI) available: Experimental and computational details and information on X-ray structure elucidation. CCDC 1403993-1403998. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5cc04516a

