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AbstratWe propose a stabilized �nite element method based on the Sott-Vogelius elementin ombination with either a loal projetion stabilization or an edge oriented sta-bilization based on a penalization of the gradient jumps over element edges. Weprove a disrete inf-sup ondition leading to optimal a priori error estimates. Thetheoretial onsiderations are illustrated by some numerial examples.1 IntrodutionThe approximation of �ow at high Reynolds numbers remains a halleng-ing task. In fat due to the energy onservation properties of the standardGalerkin method and the fat that the inompressibility ondition is satis�edonly weakly the standard Galerkin �nite element method fails when the lo-al Reynolds number is high even in the linearized ase. The reason for thisis essentially the fat that the visous dissipation is too small ompared tothe onvetion term or the term imposing inompressibility. When these non-symmetri terms are big the solution may be polluted by spurious osillations.In order to ounter these e�ets stabilized �nite element methods have beenproposed, taking its origin in the SUPG method. One an distinguish twoases:(1) use of equal order interpolation for veloities and pressure(2) use of an LBB-stable veloity-pressure pair.In the �rst ase the inf-sup ondition on disrete level is satis�ed thanks tosome pressure stabilization tehnique. However, for both ases e�ets due todominating onvetion and e�ets due to insu�ient ontrol of the inom-pressibility ondition must be stabilized. For stabilized methods applied tothe inompressible Navier-Stokes' equation or Oseen's problem we refer to thework of Johnson and Saranen [19℄, Hansbo and Szepessy [17℄, Tobiska and Ver-fürth [26℄, and Frana and Frey [12℄ in the ase of SUPG type stabilizationsand Braak and Burman [3℄ and Burman et al. [5℄ in the ase of more reentadvanes using loal projetion or interior penalty stabilization with equal or-der interpolation. For work on inf-sup stable elements with stabilization werefer to Lube et al. [15℄ for SUPG type stabilization and Burman and Hansbo[8℄ or Burman and Fernàndez [6℄ for interior penalty type stabilizations.In numerial experiments it has been observed that when using equal orderinterpolation the stabilization of the divergene only introdues additionaldamping and it is unlear if it is neessary in pratie. The situation is di�erentin the ase of LBB-stable veloity-pressure pairs, here additional stabilizationPreprint submitted to Elsevier Siene 11 Otober 2006



of the divergene turns out to be of importane both from a theoretial andnumerial point of view, see [15,21℄. This is awkward sine the term stabiliz-ing the divergene is ill-onditioned, and may introdue additional ouplingsin the system matrix. In this paper we propose to use the lowest order Sott-Vogelius element [25,27℄ for the omputation of inompressible �ows. In twospae dimensions this element orresponds to pieewise quadrati ontinuousinterpolation for the veloities and pieewise a�ne disontinuous interpolationfor the pressure. Satisfation of the inf-sup ondition is obtained thanks to amaro element struture of the omputational mesh. It follows that the di-vergene of the veloity spae is inluded in the pressure spae and hene thedisrete inf-sup ondition gives ontrol also of the divergene of the veloitiesin norm L2. In fat, if we onsider inompressible �ow, the disrete solutionwill be pointwise divergene free. Thanks to this fat we do not need to on-sider any stabilization of the divergene. The only stabilization term added isa term needed to ontrol spurious osillations due to dominating onvetion.In the �rst part of the paper we onsider an abstrat form of the stabilizationoperator, speifying what onditions have to be satis�ed for the error analy-sis to hold. We then give two examples of stabilization operators that satisfythe onditions: the loal projetion stabilization of Beker and Braak andthe interior penalty stabilization proposed by Burman and Hansbo. It shouldbe noted that one might just as well onsider a turbulene model based onphysial onsiderations. The error analysis below (valid for smooth solutions)will then be onditioned by the weak-onsisteny properties of the turbulenemodel.An outline of the paper is as follows: in the Setion 2 we introdue the Oseen'sequation whih will serve as linear model problem, in Setion 3 we propose a�nite element disretization of the model problem based on the Sott-Vogeliuselement and a stabilization operator for the onvetive terms. Then in Setion4 we prove an inf-sup ondition giving ontrol both of the L2-norm of thepressure and the L2-norm of the divergene of the veloities. Using the inf-supondition we then prove an error estimate in a norm that is dominated bythe H1 norm of the veloities in the low Reynolds number regime and by the
H(div) norm of the veloities in the high Reynolds number regime. In Se-tion 5 we show how two di�erent stabilization operators enter the frameworkproposed in the previous setion. Finally in Setion 6 we give some numerialillustrations using the Sott-Vogelius element in ombination with the interiorpenalty stabilization on gradient jumps.

2



2 Continuous Oseen equationWe onsider the generalized Oseen equation for (u, p) in a polyhedral domain
Ω ⊂ R

d, d ∈ {2, 3},
−ν∆u + a · ∇u + αu +∇p = f in Ω

−∇ · u = g in Ω (1)
u = 0 on ∂Ω,where u, a ∈ [H1

0 (Ω)]d =: V d, a ∈ [W 1,∞(Ω)]d ∩ H(Ω), p, g ∈ L2
0(Ω) =: Q,f ∈ [L2(Ω)]d. By H(Ω) we denote the funtions u ∈ [L2(Ω)]d suh that∇·u = 0and u · n = 0 on ∂Ω. L2

0(Ω) is the subset of L2(Ω) with zero average. ν and
α are positive salars, f and g are given soure terms. Usually, the Oseenproblem is a result of linearization of the Navier-Stokes problem. Then a is a�nite element veloity �eld. In the following we will use the notation a . bfor a ≤ Cb, where the onstant C is independent of the mesh size and theparameters ν and α, but not of the loal mesh geometry.The variational formulation of this problem is to �nd (u, p) ∈ X := V d × Qsuh that

A[(u, p), (v, q)] = (f ,v) + (g, q), (2)for all (v, q) ∈ X, where
A[(u, p), (v, q)] := a(u,v) + b(p,v) + b(q,u)

a(u,v) := ν(∇u,∇v) + (a · ∇u,v) + α(u,v) (3)
b(p,v) := −(p,∇ · v)).Here, (·, ·) denotes the L2-salar produt and ‖·‖0,Ω is the orresponding norm.The standard Sobolev norm of the Hilbert spae [Hs(Ω)]d is abbreviated by

‖·‖s,Ω.3 Finite element disretizationLet now Th denote a simpliial triangulation of the domain Ω without hangingnodes. For eah T ∈ Th, we de�ne
hT := max

f⊂∂T
hf ,with hf the diameter of the fae f . Moreover, we assume that the mesh isregular in the sense that 3



• (loal shape regularity) for all simplies T ∈ Th there holds
hT

diam(T )
< C,where diam(T ) means the diameter of the largest insribed ball in T and Cis a �xed onstant;

• (loal quasi uniformity) for any two elements T, T ′ ∈ Th having at least oneommon node there holds hT < ρhT ′ , with ρ > 0.The mesh Th will be alled a maro triangulation and we derive a seondtriangulation T̃h from Th. For eah maro simplex T ∈ Th we onnet itsbaryenter with its verties, in order to onstrut a new triangulation. Intwo spae dimensions we get three triangles from eah maro triangle and inthree spae dimensions we get four tetrahedra from eah maro tetrahedron.This new triangulation T̃h is loally shape regular and loally quasi uniform,although the onstants for interpolation estimates are worse, beause we getlarger angles.For the �nite element disretization we de�ne V k
h as the spae of ontinuousfuntions of pieewise polynomials of order k ≥ 1

V k
h :=

{

v ∈ H1
0 (Ω) : v|T ∈ Pk(T ), for all T ∈ T̃h

}

.ByQl
h we refer to the spae of disontinuous funtions of pieewise polynomialsof order l ≥ 1

Ql
h(T̃h) :=

{

q ∈ L2(Ω) : q|T ∈ Pl(T ), for all T ∈ T̃h

}

.For k ≥ d veloities are approximated in the spae [V k
h ]d, and pressures areapproximated in Qk−1

h .We assume, that there exist projetion operators π̃h: V
d → [V k

h ]d, and πh: Q→
Qk−1

h , with optimal approximation properties
‖v− π̃h(v)‖0,Ω . hmin{r,k+1}‖v‖min{r,k+1}

‖∇(v− π̃h(v))‖0,Ω . hmin{r−1,k}‖v‖min{r,k+1}

(4)for all v ∈ V d ∩ [Hr(Ω)]d, r ∈ N and
‖q − πh(q)‖0,Ω . hmin{s,k}‖q‖min{s,k} (5)for all q ∈ Q ∩ Hs(Ω) and s ∈ N0. We let πh be de�ned by the standard

L2-projetion, whereas the properties of π̃h depend on the stabilization op-erator under investigation. The projetion π̃h will be required to satisfy anorthogonality ondition (v − π̃h(v), zh) = 0 for all zh ∈ [Zh]
d where [Zh]

d is a4



disrete spae that will be spei�ed for eah of the two stabilization methodsin Setion 5.In the following we denote by ah ∈ [V k
h ]d some pieewise linear interpolant of

a satisfying ‖a− ah‖∞,T ≤ hT‖a‖W 1,∞(T ) for all T ∈ T̃h. Usually, we will have
ah 6⊂ H. For the error analysis, we will use the following inverse estimate,whih is valid for all v ∈ Pk(T ), T ∈ T̃h

hT‖∇vh‖0,T . ‖vh‖0,T . (6)The presented mixed �nite element is the well-known Sott-Vogelius element.Sine the triangulation is derived from a regular maro triangulation and sinewe assume k ≥ d, this disretization is LBB-stable for a standard Galerkindisretization of the Stokes problem [1,27℄. Disrete LBB-stability is equivalentto the existene of the Fortin interpolant [10℄, i.e. for all v ∈ V d there is a
πF(v) ∈ [V k

h ]d suh that
∀qh ∈ Q

k−1
h : b(qh,v) = b(qh, πF(v)) ∧ ‖πF(v)‖1,Ω . ‖v‖1,Ω. (7)Moreover, Sott-Vogelius elements have the important property

∇ · [V k
h ]d ⊂ Qk−1

h . (8)In the ase g = 0 this enfores pointwise mass onservation for the standardGalerkin disretization of the Stokes problem. This an easily be derived, sinestandard weak mass onservation for the disrete Stokes solution uh meansthat for all qh ∈ Qk−1
h holds

(−∇ · uh, qh) = 0.Due to (8) we an hoose the speial test funtion qh := −∇ ·uh and we haveexat mass onservation in the L2 sense. But sine disrete solutions uh arepieewise polynomial, we also get ∇ · uh = 0 pointwise inside eah simplex ofthe triangulation. As we shall see, this result holds also for the disrete Oseenproblem.In the following, we are espeially interested in the lowest order ase k = d,but of ourse we are not restrited to it. Denoting the produt spae Xk
h :=

[V k
h ]d×Qk−1

h we propose the following �nite element method: �nd (uh, ph) ∈ X
k
hsuh that

Ah[(uh, ph), (vh, qh)] = (f,vh) + (g, qh),with Ah[(uh, ph), (vh, qh)] := A[(uh, ph), (vh, qh)]

+ Sh(uh,vh)

(9)for all (vh, qh) ∈ X
k
h . 5



Here, Sh(·, ·) is an abstrat stabilization operator that is needed in the ase ofdominant onvetion. For the abstrat stabilization operator we postulate thefollowing properties
• (linearity) for all uh,vh,wh ∈ [V k

h ]d and λ, µ ∈ R we have
Sh(λuh + µvh,wh) = λ Sh(uh,wh) + µ Sh(vh,wh); (10)

• (symmetry) for all uh,vh ∈ [V k
h ]d we have

Sh(uh,vh) = Sh(vh,uh); (11)
• (non-negativity) for all uh ∈ [V k

h ]d we have
Sh(uh,uh) ≥ 0; (12)

• (boundedness) for all uh ∈ [V k
h ]d we have

|Sh(uh,uh)|
1
2 . h

1
2‖uh‖1,Ω; (13)

• (weak onsisteny) for all u ∈ V d ∩ [Hr(Ω)]d with r ≥ 2 we have
|Sh(π̃h u, π̃h u)|

1
2 . hmin(r−

1
2

,k+
1
2
)‖u‖min(r,k+1); (14)

• (stability) there exists a quasi interpolation operator π̃*
h : [Qk−1

h (T̃h)]
d →

[Zh]
d suh that for all vh ∈ [V k

h ]d, w ∈ V d there holds
(w − π̃h(w), π̃*

h(ah · ∇vh)) = 0,

‖h
1
2 (ah · ∇vh − π̃*

h(ah · ∇vh))‖0,Ω . |Sh(vh,vh)|
1
2 .

(15)Lemma 1 (Cauhy-Shwarz for the stabilization operator) For the sta-bilization operator holds for all u,v ∈ V d

|Sh(uh,vh)| ≤ [Sh(uh,uh)]
1
2 [Sh(vh,vh)]

1
2 . (16)PROOF. See the lassial proof for salar produts. There, the properties(10), (11) and (12) are needed.4 A priori error analysisIn the following a priori onvergene analysis we investigate the onvergenebehavior of the proposed method depending on higher regularity assumptionsand the parameters {ν, α, a}. 6



For the analysis we introdue the following energy salar produt for all u,v ∈
V d

(u,v)e := ν(∇u,∇v) + α(u,v)The orresponding energy norm is denoted by ‖·‖e. Further, we introdue thefollowing triple norm for all (u, p) ∈ X

|||(u, p)|||2 := ‖u‖2
e + ‖∇ · u‖2

0,Ω + ‖p‖2
0,Ω.and a mesh-dependent disrete ounterpart for all (uh, ph) ∈ Xk

h aountingalso for the size of the stabilization term
|||(uh, ph)|||

2
h := ‖uh‖

2
e + ‖∇ · uh‖

2
0,Ω + [Sh(uh,uh)] + ‖ph‖

2
0,Ω.Lemma 2 (oerivity) For all u ∈ V d, p ∈ Q we have the following oer-ivity property

Ah[(u, p), (u,−p−∇ · u)] = |||(u, 0)|||2h.PROOF. The proof follows from the anti-symmetry of the onvetive term,sine ∇ · a = 0 holds.Lemma 3 (weak onsisteny) Let (u, p) be the solution of (2) and let (uh, ph)be the solution of (9) then
A[(u− uh, p− ph), (vh, qh)] = Sh(uh,vh).PROOF. The lemma is obtained by subtrating (9) from (2).Lemma 4 (Young) for all a, b ≥ 0 and ǫ > 0 we have

ab ≤
1

2ǫ
a2 +

ǫ

2
b2.Lemma 5 Suppose u ∈ V d ∩ Hr(Ω), r ≥ 2 and suppose that [V k

h ]d is apieewise polynomial spae with k ≥ d, then there holds
|||(u− π̃h(u), 0)|||+ Sh(π̃h(u), π̃h(u))

1
2 .

(

ν
1
2 + α

1
2h+ h0 + h

1
2

)

hmin(r−1,k)

×‖u‖min(r,k+1).(17)PROOF. The lemma is proven by applying (4) and (14).7



Lemma 6 Suppose u ∈ V d∩Hr(Ω), r ≥ 2, p ∈ Q∩Hs(Ω), s > 0 and supposethat [V k
h ]d is a pieewise polynomial veloity spae with k ≥ d and Qk−1

h is theorresponding pressure spae , then there holds
|||(u− π̃h(u), p− πh(p))|||+ Sh(π̃h(u), π̃h(u))

1
2 .

((

ν
1
2 + α

1
2h+ h0 + h

1
2

)

× hmin(r−1,k)‖u‖min(r,k+1)

+hmin(s,k)‖p‖min(s,k)

)

,(18)PROOF. See lemma 5 and (5).Theorem 7 (stability) The stabilized �nite element method in (9) satis�esthe following stability property. For all (uh, ph) ∈ X
k
h with k ≥ d there holds

cS|||(uh, ph)|||h ≤ sup
(vh,qh)∈Xk

h
,

|||(vh,qh)|||6=0

Ah[(uh, ph), (vh, qh)]

|||(vh, qh)|||h
. (19)Here, the onstant cS is independent of the mesh size and does not degenerateas ν → 0.PROOF. By the disrete LBB-stability we �nd vph

∈ V d suh that ∇·vph
=

ph, ∇ · (πF(vph
)) = ph, ‖vph

‖1,Ω . ‖ph‖0,Ω and ‖πF(vph
)‖1,Ω . ‖ph‖0,Ω.Taking (vh, qh) = (−πF(vph

), ph), we ompute
Ah[(uh, ph), (−πF(vph

), ph)] ≥ ‖ph‖
2
0,Ω

− ν‖∇uh‖0,Ω‖∇ πF(vph
)‖0,Ω − α‖uh‖0,Ω‖πF(vph

)‖0,Ω

− ‖uh‖0,Ω‖a‖L∞(Ω)‖∇ πF(vph
)‖ − ‖∇ · uh‖0,Ω‖ph‖0,Ω

− [Sh(uh,uh)]
1
2 [Sh(πF(vph

), πF(vph
))]

1
2 .We onlude using the stability properties of vph

and πF(vph
) and by theboundedness of the stabilization operator (13)

‖πF(vph
)‖0,Ω . ‖ph‖0,Ω,

‖∇ πF(vph
)‖0,Ω . ‖ph‖0,Ω,

[Sh(πF(vph
), πF(vph

))]
1
2 . h

1
2‖ph‖0,Ω.

(20)For eah of the �ve negative terms in the right hand side of the inequality we8



use Lemma 4 with some ǫ > 0, whih is to be determined. We get
Ah[(uh, ph), (−πF(vph

), ph)] & ‖ph‖
2
0,Ω−

1

2ǫ
(ν‖∇uh‖

2
0,Ω + α‖uh‖

2
0,Ω + ‖∇ · uh‖

2
0,Ω

+ Sh(uh,uh) + ‖a‖L∞‖uh‖
2
0,Ω)

−
ǫ

2
(ν + α + 1 + ‖a‖L∞ + 1) ‖ph‖

2
0,Ω.Now we set

ǫ−1 := 2 + ν + α+ ‖a‖L∞and have
Ah[(uh, ph), (−πF(vph

), ph)] & 1
2
‖ph‖

2
0,Ω

−
1

2ǫ
(ν‖∇uh‖

2
0,Ω + (α + ‖a‖L∞)‖uh‖

2
0,Ω

+ ‖∇ · uh‖
2
0,Ω + Sh(uh,uh))

& 1
2
‖ph‖

2
0,Ω −

1

2ǫ
(1 +

‖a‖L∞

α
)|||(uh, 0)|||2h.Setting

M := ǫ−1(1 +
‖a‖L∞

α
) = (2 + ν + α+ ‖a‖L∞)(1 +

‖a‖L∞

α
)we �nally have

Ah[(uh, ph), (−πF(vph
), ph)] & 1

2
‖ph‖

2
0,Ω −

M

2
|||(uh, 0)|||2h.Now we hoose

(vh, qh) := (uh −
2

1 +M
πF(vph

),
1−M

1 +M
ph −∇ · uh)

= (uh,−ph −∇ · uh) +
2

1 +M
(−πF(vph

), ph)and get immediately by lemma 2 and the previous alulation
Ah[(uh, ph), (vh, qh)] &

1

1 +M
|||(uh, ph)|||

2
h.We end the proof by showing that |||(vh, qh)|||h . |||(uh, ph)|||h. Therefore, weuse the triangle inequality for the triple norm and apply the three estimates9



in (20)
|||(vh, qh)|||h ≤ |||(uh,−ph)|||h + |||(0,−∇ · uh)|||h +

2

1 +M
|||(−πF(vph

), ph)|||h

. 2|||(uh, ph)|||h +
2

1 +M
(3

1
2 + ν

1
2 + α

1
2 )‖ph‖0,Ω

. (1 + ν
1
2 + α

1
2 )|||(uh, ph)|||h.We onlude

Ah[(uh, ph), (vh, qh)]

|||(uh, ph)|||h|||(vh, qh)|||h
&

1

1 +M

1

1 + ν
1
2 + α

1
2If we assume that ν ≪ 1 and ‖a‖L∞ = O(1), we get cS ≈ O(min{α, α−

3
2}).In partiular, the estimate is independent from the mesh size.Remark 8 The estimate on cS indiates instability for α→ 0. This behaviorannot be seen in numerial experiments. On the other hand it is known also inthe ase of salar advetion-di�usion-reation equations. In that ase one mayimprove the analysis using exponentially weighted test funtions as proposedin [20℄. Suh an analysis is beyond the sope of the present paper.Theorem 9 (a priori error estimate) Let (u, p) be the solution of (2) and

(uh, ph) be the solution of (9) then, under the same assumptions on the regu-larity of u and p as for Lemma 6, there holds
|||(u− uh, p− ph)||| . hmin(r−1,k)‖u‖min(r,k+1)

+ hmin(s,k)‖p‖min(s,k).
(21)In addition, for the veloities alone we have the result

|||(u− uh, 0)|||+ Sh(uh,uh)
1
2 . hmin(r−1,k)‖u‖min(r,k+1), (22)where the approximation order of the disrete veloities is independent fromthe pressure regularity.PROOF. In the general ase we start using the triangle inequality for thetriple norm

|||(u− uh, p− ph)||| ≤ |||(u− π̃h(u), p− πh(p)|||

+ |||(uh − π̃h(u), ph − πh(p))|||h.The �rst term in the seond line an be estimated immediately by lemma 6.10



In order to obtain the estimate (22) we simply start the analysis with
|||(u− uh, 0)||| ≤ |||(u− uh, πh(p)− ph)|||

≤ |||(u− π̃h(u), 0)|||+ |||(uh − π̃h(u), ph − πh(p))|||h.
(23)Similar to the previous ase we an estimate the �rst term of the seond lineby lemma 5. We then apply theorem 7 to the seond term, whih is idential inboth ases. Introduing the disrete errors ξuh := uh−π̃h(u) and ξp

h := ph−πh(p)we have
cS|||(ξ

u

h , ξ
p
h)|||h ≤ sup

(vh,qh)∈Xk
h
,

|||(vh,qh)|||h 6=0

Ah[(ξ
u

h , ξ
p
h), (vh, qh)]

|||(vh, qh)|||h
.Now we investigate the numerator of the fration on the right hand side. Byweak onsisteny in lemma 3 and the Cauhy-Shwarz inequality we get

|Ah[(ξ
u

h , ξ
p
h), (vh, qh)]| = |A[(u− π̃h(u), p− πh(p)), (vh, qh)]− Sh(π̃h(u),vh)|

≤ |||(u− π̃h(u), 0)||||||(vh, 0)|||

+ |(u− π̃h(u), a · ∇vh)|

+ |(p− πh(p),∇ · vh)|+ |(qh,∇ · (u− π̃h(u)))|

+ [Sh(π̃h(u), π̃h(u))]
1
2 [Sh(vh,vh)]

1
2 . (24)First note that by the orthogonality of the L2-projetion we have

|(p− πh(p),∇ · vh)| = 0so the only term involving the projetion error of the pressure vanishes. Sinethe L2-norm of the pressure and the divergene are inluded in the triple norm,we an onlude
|Ah[(ξ

u

h , ξ
p
h), (vh, qh)]| . |||(u− π̃h(u), 0)||||||(vh, qh)|||

+ |(u− π̃h(u), a · ∇vh)|

+ [Sh(π̃h(u), π̃h(u))]
1
2 |||(vh, 0)|||h.The seond term on the right hand side is estimated as follows. We use thetriangle inequality, the stability property of the stabilization operator (15) andthe inverse estimate (6).

|(u− π̃h(u), a · ∇vh)| ≤ |(u− π̃h(u), (a− ah) · ∇vh)|

+ |(u− π̃h(u), ah · ∇vh − π̃*
h(ah · ∇vh))|

. ‖a‖W 1,∞α−
1
2‖u− π̃h(u)‖0,Ω Sh(vh,vh)

+ ‖h−
1
2 (u− π̃h(u))‖0,Ω|||(vh, 0)|||h.11



Altogether, with lemma 6 we have the following estimate
|||(ξuh , ξ

p
h)||| .

1

cS
{(ν

1
2 + (α−

1
2 + α

1
2 )h+ h0 + h

1
2 )hmin(r−1,k)‖u‖min(r,k+1)

+ hmin(s,k)‖p‖min(s,k) + hmin(r−
1
2

,k+
1
2
)‖u‖min(r,k+1)}.The �rst error estimate is now derived with a onstant c ≈ max{O(α−1, α

3
2 )}.In the speial ase g = 0 the disrete solution uh lies in the spae H and isompletely deoupled from the pressure.Remark 10 The a priori error estimate does not allow us to onlude thatonvergene improves in the L2-norm thanks to the stabilization operator. Thisis due to the fat that the ontribution of the divergene of the solution domi-nates the error estimate in the ase of high Reynolds numbers. Also note thateven in ase g = 0 it does not seem possible to prove optimal estimates thanksto the stabilization. In the numerial setion we show in a linear example thatthe stabilized method an lead to smaller error in both L2- and H1-norms.Then in a non-linear example we show that the stabilization damps spuriousosillations on oarse meshes.5 Two stabilization operatorsIn the following we present two di�erent stabilization operators, that enter theabstrat framework proposed above. Other methods suh as the orthogonalsubsales proposed by Codina, [9℄ or the subgrid visosity method proposedby John and Kaya [18℄ ould also be onsidered. An overview of some reentstabilization methods for the Oseen's equation is given in [4℄.5.1 Edge/fae stabilizationThe edge/fae stabilization was analyzed for the �rst time in [7℄ for �niteelement disretizations of onvetion-di�usion-reation equations. Later, themethod was extended to inompressible �ow problems [5℄. The stabilizationoperator reads as

Sh(u,v) =
∑

T∈T̃h

1
2

∫

∂T
γh2

∂T [∇u] · [∇v] ds. (25)Here, h∂T is the size of ∂T , [q] denotes the jump of q aross ∂T for ∂T∩∂Ω = ∅,
[q] = 0 on ∂T ∩ ∂Ω 6= ∅ and γ is a tuning parameter.12



For this operator we see (10)�(13) at one. Also (14) is easily veri�ed, sinefor funtions u ∈ [H2(Ω)]d the trae of ∇u is well de�ned and the stabiliza-tion vanishes. Therefore, fae stabilization is H2-onsistent. For the remainingfeatures of the stabilization we refer the reader to [7,5℄. Here, the operator
π̃h is de�ned by the standard L2-projetion onto the spae [Zh]

d := [V k
h ]d and

π̃*
h : [Qk−1

h (T̃h)]
d → [Zh]

d is de�ned by the Oswald-quasi interpolation operatorde�ned in eah node xi as the straight average
π̃*

h u(xi) =
1

ni

∑

{K:xi∈K}

u(xi)|kwhere ni denotes the number of triangles sharing node xi. One may then showthat the stabilization term (25) satis�es also the ondition (15). A streamline-di�usion type operator is obtained by hoosing γ = γ0|a ·n∂T |. For details see[5℄.5.2 Loal projetion stabilizationThe loal projetion method was introdued in [2℄ and was analyzed for theOseen's problem in [3℄. In order to de�ne the method we de�ne the spae ofdisontinuous funtions on the maroelement mesh and set Zh := [Qk−1
h (Th)]

d.It is a disontinuous �nite element spae of order k − 1, whih is ontinuousover the maro simplies of the maro triangulation Th. With the (loal) L2-projetion π̄h,k−1 : [Qk−1
h (T̃h)]

d → [Zh]
d we de�ne the following �utuationoperator

κ̄h := I − π̄h,k−1, (26)where I stands for the identity mapping. Now the onvetion is stabilized by
Sh(u,v) = (γ|a|hT κ̄∇u, κ̄∇v). (27)Again, we an diretly see that (10), (11), and (12) are valid for this operator.In the abstrat setting above π̃*

h is given by the operator π̄h,k−1. The orre-sponding projetor π̃h is de�ned as a variant of the Sott-Zhang interpolationas de�ned in [24℄ modi�ed to satisfy the orthogonality onstraint of (15). Fordetails on the analysis we refer to [3℄.6 Numerial examplesIn this setion we illustrate the theoretial results obtained above with twoomputational experiments. All numerial omputations are performed usingthe �nite element toolbox Alberta [23℄. The evolving sparse linear systemsare solved by the e�ient diret solver Pardiso [14,22℄.13



6.1 A linear exampleFirst, we onsider the linear problem (1) in the two dimensional ase. Weapproximate the following ontinuous solution u = (u, v) in the domain Ω =
[0, 1]× [0, 1]. The example was taken from [13℄ and slightly modi�ed.

ψ(x, y) = c1x
2(x− 1)2y2(y − 1)2

u(x, y) = ∂yψ

v(x, y) = −∂xψ

p(x, y) = c2(x
3 + y3 − 1

2
).We hoose ν = 10−4, α = 100·2π2ν ≈ 0.197392, a = u, c1 = 256, c2 = 21.03485and ompute the resulting right hand side f . Here, the parameter α orre-sponds to a rough estimate for the time step in an instationary sheme foromputing the asymptoti limit t → ∞ in a �titious time-dependent Oseenproblem. The hosen parameter is related to the smallest eigenvalue of theLaplae operator and therefore allows to resolve the dissipation of energy inthe equation. By the hoie of the parameter c2 the rotation and the diver-gene part of the (smooth) right hand side f are balaned. Therefore, quitea big pressure gradient is guaranteed and non-solenoidal disretizations willprodue veloity approximations, whih are polluted by bad approximation ofthe ontinous pressure.For this numerial test problem we ompare three di�erent disretizations: theGalerkin Taylor-Hood element P2 − P1 (GTH), the Galerkin Sott-Vogeliuselement P2 − P−1 (GSV) and the stabilized Sott-Vogelius element with sta-bilization parameter

γ = γ0‖a‖
2
0,Ω (28)and stabilization parameter γ0 = 3.085 · 10−3. The parameter is tuned byminimizing the error on the oarsest mesh. All the omputations are performedon maro element meshes as desribed above, whih are derived from a uniformtriangulation of the unit square, see �gure 1. For the �rst numerial examplewe used 4 onseutive meshes, with N = 16, 32, . . . , 128 elements on eah sideof the unit square. We present the veloity errors in the L2 and the H1 norm.The pressure error is presented in the L2 norm. For the �rst test ase we notethe following approximate onvergene orders for the stabilized Sott-Vogeliuselement:

• ‖u− uh‖0,Ω . h3.29

• ‖∇(u− uh)‖0,Ω . h2.25

• ‖p− ph‖0,Ω . h2.05

• |||u− uh|||h . h2.44.The orresponding onvergene behavior is shown in �gures 2 and 3.14



Fig. 1. Maro Element Triangulation of the Unit Square. N = 2We reognize that the error of the stabilized Sott-Vogelius solution is smaller
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Fig. 2. Comparison between Galerkin Taylor-Hood (GTH), Galerkin Sott-Vogelius(GSV) and stabilized Sott-Vogelius (SSV), veloities
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Fig. 3. Comparison between Galerkin Taylor-Hood (GTH), Galerkin Sott-Vogelius(GSV) and stabilized Sott-Vogelius (SSV), veloities and pressurethan that of its Galerkin ounterpart on the omputational meshes onsidered,about one half re�nement step in the L2 norm and one re�nement step in the
H1 norm. The superior performane of the Sott-Vogelius element ompared to15



the standard Taylor-Hood elements for the veloity approximations is learlyvisible in �gure 2.6.2 A nonlinear example - driven avity in two dimensionsAs a seond example, we present numerial omputations for the Navier-Stokesequation. We hoose the well-known driven avity problem in two spae di-mensions at Reynolds number 5000 and presribe the veloity u = (1, 0) at thetop of the avity and no-slip boundary onditions elsewhere. At this Reynoldsnumber the steady state solution is stable and referene solutions for ompar-ison are available in the literature (see [16,11℄).By omputing the asymptoti limit for t→∞, we have approximated numer-ially this stable steady solution. In this situation, the fully impliit bakwardEuler method is su�ient as time disretization sheme. We start from Stokessolutions and inrease the time step manually during the omputation. Thenonlinear system is solved by a simple, undamped �xed point iteration.Disretization in spae is performed by the quadrati Sott-Vogelius element,similar to the linear example above. We ompare the orresponding Galerkindisretization (GSV-N) to a stabilized formulation with the lassial linearedge stabilization (SSV-N) on a sequene of four uniform maro elementmeshes. On the oarsest grid (N = 8) we get 2 · 8 · 8 = 128 maro ele-ments and about 450 divergene-free ansatz funtions in the approximationspae. For the stabilized method we here hoose γ = 4.0 · 10−3 as stabilizationparameter.In �gure 4 we show the stabilized solution on the �nest grid with N = 64.Here, we an see the typial piture of the ontinuous solution quite well.There are two seondary vorties in the bottom orner and a third one in theupper left orner. In addition, also the small tertiary vortex in the lower rightorner is resolved. The numerial results ompare well to the data given e.g.in [16℄.While the Galerkin disretization seems to be quite stable on the �nest gridand hardly di�ers there from the stabilized solution, we expet pronounedspurious osillations in the Galerkin solution on oarse grids due to the non-dissipative approximation of the �rst-order derivate. Suh osillations an eas-ily made visible by plotting the veloity-omponents of the Galerkin solutionon straight lines through the avity.First, we demonstrate in �gure 5 that the Galerkin (GSV-64) and the stabilizeddisretization (SSV-64) do not di�er muh on the �nest grid. Even on this �negrid the standard Galerkin method presents spurious osillations although16



Fig. 4. Driven avity at Reynolds number 5000 using the SSV-64 disretization.First piture: Veloity �eld. Seond piture: Five numerial trajetories in the velo-ity �eld beginning at the following points: (0.1, 0.9), (0.1, 0.1), (0.9, 0.1), (0.5, 0.5),
(0.978, 0.022)their amplitude is very small. The in�uene of the grid resolution on the

0.2 0.4 0.6 0.8 1

0.001

0.002

0.003

0.004

0.005

0.006

0.2 0.4 0.6 0.8 1

0.0025

0.005

0.0075

0.01

0.0125

0.015

0.0175

0.02

Fig. 5. Absolute Values of the Di�erene between GSV-64 and SSV-64 disretiza-tions on the straight line y = 0.9. First piture: di�erene of u-omponents. Seondpiture: di�erene of v-omponentsGalerkin and the stabilized disretization an be studied in �gures 6 and 7.As expeted, in the stabilized disretization spurious osillations are redued inomparison to the Galerkin disretization. However, it is not lear from thesegraphis that the solution quality atually improves in the L2-norm whenadding the stabilization terms. For the straight lines x = 0.5 and y = 0.5 wean �nd some referene values for the u and v omponents in the literature.In �gures 8 and 9, the results are ompared to a referene solution presentedin [11℄. The referene values are visualized by points.17
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