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Abstract

Existing approaches for early-stage blad-

der tumor diagnosis largely depend on

invasive and time-consuming procedures,

resulting in hospitalization, bleeding,

bladder perforation, infection and other

health risks for the patient. The reduction

of current risk factors, while maintaining

or even improving the diagnostic preci-

sion, is an underlying factor in clinical

instrumentation research. For example, for clinic surveillance of patients with

a history of noninvasive bladder tumors real-time tumor diagnosis can enable

immediate laser-based removal of tumors using flexible cystoscopes in the out-

patient clinic. Therefore, novel diagnostic modalities are required that can pro-

vide real-time in vivo tumor diagnosis. Raman spectroscopy provides

biochemical information of tissue samples ex vivo and in vivo and without the

need for complicated sample preparation and staining procedures. For the past

decade there has been a rise in applications to diagnose and characterize early

cancer in different organs, such as in head and neck, colon and stomach, but

also different pathologies, for example, inflammation and atherosclerotic

plaques. Bladder pathology has also been studied but only with little attention

to aspects that can influence the diagnosis, such as tissue heterogeneity, data

preprocessing and model development. The present study presents a clinical

investigative study on bladder biopsies to characterize the tumor grading

ex vivo, using a compact fiber probe-based imaging Raman system, as a crucial

step towards in vivo Raman endoscopy. Furthermore, this study presents an

evaluation of the tissue heterogeneity of highly fluorescent bladder tissues, and
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the multivariate statistical analysis for discrimination between nontumor tis-

sue, and low- and high-grade tumor.
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1 | INTRODUCTION

Bladder cancer is ranking as the ninth most frequently
diagnosed epithelial cancer worldwide. In 2012, around
549 393 new bladder cancers cases were reported glob-
ally, out of which 200 000 cases were fatal, and approxi-
mately 75% of the deceased were males [1, 2]. About
75% of the patients suffer from nonmuscle invasive blad-
der cancer displaying favorable prognosis, although
30%-80% of cases will recur [3]. Bladder cancer histo-
pathological diagnosis is based on stage and grade of the
tumor, where the stage refers to tumor invasion into the
bladder wall and grade to aggressiveness of the cells.
Stage and grade are judged by pathologist's examination
of an excisional tissue biopsy obtained via an endoscope
inserted through the urethra to the bladder, having the
patient most often in general anesthesia in the operating
theater. The tissue from suspected abnormal areas of the
bladder is sliced and stained for further morphological
evaluation by a pathologist. To monitor progression and
recurrence a frequent screening is required, making the
current bladder cancer diagnosis and treatment one of
the priciest medical practices with average lifetime costs
estimated at over $230 000 per patient [4–6]. The histo-
pathological procedure provides morphological tissue
features at the intra- and intercellular level, neverthe-
less, the underlying biochemical information is not
assessed [7]. Moreover, the diagnosis is not available
instantly due to histological/cytological preparations
preceding final microscopy by the pathologist. In order
to improve treatment, real-time differentiation between
healthy and tumor tissue, high- and low-grade lesions at
early stage is urgently needed [8–10]. In the past two
decades new optical methods for clinical diagnostics,
such as fluorescence endoscopy [11], optical coherence
tomography [12], narrow band imaging [8], and others,
have emerged. Most of these techniques effectively pro-
vide contrast to detect tumor lesions and allow for dif-
ferential diagnostics, that is, tumor vs healthy tissue,
but largely lack the means to assess the biomolecular,
which may assist the urologist to decide treatment with-
out delay. Knowing the molecular fingerprint of cells
not only allows for precise diagnostic characterization of

the tumor, but also enables new pathological insight
into the disease progression. Raman spectroscopy has
emerged as an incipient tool for in vivo diagnostics,
which provides a comprehensive and label-free bio-
chemical characterization of tissue samples [13]. The
method has been widely used in clinical ex vivo and
in vivo investigations for the diagnosis of inflammatory
diseases and cancers in different organs [13–28], demon-
strating the great potential for label-free histopathology
[29], cytology [30], biopsy surgical targeting and moni-
toring studies. This spectroscopic technique has readily
been used to characterize bladder tissue by De Jong et al
and Stone et al in 2002 [13, 31], demonstrating its capa-
bility to distinguish tumor malignances in epithelial tis-
sues [19]. A review on the applications of Raman
spectroscopy for the interrogation of bladder tissue for
cancer diagnosis is summarized in [32].

Raman spectroscopy has been applied in vivo to char-
acterize tumor tissue, assisting surgeons during transure-
thral resection of tissue to differentiate on site malignant
tumor [33]. As a first instance of in vivo bladder charac-
terization, Draga et al reported the ex vivo and in vivo
characterization of bladder tissue, employing a fiber-optic
Raman probe to detect tumor bladder from normal blad-
der with a sensitivity of 85% [34]. Notwithstanding,
tumor resection of biopsies is still invasive; the target is
to adapt Raman spectroscopy to an endoscope in order to
minimize the invasion during the tissue inspection in
surgery. The present study explicitly aims at providing an
in-depth characterization of bladder cancer and outlines
strategies for data processing and establishes parameters
for future in vivo label-free diagnosis [35]. Therefore,
greater extend of ex vivo investigations are crucial to fur-
ther move this technology into this direction, in this con-
nection the presented study plays an essential role.

The translation of Raman spectroscopy as a clinical
standard tool to assist current diagnosis of bladder tumor
grading still must tackle technological and methodical
challenges. For instance, proper correction of tissue
autofluorescence issue, routines to validate the robustness
of the system for clinical use of the equipment, and the
consensus on optimal data preprocessing methods will
have to be further investigated [36].
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The aim of the present study is to demonstrate the
feasibility of Raman spectroscopy to further comple-
ment clinical trials by differentiating the tumor grading
of bladder biopsies and correlating the main changes in
molecular constituents to characterize the tissue hetero-
geneity. We provide a comprehensive overview of sam-
ple and data handling, followed by detailed description
of the implemented system. We elucidated problems of
tissue heterogeneity, which can significantly reduce the
performance of a model. In addition, we present a com-
parison between model-based prediction for tumor and
non-tumor and changes in the molecular signatures
associated with the pathological differences. Our pres-
ented evaluation will help to improve the comprehen-
sion of the molecular differences between underlying
molecular changes in bladder pathology.

2 | MATERIALS AND METHODS

2.1 | Study population and procedures

Biopsies were obtained from patients, admitted to the
urology department in Herlev hospital, suffering from
bladder tumor or suspicion of bladder tumor disproved
during surgery. The clinical study protocol was approved
by the local Danish ethical committee No: H-17015549.
Flow of sensitive data was secured and approved by the
Danish Data Protection Agency via data management
agreements between research centers. After patients were
informed and written consent was conferred, biopsies
were obtained at the operating theater during transure-
thral resection of bladder tumors. The biopsies were
obtained from healthy bladder wall and from bladder
tumors. Each biopsy was divided into two parts, of which
one biopsy was sent for a histopathological diagnosis and
the other was placed on acetate paper and saline buffer
added for spectroscopic examination. In contrast to previ-
ously reported studies [13, 37], an entire extracted biopsy
without thin-sectioning was used in this study with the
purpose of maintaining the integrity of the tissue, since
sectioning and staining can severely alter the structure of
the biopsy. The summary of the present pathologies is
outlined in Table S1.

A total of 67 biopsies were obtained from 28 patients
with bladder tumor (8 females; 20 males; median age:
73 years) from which 19 biopsies from seven patients
were excluded from the data analysis due to either being
of other tissue, that is, benign prostate (n = 4), prostate
cancer (n = 2), unknown histopathology (n = 6) or mea-
sured under different experimental conditions (n = 7)
(Figure 1). Of the remaining biopsies a total of 42 biop-
sies were examined immediately after surgery and six

were frozen at −80�C, and analyzed at a later time
point.

2.2 | Setup description

Raman spectra were collected on a custom-made
Raman system equipped with a fiber-optic Raman
probe (InPhotonics, RPB), which was connected to a
785-nm single-mode excitation laser (XTRA, Toptica)
with a nominal output power of 300 mW, and a spec-
trometer (IsoPlane 160, Princeton Instruments)
equipped with a 400 groves/mm grating and a back-
illuminated deep depletion CCD camera (PIXIS400,
Princeton Instruments) with a 1340 × 400 imaging
array and 20 μm × 20 μm sized pixels. The excitation
light was filtered inside the probe to remove unwanted
background contributions from the delivery fiber and
focused by a lens into a spot of 100 μm. The generated
Raman signal was collected by the same lens. The sig-
nal was separated from the excitation with a dichroic
mirror, and then focused into the entrance aperture of
a multimode collection fiber with a core diameter of
200 μm and an numerical apperture (NA) of 0.22, which
is connected to the spectrometer. The samples were
placed on a calcium fluoride (CaF2) slide (Crystal, Ger-
many) that was mounted on the motorized translational
stage (MLS203, Thorlabs). The setup is illustrated in
Figure 2.

FIGURE 1 Summary and breakdown of patients and biopsies.

Misc. refers to miscellaneous nonbladder tumor histopathology

(four benign prostatic tissues, two cancer prostate tissue, six

biopsies with unknown histopathology), and biopsies measured

under different experimental conditions. Biopsies belonging to this

group were not selected to train the model. Tumor (nongrading)

refers to histopathological assignment indicating tumor without

grading. This data was used just to create the models that

differentiate tumor and nontumor regions
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Raman images of the biopsies were acquired by
raster-scanning the sample, while keeping the probe sta-
tionary. A conventional CMOS camera (DCC1545M,
Thorlabs), which was located next to the Raman probe,
allowed the acquisition of a brightfield image of the
sample and the selection of a region of interest (ROI) for
the Raman measurements. The acquisition of Raman
spectra from the biopsy was performed automatically,
using in-house software for instrument controlling writ-
ten in LabView. Each of the samples was placed on the
CaF2 slide with the urothelial surface pointing to the
Raman probe. Similar to previously reported studies, a
785-nm excitation wavelength was selected to avoid
high fluorescence [38, 39], with an excitation power of
100 mW, which allows obtaining a sufficient signal to
noise ratio, without any obvious damage to the tissue.
Each spectrum was acquired at an acquisition time of
3 seconds, but the total spectral collection time was
dependent on the ROI size. For the averaged sample size
of approximately 4 mm2 the measurement of 400 spectra
took around 20 minutes.

2.3 | Data analysis

All data pretreatment and analysis steps were performed
using the RStudio software for statistical computing and
graphics [40, 41]. The data import, export, the
preprocessing algorithms and the development of the
classification model were performed using hyperSpec and
cbmodels packages [42].

2.3.1 | Preprocessing

Raman spectra of bladder tissue exhibit very high tissue
autofluorescence (Figure 3A). To extract the Raman sig-
nal from the raw spectra the data was preprocessed, that
is, calibrated and corrected for cosmic spikes and back-
ground contributions, respectively. The wavenumber cali-
bration was performed using the relative peak positions
of N-acetyl-p-aminophenol powder (Acetaminophen,
Sigma-Aldrich) and intensity calibration was performed
by using the reference spectrum of a white light source
standardized by the National Institute of Standards and
Technology (Kaiser HCA calibration accessory). The cor-
rection for the constant offset bias and the dark current
was implemented by subtracting a recorded dark spec-
trum. Following this, cosmic spikes were removed using
a correction algorithm developed by Ryabchykov et al
[43]. The calibrated spectra were noise-filtered using the
prcomp function of the stats package in R, followed by a
Savitsky-Golay filtering [44].

As introduced in this section, one of the main chal-
lenges for the data preprocessing is the high fluorescence
background, as it can be observed in Figure 3A. This
background mainly originates from the presence of
endogenous fluorophores, such as pyridinic (NADPH)
and flavin coenzymes as well as collagen and elastin from
the extracellular matrix [45]. Besides the high
autofluorescence from the tissue that obscures the
Raman signal, there is some additional background from
the fiber probe. Among the background correction
methods asymmetric least squares (ALS) [46], the

FIGURE 2 Schematic representation of the Raman imaging system combined with a Raman fiber-optic probe. The optical design of

the fiber-optic Raman probe is indicated in more detail on the left-hand side
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modified polynomial fitting of Lieber and Mahadevan-
Jansen [47], statistics-sensitive nonlinear iterative peak-
clipping algorithm (SNIP) correction [48] and extended
multiplicative signal correction (EMSC) were tested.
Figure S1 displays the individual results for a visual com-
parison. The best performance for background correction
was achieved by EMSC, Figure S1A, and is based on a
least squares fitting of predefined background spectra, n-
order polynomials, and pure components spectra [49]. To
provide a comparison, the other methods are also shown:
ALS corrected spectra, Figure S1B, presented overfitting
in the low- and high-wavenumber region and back-
ground contributions from fiber and substrate were not
removed, the same is observed applying the polynomial
fitting approach (Figure S1C). The SNIP correction,
Figure S1D, can remove background coming from fiber
and substrate as EMSC does, however, it is slower than
EMSC and the SD due to the background is higher in
comparison to EMSC. Following the background correc-
tion, the data was normalized to unity. The resulting
mean spectrum with the spectral information from 600 to
3100 cm−1 is shown in Figure 3B, where the main spec-
tral contributions are related to proteins, collagen,
nucleic acids and lipids.

2.3.2 | Classification model

The classification was performed combining partial least
squares regression (PLS) as dimension reduction technique
with linear discriminant analysis (LDA) to differentiate three
main classes from the biopsies: nontumor (NT) tissue, low-
grade (LG) and high-grade (HG) tumor. The combination of
the PLS and LDA classifier allows to have an insight in the
underlying interclass differences in the molecular signature
via loadings and weights. In addition, the combination of

the methods has demonstrated that it can cope with large
variable to sample ratios [50].

In the PLS-LDA model, the linear discriminant
(LD) classifier uses the number of components deter-
mined by the partial least squares, also known as the
latent variables, as input space. The dimension reduction
technique helps to select relevant variables correlating
the best with the class attributes [50, 51]. The partial least
squares regression was performed using the function plsr
of the pls package [52]. The predictor matrix was based
on several mean spectra per biopsy and the response vec-
tor contained the histopathological assignment. The
number of components was determined based on leave-
one-out-cross-validation, while assessing the highest cor-
relation vs the least error [53].

2.3.3 | Cross-validation

To prevent overfitting of the classifier, cross-validation
(CV) was performed by applying a hierarchical scheme
for classification models, as presented in more detail by
Guo et al [54]. Hereby, a two-layer CV was applied where
the first layer or internal CV, known as training dataset,
was employed to construct the model and the external
CV or testing dataset was used for validation. The perfor-
mance of the classification model was validated by apply-
ing hierarchical splitting of the data, where a two-level
model was created, and is referred in the rest of the text
as model level 1 (ML1) for tumor and NT differentiation,
while model level 2 (ML2) refers to the differentiation of
LG and HG tumor, respectively. To test the influence of
the sampling area for ML1, between 1 and 80 spectra
were taken from random pixel locations of each biopsy,
and a mean spectrum was calculated. The dataset was
partitioned into fivefold with 10 iterations, resulting in

FIGURE 3 Mean and SD spectra of (A) raw Raman spectra for the entire dataset and (B) a mean Raman spectrum after the

preprocessing
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50 different models for each set, as illustrated in Figure 4.
The prediction for the tumor area is displayed in
Figure S3, where the prediction for the tumor and NT
location is indicated for a typical biopsy, and an indicated
number of spectra. To better summarize the results, the
prediction of the models for the indicated number of
spectra is plotted as the ratio of tumor region and total
region to the number of spectra used to build the model
(Figure S4). In most situations the ML1 model performs
independently of the number of spectra used. To ensure
that only spectra from tumor areas enter the subsequent
modeling ML2 phase, the predictions for each single
spectrum per biopsy were aggregated and the respective
spectrum was considered as “tumor” at a mean predic-
tion value above 1.5 and as “NT” at a value below 1.5,
respectively. Spectra with the predictive value 1.5 were
not assigned to any group. This range was selected by cal-
culating the kernel density of the mean prediction of
each biopsy, where it was found that for this range the
likelihood for belonging to any of the group NT (1) or
tumor (2) is 0. Shortly, the calculated mean prediction
was performed on each spectrum of each biopsy and just
the set of spectra predicted as tumor was subsequently
used for next modeling phase, this is represented in
Figure 4. Based on selected spectra from malignant tissue

the ML2 were created by using fivefold CV with 10 itera-
tions. The whole workflow is described in more detail in
Figure 4.

3 | RESULTS AND DISCUSSION

In total 67 biopsies were measured out of which
48 were used to create and validate the ML1 model
and of those 28 biopsies were used to generate and val-
idate ML2. Spectra from biopsies were assigned to
three groups according to the histopathological grad-
ing of the tissue, that is, NT, LG and HG tumor,
Figure 5. The mean spectra and SD of each group of
spectra have been calculated and plotted in Figure 6.
The main bands associated to lipid, collagen, protein
and nucleic acids have been labeled to allow an assign-
ment of the main differences between each group and
its molecular constituents. The goal of the investiga-
tion was, firstly, to characterize and to discriminate
bladder cancerous tissue and to perform tumor grad-
ing, using an in-house developed fiber probe-based
Raman-imaging platform, which effectively mimics
the in vivo conditions. Secondly, to provide and com-
pare a comprehensive data preprocessing and analysis

FIGURE 4 Workflow of the data splitting method used for the k-fold cross-validation of the models. Hierarchical splitting of data, the

data was split in fivefold groups to create (training set 1) and validate (testing set 1) the first level models (ML1): nontumor and tumor; the

models of the first level are used to select the tumor areas of the tumor data, just the tumor data resulted from the predictions of ML1 is

further partitioned in fivefold to obtain 5 groups of training set 2 and testing set 2, creating and validating the second level models (ML2),

respectively. The zoomed area represent how the mean set for each biopsy is obtained, random points from 1 to 80 are selected and for each

of the random groups a mean spectra is determined and each biopsy has a group of 80 mean spectra

6 of 14 CORDERO ET AL.



workflow that can deal with commonly occurring
background contributions, for example, fiber and
autofluorescence background, and to introduce a

robust analysis strategy, which extracts compressive
information from the biopsies and classifies tumor and
cancerous grade in bladder. Thirdly, to evaluate the

FIGURE 5 Beeswarm plots of the LDA scores of classification models mean ± SD of the coefficients for a single iteration. Figure 5A,B

beeswarm plot after predicting the models level 1 with the training sets 1 and models level 2 with the training sets 2, respectively. Figure 5C,

D beeswarm plot after validating the models level 1 with the testing sets 1 and the models level 2 with the testing sets 2, respectively.

Figure 5E,F mean ± SD of the coefficients for the predictions after validating ML1 and ML2
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effects of intrinsic tissue heterogeneity on the perfor-
mance of the models and to explore the spatial varia-
tion of Raman bands representative for dominant
constituents of cancerous/healthy bladder tissue.

3.1 | Chemometric modeling of biopsy
grading

As outlined in Section 2.3.3, a two-level PLS-LDA classifi-
cation model was built to differentiate between tumor
from NT ML1 and LG from HG tumor tissue ML2.
Figure 5A,C shows the beeswarm plots of the LD scores

for the training and testing dataset of a fivefold iteration
for ML1, respectively. The figures indicate that the model
performs very well to separate tumor (red) from NT
(black) biopsies with a sensitivity of 92% and a specificity
of 93%, Table 1. The achieved values to discriminate
tumor and NT tissue are well within the range reported
in previous studies [31, 32]. Despite that grade differenti-
ation is not as high, similar results were also reported
[32, 55]. While most of the reported studies used micros-
copy setups, here measurements were performed using a
small hand-held probe, which allowed to significantly
reduce the footprint of the entire device. The achieved
classification values were also potentially influenced by

FIGURE 6 Mean Raman spectra with

corresponding standard deviation of

biopsies diagnosed as nontumor (NT,

black), low-grade (LG, blue) and high-grade

(HG, red) tumor tissue, respectively. The

two bottom panels are difference spectra

derived from mean spectra from NT and

HG tumor and the difference spectrum

between the mean of NT and LG tumor.

The vertical lines indicate major bands
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the heterogeneity of the measured biopsies, and the fact
that, even though the biopsies were taken in close vicin-
ity slight differences which could have influence the vali-
dation of the model, might have been present.

The mean and the SD of respective LD coefficients of
ML1 are shown in Figure 5E. It is important to point out
that for ML1 the negative LD coefficients correlate with
the bands that indicate features related to NT tissue,
while the positive coefficients values indicate bands
related to tumor tissue. Positive features around 1299 and
1313 cm−1 indicate dominant presence of lipid bands in
tumor tissue, and negative features in the same region
indicate the dominant presence of collagen in NT tissue.
The performance of the ML2 is represented in Figure 5B,
D where the LDA scores are shown in a beeswarm plot
and a clear separation between the LG (green) and HG
(lila) classes is observed. The negative coefficients in
Figure 5F are indicators of spectral features to distinguish
LG from HG tumor. ML2 achieve an adequate tumor
grading in terms of predictive performance with a sensi-
tivity of 85% and an overall model accuracy of 84%
(Table 1).

Different classifiers were tested to establish the best
classifier for this dataset. Figure S2A displays the perfor-
mance of the employed classifiers after applying PLS-
based dimension reduction for LDA, QDA (quadratic dis-
criminant analysis) and LR (logistic regression). LDA
demonstrated to be the classifier with the best perfor-
mance, achieving highest accuracy and sensitivity for
ML1 and ML2. LR was also tested, nevertheless, in com-
parison to LDA, the differences in the performance were
minimal. LDA is less prone to overfitting in comparison
to QDA and does not require as big sample size to guar-
anty robustness. While SVM (support vector machine)
achieved the highest specificity, it had also the lowest
sensitivity. The new proposed hierarchical second level
classification model, which employs ML1 and ML2,
achieved better classification scores when discriminating
tumor and NT bladder tissue as the classical one level
classification model approaches, reported recently in
fiber-based Raman bladder diagnosis investigations [34,
55]. Figure S2B illustrates the performance comparison
for classifying LG and HG by using three different

approaches, the level 1 model classification approach
using a mean spectra per biopsy did not meet efficient
scores to differentiate LG from HG, discriminating with
very low accuracy (51%). Due to the heterogeneous
nature of some biopsies, applying the classical one-layer
approach with a set of random pixels per biopsy, for
example, 80 random pixels, and computing the mean
spectra termed mean random pixel (MRP), the outcome
improves, but is still too low to be of clinical value. When
applying the two-layer approach, using different sets of
MRPs, as employed in this study, the achieved perfor-
mance provides an improved discrimination between LG
and HG tumor with and accuracy of 84%. In order to test
the classification performance for tumor and NT tissue
differentiation based on the biochemical information of
particular bands only, two prominent bands, that is, col-
lagen band (1305 cm−1) intensities and lipid band
(2850 cm−1), were used for the training of a model. The
band information alone allowed to achieve a reasonable
classification accuracy of 87% (Figure S2C).

3.2 | Band assignments in Raman
spectra of nontumor, low- and high-grade
tumor tissue

The mean spectra of the LG and HG samples were calcu-
lated with the predicted tumor areas of the biopsies using
ML1 and are plotted together with the mean spectra of
healthy tissue, in Figure 6. Spectral contributions of colla-
gen and protein bands are resolved at 729, 937, 1003,
1104 and 1265 cm−1, where C C stretching of protein is
observed at 729 cm−1 and the C C vibration of collagen
backbone is evident at 937 cm−1 [56, 57]. The presence of
phenylalanyl protein at 1003 and 1104 cm−1 differs
between the mean spectra of LG and HG tumor. Strong
presence of amide III of collagen is observed at
1265 cm−1, where the band intensity of the NT mean
spectrum is higher than the band intensity of both LG
and HG tumor mean spectra; those differences in colla-
gen bands were also reported by De Jong et al and Stone
et al [37, 58].

Main spectral contributions of lipids are resolved at
1064, 1446, 1656 cm−1 and the high wavenumber region
at 2850 and 2930 cm−1, where an increase in band inten-
sities of the tumor spectra (LG and HG) in comparison
with the NT spectrum indicates and increment in lipid
content for tumor tissue. In addition, the difference spec-
tra between NT and HG (purple), NT and LG (green),
Figure 6, show a higher lipid content in both, LG and HG
biopsies, which can be observed in the negative peaks of
the bands at 1064, 2850 and 2885 cm−1. Significant lipid
bands are resolved at the CH2 bending mode of lipids

TABLE 1 Statistics of the model by class

Class ML1 (%) ML2 (%)

Sensitivity 92 85

Specificity 93 83

Accuracy 92 84

Confidence interval (89-95) (78-89)

Note: The confidence interval is calculated for the accuracy.
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and CH2 symmetric stretching of protein and lipids evi-
dent at 1446, 2850, 2885 and 2930 cm−1, respectively [59].
The band assignments are summarized in Table 2. Main
variations between LG and HG tumor spectra are
resolved at protein bands 1176 and 1446 cm−1, as well as
in the high wavenumber region at 2930 cm−1. The spec-
tral features for LG and HG spectra have also been previ-
ously reported by Stone et al [58].

3.3 | Evaluation of biopsy heterogeneity

Tumor heterogeneity can be understood in multiples
ways: it can be described in terms of observable features,
such as morphology, nanoscale structure [60], cellular
arrangement, histology [61], genotypes and protein
expression [62]. Likewise, it can be studied at different
levels, such as molecular, intracellular or bulk levels. A
previous study demonstrated that Raman spectroscopic
imaging can provide high spatial resolution measure-
ments of the distribution profiles from tissue constitu-
ents, such as collagen and glycosaminoglycans in tissue
[63] and nucleic acid, protein and lipid in eukaryotic cells
[64, 65]. Heterogeneity is particularly challenging for
classification problems, where heterogeneous data can
significantly affect the reliability and performance of the
models. Furthermore, for clinical in vivo applications it is
important to understand if there is a need to perform
Raman imaging to do an accurate characterization of the
tumor grading, or if point measurements using, for exam-
ple, a fiber optic Raman probe suffices. Two approaches
were investigated at the bulk level. The first approach
uses the classification model's predictions (ML1) to esti-
mate the tumor and NT fraction of the biopsy. The sec-
ond approach consists in the visual inspection of the
distribution of main constituents, collagen, protein and
lipids in corresponding Raman images of the biopsy at
relevant bands. There is currently no Raman-based study,
which characterizes the heterogeneity of bladder tissue.
The presented work considers the intrinsic biomolecular
heterogeneity of tumor tissue and attempts to elucidate
the molecular fingerprint, which allows to discriminate
between the different pathologies.

3.3.1 | Heterogeneity of the biopsy based
on the prediction of ML1

For classification problems, heterogeneous data can affect
the reliability and performance of the models, resulting
in reduced sensitivity and specificity. For biopsies, het-
erogeneity is frequently also related to the fact that the
extracted tissue samples not only have the tissue of

interest, that is, tumor tissue, but also contain normal tis-
sue located in the proximity of the tumor tissue, or due to
the proper orientation of the tissue for measurement.
From brightfield images it is impossible to differentiate
tumor and NT regions. In consequence, taking spectral
information from the entire biopsy can affect the perfor-
mance of the models, or result in not well reproducible
data. It is, therefore, important to find a method to
split the heterogeneous data into a set of homogeneous
groups of data.

There are two key questions, firstly, how the tissue
heterogeneity can be bypassed to do a proper classifica-
tion of tumor grading and secondly how the proposed

TABLE 2 Raman band assignments for spectra in

Figure 6 [67]

Wavenumber
(cm−1) Bond assignment Macromolecules

729 C C stretching,
proline

Collagen [56]

869 C C stretching,
choline group

Collagen and lipid
[68]

937 (C C) vibration of
the collagen
backbone

Collagen [56, 57]

1003 Phenylalanine, C C
skeletal, phosphate
group

Collagen and lipid
[57, 68]

1064 Skeletal C C stretch Lipid [57]

1103 Phosphate group and
symmetric ring
breathing of
phenylalanine

Proteins (collagen)
and lipid [57, 69]

1176 C H bending
tyrosine

Proteins [57]

1265 Amide III of
collagen, v(CN),
d(NH) amide III

Collagen [56, 57,
70]

1335 CH3CH2 wagging Collagen [18, 57]

1446 CH2 bending mode of
proteins and lipids,
CH2 deformation

Lipids and proteins
[19, 57]

1656 C C lipids, amide I
(proteins)

Lipids and proteins
[69]

2850 υsCH2, lipids, fatty
acids CH2

symmetric

Lipids [57, 59]

2885 νas( CH2), νsCH3,
lipids, fatty acids

Lipids [57, 59]

2930 CH2 sym. stretching,
chain-end CH3

sym. stretching

Protein and lipids
[59, 71]
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model generation method can effectively group the data
into homogeneous units. To answer these questions, the
generated ML1 was employed to predict all the spectra of
each tumor biopsy, as it was described in Section 2.3.
Each individual spectrum of a biopsy was tested and
cross-validated by the model and a mean of the resulting
predictive values was calculated. This mean prediction
value was plotted at each location of the hyperspectral
image of each biopsy. Four cases are shown in Figure 7,
where 1 encodes a purely NT (black) and 2 a purely
tumor spectrum (red), respectively. For further analysis
we set the boundary condition such that values below 1.5
to NT tissue and values above 1.5 to be tumor tissue. As
can be seen in Figure 7 biopsies significantly differ from
each other.

For example, the biopsy in Figure 7A,B are very homo-
geneous, that is, independently of the location of the
acquired spectrum ML1 would mostly predict for
(A) healthy tissue and (B) tumor tissue. The pathological
diagnosis was healthy and HG tumor, respectively. The
biopsies mapped in Figure 7C,D, on the other hand, are
highly heterogeneous and present multiple NT regions,

which if included into the model building would nega-
tively affect the results. From the examples shown here it
is clear that many of tumor biopsies actually contain areas
that are NT, and if included into the modeling, would sub-
stantially influence the performance of the model.

3.3.2 | Heterogeneity at the bulk level
based on the molecular content in the
biopsy

Raman imaging can be used to learn about the heteroge-
neity of healthy and tumor bladder tissue at the bulk
level by mapping the Raman intensity of specific bands
on a biopsy. In Figure 8 the distributions of relevant con-
stituents of the biopsies, that is, collagen (1265 cm−1) and
lipid (2885 cm−1) Raman bands for two selected biopsies
diagnosed as high-grade tumor (left panels) and inflam-
mation (right panels), respectively, are visualized. For
comparison, Figure 8A illustrates the mean prediction of
ML1 on homogeneous tumor and NT biopsies and
Figure 8B,C illustrates the relative Raman intensity of

FIGURE 7 Mean prediction map for tumor and nontumor (NT) regions of test biopsies: (A) NT biopsy 98% of the spectra predicted as

NT, (B) homogeneous tumor biopsy with 72% of tumor (T) area, (C) biopsy with 21% of tumor (T) area and 71% of NT area, and (D) test

biopsy with 37% of T area and 59% of NT area

CORDERO ET AL. 11 of 14



the bands at selected wavenumbers. Based on Figure 8B
it can be seen how lipid contributions are more dominant
in the tumor biopsy in comparison to the NT biopsy. The
presence of collagen is observed in Figure 8C where
amide III of collagen exhibits higher intensity in the NT
biopsy in contrast to the tumor biopsy. To get a better
comprehension of the imaging data a scatter plot of the
relative intensity of lipid and collagen from all biopsies
was used to depict the relative concentrations of lipid and
collagen, Figure 8D. The point clouds were visualized in
a 2D scatter plot, which encodes the relative number of
points from tumor (red) and NT spectra (black). Consis-
tently, most Raman spectra belonging to NT tissue
according to ML1 show higher amounts of collagen in
comparison to those from biopsies predicted as tumor.
On the other hand, spectra from tumor tissue prove to
have higher relative amounts of lipid. Both, Raman
images shown in Figure 8A-C and the scatter plot in
Figure 8D provide evidence for significant spectral
changes in bladder tissue undergoing tumor development
and are consistent with results from biochemical investi-
gations of previous studies [32, 58, 66].

4 | CONCLUSION

In this study, we demonstrated that Raman spectroscopic
imaging employing a hand-held probe can be used as a
valuable tool to characterize bladder tissue at the molecu-
lar level. We provide an extensive biochemical characteri-
zation of bladder cancer pathology to facilitate real-time
assessment of tumor tissue in future studies. The optical
fiber Raman probe imitates the optical performance
expected in an in vivo setting, presenting initial operation
benchmarks and influential factors to consider for future
in vivo investigations. A hierarchical classification was
performed, where the first level models (ML1) predict the
main differences between tumor and NT tissue and the
second level models (ML2) differentiate between HG and
LG tumor. The model-based evaluation has shown that
the changes in collagen bands and the increase of the lipid
intensity can be associated in differences between tumor
and NT tissue, and changes in the protein bands can be
used as an indicator to differentiate between LG and
HG. The PLS-LDA models can differentiate tumor from
NT with a sensitivity of 92% and a specificity of 93%, while

FIGURE 8 Images of tumor and nontumor based on: (A) mean prediction of the ML1 for homogeneous tumor and nontumor biopsies,

where red is predicted as tumor and black as nontumor; Raman intensity image of the same tumor and nontumor tissue at: (B) lipid band

(2885 cm−1) and (C) collagen band (1265 cm−1). The color information represents different chemical constituents, that is, green for collagen

and yellow for lipid. The scatter plot (E) of the relative intensity of lipid and collagen for all biopsies shows the relation between the main

constituents and the tissue characterization (nontumor and tumor). The intensity of the bands at the mentioned wavenumbers was

normalized to min-max

12 of 14 CORDERO ET AL.



the achieved sensitivity to differentiate LG from HG tumor
is 85%. In our selected test group, NT tissue is assigned
with an overall accuracy of 92% with confidence levels
between 89% and 95%. The LG and HG can be predicted
with 84% accuracy in a confidence interval between 78%
and 89%. The findings of this study also serve as indication
of biopsy heterogeneity, where the prediction of the
models, which classify tumor and NT, are used to map the
tumor areas on the biopsy. This results in a better perfor-
mance of the second level models, which use only the
tumor areas to train and validate the models to differenti-
ate LG and HG tumors. In addition, the mapping of the
intensity at representative lipid, collagen and protein
bands of different biopsies served to follow changes of
these main constituents. It was demonstrated that a fiber-
based Raman system may complement the well-
established methods, such as cystoscopy, to achieve an
immediate bladder tumor diagnosis and thus give the pos-
sibility to treat tumor immediately instead of waiting for
histopathological diagnosis of a biopsy from the bladder
lesion. Ultimately, Raman probe assisted bladder endos-
copy can be performed in the outpatient department using
small and less traumatizing instruments, resulting in addi-
tional health cost savings and significant improvement in
patients' prognosis and quality of life. Simultaneously,
immediate tumor diagnosis will allow for the instant deci-
sion whether the patient can be treated immediately in the
outpatient department or needs admittance to the urology
ward, as LG noninvasive bladder tumors less than 1.5 cm
can be treated in the outpatient department.
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