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Replication and Refinement of 
an Algorithm for Automated 
Drusen Segmentation on Optical 
Coherence Tomography
Maximilian W. M. Wintergerst1,6, Shekoufeh Gorgi Zadeh2,3,6, Vitalis Wiens2,4, Sarah thiele1, 
Steffen Schmitz-Valckenberg1, Frank G. Holz1, Robert P. finger1,7 ✉ & Thomas Schultz2,5,7

Here, we investigate the extent to which re-implementing a previously published algorithm for OCT-
based drusen quantification permits replicating the reported accuracy on an independent dataset. We 
refined that algorithm so that its accuracy is increased. Following a systematic literature search, an 
algorithm was selected based on its reported excellent results. Several steps were added to improve 
its accuracy. The replicated and refined algorithms were evaluated on an independent dataset with the 
same metrics as in the original publication. Accuracy of the refined algorithm (overlap ratio 36–52%) 
was significantly greater than the replicated one (overlap ratio 25–39%). In particular, separation of 
the retinal pigment epithelium and the ellipsoid zone could be improved by the refinement. However, 
accuracy was still lower than reported previously on different data (overlap ratio 67–76%). This is the 
first replication study of an algorithm for OCT image analysis. Its results indicate that current standards 
for algorithm validation do not provide a reliable estimate of algorithm performance on images 
that differ with respect to patient selection and image quality. In order to contribute to an improved 
reproducibility in this field, we publish both our replication and the refinement, as well as an exemplary 
dataset.

To increase our understanding of risk factors for age-related macular degeneration (AMD), the leading cause of 
irreversible blindness in the developed world, large, prospective epidemiological studies on AMD retinal bio-
markers are warranted1–4. Increasing amounts of optical coherence tomography (OCT) data are being generated 
and need to be assessed. However, as the manual grading of enormous data volumes is unfeasible automated 
algorithms for OCT image analysis are needed5,6. To date a variety of different algorithms on quantitative OCT 
image analysis for AMD biomarkers including drusen, geographic atrophy, pigment epithelial detachment and 
intra- and subretinal fluid have been published7,8. However, algorithm quality and performance differ substan-
tially making comparison between algorithms challenging8,9.

When selecting an algorithm from the literature, one for which high accuracy has been reported would be 
preferable. However, this does not guarantee comparable performance on one’s own data. In particular, accuracy 
depends not only on the algorithm itself, but also on the characteristics of the dataset. Frequently, privacy and 
legal reasons make it impossible to openly share the data on which algorithms have been evaluated. At the same 
time, only very few authors make their software implementations available. Even though proper validation of 
an algorithm should involve testing it on data that was not available during its development, and characterizing 
conditions under which it can be expected to work well, the reasons above make this difficult within the field of 
medical image analysis.
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The current best practice for validating medical image analysis algorithms is to organize so-called “chal-
lenges”, in which different teams apply their algorithms to a common reference image data set. In regards to OCT 
image analysis both the “Retinal OCT Classification Challenge (ROCC)”10 and the MICCAI “Retinal OCT Fluid 
Challenge (RETOUCH)”11 are available and have been used for some of the respective algorithms published. 
Challenges are an important tool for algorithm validation, but their open nature implies incomplete coverage, 
as promising approaches might be missing because their authors chose not to participate. Moreover, it has been 
found that reproducibility and interpretation of their results is limited by the fact that participants are given the 
opportunity to adapt their methods to the data at hand, but often have to do so based on insufficient information. 
Challenges have also been shown to rank algorithms in a way that depends not only on their quality, but also 
substantially on contestable choices in the ranking scheme12. Therefore, we believe that replication studies, which 
received almost no attention in the literature so far, should complement challenges as another tool for algorithm 
validation.

We conducted such a replication study. Specifically, we re-implemented an algorithm for drusen quantification 
on OCT proposed by Chen et al.13, which we identified as an established algorithm that was reported to achieve 
strong results in a previous systematic literature review8. Following assessment of its performance, we refined this 
algorithm to better meet the characteristics of our data. Our results highlight the severe limitations that incom-
plete algorithm validation poses for practical use.

Methods
Image data acquisition. The patient sample is a random subsample from the “Molecular Diagnostics 
of Age-related Macular Degeneration” (MODIAMD) study from the University of Bonn, Germany (Federal 
Ministry of Education and Research funding number 13N10349)14. Briefly, inclusion criteria were age >50 years 
and retinal alterations classified as Age-Related Eye Disease Study (AREDS) category 3 or 4. Exclusion crite-
ria for the MODIAMD study were any other ophthalmic disease potentially comprising the assessment of the 
retina as was concomitant injection-therapy for AMD. All study subjects consented to participate in the study. 
The tenets of the Declaration of Helsinki were followed and this study was approved by the ethics committee of 
the University of Bonn, Germany (ethics committee number: 175/10 and 408/15). SD-OCT raster scans were 
acquired using the Spectralis HRA + OCT (Heidelberg Engineering, Heidelberg, Germany) with a field size of 
20° × 15° centered on the fovea and an OCT image resolution of 512 × 496. A representative subset of 81 vol-
ume scans each with 145 B-scans consisting of at least 15 averaged frames and with an approximate inter-B-scan 
distance of 30 μm was used for this study. These scans were selected from a larger set of 682 OCT volume scans 
from 98 patients, keeping about one scan per patient in order to cover a wide range of image quality and drusen 
phenotypes. Those volumes that had very few B-scans or insignificant drusen load were discarded from the final 
subset. Geographic atrophy was defined according the cRORA criteria15.

Replication of Chen et al. algorithm. As described in the work of Chen et al.13 several techniques are used 
to denoise the image, remove the retinal nerve fiber layer (RNFL) and compute the centerline of the retinal pig-
ment epithelium (RPE) (Supplemental Figs. 1 and 2). In their algorithm, Chen et al. first denoise the input, using 
a bilateral filter with an anisotropic window to account for the stretch of B-scans in the horizontal direction. Then 
B-scans are binarized using a threshold 0.3*t to detect and remove the RNFL layer, and with threshold t in order 
to detect ellipsoid zone and the RPE. The center-line of the estimated layer is considered as the final estimation of 
the RPE. In order to detect drusen, a 3rd degree polynomial is fit on the RPE layer, estimating a drusen-free RPE. 
The area between the drusen-free RPE and RPE layer are considered as drusen. After detecting drusen per B-scan, 
the en face OCT image was used for a false-positive elimination-step as proposed by Chen et al.13 (Supplemental 
Fig. 3). The details of this algorithm, as well as the data-specific tuning needed to adjust the algorithm for the 
MODIAMD data-set, is provided in the supplementary materials.

We observed that, in Chen’s approach, inclusion of parts of the ellipsoid zone along the RPE can lead to jumps 
in the estimated RPE layer, as shown in Supplemental Fig. 4 (false positives). Therefore, our work suggests further 
refinements for a more robust determination of the RPE layer.

Refinement of the algorithm. Our refined algorithm reduces the above described false positives by better 
separating ellipsoid zone and RPE. In particular we found that shadows can cause the brightness of the RPE to 
vary substantially within B-scans, as it can be seen in Supplemental Fig. 4. In these cases, it is less suitable to use a 
global threshold for RPE segmentation. Therefore, we propose three refinement steps for thresholding, where the 
segmentation mask of each step is used as a guide to remove irrelevant components of the mask that is computed 
at the next step. We also replace the bilateral filter, which is used for denoising by Chen et al., with the multi-scale 
anisotropic fourth-order diffusion (MAFOD) filter16. This filter was developed specifically to enhance ridges, 
which helps better localizing the center-line of the estimated RPE layer (Supplemental Fig. 5).

In the first refinement step (Supplemental Fig. 6), we perform the thresholding with respect to both denoised 
input B-scan and a local histogram equalization of the input B-scan. In the second refinement step (Supplemental 
Fig. 7), a threshold with respect to the local histogram equalization of the denoised image, and the denoised 
image itself is selected to binarize the B-scan. In the third refinement step (Supplemental Fig. 8), a Gaussian blur is 
applied on the denoised image. Then the same steps as in the second refinement step are applied on the smoother 
version of the denoised B-scan. Finally, in the fourth refinement step, we implemented an improved method for 
estimating the lower and upper boundaries of the RPE from the segmentation mask by boundary tracing and 
polynomial fitting (Supplemental Fig. 9). We take the center line between the upper and lower boundary as the 
final refined estimation of the RPE layer. Figure 1 illustrates the different refinements step-by-step on one B-scan 
from the original image till the final refined algorithm. More details on the refined algorithm can be found in the 
supplementary materials.
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The input B-scan (left, first row) is filtered with MAFOD filter (left, second row). The retinal pigment epithe-
lium (RPE) is estimated, twofold enlarged and threshold-positive pixels outside a 20-pixel band around the RPE 
centerline (left, third row; red and yellow indicate the centerline and the 20-pixel band, respectively) are removed 
(left, last row; green and red indicate the upper and lower boundary of the RPE, respectively). The second, third 
and fourth refinement steps are applied (right, first, second and third row; green and red indicate the upper and 
lower boundary of the RPE, respectively) to achieve the final refined algorithm (right, last row). See supplement 
for details.

Results
In exact analogy to Chen et al.13, algorithm performance was quantitatively evaluated by the absolute drusen 
area difference (ADAD) and overlap-ratio in relation to the ground truth. Similar to Chen et al. we evaluated the 
algorithm’s performance for a dataset where only B-scans with drusen were included and for a subset where only 
the B-scan with most drusen load in each volume scan was included13. Original results from Chen et al. are dis-
played in Table 1 and our results of the replicated algorithm are reported in Table 2. Performance of the replicated 
algorithm was inferior to the reported original algorithm and performance of the refined algorithm was superior 
to the replicated one.

Even though we present the same error metrics as used by Chen et al. in order to facilitate a direct compari-
son, we noticed two limitations in the way they are defined. First, restricting the evaluation to B-scans in which 
drusen are present might conceal some of the false positives that occur in drusen-free B-scans. However, these 
are practically relevant, since we want to employ the algorithm fully automatically, without having to flag drusen 
present B-scans manually. Second, overlap ratio is a relative error metric, as is ADAD when expressed in percent. 
Therefore, computing based on B-scans can result in inflated estimates in the presence of B-scans with low drusen 
load, since even small absolute segmentation errors will correspond to a large relative error. We also note that 
based on the information given in the publication by Chen et al.13 it is not completely clear how overlap ratio was 
aggregated, it is merely stated to be “similar as for the ADAD metrics”.

For these reasons, Table 2 presents an additional evaluation, referred to as “volumetric computation”, which is 
based on the full OCT volumes. Given a three-dimensional ground truth drusen mask Mi for the ith OCT volume, 
and a corresponding algorithmic estimate Mi, our volumetric computation error measures can be expressed as

Figure 1. Step-by-step illustration of the refinements.

ADAD [μm] ADAD [%] OR ± SD

B-scans with drusen (‘4/340 dataset’) 10.29 ± 8.9 15.70 ± 15.50 76.33 ± 11.29

B-scans with largest drusen load per 
volume (‘143/143 dataset’) 19.97 ± 14.68 23.77 ± 13.8 67.18 ± 9.14

Table 1. Original results from Chen et al.13. Image resolution of the used dataset: 512 × 1024 and 128 B-Scans 
per volume scan; OR = overlap ratio; SD = standard deviation.

Replicated Chen et al.13 Refined algorithm

ADAD ± SD (μm) ADAD ± SD (%) OR ± SD (%) ADAD ± SD (μm) ADAD ± SD (%) OR ± SD (%)

B-scans with drusen 17.60 ± 36.70 100.59 ± 304.80 24.52 ± 20.56 13.28 ± 29.40 73.54 ± 217.80 35.88 ± 25.25

B-scans with largest drusen 
load per volume 19.94 ± 13.54 42.70 ± 22.70 39.24 ± 22.06 15.64 ± 11.05 36.86 ± 24.34 51.90 ± 23.70

Volumetric Computation 11.96 ± 12.11 46.37 ± 75.36 29.35 ± 17.32 8.31 ± 6.87 30.05 ± 29.76 42.20 ± 20.47

Table 2. Comparison of the algorithms to the ground truth. Image resolution of the used dataset: 512 × 496 
and 145 B-Scans per volume scan. OR = overlap ratio; SD = standard deviation.
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These alternative error metrics differ from the ones used by Chen et al. in two main ways: First, they also 
account for false positives in drusen-free B-scans (there were 1,934 drusen-free B-scans in our dataset). Second, 
mean and standard deviation are taken over volumetric OCT scans rather than B-scans to avoid an inflated effect 
of B-scans with low drusen load on relative error measures. In non-volumetric measures as proposed in Chen  
et al., per B-scan ADAD is divided by the number of A-scans with drusen present in that B-scan. For a fair com-
parison between the volumetric ADAD measure to its non-volumetric alternatives, we divide ADAD by the sum 
of the A-scans with drusen for all B-scans in the volume.

Separation of the RPE and the ellipsoid zone, which was a major source of segmentation errors in the repli-
cated algorithm, could be improved by the refined algorithm. Our refinement of this algorithm was able to detect 
the course of the RPE-centerline more reliably (Fig. 2). This suggests that our refined algorithms allows for a more 
robust determination of the RPE layer than the replicated algorithm. When comparing the replicated and refined 
Chen et al. algorithm there were only two OCT volume scans where the replicated algorithm outperformed the 
refined one. It should be noted that algorithm performance was low for both algorithms in these two OCT volume 
scans (OR of 13% and 11% for the refined algorithm, and 14% and 15% for the replicated algorithm, respectively). 
Both of the OCT volume scans were from eyes with subretinal drusenoid deposits.

Results from the replicated Chen et al. method (left), and the refined method (right) marked over different 
exemplary input B-scans.

The mean drusen load of the complete dataset was 153,166,119 μm³ in the ground truth, 119,321,550 μm³ 
in the replicated algorithm, 125,837,159 μm³ in the refined algorithm. Hence, both algorithms underestimate 
drusen load, but our refined one less severely. To investigate the role of the false-positive elimination step for this 
underestimation, we compared total drusen calculation with and without false-positive elimination. We found 
that drusen load was underestimated even without false positive elimination (replicated algorithm: 132,385,230 
μm³, refined algorithm: 132,555,984 μm³).

In order to estimate the effect of the drusen load we stratified our results for small (0–26,465,894 μm³), 
medium (26,465,894–92,630,630 μm³) and large (>92,630,630 μm³) drusen load per volume scan (Fig. 3). 
Overlap ratio increased for all data subsets and algorithms with increasing drusen load.

To investigate the effect of geographic atrophy on algorithm performance, we compared results in B-scans 
with and without geographic atrophy, which was present in 17 of our OCT volume scans (21%). As presence of 
geographic atrophy is correlated with greater drusen load, and since we found algorithm accuracy depending 
on drusen load, we performed a multiple regression analysis for both algorithms with overlap ratio from our 
volumetric computation as the dependent variable and the binned drusen load categories “small”, “medium”, and 
“large” and presence of geographic atrophy as independent variables. The regression analysis showed a significant 
association with drusen load categories but not with geographic atrophy (see Supplemental Table).

Statistical analysis. We used the Wilcoxon signed-rank test to evaluate the segmentation improvement 
using our proposed refined algorithm, with respect to ADAD measure in μm. The Shapiro-Wilk test on the 

Figure 2. Comparison of replicated and refined drusen segmentation.
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ADAD values showed a non-normal distribution with the p-values of 6.9 × 10−12 for ADADs computed per 
OCT volume, p-value = 0 for B-scans with at least one druse, and p-value = 1.1 × 10−8 for B-scans with largest 
drusen load per volume. This motivated us to use a non-parametric version of the paired Student’s t-test, i.e., the 
Wilcoxon signed-rank test. With this test, the p-values for the paired samples using the replicated and refined 
Chen et al. algorithms are: 2.4 × 10–6 for ADADs computed over the complete OCT volumes, p-value = 0 for 
B-scans with at least one druse, and p-value = 1.2 × 10−5 for B-scans with largest drusen load per volume. These 
numbers show a significant segmentation improvement with respect to ADAD measure, when the refined Chen 
et al. algorithm is used.

Risk of bias evaluation. Risk of bias for the new drusen segmentation algorithm was evaluated according 
to the standardized protocol as published previously8. The patient sample was recruited out of the MODIAMD 
data with inclusion criteria as stated above. The algorithm development and testing were performed in separated 
data subsets, the reference standard was a manually corrected segmentation of the RPE layer and the reference 
standard was objectively compared with the index test (via ADAD and overlap ratio). There were two ophthal-
mologists as readers for the annotations (ST and MW) and no repetitive measurements by these readers. All 
included patients received the same reference standard. Parameters increasing risk of bias are that subjects were 
not randomly recruited and there were no repetitive measurements done.

Discussion
Re-building an algorithm based on the details provided in the publication we found its performance to be inferior 
to the reported results. This was likely due to a more heterogeneous dataset including a more real-life patient 
selection and a greater diversity in drusen load and differences in image quality. Following this, several refine-
ments considerably improved the overall performance of the algorithm in our image dataset. These findings 
highlight that automated algorithms have to be used with caution, particularly when little or no independent 
evaluation and validation are available.

We identified multiple factors that might explain the discrepancy between our results and those reported 
by Chen et al., the most important being the patient cohort. Different from Chen et al., our study population 
included individuals with geographic atrophy, making it more heterogeneous and closer to a real-world situation. 
In addition, we conjectured that differences in drusen load might explain differences in performance. Against this 
background we performed a multiple regression analysis which showed no association of algorithm performance 
with presence of geographic atrophy, however a strong association with drusen load. Therefore, we hypothesize 
differences in drusen load might be an important factor for the observed difference in algorithm performance. 
However, this remains speculative as the absolute drusen load was not published by Chen et al. Another factor 
concerns image quality. The reduced axial resolution of 496 pixels compared to the input data of the Chen et al. 
algorithm which had an axial resolution of 1024 pixels is likely to reduce accuracy of the separation of RPE and 
ellipsoid zone and reduce performance somewhat. Although algorithm accuracy might further improve by exclu-
sion of poor or reduced image quality, e.g. due to lens opacities, we did not apply any ancillary exclusion criteria 
additional to the MODIAMD exclusion criteria14, as our intention was to investigate algorithm performance in a 
dataset which is as close to ‘real-life’ conditions as possible.

These differences in patient and image characteristics are unavoidable, since the data used by Chen et al. is not 
available to others. Characteristics of OCT image data can differ greatly, e.g. due to differences between devices 
or in patient samples. Even when using the same device, differences in image acquisition are possible based on 
varying number of repetitive frames and consecutive image averaging, altered resolution or field-of-view settings, 
etc.. Against this background, it is even more important to provide highly specific details on both the algorithms 
as well as the image data used in their creation and evaluation. It also highlights the importance of testing algo-
rithms on different datasets to achieve a full validation.

As an aside we proposed alternative or additional error metrics which might bear advantages over the so far 
used error metrics. However, none of our main results depend on the choice of error metric and in particular the 
improvement in algorithm performance following our refinements is independent of this.

As the refined Chen et al. algorithm still underestimated overall drusen load, one possible approach to reduce 
underestimation of drusen load might be an improvement of the polynomial fitting step. Both algorithms (as 

Figure 3. Algorithm performance stratified for drusen load.
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many others) use polynomial fitting for ideal RPE estimation. However in presence of large drusen or many small 
drusen, the estimated ideal RPE is ‘lifted up’, hence, leading to drusen underestimation.

There were only two OCT volume scans where the replicated algorithm outperformed the refined one. Overall 
performance was low for both OCT volume scans and both were from eyes with subretinal drusenoid deposits, 
rendering presence of subretinal drusenoid deposits a potential limitation of both the replicated and the refined 
algorithm. A possible next step would be to statistically compare algorithm performance in eyes with and without 
subretinal drusenoid deposits. In case this assumption is confirmed, further refinements might be introduced to 
specifically deal with subretinal drusenoid deposits.

Our results showed a lower ADAD in the volumetric computation metric compared to the subsets “B-scans with 
drusen” and “B-scans with largest drusen load per volume”. This observation can be explained by the fact that both 
algorithms underestimate overall drusen load. The volumetric computation metric adds the contribution of false 
positives in the drusen-free B-scans, which reduces this underestimation, and therefore leads to a smaller difference 
between estimated and actual drusen load. The fact that the volumetric computation metric increases overlap ratio 
compared to averaging over all B-scans with drusen, but not to B-scans with largest drusen load, can be explained 
by overlap ratio being a relative error measure. Therefore, its volumetric computation variant reduces the effect of 
B-scans with low drusen load, where even small absolute errors can cause a drastic reduction of overlap ratio.

Herein, we focussed on an established segmentation algorithm based on traditional image processing tech-
niques such as filtering and thresholding. Recently, convolutional neural networks (CNNs) and deep learning 
have become more popular also for automated image analysis in ophthalmology17,18. We expect that issues of 
reproducibility and transferability will become even more relevant when using deep learning. Reproducing a 
learning based method involves not just re-implementation, but also re-training of the algorithm. Consequently, 
the used training datasets and their evaluation need to be highly transparent and reproducible. Moreover, CNNs’ 
results can be easily skewed by specific targeted manipulation of the input data, not recognizable by humans19. 
It is even possible to generate images completely unrecognizable to humans, which deep learning algorithms 
believe to be recognizable objects with >99% certainty20. This highlights some of the advantages of conventional, 
human-designed algorithms, where it is easier to rationalize the effects of factors such as reduced image resolu-
tion, and to ameliorate them with refinements such as those proposed in our current work.

To our knowledge, within the field of ophthalmic image analysis, we present the first study on re-implementing 
an algorithm based on the details provided in its publication, drawing attention to the important issues of algo-
rithm reliability and replicability. Our results highlight that more details, both concerning the algorithm and the 
data that it is applied to, might be relevant for a proper replication than is typically given in a publication.

Further strengths of our study are the employment of a more real-life patient selection as dataset and a detailed 
step-to-step explanation of the algorithm’s refinement. Furthermore, we also made a comprehensive evaluation of 
algorithm performance, a direct comparison of the replicated and the refined algorithm in the same dataset and 
a subgroup analysis for drusen load. A limitation of our study is the reduced axial resolution as compared to the 
input data of the original algorithm. However, this reflects a more realistic real-life dataset.

In conclusion, we replicated a reportedly well-performing algorithm for OCT-based drusen quantification and 
found algorithm performance to be inferior to the reported results for various reasons. Several refinements con-
siderably improved algorithm performance in our sample but still did not achieve published results. Replication 
of a published algorithm based on the details provided in a publication is challenging and better standards to 
ensure algorithm reproducibility, reliability and validity should be established as an increasingly large part of day 
to day clinical medicine is informed by automated image analysis algorithms. An important step towards this goal 
is to make program code publicly available. The Python code underlying our current manuscript can be found at 
https://github.com/MedVisBonn/DrusenSegmentation-ModifiedChen.
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