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Abstract. In this paper a change-point detection method isare mostly studied as a problem of EliftdiSouthern Oscil-
proposed by extending the singular spectrum transformatiomation (ENSO). Recently, a coupled ocean—atmosphere phe-
(SST) developed as one of the capabilities of singular spechomenon called the Indian Ocean Dipole (IOD) similar to
trum analysis (SSA). The method uncovers change points rethe ENSO has been expose®afi et al, 1999. This phe-
lated with trends and periodicities. The potential of the pro-nomenon is apparently as important as the intertropical con-
posed method is demonstrated by analysing simple modelergence zone (ITCZ) for the tropical and sub-tropical re-
time series including linear functions and sine functions asgions. In particular, it is considered that IOD is influencing
well as real world data (precipitation data in Kenya). A sta- rainfall in East Africa. However Saji et al. mentioned that the
tistical test of the results is proposed based on a Monte CarléOD events occur independently of the ENSO events which
simulation with surrogate methods. As a result, the successare observed in the Pacific region expressed by the NINO3
ful estimation of change points as inherent properties in thandex (3 N-5° S, 150-90W). Figurel shows the compar-
representative time series of both trend and harmonics isson between the monthly behaviours of IOD and NINO3
shown. With regards to the application, we find change pointdime series (Figla) and the correlation coefficients of the
in the precipitation data of Kenyan towns (Nakuru, Naivasha,past ten years at every time point (Fith). From the fig-
Narok, and Kisumu) which coincide with the variability of ure, the positive IOD in the Indian Ocean and the Eidin
the Indian Ocean Dipole (IOD) suggesting its impact of ex- the Pacific Ocean often occur simultaneously, e.g. as in 1972
treme climate in East Africa. and 1997. The reason may be that the sea surface tempera-
tures in the western Indian Ocean and in the eastern Pacific
Ocean are higher than the opposite sides of these oceans that
are located around Indonesia. On the other hand, the posi-
1 Introduction tive IODs in 1961, 1967, and 1994 occurred with the ENSO

. ) . . indices that express no El i, a La Niia, and a weak El
Many processes in nature, engineering, or life can be studnifo, respectively, in which heavy rainfalls were provided in
ied by measuring quantities and analysing such time segast Africa in 1961 Flohn, 1987). Saji et al.(1999 men-
ries Bishop 2007 Brockwell and Davis1991, 2002. Typ- tjoned, therefore, that the correlation between the 10D and
ically such a purpose is achieved by using statistical toolsENSO is weak. In this study, as shown by the red rectangles
Following the development of computer performance, in par-iy Fig. 1, we focus on the significant uncorrelation time in
ticular, it allows us to analyse a large amount of data for athe 1960s. Since it is different from the correlation at other
number of different parameters. The climate data analysigimes, the motivation in this study is to consider the IOD as a

discussed in this paper is one typical case. complementary index of the climate variability in East Africa
As one of the most typical climate phenomena, EidNi i, addition to the ENSO.

and La Nfa occurring in the Pacific Ocean by the dynam-
ics of the atmosphere—ocean interaction are known, which
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The 10D shows that anomalies occurring between the east )
ern and western equatorial Indian Oceans (Bgan be de- -
composed into a positive and a negative modes. When thi
Indian Ocean is in the normal state (i.e. the index is zero)
the sea surface temperature is relatively high in the east an
low in the west. The dipole mode depends on the strength o
the south-east trade winds. The positive dipole mode is illus! u
trated in Fig.2a: if the wind on the Indian Ocean grows rel- ' 1900 1910 1320 1930 1340 1950 1360 1970 1980 1990
atively strongly, the hot sea water in the eastern side move: Time
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surface temperature in the eastern side will drop by the up-
welling cold water coming from the deep sea. At this time,
since a atmospheric convective activity moves to the west!
then floods are often caused in East Africa as well as Indone

sia is besieged by droughts. The negative dipole mode is il- oo 1910 1920 1930 1990 1950 1980 070 1950 1990
lustrated in Fig2b: if the wind relatively weakens, the nor- ' Time

mal state will furthermore grow strongly, i.e. the sea surface

temperature in the east is warmer and the sea surface tenfrig. 1. (a) Normalised time series (mean zero and variance one)
perature in the west is colder. At this time, in contrast to theof 10D (from Japan Agency for Marine Earth Science and Tech-
positive dipole mode, the convective activity happens in thenology;http:/iwww.jamstec.go.jpand ENSO (from KNMI Climate
east, which causes droughts in East Africa and floods in InExplorer; http://climexp.knmi.n| from 1900 to 1997(b) Running
donesia. According to recent reporsshok et al, 2001 Be- correlatllon cogﬁments bgtween !OD and ENSO for the past 10 yr at
hera et al.2005 Saji et al, 1999, such a “teeter-totter” phe- all the time points. Both time series have been smoothed by using a

It tel d hts/floods in East Afri 3-month moving average. The ENSO is represented by NINO3 sea
nomenon alternately causes droughts/fioods in £as rIC":femperature anomalies. By the red rectangles the 1960s is empha-

on the west side and in Indonesia on the east side of the Ingiseq, where the 10D index obviously exhibits a behaviour different
dian Ocean. According tblakamura et al(2009, the pe-  from that of ENSO in the 1960s and then the correlation between
riodicity of 10D in recent decades was quasi-biennial (1.5—them is low  0.1) during this time.

3yr), which is shorter than at the beginning of the 20th cen-
tury. In the article, it was suggested that tropical convections
were encouraged due to a warming of the sea surface tem- The SSA has provided a number of typical achievements
perature in the western Indian Ocean. Then an occurrencign many scientific fields, especially, it can be used for solv-
of the positive 10D event, which brings in heavy rainfall in ing the following problems: finding trends of different reso-
East Africa, became more frequent. Furthermbdlakamura  lution, smoothing, extraction of seasonality components, si-
et al. (2009 mentioned that the ENSO effect weakened by multaneous extraction of cycles with small and large peri-
the warming tendency in the western Indian Ocean and alods, extraction of periodicities with varying amplitudes, si-
ternatively the 10D effect increased over the Indian Oceanmultaneous extraction of complex trends and periodicities,
since 1960. Therefore, we focus on the 1960s and aim at thénding structures in short time series, and even change-point
characterisation of the change in the IOD dynamics by usingdetection Hassani2007). The basic concept of SSA derives
a change-point detection approach. from the principal component analysis (PCA) and the sin-
In this study, the monthly precipitations in Nakuru gular value decomposition (SVDBjornsson and Venegas
(0°17'S, 364 E), Naivasha (M3 S, 3625 E), Narok  1997. A comprehensive discussion is described in the pa-
(2°5'S, 3852 E), and Kisumu (06'S, 3445 E) provided pers and books bilsner and Tsoni§1996); Vautard et al.
from the GHCN v2 databasentfp://www.ncdc.noaa.goy/  (1992); Ghil et al.(2002); Golyandina et al(2001).
will be compared with the 10D. Figurgshows the locations Change-point detection in time series can be performed
of these stations. This region is located around the Equatoby different techniques. For exampMudelseg2000 sug-
Therefore since it is strongly affected according to a sea-gested detecting change points in palaeoclimate time series
sonal movement of the ITCZ formed by a convergence ofby using a regression model called RAMPFIT. As a more re-
Hadley circulation, there are two rainy seasons in spring (acent technique, a change-point detection by using a Bayesian
long term) and autumn (a short term). The obtained data havapproach was applied to the annual flow volume of the Nile
different time length. However, as shown in Figthe data  River (Schitz and Holschneide2011). These methods as-
used in this study are overlapping at all the stations in thesume a change in the linear behaviour (trends) and require
time region between January 1950 and December 1985 (foa parametric or a distribution fit. In contrast, the change-
36 yr) corresponding to 432 data points. point technique based on SSA is nonparametric and it is
not necessary to estimate a statistical distribution or to fit a

Correlation Coefficient
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Fig. 2. Schematic of(a) positive IOD mode,(b) negative IOD mode (from Japan Agency for Marine Earth Science and Technology,
http://www.jamstec.go.)p
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Fig. 3. Location of the used weather stations in Kenya. Nakuru
(0°17' S, 364 E), Naivasha (843 S, 3625 E), Narok (P5'S, Fig. 4. Observations of monthly precipitation between 1950 and
35°52 E), and Kisumu (06’ S, 3445 E). 1985.(a) Nakuru,(b) Naivasha(c) Narok, and(d) Kisumu.

may provide basic insights into abrupt climate changes of
linear trend [dé and Inoug2004 2005 Idé, 2006 Itoh and  atrend with a long-term variability but also seasonal cycle or
Kurths 2010 Mohammad and Nishid2009 Moskvinaand  quasiperiodicity. If such a change point can clearly be iden-
Zhigljavsky, 2003. This is an advantage because it is diffi- tified in a time series the result will suggest that there exist
cult to reliably estimate parameters and distributions for shortsubstantially different properties or structures in the climate
observations. sense before and after the time instant.

A change point is generally defined as any time point in In this study the SSA-based change-point detection pro-
the evolution of a system in which an abrupt structural andposed byldé and Inoug2004), has been applied, which is
dynamical change occurs. Such a change may appear in timealled singular spectrum transformation (SST). However, the
series as discontinuities, gaps or changes in periodicities, anmconventional SST has considered only change points for the
plitude or variance. The basic motivations for this investiga- most dominant component of data corresponding to a change
tion are explained by the following assumptions: the proper-in a trend. Since the SSA can originally reveal several repre-
ties or parameters describing the data are either constant @entative orthogonal components from data we will extend
slowly time-varying. In practical problems, abrupt changesthe conventional SST to detect the change points also for fur-
occurring at certain times can help in modelling dynami- ther components. In the next section we explain the proce-
cal processeB@asseville and Nikiforoy1993. Focusing on  dures of the SSA as well the SST and then propose the ex-
a climate application in this study, change-point detectiontended version of SST.
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http://www.jamstec.go.jp

470 N. Itoh and N. Marwan: An extended SST for the investigation of Kenyan precipitation data

2 Method tion. The calculation can be expressed as follows:
2.1 Singular spectrum analysis (SSA Iy xUl (l<n<L)
. g p ysIS ( ) n m=1"m,(n—m+1) —
NV IR A 1)
The SSA aims to extract spectral information from time se-”" T\ I Zm=1"m,(n—m+1) (L=n<K). (4

ries. As described in Sect, the change-point detection is an Zz;f_+1<1+zx,[1{,](n_m+1) (K<n<N)
one of the capabilities of the SSA. Basically, this is achieved
by mathematically decomposing and reconstructing a timewhere$/! means an element computed from fhh eigen-
series Elsner and Tsonjs996 Golyandina et a).2001). triple. Then its reconstructed time series is definedllds=

The first step is an embedding of a single time seriesyl/1 ... 5l/1) Note that these reconstructed time series are

Y = (y1,---, yn) Into amultidimensional vector space, what orthogonal with each other. Thus the original time series
can be achieved by transforming the time series into the folcan pe expressed as the sum of these time series, that is,

lowing trajectory matrix of siz& x L, (K =N — L +1): Y ~yW o 4yl
In the fourth step, to group these components into several
X=[X1:-:Xk]= (.x,‘j)iL;.il, (1) representative time series, the singular values and weighted
’ (w) correlation may provide some hints for grouping. The
where X; = (v, ..., yiss—1T, (L1<i < K). The matrix is  Singular values have already been obtained by SVD. The

expressed as a Hankel matrix, in which elements on the anfiv correlation is calculated as follows:
diagonals are equaPhillips, 1971). The dimension or win- AL A
s . ylal ylbl
dow lengthL is directly related to the fineness of the decom- ) ’ w Pty (511 i 5
position of the original time series in order to characterise”a> — | Pl |, Y1 I o= ( ’ )w' ©)
essential aspects of the data.
In the second step, the trajectory matrix is decomposed byrhe inner product is defined as follows:
the SVD in the following form:

N
X=USV, @ (PO7) =3 u sl @b=1..4. @
k=1

where two unitary matrices of singular vectdgsandV con- wherew; = minik. L. N—k—1}. Then based on these results

sist of orthonormal vectors regarded as basis vectors of the[ e . N
X . ! : . Ttallows to perform a classification according to their disjoint
trajectory matrix and means a matrix of singular values in- relationship:

cluding nonnegative real numbers on the main diagonal and
zero in the remaining positions. Then the trajectory matrixy, . s

. . Y=Y+ +Yp, 7
is represented by rank-one biorthogonal elementary matrices

calculated according to the singular vectors and the singulaynere I (=1,...,m(<d) is defined as an index after
values. That is, the trajectory matrix can be written as grouping the reconstructed time series.

T UINL.K In change-point detection, by using the SSA, the recon-
X=X1+--+Xg, Xj= \/TJU.iVj == ) struction process is of importance since a structural differ-

) ence between the subspaces in the original time series is
where j =1.....d(< L) because the singular valug&; qualitatively evaluated by the reconstructed time series. In

are arranged in decreasing order of magnitudesias  he next subsection the definition of the SST will be ex-
max{j, such thati ; > 0} = rank X. Note that these singu- plained.

lar vectors,U and V represent the orthogonal decomposed

properties of the time series and the singular val§ejsist

quantifies the magnitudes of the components. The collectiorp.2  Singular spectrum transformation (SST)

(x;,U},V;)is called thej-th “eigentriple” of the trajectory

matrix. When trying to detect change points, typically, a parametric
The third step is the reconstruction of new time series frommethod such as the autoregressive model has often been ap-

the elementary matrix. By taking the feature of the Hankelplied (Di Bello et al, 1996. This kind of approach may not

matrix it is possible to suppose that the elements on the dilead to a good result when the data series are heterogeneous

agonal from a left bottom to a right upper (i.e. a secondaryand nonstationary because it is not sure whether it is appro-

diagonal line) in the matrix derive from the event occurred atpriate to assume a certain stochastic model to such data. Thus

the same time. A mean value of such elements can, thereford, is reasonable to use a nonparametric method rather than a

be considered as a data point decomposed from the originglarametric one, as the first step of the data analysis. We sug-

time series. This technique can be applied to all elementargest to use the SST for a change-point detection as it allows

matrices and then it is called diagonal averaging reconstructhe nonparametric detection.
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Let us first put the reference timein a time serie = past partlJ;. Although the result is actually enough to under-
(y1, ..., yn) in order to divide it into two subtime serieg® stand the global behaviour of the change pointin the data, the
of a “past part” andr ¥ of a “future part” which can be de- change point in the harmonics component which is extracted
fined as follows: as another important property by the SSA, has not been con-

® o sidered so far. If the CP-score is calculated for further com-
Y® =g im0 Y= (g Yigytp-1) . (8) ponents it can be expected to find out a transitional time of
the periodic term in the data. For that purpose we provide a
new definition of the change-point detection technique based
[en the conventional SST and the multivariate SEdk(inaga

wherey is a start point after the reference timfer the future
part andb is defined as a size of both subtime series(t),
which are additional parameters besides the window lengt
L in the SSA. Since we assess the difference between botﬁt al, 201

subtime series with the same length sitting next to each othetrh Atstgi t_)etgulrr:mg, the V\t/holte 'gn:_e Series 1s d_I(_eﬁom?osed bty
in this study lety = 0. Then each trajectory matrix can be € Into the reconstructed ime series. therelore, note

expressed as that tw_o different window qugth parameters will pe intro?
duced in this approach. One is used for the whole time series
X — [Xim:o: Xio1r], x® — [Xt:..: Xoomoa],  (9) and the other for the reconstructed time series, which we call
Lssa and Lsst respectively. Then these reconstructed time
whereXy = {yk, ..., e+L-1} (L <k < M), Lisdefinedasa series have to be grouped according to the results from sin-
window length for both time series, which means the num-gular value spectra and correlation as the representative
ber of elements in each vector, and the#n=b — L +1. As  patterns such as a trend, harmonics and noise, which are re-
expressed in Egs2) and @), both trajectory matrices are quired to extend Eqi() as follows:
mathematically decomposed by SVD:

~ A A A

J Up= Spar{Ugﬁ)l, cees Uﬁﬁ)l}, Bi, = Ugl?]_v (13)

X® — yPsPymdT _ Z [LPyPy®T where[; is a grouping index/(=1,...,m(< d)), m means
= the number of the groups,is the number of spanning vec-

d tors, andls mean the left singular vectors derived from the
x® — yhHghHy®OT _ Z [LOyOy®OT (10) representative time series. Then the newly defined CP-score
= can be described by

I
According to the proposal by &and Inoue (2004, 2005), - _ 1— 3T P 14
the structural difference betweetf® andX® can be suf- " ;ﬂh It (14)

- : . : )
f|0|$§1t.ly d'ISCthised by (l:)smg t?f? ‘Ieft .sm(%ular. vecldf?) = Grouping the reconstructed time series into representative
[Ul t...:Up ] andU = Uy o Uy ] since the left 0 series, it might be expected that the change points of
singular vectorU; of the eigentriple explains the represen- . only the trend component but also the harmonics’ com-

tative pattern in the trajectory matrixdgé and Inoug2004 ponents included in the data can be detected.
2005. Hence by these left singular vectors, a hyperpldne

and an eigenvect@ are defined as follows: 2.4 Statistical test

U, =spanUy..... Ul(p)}, B= U(lf), (11)  As a statistical test for the results, we apply a Monte Carlo
h is th ber of . T . h simulation by random shuffle (RS) surrogate, phase ran-
wherel is the number of spanning vectors. To estimate they,yigeq (PR) surrogate, and iterative amplitude adjusted

diﬁgrencde betweeﬂ the pﬁlSt ok the e péﬁtsx{illdb(? q Fourier transform (iIAAFT) surrogate methodscheinkman
projected onta);. Then a change-point (CP-) score is define and LeBaron 1989 Theiler et al, 1992 Schreiber and

as follows: Schmitz, 2000).
l The null hypothesises of these surrogates methods are typ-
z=1- ZK(i,ﬂ)z, k(i,B) = ﬂTUi(p), (12)  ically defined as follows: (1) the observed time series is a
i=1 sequence of independent and identically distributed (i.i.d.)

random variables (for the RS surrogates), (2) the time series
is stochastic data with a linear correlation (for the PR sur-
rogates), and (3) the time series is generated from a nonlin-

where 0< z < 1 andk is the inner product of Eql1().

2.3 Extended SST ear stochastic process. However, it is provided by performing
a static monotonic nonlinear transformation (for the iIAAFT
In the above conventional SST defined by E44) énd (L2), surrogates). Tabld shows whether the statistics, such as

the structural comparison is performed only for the mostmean, variance, empirical distribution, and autocorrelation,
dominant representative pattegh,(mostly a trend term) of  of the original time series are preserved in the time series
the future part on an arbitrary dimensional hyperplane of thegenerated by these surrogate methods.

www.nonlin-processes-geophys.net/20/467/2013/ Nonlin. Processes Geophys., 20486,72013
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Table 1. Comparison of the statistics of the original data with that 200
of the surrogate data. : meang? : variance(): preservedx: not
preserved. 150
) — - - 100
Surrogates u o Empirical dist.  Autocorrelation
RS o O O x >0
PR O O x @)
IAAFT O O O O % 200 400 600 800 1000

t

Fig. 5. Time series composed of the linear functions and the sine

The significance test is performed by using the Montefunctions.
Carlo technique. Since this method does not necessitate as-
suming any statistical distribution, it is appropriate to apply
it to the result obtained by the nonparametric method such
as the SSA. First, we generate a sufficiently large number
of surrogate data. Next, we estimate the CP-scores of these
surrogate data. Then we calculate each upper 95 % quantile
in the empirical distributions of the CP-scores as a thresh-
old to validate the change point in this study. If the obtained
CP-score is higher than the threshold, we consider that each 10 ” " Gio w0 100
null hypothesis is rejected and the result is statistically sig- Mode
nificant.

—~
QO
~
—
o
o

log(singular value)

—~
O
~
=
o
o

2.5 Model analysis

—
o '

In the following model we will assume that there exist
changes in trends and harmonics extracted by means of SSA
decomposition as the representative components. However,
this method might also be useful to analyse a component with
other kinds of dynamics like nonlinear changes. Although the 2 3 T s
remaining part is considered to be “noise”, we suppose that Mode
it might (_:ontaln the determlnlstlc_ dy”am'c_s of the above rBp'Fig. 6. Logarithmic singular value spectra expressed on percentage
resentative components hidden in the noise part since the pga) for 155, = 100 and(b) for the first 8 modes.

rameter choice of the number of the components is somehow

arbitrary.

We consider the following synthetic example with two |n the first step, let us orthogonally decompose the time se-
types of components which consist of linear and sine func-ries. The window length parametggsa is reasonably cho-

~N

=
© '

log(singular value)

)

-
o
-

tions added by Gaussian noise sen betweenN/10] and |N/2] (N is the length of time
(2 series) if there is not much information about the data. Thus,
Y@)=at+ ASIH(TI) +e, €~N(01D), (15)  in this example, leL.ssa be 100 & [N/10)).

The second step is to sort the decomposed time series into
groups of representative time series. Basically, by the SSA
0.25(1 <t <200 decomposition, the first group corresponds to the trend com-
o =1{-015 (200< 1 <550 |, (16) ponent. The next groups are often categorisgd as harmonics

term. And then the remaining components will be assumed
as noise. According to the right hand side of Efp)( it

where 1< ¢ < 1000,

0.35(550< r <1000

12(1<t <700 is obvious that such groups correspond to their first term,
T = ; second term, and third term, respectively. The determination
25(700< ¢t <1000 .
of these groups from the results of the decomposition may
andA = 10, which is illustrated in Figb. be achieved by the singular value spectra andutheorre-

The synthetic data series contains change points in bottation, Eq. 6). The first and the second mode differ in al-
linear and sine functions expressed in the first and the seconghost one magnitude (Fi§), followed by two pairs (3rd and
terms on the right hand side in E45), which are at =200  4th, and 5th and 6th), representing components with some
andt = 550 for the linear functions and at= 700 for the  periodicity. The 1st mode contributes 78 %, the 2nd mode
sine functions. 4.5 %, followed by rapidly decreasing contributions. Figtire
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illustrates the pattern ob correlation to discuss a separa- (a)yq
bility of components. We separate the pattern into two parts

u . me: w1 (0) 8 1
consisting of the first 8 components and a residual part (tt g0 ; 2 6
and 100th components), where the first part is assumed a _ 60 b5 — 05
an interpretable part including trends and harmonics and the 49 3 ' 4 '
residual one is assumed as noise. Reconstructed time seri i )
of these 8 modes of the interpretable part are shown irgrig. £ 4
0 2 4 i 6 8 0

Figure8a, b, and g show the local maximum more or less at 50 40 60 80 100
t =200 and the local minimum more or less at 550. Fig- ‘
ure 8c and d show similar behaviours, which are drastically
fluctuated until car = 700. In contrast, Fig8e and f show
oscillation froms = 700. In Fig.8h relatively large fluctu-
ations occur around= 700. Table2 shows 6 groups of the
first 3 strong correlated modes estimated byiieorrelation  Table 2. Relationship of modes between the 1st and 8th eigentriples
between the 1st and the 8th eigentriples. According to the taby w correlation./; (i =1, - -, 6): group indices.
ble, since there are overlapping modes in these groups it al-
lows to rearrange (i=1,---,6)into the following new in- 1 b I3 Iy s Ig
dICESI]_ —]1—12—{1 2, 7} I> —13—14—{3 4,8}, and
I3:=Is = Is = {5, 6,8}. This grouping implies to well ex-
tract the properties of the linear functions and the sine func-
tions from the original time series defined in Eg5).

If it is assumed that the original time series consists of the
trend, harmonics, and noise, it allows us to describe it by theTable 3. Parameter combinations of the example for I8& time

Fig. 7. w correlation (a) for the whole components fdrgga = 100
and(b) for the first 8 components.

following form: length of both past and future pars,a start position of the subtime
~ ~ series in the future part from the reference timegt: a window
Y=Y, +Y@un t+E, (7) length for these subtime serids,the number of the left singular
where vectors of the past part to span a hyperplane.
Y, = Yi+Yo+7V7, (18) b 'y Lsst l
Y (ury = Y3+ Y4+ ¥s+ Y6+ Vs, @ 5 0 25 (23
» , - - (b) 60 0 30 {23
andé is the residual. Let us here defitg, andY (;,ur;) as 0 70 0 35 {23
representative time series. Note tai,uys) is, however, re- (d 80 0 40 (2,3}
constructed by using the unique values from bbtland /3 (e 9 o0 45 (2,3}
in order to avoid duplication of the component. Fig@ra- () 100 0 50 {23
lustrates the linear functions and the sine functions defined in
Eq. (15) in (&) and (b) and the representative time seﬂels
and¥ (s, in (c) and (d). These results show thag, and Figuresl0and11show the results of the CP-scores for the
Y<12u13) well reconstruct both functions, which are defined trend and harmonics terms. The panels (a)—(f) in both figures
as the trend and the harmonics terms, respectively. explain the results for each parameter combination in table

In the third step the CP-score will be computed by the SST.  From these results we get thif, and¥ (1, are corre-
For the SST technique there are the following four parame-sponding to the trend term and the harmonics term, respec-
ters: (i) a time length of both past and future parigii) a tively since the significant peaks in Fit0 are shown at time
start position of the subtime series in the future paftom 200 and 500, and the significant peak in Fid.is shown at
the reference time, (iii) a window length for these subtime time 700 as defined in Eqsl%) and (6).
seriesLssT(< b < Lssp), and (iv) the number of the left sin- In the Monte Carlo significance test, we test the result for
gular vectors of the past part to span a hyperpladéhough  the parameter$,= 60, Lsst= 30, and = 3. Figuresl2and
a proper rule of the parameter setting is not yet regulated13 show the CP-scores and the thresholds estimated by the
as several reasonable values we chase 50, b2 = 60, above introduced surrogate data methods in (a), (b), and (c)
b3 =70, by = 80, bs = 90, andbg = 100 in this study. The and then detecting the statistically significant change points
y is fixed by zero since the structural difference of the neigh-by the red bars in (d), (e), and (f). As a result, the significant
bourhood will be focused on in this study. Thestmustbe  peaks of the CP-score fat;, andY (,u,) can be detected at
determined by a value less than or equal&g2|. Here let  around 200 and 550 (the linear functions) and at around 700
us choose thaLsstis a half of eachh. Then consider the (the sine functions) with 95 % confidence, which coincide
hyperplane for thé = 2, 3 (Table3). very well with the points set up in EqL9).
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Fig. 8. Reconstructed time serigg) for 1st mode(b) for 2nd mode(c) 3rd mode(d) 4th mode(e) 5th mode(f) 6th mode(g) 7th mode,
and(h) 8th mode.
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Fig. 9. The realisations ofa) ¢ and(b) Asin(%z) in Eq. (15), and the representative time series{cdfffl1 and(d) 1712.
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Fig. 10.CP-scores Oi]_. (@b =50,LssT=25,(b) b =60, LgsT=30,(C) b =70,Lg5T=35,(d) » =80, L55T=40,(€)» =90, Lg5T=
45, and(f) b = 100, LgsT= 50, and then alwayg = 0 and/ = 2 (blue line), 3 (red line).
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Fig. 11.CP-scores of 5. (a) b = 50, LgsT= 25,(b) b = 60, LggT= 30, (c) b = 70, LgsT= 35,(d) b = 80, LggT= 40, (€)b = 90, LgsT=
45, and(f) » = 100, LssT= 50, and then alwayg = 0 and! = 2 (blue line), 3 (red line).
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Fig. 12. (a) (b), and(c) are the CP-scores of the trend term (the red line) and the 95 % confidence intervals estimated in the Monte Carlo
significance test by th@) RS, (b) PR, and(c) iAAFT, respectively (the blue lined), (e), and(f) are the time series of the trend term (the
blue line) and the change points which have the statistic significance (the red bars).
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Fig. 13. (a) (b), and(c) are the CP-scores of the harmonics term (the red line) and the 95 % confidence intervals estimated in the Monte
Carlo significance test by th@) RS, (b) PR, andc) iIAAFT, respectively (the blue line)d), (e), and(f) are the time series of the harmonics
term (the blue line) and the change points which have the statistic significance (the red bars).
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Fig. 14. Singular value spectra (in percentage) with the 24 modes. 5
(a) Nakuru,(b) Naivasha(c) Narok, andd) Kisumu. The 1st mode 0 o
of each result shows the highest rate which means the most domi- 5 10,15 20 5 10,15 20
nant mode.

Fig. 16. w correlation with the 24 reconstructed time seri@s.

(a) (b) Nakuru,(b) Naivasha(c) Narok, and(d) Kisumu. When the mode
-1.2 0.055 . . . . .
g E for the reconstructed time series is higher, the separability becomes
? ? 0.05 weaker because more different colour cells indicating the correla-
% Plateaus %0,045 tion with other modes are illustrated in the row and column direc-
G & tions of each reconstructed time series in the results.
6

(c) (d)
g 0.07 50055 . . R . . .
S g” 3 Change-point detection of precipitation in East Africa
E -oer 5 0.05
B 0.05 0,045 Plateaus : . . . .
& B 000 , ‘ This section will be devoted to the application of our method

2 e s 2 Mde 6 to the monthly Kenyan precipitation illustrated in Figs.

nd 4. First, the precipitation will rthogonall m-
Fig. 15. Singular value spectra (in percentage) between the 2nda d db s:], the prec pt(;to be o tbogo Ia yddeccr)]
mode and the 6th mode magnified from Figt (a) Nakuru,(b)  P0S€d by the SSA. We choose any number related to the an-

Naivasha/c) Narok, and(d) Kisumu. In all the stations, there are n_ual cycle (12-_m0nt_h) for th_e WindOW length param@tggA
two pairs between the 2nd and the 3rd modes and between the 4HNC€ the original time series include a seasonality. Thus,
and the 5th modes (red ellipses). in this studyLssa= 24 (for 2yr). When the grouping and
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Fig. 17.First 5 reconstructed time series by SSA. e, i, m, q)for Nakuru.(b, f, j, n, r) for Naivasha(c, g, k, o, s)for Narok. @, h, I, p,
t) for Kisumu. (a—d) show the slowly varying trend componenfs-t) show the frequent components. The red rectangles between 1960 and
1969 mean the interesting decade in this study.
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Fig. 18.Periodicities of the extracted harmonics components shoe+) in Fig. 17. (a, e, i, m)for Nakuru.(b, f, j,n) for Naivasha(c, g,
k, and o) for Narok.(d, h, I, and p) for Kisumu. The two different periodicities are estimated, which are about the annual cycle (12 months)
and the semiannual cycle (6 months).

separability of the reconstructed time series are discussed First, all the results of the singular value spectra in E#y.

by the parameter choice, the results of singular value specshow the relatively high values for the 1st mode. From the
tra andw correlation will provide reasonable information in results ofw correlations in Figl16, we consider that there
the sense of climate cycles. For example, in Figsand 16, is no mode showing the high correlation with the 1st mode
which show the results of the singular value spectra and theince that of the closest mode to the 1st mode is at most less
w correlation forLssa= 24, the reconstructed time series than Q1 in all the stations. In addition, since the behaviours
from the 1st to the 5th modes can basically be characterisedf the reconstructed time series of the 1st mode shown in
as representative time series. These reconstructed time seriegy. 17a—d are slowly varying, we assume it as the represen-
are illustrated in Figl7. Then from these results, let us con- tative time series of the trend components. Second, accord-
sider the grouping of the reconstructed time series into theang to the result in Figl5, modes appear pairwise, i.e. 24#d
representative time series. 3rd, and 4th+ 5th; thus indicating the harmonic behaviours
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Table 4. Parameter combinations of the precipitations for S5&

Il positive 10D time length of both past and future paris,a start position of the
Il e gative 10D subtime series in the future part from the reference timgsT: a
~ Nakuru window length for these subtime seriésthe number of the left
H _:a""’:ha . singular vectors of the past part to span a hyperplane.
aro|
Kisumu
by Lsst I
o) 1@ 12 0o 6 2
- 2 24 0 12 2
(3 36 O 18 2
(4) 48 0 24 2
i A (5) 60 0O 30 2
0 | O\ 6) 72 0 36 2
NVl AN ©
2 7 N
L % bbb b
= vy e il 4 b4
5 qu[.u' .' {'ﬁ:‘f\,‘f{l? AL b o A m:m:g Lt f\ll | \JU% Table 5.Monthly periodicities every five years of the representative
T T e T T B T o . . i
= }“'H v f} Y AL i 'M’U*\L R w \] J t’-‘ Mj v . harmonics time series [month] from 1950 to 1984. The main peri-
T ! ' odicities in Nakuru, Naivasha, and Kisumu transiently change from
annual cycle to semiannual cycle in the 1960s.

1 L
1950 1955 1960 1965 1970 1975 1980

Time Time region Nakuru Naivasha Narok Kisumu

1950-1954 1D 119 119 59
Fig. 19.10D and the two representative time series (trend and har- 1955-1959 1P 119 119 119
monics) of the monthly precipitations from 1950 to 1985. This 1960-1964 s) 59 119 59
study focuses on the events of IOD around the early 1960s showing 1965-1969 1D 59 119 59
the change from the negative mode to the positive mode. At that 1970-1974 1P 119 119 59
time, the precipitations in all the stations immediately increased ac- 1975-1979 1P 119 119 119
cording to the trend time series and the periodicity is changed from a 1980-1984 1P 59 59 59

12-month cycle to 6-month cycle in Nakuru, Naivasha, and Kisumu
according to the harmonics time series (see Taple

turn of events from the negative IOD to the positive 10D,
thus we estimate the periodicities around 1960 in each sta-

of these modes. In Fidl6, w correlations corresponding to tion ((a) 19501954, (b) 1955-1959, (c) 1960-1964, and
these pairs are both more than 0.9. The behaviours of the rqd) 1965-1969).

constructed time series shown in Fij/le—t are modulated

oscillations, which almost indicate the annual cycle and the

semiannual cycle according to FiB. Therefore, we assume 4 Discussion

the sum of them as a representative time series of harmonics

components. To visually compare these two representativéVe demonstrate that our method successfully detects the
time series with the 10D, Fidl9shows them simultaneously. change points in the representative time series extracted from

Next, the extended SST will be applied to these representathe synthetic data series of EqQ5} and from the actual pre-
tive time series. As with the parameter choice in the windowcipitation in Kenya as a climate data analysis of East Africa.
length Lssa, the other parametels v, Lsst, and!/ should Since the relationship among these representative time series
be determined based on the seasonality. In this sfu@y is reconstructed by SSA is orthogonal we can state that the re-
fixed by 24 (for 2 yr), and the other parameter combinationssults of change-point detection are the independent and dif-
are set as listed in Table ferent properties in the data.

We repeatedly apply the Monte Carlo significance test to In the synthetic data series, the representative time series
the change-point scores 100 times. These results are showaf trend corresponds to the linear functions, where the change
in Figs. A1 and A2. Furthermore, to discuss properties of points can be detectedat 200 and at = 550 as shown in
the harmonics term, Fig20-23 show the transition of these Fig. 12. Similarly, that of harmonics corresponds to the sine
periodicities since the change point in the representativdunctions, where the change point can be detected-at00
time series of the harmonics is assumed as a point wheras shown in Fig13. They approximately coincide with the
a periodicity changes. However, this study focuses on thedefinition of Eq. (L6).
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Fig. 20. Periodicities around 1960 in Nakuru estimated from the Fig. 22.Periodicities around 1960 in Narok estimated from the rep-
representative time series of the harmonfayshows the periodic-  resentative time series of the harmonigg.shows the periodicities
ities between 1950 and 195¢h) between 1955 and 1958;) be- between 1950 and 195&)) between 1955 and 1958;) between
tween 1960 and 1964, ar(d) between 1965 and 1969. The red 1960 and 1964, an@l) between 1965 and 1969. The red cross mark

cross mark means the major periodicity in each time region. means the major periodicity in each time region.
“(@) x10° [1950-1954] by x10° [1955-1959]
8 10
< {. Period =11.8 { Perod =118 s
[ - 1955-1959

g (b)15>< 10 [ )

[=] ;

o2 { Period =118
: , go
3 (=]
¢ 10 15 20 5 10 45 20 as
. . Period (Month) . Period (Month)
" (c). x10 [1960-1964] (d), x 10 [1965-1969] 0
) 10 10 5 10 15 20 5 10 15 20

/N Period =53 . Period (Month) . Period (Month)

5 5 ¢ periog 59 (¢) x10 [1960-1964] (d) x10 [1965-1969]

zs 25 T 4 s (  Period = 5.9
II 5.. Dc: . X Period = 5.9

[
by 0 52
| 5 10 15 20 5 10 15 20 a
Period (Month) Period (Month)
0

) o ) ) ) 5 1045 20 5 10 15 20

Fig. 21. Periodicities around 1960 in Naivasha estimated from the Period (Month) Period (Month)

representative time series of the harmonfa$ shows the periodic- ) o o .
ities between 1950 and 195@) between 1955 and 195@) be- Fig. 23. Periodicities around 1960 in Kisumu estimated from the
tween 1960 and 1964, ar(d) between 1965 and 1969. The red representative time series of the harmon{a¥shows the periodic-

cross mark means the major periodicity in each time region. ities between 1950 and 195¢h) between 1955 and 195) be-
tween 1960 and 1964, ar(d) between 1965 and 1969. The red

cross mark means the major periodicity in each time region.

In the application to the actual precipitation in Kenya the
results of the trend terms show the significant variations of
all the data around 1960 (see Fiigl). However the result
for the parameter combination (@) =72,y =0, LssT= significant change point occurring in the 1960s. During this
36,/ = 2} listed in Table4 is different from the others. The period, the phenomenon of IOD has drastically changed be-
reason might be that the parameteiis too long to de- tween the negative mode and positive mode. According to
tect the change point at 1960. With regards to the harmonFig. 19, especially, to the trend time series, we can see that
ics terms, the significant change points are often estimatethe heavy rainfalls are provided in the early 1960s and af-
also in 1960s (see Fid\2). According to the periodograms terwards the rainfalls are immediately decreasing for several
of 10yr before and after 1960 shown in Figg-23, the  years. This result coincides with the record-breaking floods
strongest power of periodicity changes from a 12-month cy-in East Africa in 1961 Behera et aJ.2005. From the re-
cle to 6-month cycle in Nakuru, Naivasha, and Kisumu. Al- sult of the harmonics time series, the cycle of rainfalls in
though the strongest one in Narok does not change we caNakuru, Naivasha, and Kisumu decreased from 12-month to
see, however, that the power of a 6-month cycle at least in6-month in the early 1960s (see Talle This corresponds
creases between 1955-1959 and 1960-1964. to increased rainfalls in the usually short rainy season in au-
We discuss the interpretations of the results in climato-tumn, which was then comparable to the long rainy season in
logical context by linking them with IOD. We have found a spring in 1961.
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Fig. Al. Histogram, classified into the 1950s, 1960s, 1970s, and 1980s, of the significant change points of the trend estimated by using the
three kinds of surrogate methods: RS (left panels), PR (middle panels), and iAAFT (right p@aelsior b = 12, (d—f) for b = 24, (g—i)

for b = 36, (j-) for b = 48, (m—o)for b = 60, and(p—r) for b = 72. Blue bars mean Nakuru, light blue ones Naivasha, yellow ones Narok,

and red ones Kisumu.
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Fig. A2. Histogram, classified into the 1950s, 1960s, 1970s, and 1980s, of the significant change points of the harmonics estimated by using
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Narok, and red ones Kisumu.
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