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ABSTRACT

Wind farms can be regarded as complex systems that are, on the one hand, coupled to the nonlinear, stochastic characteristics of weather
and, on the other hand, strongly influenced by supervisory control mechanisms. One crucial problem in this context today is the
predictability of wind energy as an intermittent renewable resource with additional non-stationary nature. In this context, we analyze the
power time series measured in an offshore wind farm for a total period of one year with a time resolution of 10 min. Applying detrended
fluctuation analysis, we characterize the autocorrelation of power time series and find a Hurst exponent in the persistent regime with cross-
over behavior. To enrich the modeling perspective of complex large wind energy systems, we develop a stochastic reduced-form model of
power time series. The observed transitions between two dominating power generation phases are reflected by a bistable deterministic com-
ponent, while correlated stochastic fluctuations account for the identified persistence. The model succeeds to qualitatively reproduce several
empirical characteristics such as the autocorrelation function and the bimodal probability density function.

VC 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5139039

I. INTRODUCTION

In the context of anthropogenic climate changes, the challenge of
reducing carbon emissions is of central importance. Renewable sources
of energy are considered to be one of the most promising solutions in
the electricity sector to cover an increasing energy demand without exac-
erbating high carbon emissions coupled to it. Wind energy in particular
appears to be one of the most strongly increasing sources of renewable
energy1,2 but demands an extraordinary adaption of grids and related
power systems due to its intermittent nature.3,4 It consequently raises the
need for a profound understanding of this intermittency and the oppor-
tunity to perform extensive studies on the reliability of power systems by
suitable models. Such models can only be calibrated with respect to
empirical data, while different approaches are required to reflect features
on multiple spatial and temporal scales.5,6 Moreover, they can be used to
study the impact of certain well known statistical characteristics on the
resulting dynamics. This provides wind farm (WF) controllers with a
rich set of tools to analyze variable scenarios taking influences into
account, which are known to be of importance.

In this work, we focus on the dynamics of single wind turbine
(WT) power generation in an offshore wind farm. While especially

power generation of aggregated wind farms or even complexes of
several wind farms has received considerable attention, the challenge
of intermittent and stochastic characteristics is particularly high on the
scale of single turbines.7 Still, it does not vanish for larger units such as
wind farms or national wide wind power generation.8 How generated
power fluctuations from geographically separated wind farms are
dampened when aggregated9,10 is of crucial importance for large scale
grid stability.11,12

Our perspective on this problem is to study the autocorrelation
of power time series as an indicator of their intermittent and nonsta-
tionary nature in the first step. In most modeling approaches, informa-
tion on the complex temporal evolution of variations is included, and
hence, autocorrelation is of great general importance. Nonstationarity
is another feature that is frequently encountered dealing with complex
systems.13 We address this within the analysis of power output correla-
tions using the popular method of detrended fluctuation analysis
(DFA).14 It can deal with polynomial nonstationarities in a generalized
fashion. The fluctuations around these polynomial trends are subject
to the correlation analysis, which yields a Hurst exponent as an indica-
tor for the strength and nature of the autocorrelation.
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The idea that power time series should exhibit scaling behavior is
based on the finding that the underlying wind speed dynamics are
governed by atmospherical turbulence.15 The traditional tool to cap-
ture this aspect is the power spectrum obtained by Fourier analysis.16

Several studies have examined the power spectral density for both
wind speed17,18 and power time series,19,20 also uncovering how aggre-
gation on different spatial scales impacts power fluctuations.10,21

Other classical methods range from structure functions to estimators
for the Hurst exponent based on the scale dependent variance calcula-
tion on the respective time series.22 Still, these methods do not take the
above-mentioned nonstationarity into account. To this extent, several
works study the autocorrelation of wind speed time series u(t) apply-
ing DFA and multifractal DFA (MFDFA) and conclude that it behaves
persistent with a multifractal dependence.23–25 While most research in
this context focuses on local wind speed measurements of single sites,
some studies reveal the multifractality of wind speed on a larger spatial
scale, for instance,26 incorporating wind speed data spatially distrib-
uted all over Switzerland and finding the multifractal dependence of
persistence for the cooperative behavior in the context of monitoring
systems. Similar research for power time series appears more limited.
The authors of Refs. 27 and 28 revealed a high degree of multifractality
for both wind speed and power time series of an aggregated wind farm
and joined both in a description via generalized correlation functions.
Furthermore, aggregated power output of wind farms is known to
show complex correlations in terms of persistence and multifractality.
The authors in Ref. 29 uncovered the multifractality for the power
time series of an aggregated wind farm in South Australia with data on
a similar timescale. They classify power time series in the persistent
regime, especially on short timescales of several minutes. Yet, to the
best of our knowledge, no research has employed DFA or multifractal
methods focusing on single WTs’ power output.

After we have obtained a better understanding of autocorrela-
tions, we put forward a model based on these theoretical insights and
an important feature of the empirical probability density function
(PDF) of power output. A broad range of approaches is considered for
wind power generation models in the respective literature. A general
distinction of models can be based on whether power is directly or
indirectly modeled, e.g., by mapping certain variables such as mea-
sured wind speed on power via a distinct transformation. Our work
contributes to direct power modeling of time series for single WTs.
Most models aim at finding a precise point forecast of time series for a
certain timescale and horizon.30 In contrast to this, effort is put into
modeling different properties related to power output such as the
power curve,31,32 wind power ramps,33 or power density estimates.34

Models also vary in terms of the timescale35 that ranges from the
ultra-short-term ðms� sÞ36 to long-term forecasts (months).37

The model proposed in this work aims at modeling short-term
power time series without the objective to give precise point forecasts.
Instead, we aim at deepening the systemic understanding of a WT due
to its stochastic nature on the one hand and the impact of control
mechanisms (e.g., curtailment) on the other hand. Following this
motivation, the model is based on a single nonlinear stochastic differ-
ential equation (SDE) that is split into two components in a Langevin
fashion. Since WTs are directly coupled to the complex atmospherical
dynamics of wind, it is paramount to incorporate a stochastic compo-
nent that allows for a certain degree of complex diffusive behavior. A
sufficient approach to include such complex diffusive dynamics

without a loss of simple applicability is given by fractional Gaussian
noise (FGN).38 Time series generated as FGN entail a certain degree of
correlation and yield fractional Brownian motion (FBM) when cumu-
lated. Thus, we are able to reflect on the results from the correlation
analysis from a model perspective. The second component of our
model takes the impact of control mechanisms on power output into
account. We address this feature in two steps. A deterministic compo-
nent in the differential equation accounts for the characteristic shape
of the PDF as the first mechanism to focus the power values around
the respective fixed points. The second step incorporates control
mechanisms such as curtailing in a simplified numerical fashion.
Finally, we include a simple first approach to account for a time
dependent seasonal drive of power output as well. By constructing our
model in such a way, its easily distinguishable components and param-
eters give a way to a better understanding of how certain theoretical
features affect power time series qualitatively, such as the degree of
autocorrelation. It further yields the opportunity to test parametrized
scenarios and may be used in large power network simulations based
on simplified models of single wind turbine dynamics.

This paper is organized as follows: we present the dataset and
perform a cleansing procedure on it in Sec. II such that we can get the
first impression of its fundamental characteristics afterwards. In
Sec. III, we identify the autocorrelation of power time series via the tra-
ditional autocorrelation function and the method of DFA. The sto-
chastic model we introduce in Sec. IV is based on these empirical
findings and will enlarge upon our understanding of how varying
autocorrelations have an impact on fundamental statistical features by
comparison with the data. When we present the results, we will find a
sufficient agreement between the empirical and modeled features. We
summarize our results in Sec. V.

II. DATA TREATMENT AND CHARACTERISTIC
FEATURES

We briefly introduce the dataset in Sec. IIA. The data cleansing
procedure described in Sec. II B is important to focus only on a reason-
able subset of the empirical data.39 Finally, we get a first glance of
the most substantial characteristic features of the wind farm data in
Sec. IIC.

A. Dataset

The dataset we analyze comprises time series of 30 WTs located
at the German offshore wind farm RIFFGAT. Several observables are
measured via a SCADA (Supervisory Control and Data Acquisition)
system; however, we will focus only on the active power output of the
WTs. The respective time series cover a total period of one year
between 01/03/2014 and 28/02/2015. All analysis is carried out on ten
minute average values calculated from data points measured with 1Hz
frequency. Thus, the timestamp precision is limited to ten minutes,
and we obtain 52 560 values in total.

B. Data cleansing

In the following, we briefly present the applied data cleansing
procedure. We detect outliers and ensure that we only consider a rea-
sonable subset of the initially measured data. Every data value we con-
sider to be erroneous will be set to NA (not available) and is not
included in any upcoming analysis. In the first step, we ensure that
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there are no redundant timestamps in any time series and look for
consecutive identical values. Since one ten minute average value is
based on 600 measured values, it can be rated as a highly unlikely case
that two consecutive 10-min averages are identical with a five digit
precision in the data. This could only be conceivable if, e.g., constant
rated power is generated for ten minutes without any variation. To
rule out this case, we also took the maximum and minimum values for
the respective ten minute intervals into account.

Apart from the ten minute average values, we inspect the respec-
tive standard deviations. Any data value with a vanishing ten minute
standard deviation is set to NA. In the last step, we analyze if there are
unreasonable changes of consecutive power values, which we will call
power increments. We consider each power increment to be unrea-
sonably high (regardless of its direction) if it meets both the following
criteria: the power increment Nþ ¼ ðPðt þ 1Þ � PðtÞÞ=Pþ relative to
the so-called rated power output Pþ of the WT is higher than a certain
threshold N0 and the respective minimum power Pmin in a ten minute
time interval is higher than the maximum power Pmax in the previous
time interval by a certain factor q: Pmin > qPmax, which yields unphys-
ical data. We choose the threshold value N0 and the factor q in a way
that limits extreme power increments to a typical value found in the
respective literature.40 This yields N0 ¼ 0:67 and q¼ 0.99. The higher
these values are chosen, the more the unphysical ramps are still kept
in the data, which results in a higher number of strong jumps between
low and high power generation. If we apply a too strict choice, some of
the true strong ramps that resemble intermittent fluctuations are spu-
riously eliminated, also biasing results for temporal correlations. After
applying the stated cleansing steps, we obtain 9.58% of NA values in
the data. We will only consider pairs of values containing no NA value
in every calculation of correlations between time series.

C. Bimodality and power increments

To achieve a sufficient understanding of wind power data, some
basic facts about the conversion of wind speed u into active power out-
put P and the control of WTs have to be outlined.41,42 Although an
increase in wind speed obviously leads to a higher gain of generated
power in general, WTs only run within a certain operating range. This
limitation is due to the finite performance of power generators. In fact,
the operation of WTs is limited by a lower cut-in value u� and an
upper cut-off value uþ of wind speed u. Below u�, there is simply not
enough wind energy for an economic use of the turbine so that
P ¼ P�ð¼ 0 kW Þ. When u exceeds uþ, power is controlled to remain
constant at the rated power output P ¼ Pþð¼ 3600 kW Þ. For even
higher wind speeds, it becomes essential to avoid mechanical damage,
and the WTs are turned down by a continuous adjustment of the rotor
blades. Within u� � u � uþ, the generated power of an ideal WT
increases proportionally to u3. For this work, the most important con-
clusion to draw from these control mechanisms is that power time
series have to be at least in parts artificially flattened. We expect power
values to be constant at P ¼ P� or P ¼ Pþ for certain time periods.

This manifests itself in Fig. 1(a) as a striking bimodal pattern in
the five displayed time series and a striking bimodality of the empirical
PDF in Fig. 1(b), visualized as a histogram. Most power values are
concentrated around zero power generation P� and active power
output Pþ. In fact, the intervals 50 kW < P < 200 kW and 3550 kW
< P < 3800 kW around the two peaks sum up to 41.62% of all values.
This feature also governs the dynamics observed from the time series

and is observed in several different works.43–45 Nevertheless, other
analyses46,47 also show unimodal distributions around P� or flatter,
less concentrated distributions. While the first observation is related to
the different efficiencies of WTs, the latter is mostly found for the
aggregated power of several wind farms where WTs with different
rated power outputs are combined. Despite this bimodal shape of the
PDF, also values exceeding the rated power can be observed. Finally,
strong downward ramps to zero power output can be observed for
some of the WTs.

We will characterize such power ramps by the increments NkðtÞ
¼ Pkðt þ DtÞ � PkðtÞ, which are a fundamental property for the
understanding and management of wind farms. We define them as
the standardized, dimensionless differences

~NkðtÞ ¼
NkðtÞ �

1
T

XT
t¼1

NkðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

XT
t¼1

NkðtÞ � lkð Þ2
s : (1)

For our data, we only analyze Dt ¼ 10 min. A visual inspection
of Fig. 2(a) shows an example of this property for one WT in a time
period of two weeks. Apparently, increments of similar size cluster in
time indicate some degree of correlation. This generally indicates that

FIG. 1. Exemplary power time series and average power output (black) covering
two weeks. The respective PDF plotted as a histogram is shown for all WTs
covering the entire time period.
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simple random walk models do not yield a sufficient description that
captures the complex temporal correlations of time series. The power
seems to fluctuate symmetrically but clearly in a non-Gaussian fashion
as it can be seen in the PDF of all NkðtÞ for the total time period in
Fig. 2(b). Here, we compare the empirical distribution to a Gaussian
(black) with the same mean value and standard deviation. For the
aggregated wind farm, the strong fluctuations appear slightly damp-
ened. These findings are in accordance with results in the literature for
increments on even shorter timescales.8

If the PDF deviates from Gaussian statistics, we address the inter-
mittent behavior after Kolmogorov 1962, expressed by a heavy tailed
distribution and multifractal statistics. Note that this turbulent inter-
mittency term is not the same as the alternative denotation of intermit-
tency, i.e., nonstationary time series switching between different flow
states such as between laminar and turbulent flows.

III. AUTOCORRELATION

Both the bimodality of power, persisting at values around
zero and rated power output, and the complex dynamics of power
increments suggest that an analysis of correlations can be fruitful.
As the first step, we display linear autocorrelations for power time
series PkðtÞ.

To this extent, we use the Pearson correlation with a time delay s
defined by

HðsÞ ¼
�
hXðtÞXðt þ sÞit � hXðtÞit

� �2�
=hðXðtÞÞ2i: (2)

Quantifying autocorrelations of power time series yields valuable
information on how power can be generally modeled (Sec. IV). In this
paper, we only consider the autocorrelation of power time series. With
HðsÞ as a correlation measure, we only account for linear dependence.
Moreover, it is sensible to outliers and only gives sufficient information
for time series with finite variance. Figure 3(a) shows HðsÞ for the
power time series of all 30 WTs. It is shown up to a lag of seven days,
which is approximately the point where they drop below a significant
level (dashed horizontal lines). As such, we use a simple surrogate
approach and shuffle the time series, eliminating temporal informa-
tion but preserving the PDF. We identify a (constant) confidence band
by calculating its width as 2r of the autocorrelation after the shuffling
process, averaged over all time series. The autocorrelation of all PkðtÞ
slowly decreases over three orders of magnitude and thus indicates the
long-range dependence. Nevertheless, HðsÞ does not show a typical
power law decay but runs through several local maxima, reflecting the
inherent nonstationarity. In Ref. 48, an explanation for this observa-
tion is provided, which corroborates our results: the autocorrelation of
wind speed decreases with slightly visible maxima due to weather
related seasonalities. Since power is closely coupled to wind speed and
persists at an almost constant level for values around u� and uþ, the
local maxima are not only sustained but amplified. The displayed
autocorrelations do finally not show significant differences between
single WTs even though it is known that relative positions of WTs
play a role for power generation, e.g., through wind shear effects.49

Such differences could potentially become visible in lagged cross-
correlations between WTs of varying relative positions, which is not
within the scope of this work though.

The scaling behavior of power time series is expected to be related
to that of wind time series. For the latter, it is well known that
the Fourier power spectrum obtained yields a power law decay Eðf Þ /
f �b with b ¼ 5=3 estimated through linear regression in the log –log
plot. This finding is in accordance with results one obtains from
Kolmogorov’s turbulence model. A simple way to confirm that a simi-
lar scaling can be found for the power time series, we estimate b from
a respective Fourier power spectrum in Fig. 3(b). To this extent, we
compute a smoothed spectrum (black) by splitting the full time series
P(t) of an exemplary WT into ten chunks and average over spectral
power values obtained for each of the single segments (example in
gray). The linear maximum likelihood estimation (MLE) regression
(orange) yields b ¼ 1:58 � 5 =3 within a linear region of sufficient
width and thus matches both the expected universal scaling (red) and
results from similar data well.50

The presence of nonstationarity leads to biased or spurious detec-
tion of autocorrelations.51 To uncover autocorrelations in the presence
of nonstationary, we apply DFA52 to the power time series PkðtÞ. The
main idea of DFA is to eliminate nonstationarity in a generalized fash-
ion by subtracting polynomial trends and consequently focusing on
correlations that are present in the remaining noise. The method aims
at calculating the Hurst exponent H, introduced by Hurst in 1951.53

We distinguish between persistent (0:5 < H < 1) and antipersistent
(0 < H < 0:5) behaviors of a time series. The special case H¼ 0.5

FIG. 2. Exemplary power increment time series covering two weeks and respective
single-logarithmic histogram for all WTs covering the entire time period, compared
to a Gaussian distribution. The dashed line includes power increments of the aggre-
gated wind farm.

Journal of Renewable
and Sustainable Energy ARTICLE scitation.org/journal/rse

J. Renewable Sustainable Energy 12, 023301 (2020); doi: 10.1063/1.5139039 12, 023301-4

VC Author(s) 2020

https://scitation.org/journal/rse


yields diffusive behavior, i.e., uncorrelated white noise with
hXHðtÞXHðt0Þi ¼ 0 for the time series X(t) at arbitrary times t and t0.
Cumulated white noise entails Brownian motion. The persistent
regime H> 0.5 results in super-diffusive dynamics and long-range
dependence of the increments X(t). Antipersistence yields the opposite
case, i.e., a time series changes its direction more frequently than a dif-
fusive time series. The respective extension of a white noise process is
called fractional Gaussian noise (FGN) and will be addressed later.

We now briefly sketch the method of DFA and refer to Ref. 52
for a more detailed description. As a first step, we calculate the inte-
grated, mean adjusted power time series. A time series of equal length
is obtained, which is split into Ns ¼ bT=sc disjunct subsets of equal
length s. The brackets round the value of T/s down to an integer value.
We repeat this step with the reversed time series to incorporate all sub-
sets. Subsequently, a polynomial quadratic detrending via MLE-
regression (maximum likelihood estimation) is applied for all subsets.
We then calculate the standard deviation F�ðsÞ of all detrended subsets
and from that derive the average standard deviation. Repeating this
calculation for different s values, we obtain the fluctuation function

FðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2Ns

X2Ns

�¼1
F2
�ðsÞ

vuut ; (3)

which represents the scale dependent fluctuation strength. We esti-
mate the scaling exponent a from FðsÞ / sa empirically via linear
regression in a double-logarithmic plot since we expect F(s) to increase
as a power law. For stationary time series (e.g., FGN22), we can identify
a with the Hurst exponent H. In the more general case frequently
encountered for real data, even for the detrended time series, some
nonstationarity remains present. In this case, the Hurst exponent can
only be estimated as H � a� 1, which only strictly holds for a frac-
tional Brownian motion (FBM) process. This distinction is sometimes
not pointed out distinctively in the literature.54 In general, a is also
linked to the Fourier scaling exponent b via b ¼ 2a� 1 ¼ 1þ 2H,
enabling us to assess the consistency of our results.

For applications, s must not be chosen too small for a significant
outcome. The DFA method is known to cause misleading finite size
effects with respect to short timescales s, and the applied detrending
generally needs to be regarded critically.55 Another typical issue is val-
ues at the limits or outside of the range 0 < a < 1. For a > 1, we have
to consider the time series as an integrated process with more complex
nonstationarities (H¼ 1.5 equals Brownian motion).56,57 Apart from
this, the resulting increase in F(s) does not have to be completely linear
but can contain crossovers with different slopes.58 In many cases, these
crossovers are meaningful and uncover different scaling regions that
entail different correlations.14 As we see in Fig. 4, the displayed fluctua-
tion functions follow power laws with similar scaling exponents a. We
checked that the displayed results are robust to different orders of
polynomial detrending. Three shifted curves are shown for single WTs
and one for the aggregated wind farm. A linear increase with one
clearly visible crossover sc at a timescale of approximately three days
can be identified for all of the curves. The resulting scaling exponents
are a ¼ 1:33 for s � sc and a ¼ 0:80 for s > sc, averaged over all
obtained a for different turbines. The values are almost identical for
the aggregated wind farm. The dashed line emphasizes that all found
results in fact give meaningful information about the correlations and
the distribution. The line refers to a stationary random surrogate time

FIG. 3. Autocorrelation and Fourier spectrum of power time series. (a) HðsÞ for
power time series of all 30 WTs for s � 1 week. The average autocorrelation is
drawn as a black dashed line. The dashed horizontal lines represent a level of
significance. (b) Fourier power spectrum of an exemplary power time series with
a log –log-scale. The time series was split into ten equally sized segments for
which the power spectra were computed (example: gray) and averaged subse-
quently (black). The orange line shows the linear regression performed within the
fitted region (dashed lines), and the red line displays a scaling with b ¼ 5=3. The
three additional spectra are equivalently computed for the optimized model time
series (see Fig. 8) with the respective Hurst exponent and shifted for better
visibility.
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series we obtained with the same procedure explained above and
applying DFA afterwards. A value of Hsurr ¼ 0:49 reflects diffusive
behavior. Consequently, for short timescales s � sc, the power time
series have to be regarded as a highly nonstationary stochastic process
with trends that cannot be sufficiently eliminated by DFA. If we sup-
pose the validity of H � a� 1 for s � sc, we obtain H � 0:33 match-
ing H � 0:5ðb� 1Þ ¼ 0:29 derived from the Fourier spectrum in Fig.
3(b). For s > sc, the scaling exponent a ¼ 0:80 yields persistence and
a Hurst exponentH � �0:20. The latter finding is consistent with the
displayed autocorrelation functions and values of a found in the
literature.24,29,50

The same type of crossover behavior is also found for hourly
wind speed data at geographically different sites.54 The authors
conjecture that this scaling behavior might arise from the different
scales of weather patterns, which would manifest itself in a multi-
fractal spectrum of different scaling exponents. Yet, the crossover
is not critically reflected on, even though misleading crossovers in
DFA are known to appear with several known causes. In Ref. 14, it
is suggested to test whether different orders of polynomial
detrending change the crossover position, which we ensured not to
occur. Furthermore, the number of NA-values does not have a sig-
nificant impact on our results as supposed in Ref. 59. Although the
scaling law of F(s) is still valid for a > 1,57 this special case hints
that unidentified trends remain after the detrending procedure.
Such trends are also known as a source of erroneous cross-
overs,60,61 which we cannot fully rule out. If such trends were the
cause, similar trends would also be present in the wind speed data
in Ref. 54 though. The consequences of such a crossover still seem
to be of potential importance for possible modeling approaches,
which will be addressed in Sec. IV.

IV. STOCHASTIC MODEL

The identified features of single WT power time series motivate a
model approach that could be calibrated with empirical data. We now
put forward such a time series modeling approach that has the poten-
tial to be used in a larger simulation, aiming at a multi-scale model of
wind power generation. In Sec. IVA, we introduce our model
approach. We compare our model results to the empirical data in Sec.
IVB to gain first qualitative insights into the scope of the model.

A. Model approach

Numerous approaches of power time series P(t) simulations are
employed in the literature. A major fraction tends to simulate wind
farm power time series only and does not concentrate on single WTs
as we intend to do.35,62–64 Another central distinction is the aim of the
model. Our reduced-form approach does not intend to reproduce
temporally ordered forecasts but only statistical features such as distri-
butions and long-term averages. Several models in the literature man-
age to give precise forecasts of different time horizons of P(t) using
black-box models with a high number of parameters or simple regres-
sion parameters that often lack a comprehensive contextual meaning.
Typical model approaches in this context are Markov processes48,65,66

and ARIMA (autoregressive integrated moving average) processes,37

both of which focus on the autocorrelation of P(t). Further approaches
are based on nonlinear models,67 stochastic models,43 and stochastic
drift–diffusion-models.20 In contrast to the stochastic process
approach in Ref. 20, which aims to model the stochastic wind speed/
wind power relation in seconds by the estimators of Kramers–Moyal
coefficients, we aim here to achieve a stochastic modeling of the power
output based on 10min values.

We will try to introduce our model parameters with a compre-
hensible meaning. Furthermore, our model equation itself is not a
regression formula but is based on our qualitative understanding of
power time series. The simulations are carried out on a 10-min time-
scale. The essence of our model comes down to one fundamental
stochastic differential equation (SDE) based on central statistical fea-
tures we identified in Secs. II and III. We do not model NA-values sep-
arately and aim at simulating the raw uncleansed data that are directly
obtained from the SCADA system.68 For the sake of simplicity, all
model-related equations are formulated in a notation for continuous
systems, yet bearing in mind that we are dealing with discrete data.
We now briefly introduce the stochastic model equation and summa-
rize the related mathematical concepts. In our modeling framework,
we will regard power generation as an autocorrelated stochastic pro-
cess with a deterministic and a stochastic component. These
drift–diffusion-types of models are often expressed by a Langevin
equation of the general form

dP
dt
ðtÞ ¼ �k dVðPÞ

dP
þ D nHðtÞ: (4)

Here, P(t) denotes the power time series. The first term equals
the deterministic drift component with a drift parameter k and a
potential function V(P). The second component incorporates stochas-
tic fluctuations nHðtÞ with a constant diffusion strength D. The index
H denounces the Hurst exponent, which hints at the fact that we can
include arbitrary power law-like correlations into our model. Thus,

FIG. 4. Fluctuation function F(s) for three exemplary WTs and aggregated WF
(crosses). s is given in units of 10min. The curves are shifted in the y-direction for
better visibility. The red line displays the MLE-regression with the shaded error
region. The gray lines visualize the crossover. The dashed line shows F(s) for a
surrogate of randomly shuffled data.
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nHðtÞ itself is a solution to a simple FGN-stochastic process69 with the
defining property

hnHðtÞnHðt0Þi ¼
1
2
jtj2H þ jt0j2H � jt � t0j2H
� �

: (5)

In this way, we can transfer our empirical knowledge about the
autocorrelation of P(t) from Sec. III to the model approach.
Furthermore, we choose the deterministic potential function V(P) in a
way that focuses on the time series dynamics around the fundamental
fixed points. Since we have observed that power generation mostly
concentrates around zero power output P� and rated power Pþ, we
choose a bimodal approach with the double-well potential function

VðPÞ ¼ 1
4a4
ðP � P0Þ4 �

1
2a2
ðP � P0Þ2: (6)

While a describes the steepness of the potential, P0 gives us the
position at which it is centered. Such SDEs are used in different appli-
cations in the literature and are referred to as a description of an over-
damped Brownian particle in a double-well potential70 in statistical
physics. As an illustration, we can think of the underlying dynamics as
a particle that would jump between the potential minima, driven by
correlated fluctuations. The latter consequently introduce a character-
istic timescale for the transitions between the fixed points. Often, such
models are extended by a driving periodical force that entails a biased
occupation of one fixed point with respect to a certain seasonality.
Since power generation from wind energy follows seasonal variations,
we incorporate this into our model with the simple approach

FðtÞ ¼ A cosxt; (7)

which is added to Eq. (4) as the driving force. We determine x from
Fourier analysis as the leading frequency within the spectrum of P(t).
A gives us the adaptable strength of the seasonal variations. With this
extension, we introduce another characteristic timescale into our
approach. The interplay of both this component and the stochastic
fluctuations determines the transition dynamics as described by the
general phenomenon of stochastic resonance.71 Our approach effec-
tively biases the bimodal PDF of modeled power toward one of its
peaks, which reproduces the seasonal variation of wind power genera-
tion on a rather basic level. In the parameter estimation ofx, we incor-
porate data from a specific month to calibrate the seasonality
according to the month in the data.

As we have seen in Fig. 1, the control of the WTs results in
extremely narrow peaks of the PDF of P(t). This fact is caused by the
intervening external control of power output (curtailment). Our model
approach already succeeds to concentrate the power values around P�
and Pþ as fixed points in a similar manner but fails to narrow the
peaks down as sharply as required due to the simple analytical
approach. Hence, we have to incorporate the artificial flattening of
time series we observe in the data into our model sufficiently. To do
so, we cut off power values beyond the operating range P� � P � Pþ
by setting them to the respective constant threshold value P� or Pþ.
As we observe in the data, these limits are sometimes exceeded in the
empirical time series anyway. Consequently, this procedure is only
applied with a certain probability p0. Note that the model cannot be
regarded as a typical Langevin-equation driven model since the corre-
lated noise term nHðtÞ on the one hand and the artificial flattening
due to curtailment on the other hand differ strongly from the standard

delta-correlation of such models. Taking all explained considerations
of our model approach into account, the resulting model formula is

PðtÞ ¼

~PðtÞ if P� � PðtÞ � Pþ

P6 if ~PðtÞ0P6 with p ¼ 1� p0

P6 þ z if ~PðtÞ0P6 with p0;

8>>><
>>>:

d~PðtÞ
dt
¼ �

~PðtÞ � P0
a

� �3

þ
~PðtÞ � P0

a
þ A cos xt

" #
þ DnHðtÞ;

(8)

with the respective probabilities p0 for having a power value beyond
the operation range and aNð0;rÞ-distributed random number z. The
model includes ten parameters in total. A detailed description of the
parameter calibration and all resulting values are given in Appendix.
Six parameters (P0; x; p0; r0) are calibrated on the data before a
time series is to be modeled. P0 determines around which power value
the distribution of values should be centered. The frequency x should
include some limited degree of season-specific variations and is fixed
via Fourier analysis. The remaining four parameters p0 and r0 cali-
brate the curtailment and variability of power beyond the operating
range. The three parameters a ; A, and D are optimized such that the
model reproduces the empirical statistical features most effectively
while avoiding overfitting. The Hurst exponentH will be varied in Sec.
IVB to observe how different autocorrelations affect the generated
power.

B. Results

We get a first glance of the model results by inspecting simulated
time series. We vary the Hurst exponent H from diffusive (H¼ 0.5) to
persistent (H¼ 0.7) up to strongly persistent (H¼ 0.9) dynamics to
account for different degrees of correlation within the model. Thus,
our approach does not incorporate the uncovered crossover behavior
that would separate between different autocorrelations below and
above sc but only account for scales s < sc in the stochastic compo-
nent. Yet, the deterministic component results in strong ramps that
are intended to resemble the observed power ramps that lead to the
Hurst exponent H> 1 for s > sc. We always compare the simulated
results to only one exemplaryWT since the model aims at characteriz-
ing the typical dynamics instead of a single specific WT. Figure 5
shows three randomly chosen numerical time series P(t) with different
Hurst exponents and compares them to one empirical time series at
the bottom. A visual inspection gives a first indication of the similarity
between the empirical results from Sec. III and the modeled time
series. ForH¼ 0.9, the modeled time series reproduces both the transi-
tions between P� and Pþ and the fluctuations around local trends
most accurately. The strong abrupt ramps on short timescales can also
be observed for all modeled time series. Note that if power time series
had uncorrelated fluctuations (red curve), they would apparently tend
to change their local trend more frequently.

After this first visual comparison, we next present a more quanti-
tative comparison of the model and empirical data. Therefore, we con-
sider the bimodality of power statistics, the intermittent behavior of
the increment statistics, and both the autocorrelation and power spec-
tra of power time series.
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The quality of the reproduced PDF shown in Fig. 6 for different
values of H is not as obvious. This time we choose the sampled time
series P(t) whose PDF reproduces the height of the bimodal peaks
most sufficiently but still reflects a typical result. While the PDF for
H¼ 0.9 reproduces the bimodality of the power time series in a satis-
factory manner, the average values (dashed line) clearly differ. For
H¼ 0.5, peak heights cannot be reproduced: a sample of P(t) with
uncorrelated fluctuations tends to occupy both fixed points P� and Pþ
with the same frequency. This behavior is entailed by the enhanced
frequency of transitions we observed in Fig. 5. Yet, it fails to give a con-
vincing result for the mean value even though it should be more stably
centered for a balanced PDF.

The power increments NkðtÞ are an essential quantity for the
control of WTs and grid stability. Besides the analysis in terms of auto-
correlation and power spectra of PkðtÞ (see below), higher statistical
features of the power fluctuations can be grasped by investigating the
statistics of the power increments, yielding higher order statistical fea-
tures of power fluctuations. A comparison of increment statistics
between real and modeled data can display strengths and weaknesses
of the model to capture the intermittent nature of power generation,
expressed by strong correlated fluctuations. To this extent, we compare
the quantiles of the model results for the power increments with the
empirical data. This empirical test clarifies qualitatively in which way
the two distributions generally differ regarding their quantiles.

Since our model captures the effect of different degrees of auto-
correlation for the power time series with the Hurst parameter H, we
can also study the effect of autocorrelation in the power time series on

the increment statistics and possible non-Gaussian characteristics. In
Fig. 7, the quantiles of three simulated power time series with varied H
are plotted against the quantiles of an empirical power time series. If
they were equally distributed, they would follow the diagonal black
line. It becomes apparent that in the strongly persistent regime of
H¼ 0.9, the larger increments that possess the non-Gaussian property
are reproduced most sufficiently. Increments up to jNkðtÞj < 4r are
almost equally distributed to the randomly chosen empirical time
series. The deviations mostly occur in the heavy tails of the distribu-
tions for larger absolute increments. Small increments jNkðtÞj < r are
not adequately described by any of the sampled time series. We point
out that the shape of the QQ–curve for persistent samples P(t) with
H¼ 0.7 differs only slightly from the one withH¼ 0.5.

From this, we conclude that a certain threshold of persistence has
to be exceeded so that big jumps between P� and Pþ dominate and
generate strong heavy tails. Thus, the persistence of power is closely
related to its intermittent behavior regarding its fluctuations. The
results we compared so far demonstrated that the model successfully
reproduces important statistical characteristics of power generation
with respect to the statistical distribution. The variation of Hurst expo-
nents as a tool to incorporate the temporal correlation of power time
series should yet yield a strong impact on the autocorrelation function.
Thus, we analyze how well the autocorrelation function HðsÞ and also
the power spectrum are reproduced by our model. Figure 8 shows in
black the monthly averaged autocorrelation of empirical power time
series. We compare autocorrelations for the three different Hurst
exponents in the same average. The model in general succeeds to

FIG. 5. Comparison between empirical
(bottom) and simulated power time series
for different Hurst exponents H. The black
line represents a typical empirical time
series for one month. The simulated time
series are generated for the same month
and chosen randomly.
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reproduce the slowly decreasing autocorrelation with a decay on
the same timescale. Although we observe the expected relation that
higher values of H lead to a more slowly decaying autocorrelation,
none of the model results yields a sufficient reproduction of the
decay for s � 1 d. Only for H¼ 0.9, the simulated autocorrelation
approaches the empirical one within this interval. In general, the
results for s > 1 d are more applicable and even tend to reproduce
the weak anticorrelation for s > 5 d. The discussed seasonal bumps
are not clearly distinguishable for any of the model results. The
model autocorrelations show stronger fluctuations, which indicates
that the monthly average does not cancel out the impact of
monthly varying timescales as much as for the empirical data. A
more sophisticated approach for the seasonal component in our
model could enhance this aspect.

Finally, Fig. 3(b) shows the three corresponding averaged power
spectra for the model time series (green). In contrast to the empirical

spectrum, the slope remains almost constant for all H values
even beyond the cut-off value (dashed line), yielding lower power for
higher frequencies. Within the fitted region, all three spectra show a
qualitatively similar decay with b � 5=3. In particular, the time series
with the highest persistence again gives the most convincing
result (H¼ 0:5 : b¼ 1:7160:03 ;H¼ 0:7 : b¼ 1:6960:04 ;H¼ 0:9 :
b¼ 1:6460:03).

V. CONCLUSION

We analyzed a dataset comprising a time series of 30 WTs
located at the German offshore wind farm RIFFGAT over a total time
period of one year. As important basic features, we found power values
of each WT to be bimodally distributed with density peaks at zero
power output P� and rated power output Pþ. The power output
PkðTÞ of a WT turned out to have a slowly decreasing autocorrelation,
which connects to general findings in the literature. Beyond these basic

FIG. 6. Comparison between the PDF of empirical (black) and simulated (orange) power time series for one exemplary month. The Hurst exponent H is varied for every histo-
gram. The dashed lines indicate the respective average power values.
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features, we took into account the non-stationarity of time series
by applying DFA to both PkðTÞ. In terms of the Hurst exponent as a
general classifier for autocorrelations of single WTs, different charac-
teristic timescales were identified on which correlations vary between
persistence and more involved nonstationarity, separated by a cross-
over sc � 3 d. Based on these findings, we put forward a reduced form
model for the power output PkðtÞ. With this model, we intended to
provide a tool for reproducing several statistical properties and testing
power generation scenarios with respect to empirically motivated
parameters. To this extent, we employed a nonlinear stochastic differ-
ential equation with a double-well potential and a correlated diffusion
component. Most parameters were estimated empirically, while some
were optimized to capture statistical properties of the data. The model
succeeded to qualitatively reproduce important statistical characteris-
tics such as a bimodal PDF, intermittent fluctuations, and a slowly
decreasing autocorrelation. It thus enriches the modeling perspective
on power generation by focusing on a comprehensive set of statistical
features only while still producing characteristic results. Possible appli-
cations include wind farm or large power network simulations that still
aim at reflecting single WT dynamics adequately. Even for such aggre-
gated large-scale approaches, taking correlations on a single WT scale
into account is essential since models with uncorrelated fluctuations
will underestimate important statistical effects such as heavy tailed dis-
tributions and persistence.

Anyway, the proposed model should be regarded as the first
step toward a study that quantitatively reflects on the model
dynamics in greater detail and undermines the significance of the
obtained results. While a systematic examination of parameter
effects on the outcome remains to be done, some parameter esti-
mation methods could also be subject to further improvement.
The observed crossover that uncovers different correlations on
timescales t � 3 d could be of interest for possible model exten-
sions. The strong ramping behavior on short timescales, which is
suspected to entail the found crossover, is an important compo-
nent in the context of predictability despite strong intermittent
fluctuations. Finally, we only focused on single WTs. An evident
extension of the proposed model would be to aggregate several cor-
related single WTs’72 and wind farms’73 model power outputs and
study characteristics of aggregated output,72 especially with regard
to an amplification of correlated fluctuations at the aggregated
level.
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APPENDIX: PARAMETER ESTIMATION

We briefly provide an overview of the model parameters and
explain the methods of how they are calibrated. To solve the SDE,
we use the Euler–Maruyama-method for SDEs with colored noise.74

We sample the latter by using the so-called Harte-method, applying
the Durbin–Levinson-algorithm.75 Averaged over 10 000 samples, it

FIG. 7. Direct comparison between empirical and simulated distributions of power
increments NðtÞ in a QQ-plot for different Hurst exponents H. The ordinate shows
the quantiles of the modeled distribution, and the abscissa shows those of the
empirical distribution. The black diagonal line serves as a reference for an equal
distribution of both.

FIG. 8. Comparison between the autocorrelation HðsÞ of empirical and simulated
power time series for different Hurst exponents H. The maximum delay s is one
week. The dashed horizontal lines represent the averaged level of significance.
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takes us 0:09560:009 s to simulate a power time series covering a
period of one month with the hardware setup used in this study.
One advantage of our model lies in the fact that we can already fix
six of ten parameters before we simulate a single time series only by
adjusting them in a particular way to the empirical data.
Consequently, the estimation of these six fitted parameters is
enhanced, and more data are included. This data based approach
enables us to assign interpretations to the parameters in context of
the empirical data

• Center of potential function P0: the most apparent value for the
center of the symmetric double-well potential P0 is to fix it at the
center of the empirical range of power values P0 ¼ 1800 kW.
This choice simply ensures that for an appropriate choice of a,
the model reproduces the bimodal peaks at the correct power
output.

• Seasonal frequency x: since we introduced the frequency x of
the periodical driving force into our model to include seasonal
variations, we estimate it from the empirical wind speed time
series u(t) by applying Fourier analysis. By choosing x to be the
Fourier frequency of the highest Fourier amplitude, we make
sure that it at least resembles the most dominant seasonal fre-
quency in the data. We choose the wind speed time series u(t)
instead of the power times P(t) because we regard u(t) to be the
external drive for the WTs analogously to an external driving
force of a periodically driven oscillator. This simple approach can
only account for a rough estimation of the seasonal variations.

• Probabilities for excess/negative power p0: both parameters need
to be set with respect to the likelihood of empirical power values
beyond the operating range. A power lower than P� or higher
than Pþ can only be generated if the corresponding wind speed u
is lower than u� or higher than uþ, respectively. Hence, we cal-
culate the probabilities for such wind speed values from the
empirical data and use these probabilities to fix the model proba-
bilities p0. Since these probabilities show significant variations
between different months, we obtain 24 values in total that can
be interpreted as the monthly likelihood for the WT to generate
power beyond its operating range.

• Standard deviation for excess/negative power r0: how strongly
does power fluctuate around P� and Pþ when this range is
exceeded?—As we already stated, we choose a simple Gaussian
distribution for the power values around these two values. We fix
r0 applying a Gaussian empirical fit around P� and Pþ, respec-
tively. Since this empirical standard deviation hardly varies for
different months, we only obtain the two values rþ ¼ 68:93 kW
and r� ¼ 4:47 kW.

The remaining four parameters should be regarded as more
dynamical parameters that we try to estimate by optimizing a cer-
tain statistical feature with respect to this parameter. One excep-
tion is the Hurst exponent H that we vary between the three
values H ¼ 0:5 ; 0:7 ; 0:9 in Sec. IV B toward a better understand-
ing of the impact of power law autocorrelations on power genera-
tion. We briefly sketch the estimation methods for the parameter
a of the potential function, the diffusion strength D, and the
strength of the seasonal variation A. For each parameter, we opti-
mize it by sampling a reasonable number of time series for each of
the 12months.

• Curtailment indicator a: after we have set P0 ¼ 1800 kW, the
most obvious choice for a would also be a ¼ 1800 kW to ensure
that the bimodal peaks center around the correct fixed points
P� ¼ 0 kW and Pþ ¼ 3600 kW. Anyway, the artificial flattening
procedure plays an important role in this context: if we choose
a ¼ 1800 kW, the amount of values that are either set to one of
the thresholds P� or Pþ or scattered around them is too high
compared to the empirical data. This hints at choosing a value
a < 1800 kW. We optimize a by sampling power time series
with different a < 1800 kW and calculating the amount p0 of
power values above (below) or around Pþ (P�). The resulting
value (for fixed H) minimizes the difference between the respec-
tive empirical and simulated values. Consequently, we regard the
difference ðP0 � aÞ as the power difference that entails how
strongly the empirical power time series are subject to
curtailment.

• Diffusion strength D: the constant diffusion strength D deter-
mines how strongly the stochastic component dominates power
generation. It is an important parameter in the context of transi-
tion timescales between the two fixed points P� and Pþ. If we
regard DnHðtÞ as the diffusion function of a Langevin equation,
we can apply the standard method to obtain this diffusion func-
tion directly from the empirical data.76 It can be shown77 that the
diffusion function can be extracted by calculating

Dð2ÞðP; tÞ ¼ lim
s!0

hðPðt þ sÞ � PðtÞÞ2i
s

				
PðtÞ¼P0

: (A1)

Since this method potentially yields erroneous results for corre-
lated noise processes, we can only expect an approximate esti-
mate of D.78 Nevertheless, we follow this approach by
minimizing the difference minD½jDemp

2 ðPðtÞÞ � Dsim
2 ðPðtÞ;DÞj� of

the empirical and the model diffusion function with respect to D.
• Seasonal variation strength A: A biases the power generation
toward one of the two peaks of the bimodal power distribution.
In winter months, a high average power output is likely, whereas
in spring, usually lower wind speeds occur, which lead to a pro-
nounced peak around P�. Thus, we can calculate

EðtÞ ¼
Xt
t0¼t0

Pðt0Þ; (A2)

resembling an energy indicator for the empirical and simulated
data to minimize the difference between the respective time-
averaged values hEðtÞit . We consider A to be optimized when
this difference of averaged accumulated power values is mini-
mized for each month.

We summarize the parameter choices we obtain from the above-
mentioned estimation methods (Table I).

TABLE I. Estimated parameters for different Hurst exponents H.

H a ðkWÞ D kW=
ffiffi
s
p� �

A ðkW=sÞ

0.5 1755 355 0.15
0.7 1445 360 0.17
0.9 1235 485 0.26
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68H. Akçay and T. Filik, “Wind speed forecasting with missing values,” in 2017
Seventh International Conference on Information Science and Technology
(ICIST) (IEEE, 2017), pp. 51–56.

69D. Koutsoyiannis, “The Hurst phenomenon and fractional Gaussian noise
made easy,” Hydrol. Sci. J. 47, 573–595 (2002).

70Y. Kalmykov, W. Coffey, and S. Titov, “On the Brownian motion in a
double-well potential in the overdamped limit,” Physica A 377, 412–420
(2007).

71L. Gammaitoni, P. H€anggi, P. Jung, and F. Marchesoni, “Stochastic resonance,”
Rev. Mod. Phys. 70, 223 (1998).

72P. Chen, P. Siano, B. Bak-Jensen, and Z. Chen, “Stochastic optimization of
wind turbine power factor using stochastic model of wind power,” IEEE Trans.
Sustainable Energy 1, 19–29 (2010).

73L. Guan, B. Wen, Y. Zhuo, L. Wu, and B. Zhou, “Multiple wind power time
series modeling method considering correlation,” in 2018 International
Conference on Power System Technology (POWERCON) (IEEE, 2018), pp.
1–7.

74G. Milshtein and M. Tret’yakov, “Numerical solution of differential equations
with colored noise,” J. Stat. Phys. 77, 691–715 (1994).

75A. McLeod, H. Yu, Z. Krougly et al., “Algorithms for linear time series analysis:
With R package,” J. Stat. Software 23, 1–26 (2007).

76R. Friedrich, S. Siegert, J. Peinke, M. Siefert, M. Lindemann, J. Raethjen, G.
Deuschl, G. Pfister et al., “Extracting model equations from experimental data,”
Phys. Lett. A 271, 217–222 (2000).

77S. Siegert, R. Friedrich, and J. Peinke, “Analysis of data sets of stochastic sys-
tems,” Phys. Lett. A 243, 275–280 (1998).

78F. Ghasemi, M. Sahimi, J. Peinke, and M. Tabar, “Analysis of non-stationary
data for heart-rate fluctuations in terms of drift and diffusion coefficients,”
J. Biol. Phys. 32, 117–128 (2006).

Journal of Renewable
and Sustainable Energy ARTICLE scitation.org/journal/rse

J. Renewable Sustainable Energy 12, 023301 (2020); doi: 10.1063/1.5139039 12, 023301-13

VC Author(s) 2020

https://doi.org/10.1103/PhysRevE.73.016117
https://doi.org/10.1016/j.physa.2008.04.023
https://doi.org/10.1080/02626665609493644
https://doi.org/10.1109/TCSI.2004.836846
https://doi.org/10.1038/srep00315
https://doi.org/10.1103/PhysRevE.96.012141
https://doi.org/10.1016/S0370-1573(00)00070-3
https://doi.org/10.1063/1.166141
https://doi.org/10.1103/PhysRevE.81.031101
https://doi.org/10.1103/PhysRevE.64.011114
https://doi.org/10.1103/PhysRevE.65.041107
https://doi.org/10.1002/we.2074
https://doi.org/10.1002/we.2354
https://doi.org/10.1002/we.2354
https://doi.org/10.3390/en5030621
https://doi.org/10.1088/1367-2630/17/5/055001
https://doi.org/10.1088/1367-2630/17/5/055001
https://doi.org/10.1016/j.energy.2016.10.041
https://doi.org/10.1080/02626660209492961
https://doi.org/10.1016/j.physa.2006.11.067
https://doi.org/10.1103/RevModPhys.70.223
https://doi.org/10.1109/TSTE.2010.2044900
https://doi.org/10.1109/TSTE.2010.2044900
https://doi.org/10.1007/BF02179457
https://doi.org/10.18637/jss.v023.i05
https://doi.org/10.1016/S0375-9601(00)00334-0
https://doi.org/10.1016/S0375-9601(98)00283-7
https://doi.org/10.1007/s10867-006-9006-z
https://scitation.org/journal/rse

	s1
	s2
	s2A
	s2B
	s2C
	d1
	f1
	s3
	d2
	f2
	d3
	f3
	s4
	s4A
	d4
	f4
	d5
	d6
	d7
	d8
	s4B
	f5
	s5
	f6
	app1
	f7
	f8
	dA1
	dA2
	t1
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41
	c42
	c43
	c44
	c45
	c46
	c47
	c48
	c49
	c50
	c51
	c52
	c53
	c54
	c55
	c56
	c57
	c58
	c59
	c60
	c61
	c62
	c63
	c64
	c65
	c66
	c67
	c68
	c69
	c70
	c71
	c72
	c73
	c74
	c75
	c76
	c77
	c78

