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Identifying the nature of magnetism, itinerant or localized, remains a major challenge in condensed-matter
science. Purely localized moments appear only in magnetic insulators, whereas itinerant moments more or
less co-exist with localized moments in metallic compounds such as the doped-cuprate or the iron-based
superconductors, hampering a thorough understanding of the role of magnetism in phenomena like
superconductivity or magnetoresistance. Here we distinguish two antiferromagnetic modulations with
respective propagation wave vectors at Q6 5 (H 6 0.557(1), 0, L 6 0.150(1)) and QC 5 (H 6 0.564(1), 0, L),
where (H, L) are allowed Miller indices, in an ErPd2Si2 single crystal by neutron scattering and establish their
respective temperature- and field-dependent phase diagrams. The modulations can co-exist but also
compete depending on temperature or applied field strength. They couple differently with the underlying
lattice albeit with associated moments in a common direction. The Q6 modulation may be attributed to
localized 4f moments while the QC correlates well with itinerant conduction bands, supported by our
transport studies. Hence, ErPd2Si2 represents a new model compound that displays clearly-separated
itinerant and localized moments, substantiating early theoretical predictions and providing a unique
platform allowing the study of itinerant electron behavior in a localized antiferromagnetic matrix.

U
nravelling the interplay between opposite but also complementary phenomena stands at the forefront of
condensed-matter science. For example, unconventional Cooper pairs, on the one hand, can be glued by
the common thread of spin fluctuations; on the other hand, they can be competitively ruined by the

formation of long-ranged ferromagnetic (FM) or antiferromagnetic (AFM) ordering1–13. The archetypal picture
of magnetism displays an opposing dual character, i.e., itinerant electron magnetism with weak interactions and
localized moments with strong Coulomb repulsions1. Understanding the behaviour of itinerant electrons in the
presence of localized moments may shed light on nontrivial properties of correlated electron systems such as spin-
or charge-density waves or superconductivity1–26, for which uniting both types of magnetism in one compound
with clear electronic origins is necessary22,27. Experimentally, it is hard to clearly distinguish itinerant from
localized moments in 3d-based strongly-correlated electron materials like the copper-oxide superconductors2,22,
despite the fact that they can be theoretically modeled1. Consequently, the experimentally observed smaller
moment size in point compared to the expected theoretical saturation value28 can be attributed either to the
screening effect of itinerant electrons or to the frustration effect of localized spins. In addition, the nature of the
antiferromagnetism or spin-density waves (SDWs) of iron-superconductors is still hotly debated as to whether
the magnetic neutron excitations can be best described by the itinerant or localized picture8,15–21. Disentangling
these arguments necessitates the search for a model system that hosts clearly-defined itinerant and localized spins,
thus permitting a complete understanding of their coupling mechanism.

The 5f electrons in actinides such as U-based compounds UPt3 and UPd2Al3 show experimental and theor-
etical evidence for a localized and delocalized dual nature29–37 which may play an important role in producing
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heavy-fermion superconductivity38. In strongly spin-orbit coupled
systems such as 4f - or 5f-based compounds, a novel spin-orbit den-
sity wave was proposed as an emergent quantum phase with a break-
ing of translational while preserving time-reversal symmetry, which
theoretically sheds light on the intriguing ‘‘hidden-order’’ of
URu2Si2

39. For lanthanide-based compounds, the rare-earth (RE,
except cerium) 4f moments are generally localized because unpaired
4f electrons are well shielded by the 5s2p6 shells. The 4fn5dm6s2 (n 5

2–7 and 9–14; m 5 0, 1) valence electrons in lanthanide-based con-
ductors act usually as a mediator for the interactions between 4f
moments in Ruderman-Kittel-Kasuya-Yosida (RKKY) exchanges
(i.e., the long-range ordered 4f moments interact indirectly with each
other via conduction bands since the direct coupling between loca-
lized 4f moments is generally weak)40, or are ferromagnetically polar-
ized into magnetic polarons (i.e., local short-range FM regimes) by
the localized 4f moments41–43. It is thus difficult for the conduction
electrons to form a long-ranged AFM ordering. However, taking into
account the coupling between nesting electrons and hole parts of
Fermi surface, the 4f-based conductors could provide the possibility
for combining localized 4f moments and SDWs of itinerant
electrons.

The SDW state, a low-energy self-organized collective modulation
of electron spins, often appears in electronic conducting materials
such as organic linear-chain compounds, low-dimensional metals or
superconductors13,23–25,27. Since their first observation in chro-
mium23, SDWs display progressively appealing low-temperature
properties, e.g., a proximity with charge-density waves (CDWs)

and unconventional superconductivity13,22–25,27,44. Above a threshold
field, SDWs can be described as a set of delocalized AFM spins25.

Intermetallic REPd2Si2 silicides all crystallize with the same
ThCr2Si2-type (Fig. 1) tetragonal I4/mmm structure (a 5 b 5
4.0987(1) Å, and c 5 9.8762(1) Å at ambient conditions, as listed
in Table 1) as that of the family of 122-iron-pnictides45–47 and exhibit
a wide range of interesting physical properties, e.g., pressure-induced
superconductivity in CePd2Si2 and anomalous valence fluctuations
in EuPd2Si2

48. Early theoretical proposals49 for the 4f conductors with
extended RKKY-interactions predicted that localized 4f moments
can promote a SDW state in the itinerant conduction electrons. So
far, to our knowledge, no clear example of such a material with
distinguishable propagation vectors has been identified. Here we
report on the first single-crystal neutron scattering study of
ErPd2Si2

50–55. We discover two distinct incommensurate spin states
and attribute one to the localized 4f electrons while attributing the
other mainly to itinerant valence bands. We also build a detailed
knowledge of the virtual coupling between both states, which is actu-
ally intractable in 3d-metallic systems. Our findings correspond to
theoretical predictions49 and thus establish a new model material.

Results
Neutron diffraction with polarization analysis. Figure 2 shows data
from neutron diffraction with polarization analysis after the sample
was cooled to 3 K in zero field. The non-spin-flip (NSF) channel
shows only the nuclear Bragg reflections structurally permitted by
the tetragonal space group. The spin-flip (SF) scattering shows
magnetic Bragg peaks with two incommensurable propagation
vectors. One set of peaks, that will be called I1 and I2 (Fig. 3),
appear at Q6 5 (H 6 0.557(1), 0, L 6 0.150(1)) and the second
set, which will be called IC (Fig. 3), appear at QC 5 (H 6 0.564(1), 0,
L), where (H, L) are the Miller indices for allowed nuclear reflections.
Nuclear coherent scattering of polarized neutrons will not flip the
neutron spin. Magnetic scattering via polarized neutrons can flip
the neutron spin and is determined by the relative direction of the
neutron polarization vector P̂ with regard to both the scattering
vector Q̂ and the direction of the ordered-moments m̂56,57. In our
study, P̂ is normal to the scattering plane (H, 0, L), i.e., parallel to
the b (or a) axis. In this case, the moment-dependent cross-sections
can be written as:
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where the subscripts NSF and SF refer to the non-spin flip and spin
flip cross-sections, respectively, nsi means the nuclear spin incoher-
ent contribution, and nuc refers to nuclear coherent and isotopic

Figure 1 | Powder X-ray diffraction data and crystal structure of single-
crystal ErPd2Si2 at 300 K. (a) Observed (circles) and calculated (solid

lines) in-house X-ray powder-diffraction (XRPD) patterns of a pulverized

ErPd2Si2 single crystal at ambient conditions obtained on an in-house

diffractometer employing the copper Ka1 5 1.5406(9) Å radiation. The

vertical bars mark the positions of nuclear Bragg reflections, and the lower

curves represent the difference between observed and calculated patterns.

Within the experimental accuracy, no detectable impurity phase is present.

The results of the refinement are listed in Table 1. (b) The corresponding

room-temperature crystal structure as refined.

Table 1 | Summary of the refined room-temperature structural parameters of single-crystal ErPd2Si2 from X-ray powder diffraction

Pulverized single-crystal ErPd2Si2

Structure Tetragonal (ThCr2Si2-type), I4/mmm

a, b(5a), c (Å) 4.0987(1) 4.0987(1) 9.8762(1)
a, b, c (u) 90 90 90
Atom Site x y z B (Å2)
Er 2a 0 0 0 3.06(3)
Pd 4d 0 0.5 0.25 3.53(3)
Si 4e 0 0 0.3798(2) 3.62(6)
Rp (%): 3.09; Rwp (%): 4.41; RB (%): 2.70; RF (%): 2.19; x2: 3.20.
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incoherent contributions. The magnetic contributions, labelled by
mag, are from two parts: the component of m̂ that is along the dir-
ection of P̂ contributes to NSF scattering, i.e.,

ds

dV

� �E
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! m̂EP̂
� �2

; ð3Þ

the component that is normal to both P̂ and Q̂ gives rise to SF
scattering56, i.e.,

ds
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Figure 2 | Neutron polarization analysis data measured at 3 K using D7 (ILL). (a) The non-spin-flip, i.e., NSF, channel. This channel measures nuclear

scattering and magnetic scattering from moment components parallel to P̂. (b) The spin-flip, i.e., SF, channel. This channel measures magnetic

scattering from moment components lying in the scattering plane. Here the same colour code is used for both intensities. In this study, the neutron

polarization, P̂, is perpendicular to the scattering plane (H, 0, L).

Figure 3 | Temperature dependence and reciprocal space maps in zero field using IN12 (ILL). (a) Temperature dependent L-scans at (Hmax, 0, L).

To correctly monitor the L-scans we first located the Hmax for IC at each temperature. (b) L-scans at representative temperatures. The intensity is vertically

shifted for clarity. The solid lines are Lorentzian fits. Error bars are statistical errors. To clearly display the existence of the magnetic diffuse scattering

as shown in (a) and (b), the observed magnetic intensity above 3.8 K is multiplied by 20. (c-e) Q-map in the (H, 0, L) scattering plane at 1.7, 3 and 7 K,

respectively. The ellipse in (e) represents the expected Q-resolution.

www.nature.com/scientificreports
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In our study, the a and b axes are equivalent in the tetragonal
symmetry. There is no magnetic signal in the NSF channel
(Fig. 2a), therefore, the moments lie in the (H, L) plane, mainly along
the crystallographic c axis56 consistent with the powder neutron-
diffraction study50. The uniaxial moment direction determined for
the two spin states may be attributed to the Ising property of Er ions
with a dominant crystal-field ground state j615/2. which leads to a
high magnetic anisotropy along the c axis50. The observed propaga-
tion vectors differ from those proposed in the neutron-powder-
diffraction studies50,51 where positive and negative momenta cannot
technically be differentiated.

Reciprocal space maps and temperature-dependent phase diagram.
Figure 3 shows the temperature variation of the magnetic Bragg peaks.
Only the I6 peaks are visible at the lowest temperature 1.7 K (Fig. 3c)
in this study. As shown in Figs. 3a and b, when the temperature is
increased there is a slight decrease in the peak intensities and the
fractional L. The intensities drop sharply at ,2.9 K, and the IC peak
suddenly appears (Fig. 3d). The intensities for I6 continue to decrease
gradually with increasing temperature while IC intensity rises sharply
to reach a maximum at ,3.2 K before rapidly decreasing. The peaks
cease to be sharp resolvable features and combine to become a weak
diffuse peak above TN ,4.2 K (Fig. 3e). The temperature-dependent
intensities are summarized in Fig. 4, showing a phase diagram that
may be divided into three clear regimes.

Magnetic-field dependent phase diagram. The magnetic-field
dependence of the intensities were measured at 3 K, which is the
point where the intensities of I6 and IC are roughly equivalent as

Figure 4 | Temperature-dependent phase diagram of the two spin states
in zero field. Integrated magnetic intensity from the Q-scans versus

temperature. The phase diagram clearly shows three regimes. We attribute

regime I to the AFM state from purely localized 4f moments; regime II to a

mixture of localized 4f moments with a SDW from weakly-pinned

collective spins in the valence bands (details in the text); and regime III to

large amplitude short-ranged spin orders. The error bars are from

Lorentzian fits.

Figure 5 | Magnetic-field dependent phase diagram of the two spin states at 3 K. (a) H-scans across the IC peak with increasing magnetic field. (b) Hmax

(obtained from our Lorentzian fits) of the H-scans around IC (diamonds) and nuclear (2, 0, 0) (triangles) Bragg peaks as a function of both increasing

(solid symbols) and decreasing (void symbols) magnetic field (directions as marked). (c) L-scans at (Hmax, 0, L) with increasing magnetic field, with Hmax

taken from (b). (d) Integrated magnetic intensities of the I1 (circles) and I- (squares) peaks (along the L-direction) and of the IC (diamonds) peaks (along

the H-direction) as a function of increasing (solid symbols) and decreasing (void symbols) magnetic field. The lines are guides to the eye. The error

bars are from Lorentzian fits.

www.nature.com/scientificreports
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shown in Fig. 4. The results are summarized in Fig. 5. The IC

intensities remain stable with increasing field until a threshold
value of ,0.1 T. Then they rapidly decrease as the field is
increased up to ,0.17 T (m0H , 0.01 meV) (Figs. 5a, c, d),
accompanied by an obvious shift of the IC Q-position from H 5

1.436(1) to 1.442(1) (Figs. 5b and 6a). The L position keeps
constant (Fig. 5c). In contrast, there are no corresponding changes
in the intensities or positions of I6 (Figs. 5c and 6b) or the underlying
lattice, represented by the (2, 0, 0) nuclear Bragg reflection as shown
in Fig. 5b. This indicates that the I6 peaks are connected relatively
closer with the underlying lattice, while the IC peaks appear to be
relatively independent. This sharp contrast implies that the
electronic origins of the two sets of peaks are completely different
in nature.

Resistivity measurements. The temperature-dependent resistivity
along the ,001. and ,110. directions at zero field is shown in
Fig. 7. Upon cooling, while entering the magnetic regimes of III, II
and I as shown in Fig. 4, there is no appreciable response of resistance
to the formation of the magnetic states consistent with Ref. 54.

Discussion
Our data show evidence for different electronic origins of the mag-
netic peaks. We observe that the I6 peaks persist down to the lowest
temperature (,1.7 K) in this study, and they do not change position
with field (Fig. 5c), and their intensities are constant below the

threshold field (Fig. 5d). This is consistent with a ground-state
AFM structure due to localized moments from the 4f electrons that
are tightly bound within the Er atoms.

We believe that the IC peaks are due to a SDW state from the
following observations: (1) The IC peaks are suppressed with a rela-
tively weak magnetic field of ,0.1 T (,0.006 meV), showing a fra-
gile electronic instability that closely resembles the behaviour of
CDWs driven by the electron-phonon interactions resulting from a
lattice distortion24,44. It is stressed that the tetragonal symmetry of the
crystal lattice is reserved in the whole studied temperature range, i.e.,
there is no any appreciable structural phase transition. In addition,
our neutron polarization analysis confirms that no such CDWs exist
in ErPd2Si2 due to the absence of NSF scattering at the incommen-
surate position; (2) The peak positions shift with a change of the
applied field, independently of the underlying lattice (Fig. 5b), behav-
ing more like a fragile Wigner-electron-crystal58. This indicates that
the electrons responsible for the magnetic order are able to move
easily in the crystal like those freely-distributed for a metallic bond-
ing; (3) It is unlikely that localized 4f electrons in ErPd2Si2 would
form two competing long-range magnetic states with the same
moment direction within one pure tetragonal phase in the absence
of magnetic contributions from the Pd and Si ions; (4) The resistivity
of single-crystal ErPd2Si2 (Fig. 7) displays no appreciable response to
the appearance of IC peaks. (5) The IC intensity is not restored on
removing the magnetic field, but indeed is recovered if the temper-
ature is raised to 10 K (above TN) for ,3 mins and then cooled to

Figure 6 | Q-scans around the two spin states at representative fields as marked and 3 K. (a) H-scans around (H, 0, 0) at selected fields clearly showing

that the H-center shifts to higher values as the field increases. (b) L-scans around (Hmax, 0, 0) with Hmax taken from (a) at selected fields clearly

showing that with increasing field, the central peak corresponding to the SDW state weakens largely and almost vanishes into the background above

,0.18 T. (c) H-scans around (H, 0, 0) at selected fields clearly showing that with decreasing field, the H-center keeps almost unchanged. (d) L-scans

around (Hmax, 0, 0) at selected fields clearly showing that while decreasing the field to 0 T, the central peak corresponding to the SDW state does not come

back as shown in (b). These interesting field- and temperature-dependent behaviors indicate that the itinerant SDW state, unlike that of the conventional

long-ranged AFM ordering (a magnetic domain), is much more delicate consistent with the previous Mössbauer study [50]. The solid lines in (a–d) are

Lorentzian fits, and error bars are statistical errors. For clarity, the intensities in (b–d) are vertically shifted.

www.nature.com/scientificreports
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3 K. By contrast, the I6 intensity not only remains on the application
of a field, it increases after removing the field. This clearly indicates
that I6 and IC have different electron origins. Combining these five
points leads us to propose that the IC peaks are due to a SDW state,
which is a consequence of the weak (in view of the small threshold
field) electron-electron interactions25 mediated by the 4f moments49,
plausibly associated with the itinerant conduction electrons near the
Fermi level.

Figures 3 and 4 show clearly the coexistence and competition
between the two modulated orders, which can be explained through
a mechanism where conduction electrons contribute to both a SDW
state, through Fermi surface nestings and s-f couplings49, and to
mediating the dominant RKKY interactions between localized 4f
moments40. These two functions are in general competitive, leading
to a breakdown of the SDW state as the local-moment magnetism
starts to fully develop below ,2.9 K. A similar breakdown also
occurs in the field dependence, where the fragile SDW state is sup-
pressed above ,0.17 T. Once above the field threshold, those con-
duction electrons that contribute to the SDW state then decouple and
participate in the RKKY exchanges. The net result is that the IC Q-
positions change, and their intensities are suppressed and unable to
regain the original values when the field is removed (Figs. 5b, 5d,
6c and 6d), whereas the I6 intensities grow with increasing field
above ,0.17 T. Most importantly, the I6 intensities almost linearly
increase while decreasing the strength of magnetic field. The sharp
suppression of the SDW state (Figs. 5a, c and d) at the threshold
magnetic field is ascribed to the weak s-f couplings. The resistivity
(Fig. 7) is insensitive to the change of the two spin states because the
4f electrons responsible for the dominant magnetic state are localized
and seldom participate in the electrical conductivity. The collec-
tively-organized conduction electrons responsible for the weakly-
pinned low-energy SDW state tend to be delocalized due to the

extremely small threshold magnetic field and begin to carry current
in a small potential difference.

To summarize, we have shown that two incommensurate mag-
netic states, with different modulations propagating at Q6 5 (H 6
0.557(1), 0, L 6 0.150(1)) and QC 5 (H 6 0.564(1), 0, L), respect-
ively, but possessing the same moment direction, exist in a ErPd2Si2

single crystal. We have established their temperature and magnetic-
field dependent phase diagrams. We show that both states not only
co-exist at ,3.2 – 4.2 K, but they are also in competition at ,2.9 –
3.2 K. One magnetic state correlates with the underlying lattice inso-
far as both are independent of the applied magnetic field in this study.
In contrast, the other magnetic state is so delicate that a modest
magnetic field of ,0.17 T can suppress it, and it is not recovered
on releasing the field. We thus propose that the two states have
different electronic origins. One state corresponds to the localized
unpaired 4fn electrons associated with the Er atoms, mediated mostly
by the RKKY interactions, whereas the second one is a SDW state
stemming from the conduction electrons, derived probably by the
Fermi-surface nesting and/or their coupling to the local moments.
We thus propose that ErPd2Si2 represents a prototypical model sys-
tem for simultaneously studying the interesting behaviors of itin-
erant and localized moments well-separated in one compound.

Methods
Resistivity measurements and in-house X-ray powder diffraction. The growth and
in-house characterizations of ErPd2Si2 single crystals were previously reported54,55.
The electrical resistivity of a bar-shaped single crystal by standard dc four-probe
technique was measured on a commercial physical property measurement system
(PPMS), and a powder X-ray diffraction study was performed on an in-house
diffractometer with a 2h step size of 0.005u at 300 K, employing the copper Ka1 5

1.5406(9) Å radiation. The powder diffraction data were analyzed by the Fullprof
Suite59.

Crystal quality and alignment. We selected a single piece with a mass of ,1.12 g for
the neutron scattering studies, which was oriented in the (H, 0, L) scattering plane of
the tetragonal symmetry with the neutron Laue diffractometer, OrientExpress60, at
the Institut Laue-Langevin (ILL), Grenoble, France. The mosaic of this single crystal is
0.48(1)u full width at half maximum for the nuclear (2, 0, 0) Bragg reflection at
,230 K. Throughout this paper, the wave vector Q(HKL) (Å21) 5 (QH, QK, QL) is

defined through H, K, Lð Þ~ a
2p

QH ,
b

2p
QK ,

c
2p

QL

� �
quoted in units of r.l.u.,

where a, b, and c are the relevant lattice parameters referring to the tetragonal unit cell.

Neutron polarization analysis. Uniaxial longitudinal neutron polarization analysis
was performed at the D7 (ILL) diffractometer with incident vertically-polarized
neutron spins with l 5 4.8 Å. In this polarization setup, the NSF channel collects
neutron scattering intensities from the nuclear Bragg reflections and the out-of-plane
magnetic moments along the ,010. direction, while the SF channel records the
magnetic intensity from the in-plane moments that are perpendicular to both the b
axis and the scattering vector Q̂56.

Unpolarized neutron scattering. Elastic neutron scattering measurements were
carried out on the same oriented sample at the IN12 (ILL) cold triple-axis
spectrometer with a vertical moderate magnetic field (up to 3.5 T) parallel to the
[010] (or [100]) direction and fixed final energy at 10.03 meV. The single crystal was
top-loaded, and the beam collimation throughout the experiment was kept at open-
309-sample-409-open.

1. Yosida, K. Theory of Magnetism (Springer, Berlin, 1996).
2. Vojta, M. Spins in superconductors: Mobile or not? Nature Phys. 5, 623–624

(2009).
3. Schmitt, S., Grewe, N. & Jabben, T. Itinerant and local-moment magnetism in

strongly correlated electron systems. Phys. Rev. B 85, 024404 (2012).
4. Kou, S-P., Li, T. & Weng, Z-Y. Coexistence of itinerant electrons and local

moments in iron-based superconductors. EPL 88, 17010 (2009).
5. Scalapino, D. J. A common thread: The pairing interaction for unconventional

superconductors. Rev. Mod. Phys. 84, 1383–1417 (2012).
6. Kamihara, Y., Watanabe, T., Hirano, M. & Hosono, H. Iron-based layered

superconductor La[O1–xFx]FeAs (x 5 0.05 – 0.12) with Tc 5 26 K. J. Am. Chem.
Soc. 130, 3296–3297 (2008).

7. Li, H. et al. Phase transitions and iron-ordered moment form factor in LaFeAsO.
Phys. Rev. B 82, 064409 (2010).

8. Zhao, J. et al. Spin waves and magnetic exchange interactions in CaFe2As2. Nature
Phys. 5, 555–560 (2009).

Figure 7 | Temperature variation of the resistance as measured at zero
field. With dc current I parallel to the ,001. axis (up) and along the

,110. zone (down). We note that the threshold of magnetic field for

weakening the SDW state is so small (Fig. 5) that the commercial PPMS is

unable to detect the potential weak magnetoresistance effect. The SDW

state observed here represents more or less a new type of spin state since its

threshold field is extremely small. Therefore, we propose that ErPd2Si2 is a

SDW conductor.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 7968 | DOI: 10.1038/srep07968 6



9. Li, H. et al. Anisotropic and quasipropagating spin excitations in superconducting
Ba(Fe0.926Co0.074)2As2. Phys. Rev. B 82, 140503(R) (2010).

10. Tucker, G. S. et al. Magnetic excitations in underdoped Ba(Fe12xCox)2As2 with
x 5 0.047. Phys. Rev. B 86, 024505 (2012).

11. Steffens, P. et al. Splitting of Resonance Excitations in Nearly Optimally Doped
Ba(Fe0.94Co0.06)2As2: An Inelastic Neutron Scattering Study with Polarization
Analysis. Phys. Rev. Lett. 110, 137001 (2013).

12. Zhang, C. L. et al. Distinguishing s6 and s11 electron pairing symmetries by
neutron spin resonance in superconducting NaFe0.935Co0.045As. Phys. Rev. B 88,
064504 (2013).

13. Steglich, F. et al. Superconductivity in the Presence of Strong Pauli
Paramagnetism: CeCu2Si2. Phys. Rev. Lett. 43, 1892–1896 (1979).

14. Jin, S. et al. Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O
films. Science 264, 413–415 (1994).

15. Diallo, S. O. et al. Itinerant Magnetic Excitations in Antiferromagnetic CaFe2As2.
Phys. Rev. Lett. 102, 187206 (2009).

16. Diallo, S. O. et al. Paramagnetic spin correlations in CaFe2As2 single crystals. Phys.
Rev. B 81, 214407 (2010).

17. Ewings, R. A. et al. Itinerant spin excitations in SrFe2As2 measured by inelastic
neutron scattering. Phys. Rev. B 83, 214519 (2011).

18. Ke, L., Schilfgaarde, M., Pulikkotil, J., Kotani, T. & Antropov, V. Low-energy
coherent Stoner-like excitations in CaFe2As2. Phys. Rev. B 83, 060404(R) (2011).

19. Hu, J. & Ding, H. Local antiferromagnetic exchange and collaborative Fermi
surface as key ingredients of high temperature superconductors. Sci. Rep. 2, 381
(2012).

20. Vilmercati, P. et al. Itinerant electrons, local moments, and magnetic correlations
in the pnictide superconductors CeFeAsO12xFx and Sr(Fe12xCox)2As2. Phys. Rev.
B 85, 220503(R) (2012).

21. You, Y.-Z. & Weng, Z.-Y. Coexisting itinerant and localized electrons. arXiv,
1311.4094v2 (2013).

22. Wu, T. et al. Magnetic-field-induced charge-stripe order in the high-temperature
superconductor YBa2Cu3Oy. Nature 477, 191–194 (2011).

23. Fawcett, E. Spin-density-wave antiferromagnetism in chromium. Rev. Mod. Phys.
60, 209–283 (1988).
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