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Abstract: Here we introduce a new calculation method to find the domains of zero density of 
states for photonic band gap guiding fibers consisting of arrays of high refractive index 
strands in a low refractive index cladding. We find an analytic expression that associates any 
combination of geometric parameter, effective index, material and wavelength with a single 
binary function which allows direct determination whether the density of cladding states is 
zero or not. The method neither requires the typically used root finding procedure for 
dispersion tracking nor simulation volume discretization. We verify the validity of our 
approach on well-established results and reveal as example that band gap regions are mainly 
determined by the two lowest order Bessel function orders. Our method allows for extensive 
parameter scans and evaluation of photonic band gap structures against structural and material 
inaccuracies with substantially reduced simulation effort. 
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1. Introduction 

Beside ordinary fibers that guide by total internal reflection, fibers with solid claddings 
employing the photonic band gap effect (PBG) allow the efficient guidance of light in low 
refractive index (RI) cores mostly in the fundamental mode [1]. The modal properties of such 
fibers mainly depend on the used materials and geometrical parameters, and have led to 
numerous applications in, for instance, high-extinction spectral filtering [2], mode-locked 
lasing [3], light amplification [4], high power transmission [5] and pulse dispersion 
engineering [6,7]. 

One important class of PBG fibers are composed of hexagonal arrays of longitudinal 
invariant cylindrical glass strands, which are made from a high RI material and located inside 
a low RI matrix, commonly referred as all-solid PBG (APBG) fibers (schematic shown in Fig. 
1(a)). A core section providing transverse light confinement is formed by omitting one or 
more strands in the center of the structure, which creates one or more states in the PBG and is 
known as the defect core. Examples of APBG fibers include arrays of GeO2 doped silica 
strands in pure silica [8,9] or combinations of various soft glasses or even metal nanowires 
[10–15]. Moreover very high RI-contrast APBG fibers consisting of a tellurite or 
chalcogenide glass inside silica or other soft glasses have been implemented, showing, for 
instance, extremely high extinction ratios of more than 60 dB/cm [16,17]. Pivotal parameters 
characterizing all mentioned APBG fibers, namely the strand diameters d and pitches Λ 
(center-to-center distance between the strands) are of the order of several micrometers, which 
are dimensions that can be easily accessed with current fabrication technology such as fiber 
drawing [1] or pressure-assisted melt filling [2,18]. 

A key feature of APBG fibers is that the modes guided in the HI strands interact, i.e. 
couple together inside the low RI material and form supermodes (SMs). These SMs can 
phase-match to a central defect mode in case their effective mode indices neff are identical, 
opening a loss channel for the electromagnetic energy to laterally tunnel into the cladding. 
The phase-matching leads to strong transmission dips, which are commonly referred as 
resonances. It is important to note that even outside these resonances the guided mode is 
intrinsically leaky (i.e., continuously sheds energy out of the domain of the defect), since the 
strand array is finite, i.e. consists of a finite number of strand rings, which imposes core-
cladding reflection coefficient below unity. This may suggest high propagation loss, whereas 
the simulations have revealed that the PBG effect is so strong that using four to six strand 
rings is sufficient to provided losses down to the dB/km level [19]. 
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The prerequisite to obtain low propagation loss thus defines the key challenge in the field 
of APBG fibers, which is to identify that parameter space where no cladding SMs exist, i.e., 
to find the domains of zero density of cladding states (zDOS). These domains can be used for 
guiding light using the PBG effect with effective indices below the RI of core material [1, 8]. 
Identifying the PBG regions requires numerical methods, typically relying on using Floquet-
Bloch modes [20] and in the case of cylindrical strands calculating a large number of modes 
at the high symmetric points of the 1st Brillouin zone [13]. These scans can be extensive and 
time-consuming particular for high index contrast structures and at large normalized 
frequencies, potentially leading to long simulation times and convergence issues which can 
make detailed parameter scans unfeasible within realistic time scales. 

One very successful approximate approach to identify the PBG regions was introduced by 
T. Birks et al. [21] and relies on analyzing only the dispersions of the extremal modes of the 
cladding SMs (referred in the following as PBG edge modes). All other SMs are not 
considered, since for low loss guidance it is only of relevance to find the PBG domains. This 
method requires numerical solving two independent transcendental equations which give rise 
to the neff dispersions of the edge modes and is favorable to full numerical simulations due to 
substantially reduced calculation effort and memory consumption. This original model (which 
will be referred here as Birks model) relies on a scalar field approach and has been recently 
extended to include the full vectorial nature of the modes [22], which, e.g., is important if 
cladding structures such as arrays of metallic nanowires are analyzed [13]. 

One drawback of the Birks model is the prerequisite to numerically solve transcendental 
equations, which imposes using root search methods. Moreover, information about the DOS 
cannot be calculated for one desired combination of wavelength and neff; it is rather required 
to find all the corresponding edge modes which demands searching starting values, which are 
typically obtained above the cladding RI. Using these values the modal dispersions of the 
edge modes have to be tracked accurately into the domains below the cladding RI. Due to the 
complex behavior of the edge modes in this effective index domain, fine step sizes in the 
modal tracking have to be used not to lose the dispersions, overall increasing simulation time. 
As a consequence the strategy of tracking the edge mode dispersions fundamentally does not 
allow for parameter sweeps of, e.g., pitch and/or strand diameter, and thus it is hard if not 
impossible to optimize an APBG structure for a given wavelength or finding PBGs at low 
effective index values. 

Here we introduce a new approach for calculating the dispersions of the PBG edge modes 
relying on the Birks model but using a root-search free ansatz. The idea relies on plotting one 
binary function as function of any relevant parameter, allowing for the direct identification of 
the PBG domains, which is a fundamentally different approach than solving the 
transcendental dispersion equations. It is possible to directly target the effective index values 
of interest using the binary function, thus allowing for extensive parameter sweeps at a fixed 
value of neff, which is important for finding PBGs at effective mode indices far below the 
cladding index – a domain which is again hard to access with root-search approaches due to 
the complex modal behavior in this domain. Our method does not require any kind of 
discretization, which is especially important when addressing systems with large refractive 
index contrast at high normalized frequencies. 

2. Method 

The main idea behind the Birks model is to determine the dispersions of the PBG edge modes, 
which can be used to identify the PBG regions, i.e. the domains being relevant for guiding 
light in a defect core using the PBG effect. The general motivation of this very successful 
ansatz can be found within molecular physics, precisely in the formation of diatomic 
molecules: Here, the most-bonding state, i.e. the state with the largest electron probability 
density in the center between the atoms, is created when the (total) electronic wave function Ψ 
has a maximum exactly in the center of the molecule, imposing the von-Neumann boundary 
condition (BC) dΨ/ds = 0 [23], with in the molecular science case s being the coordinate 
along the connection line between the centers of the two atoms. In contrast, the most-
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antibonding state is characterized by a node Ψ = 0 at half center-to-center distance between 
the atoms (Dirichlet BC) [23]. Any other molecular state formed by the two atoms lies within 
these two extremal cases, and the domain of zDOS is outside this regime. 

This straightforward concept has been adapted by Birks et al. and applied in an 
electrodynamical manner to the PBG edge modes of an infinite array of high RI dielectric 
cylinders embedded in a low RI matrix (Fig. 1(b)) [21]. Assuming an interaction of only the 
nearest neighboring strands, guided cylinder modes of the same LP mode order can couple 
together via their fields in the low RI cladding. Similar to the case of diatomic molecules, the 
bonding state is characterized by a maximum of the electric field E exactly at half the distance 
between the centers of the cylinders, giving the above mentioned von-Neumann BC (dE/ds = 
0 at s = Λ/2 with s being the spatial coordinate along the connection line between the centers 
of the two cylindrical strands). This corresponds to the state with the highest possible value of 
propagation constant, i.e. effective mode index, and is referred in the following as top band 
edge mode. Conversely, the Dirichlet BC, E = 0 at s = Λ/2, imposes a mode with the lowest 
possible propagation constant, and is referred as bottom band edge mode. The effective index 
of any other mode resulting from a coupling between neighboring cylinders lies in-between 
these two extremal cases, and thus the PBG domains, i.e. the domains of zDOS, can be found 
by analyzing the band edge modes only. 

high index strands

low index
host

defect core
plotting

binary func.

band
edge modes

unit cell
approx.

neff

λ
x

E

SM PBG

(a) (b)

edge modes

 

Fig. 1. (a) Schematic of an all-solid photonic band gap fiber with a hexagonal array of high 
index rods in a low index matrix and a central defect core (dark green: high refractive index 
cylindrical strands, bright green: host material). (b) Flow chart indicating how the binary 
function is obtained. The individual steps are (i) approximating the hexagonal unit cell by a 
circle, (ii) deriving the dispersion functions of the band edge modes (the two modes are 
indicated by the purple and dark yellow line) and (iii) plotting the binary function in the 
parameter domain of interest. 

The original Birks model as introduced by Birks el al. includes two major assumptions: 
First, the hexagonal unit cell of the hexagonal lattice is approximated by a single circular unit 
cell, which is a valid assumption for small ratios of strand diameter and pitch, d/Λ. This 
approximation greatly simplifies the calculations, as the dimension of the initial two-
dimensional unit cell is reduced to a system which has no azimuthal dependence, i.e. it is 
sufficient to calculate the edge modes only along one direction, which results in a one-
dimensional mathematical problem. The outer radius of the circular unit cell b is found by 
imposing that the area fraction of high RI material is identical to that of hexagonal geometry, 
leading to b = Λ(√3/(2π))1/2. 

The second assumption is that the modal fields are scalar (which is a valid assumption if 
the longitudinal electromagnetic field components can be neglected), imposing that the Birks 
model is applicable for moderate RI contrasts and low RI in general [24], overall reducing the 
number of required BCs from six to three for both top and bottom dispersion functions. Using 
two BCs at the core/cladding interface (continuity of tangential field components) and either a 
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Dirichlet or a von-Neumann BC at s = b, the dispersion functions for the top and bottom PBG 
modes, fT and fB, respectively, are obtained, 

 

( ) ( )

( ) ( ) ( ) ( )1 1

B l l

T l l l l

f CJ qQ DY qQ
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with q = b/a (a is the radius of strands and b is the radius of the circular unit cell). The 
amplitude coefficients C and D are defined as, 
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which include the normalized transverse wave vector U and Q as shown in following with the 
dielectric functions of strand and host material, nstrand and nhost, respectively and the vacuum 
wave vector k0, 

 

2 2
0

2 2
0

strand eff

host eff

U a k n n

Q a k n n

= ⋅ ⋅ −

= ⋅ ⋅ −
 (3) 

The roots of Eqs. (1) give in fact the solutions to the problem discussed here, i.e. the 
effective indices of top and bottom edge modes for a given configuration (combination of 
wavelength, strand and cladding index, radius and pitch), whereas the actual value of the 
dispersion functions are irrelevant. The particular forms of Eqs. (1) and Eqs. (2) use the 
Bessel functions Jl and Yl, which result in real-valued dispersion functions if effective indices 
below the cladding index are of interest. To obtain real-valued dispersion functions for neff > 
nhost, Jl and Yl have to be replaced by their modified counterparts (see Appendix). 

Both dispersion functions cross the zero line, i.e. change their sign, at defined effective 
indices (example calculation illustrates this in Fig. 2(a)), whereas the crossing point of top 
edge band has a higher effective mode index than that of the bottom edge mode as expected. 
This particular behavior is in fact the key feature of our presented calculation approach: 
Within the PBG domain (bright yellow regions of Fig. 2(a)), both dispersion functions have 
equal signs, whereas fT and fB possess opposite signs within the regions of non-zero DOS. As 
a consequence, a PBG domain can be identified by the sign of the product of the two 
dispersion functions. As the actual value of the dispersion function is irrelevant and to 
indicate the PBG regimes by a zero, we define the normalized dispersion binary function 

 
0 : 0

  
1: 0

B T

B
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T
b

f f

f f
f

⋅ ≥
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 (4) 

As a result of this particular definition, the binary function produces a zero in case of 
zDOS or unity in all other cases, thus allowing for a clear and simple identification of PBG 
regions (Fig. 2(b)). The idea of our method, i.e., calculating a binary function by Eq. (4), is 
fundamentally different from a root search ansatz typically used for analyzing PBG fibers, 
since it does not require tracking the dispersions of the edge mode; it is, however, sufficient to 
plot this binary function for any desired parameter combinations and check whether fbin 
indicates zero values, i.e., PBG domains. A direct identification of PBG regions is also 
important from the simulation point of view, as the numerical difficulty to access region close 
to the host RI does not need to be addressed, which solves one issue pointed out in the 
original work of Birks et al. [21]. 
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Fig. 2. Dependence of the dispersion functions of top and bottom band edge modes (purple: 
bottom band edge function fB, green: top band edge function fT) on effective mode index. In 
both diagrams, the blue curves correspond to the binary function which depends on the sign of 
the product of top and bottom band edge functions. The yellow areas refer to the PBG 
domains, the gray regions to situation of SM formation in the cladding. The dashed black lines 
are a guide-to-the-eye to indicate the zero line. (a) is calculated for an example configuration 
(nstrand = 1.48716, nhost = 1.458, d = 2µm, Λ = 3 µm, λ = 1um, l = 0) showing close-up view of a 
region with one selected SM domain. (b) is calculated for a second example configuration 
(nstrand = 1.48716, nhost = 1.458, d/Λ = 0.41, kΛ = 150, l = 0) showing a series of SM guiding 
region. 

3. Results 

To verify the validity of our approach we simulate the dispersions of the PBG edge modes 
using our binary function (Eq. (4)) and using a root-finding algorithm with parameters 
identical to those of the original work of Birks et al. (Fig. 3) [21]. In detail, we have 
calculated the effective index dispersion of the top and bottom band edge modes as function 
of normalized frequency for the following parameters: nstrand = 1.48716, nhost = 1.458, d/Λ = 
0.41. 

The analysis starts by considering a fixed value of Bessel function order l = 0 (Fig. 3(a)): 
the effective index of top and bottom edge modes are in close proximity for neff values above 
the cladding index, which is a result of the comparably weak interaction of the modes in the 
neighboring cylinders. This changes dramatically for effective index values below the 
cladding index (below the horizontal dashed lines in Fig. 3(a)), which is the relevant regime 
for PBG guidance, as the effective indices of defect core modes are located within this 
domain: Here, strong modal interaction between the modes of neighboring strands leads to a 
substantial modification of the dispersions of the band edge modes compared to the isolated 
modes or the modes with indices above the cladding index. The regions of non-zero DOS are 
located in-between the top and bottom edge modes (gray regions in Fig. 3(a)), whereas the 
DOS is zero outside those regions (bright yellow regions in Fig. 3(a)). It is important to note 
that regions of non-zero DOS broadens significantly towards smaller values of neff, strongly 
reducing the available parameter space for PBG guidance. 

The dispersions of the band edge modes calculated by the root finding ansatz (points in 
Fig. 3(a)) is entirely reproduced by our binary function with no single deviation from it 
(colored regions in Fig. 3(a)). Thus our method allows the direct determination of PBG 
regions for any parameter combination (in Fig. 3(a) kΛ and (β - knhost)Λ) without calculating 
the corresponding top and bottom edge modes. We plot the dispersion map using the binary 
function from −0.4 < (β - knhost)Λ < 0.15 and 5 < kΛ < 160 without conducting any sort of 
mode tracking. The underlying mechanism for the perfect agreement between our binary 
function approach and the root finding ansatz relates to the fact that for a fixed value of 
effective index (i.e., (β - knhost)Λ = const., horizontal level in Fig. 3(a)), the dispersion of the 
top edge mode never crosses the dispersion of the bottom edge mode, i.e., the sequence of fT 
and fB is for a given value of neff always top/bottom/top/bottom etc. The physical reason for 
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this is the following: For a fixed Bessel function order (modes labeled by LPlx), the adjacent 
top and bottom edge modes can couple and thus anti-cross, which results in the fact that their 
dispersions are always separated. This is different for modes with different value of l, as such 
modes are orthogonal and thus the modal dispersions are allowed to cross. 

A full PBG map is obtained by overlaying all the dispersion maps which include any kind 
of edge mode dispersions (Fig. 3(b)), leading to 
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with the maximum number of maps (maximum Bessel function order) to be overlaid lmax. 
Equation (5) in fact represents a simple-to-implement version of the “or”-operator acting on 
the entire set of PBG maps. This number can be estimated by using the expression for the 
maximum Bessel function order of the guided modes in a multimode fiber lmax = ceiling(2V/π) 
with the waveguide parameter V = k0a·NA (NA: numerical aperture, ceiling(x) gives the 
smallest integer greater than or equal to x) [25]. For the example presented here (Fig. 3(b)), 
lmax = 7 which agrees well with the observation that maps with l > 7 do not contain edge mode 
dispersions below the cladding index. 

Due to the different evolutions of the edge mode dispersions particularly at large 
normalized frequencies, the areas of PBG guidance reduce substantially after overlaying the 
first seven dispersion maps (light yellow areas in Fig. 3(b)). Again a 100% correspondence 
between the results obtained using the root-finding algorithm and our binary function 
approach is obtained (Fig. 3(b)). 

One important feature which is evident from Fig. 3(b) is that PBG guidance is difficult, if 
not impossible, to achieve at small values of effective indices (i.e., neff far below the zero 
line). These regions are of interest for various important applications requiring guidance of 
light in a water or even a hollow air core. These regions, however, are typically difficult to 
access from the simulation perspective using root-searching, since the dispersions of the edge 
modes have to be tracked down to these regimes starting at high effective index values 
(presumably above the cladding RI), making large parameter sweeps of combinations of 
pitch, radius and RIs extremely time consuming, as one has to calculate almost the entire PBG 
map even though only a small effective index region is of interest. Here we believe our 
approach can provide a straightforward and time-effective solution, since we can directly 
determine whether the DOS is zero or not by calculating the value of the binary function for a 
given configuration. 

Thus our approach allows designing and optimizing the cladding properties for application 
in various effective mode index regimes via fixing the value of neff. It is well known that the 
effective index of the guided core mode is only slightly below the index of the core material 
(e.g., horizontal black dashed line in Fig. 3(b)) in case the defect core diameter is sufficiently 
large, i.e. the mode having most of its fields inside the defect region. Thus for designing a 
PBG fiber operating in a predefined wavelength and effective index domain it is thus 
sufficient in many practical cases to assume an effective index slightly below the RI of the 
core material. 

                                                                                           Vol. 24, No. 14 | 11 Jul 2016 | OPTICS EXPRESS  16218 



50 100 150
-0.4

-0.3

-0.2

-0.1

0.0

0.1

50 100 150
-0.4

-0.3

-0.2

-0.1

0.0

0.1

kΛ kΛ

(
-k

n
)

β
Λ

c
la

d

(
-k

n
)

β
Λ

c
la

d

ottomb edge

opt edge photonic band gap, zero DOS

supermode formation in cladding, non-zero DOS

binary dispersion functionfinding root

(a) (b)

 

Fig. 3. Dispersion of the effective indices of the top and bottom band edge modes as function 
of normalized frequency. The plots have been obtained using the binary function Eq. (5), light 
yellow: PBG regions, gray: domains of SM formation in the cladding). To show the validity of 
our approach the parameters used in the original work of Birks et al. have been used here 
(nstrand = 1.48716, nhost = 1.458, d/Λ = 0.41) [21]. The dispersion of the edge modes have also 
been calculated using a standard root finding algorithm (included as points (bright blue circles: 
top band edge modes, dark yellow circles: bottom band edge modes)). The horizontal dashed 
black lines separate the regions of total-internal reflection guidance (positive ordinate numbers) 
from the domain of photonic band gap guidance (negative ordinate numbers). (a) Dispersions 
of the edge modes of lowest Bessel function order (l = 0). (b) Full dispersion map after 
overlaying the first seven dispersion maps (l = 0…7). 

To demonstrate the design capability of our approach on the just mentioned example 
(presented in Fig. 3(b)), we determine the regions of zero and non-zero DOS as function of 
pitch and strand diameter by plotting the binary function using the material RIs associated 
with Fig. 3. We consider a wavelength of λ = 1 µm and assume an effective index neff = 1.456, 
which is slightly below the cladding RI (nhost = 1.458). This parameter sweep results in a PBG 
map, in which the domains of vanishing DOS are indicated by zeros (light yellow areas in 
Fig. 4), whereas the regions of SM formation are represented by finite values (gray areas in 
Fig. 4). 

The results show that various domains of PBG guidance can be identified, which are 
mainly determined by the two maps associated with the first two lowest Bessel function 
orders (l = 0 and l = 1, yellow areas in Fig. 4(a)). This observation of the first two Bessel 
being most relevant for defining the domain of PBG has been observed in several of our 
calculation and is in correspondence with literature [17]. Overlaying the first ten PBG-maps 
(maps with varying d and Λ, lmax = 10) then reveals the regions relevant for PBG guidance 
(Fig. 4(b)), which are located for this example in the vicinity of d/Λ ≈0.54 (example of a 
propagating defect mode is shown in the inset of Fig. 4(b) (corresponding to the configuration 
indicated by the dark yellow dot in Fig. 4(b)). Calculating the entire PBG map including all 
relevant Bessel function order is straightforward and takes with our current self-written non-
optimized Python code only a few hours, whereas numerical simulations using the Finite 
Element method results in a calculation time of several days. 

Our calculation method is also particularly important to understand the susceptibility of 
the individual PBG to structure variation and imperfections: For instance analyzing the PBG 
domain at around d = 5 µm and Λ = 8 µm shows that this band gap is less sensitive to pitch 
variation than to variations in strand diameter. Assuming that the fiber cladding is designed 
with the parameters corresponding to those exactly in the middle of the PBG domain (d = 
4.68 µm, Λ = 8.33 µm), a 20% variation of the pitch is still acceptable for PBG guidance 
(along the vertical direction), whereas the maximum tolerable deviation in diameter is only 
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10%. Thus our method allows evaluating PBG-fiber design in terms of robustness against 
structural imperfections and deviations from the ideal geometry. 
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Fig. 4. Representation of photonic band gap maps as function pitch and strand diameter, 
calculated using the binary function for a fixed effective index (neff = 1.4561) and the material 
parameters defined in Fig. 3 (λ = 1 µm). In both diagrams the light yellow (gray) domains refer 
to PBG regions (SM formation). The white regions correspond to the ratio of diameter to pitch 
which is unrealistic from the fiber fabrication perspective. (a) Example of an overlay of the 
first two lowest order maps (l = 0 and l = 1 (plotted semitransparent)). (b) Complete photonic 
band gap map, obtained by overlaying all relevant maps 0≤ l ≤10. The inset shows the guided 
mode in the central defect region with the parameters indicated by the dark yellow dot in (b) (Λ 
= 7.33 µm, d = 4.7277µm). 

4. Conclusion 

In this contribution we have introduced a new and straightforward calculation method to find 
the regions of zero density of states for photonic band gap guiding fibers, consisting of 
hexagonal arrays of high refractive index cylindrical strands in a low index cladding. The 
method relies on plotting a single binary function resulting from combining the dispersion 
functions of the edge modes introduced by Birks et al. [21]. Regions of zero density of states 
are identified by a single binary value for any combination of geometric parameters, materials 
and wavelength requiring neither a root-finding algorithm nor tracking the dispersion of edge 
modes. By applying our model to well-established results, we show that our approach 
perfectly reproduces the results from Birks et al. [21] and is extremely valuable in cases 
extensive parameter scans are considered, particularly for large strand diameters, which 
intrinsically have a large number of guided modes. One interesting observation we found is 
that the photonic band gap domains are mainly determined by the modes with the two lowest 
order Bessel functions (l = 0 and l = 1). Due to its straightforwardness, our method shows a 
substantially reduced simulation effort compared to full numerical simulations and allows the 
evaluation of photonic band gap structures with respect to structural and material 
inaccuracies. 

The idea of finding the domains of zero density of states using a single binary function is 
not restricted to the Birks model and should also work for more sophisticated dispersion 
functions of edge modes, as the range of validity of our method stands and falls with the 
validity range of the model used for deriving the dispersion functions. In a next step we plan 
to extend the presented scheme to more sophisticated dispersion functions (e.g., those taking 
into account the vector nature of the fields [13,22]), which include fewer assumptions and 
thus make the presented approach applicable to more experimentally relevant configurations. 

Appendix: dispersion function above the host index 

In the situation nstrand ≥ neff > nhost, it is useful to redefine one of the normalized transverse 
wave vectors such that the dispersion functions result in real values, leading to 
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0 eff hostW i Q a k n n= ⋅ = ⋅ −  (6) 

The dispersion functions for the top and bottom and edge can then be written in similar forms 
compared to Eqs. (1) and (2): 
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with the amplitude coefficients A and B defined as 
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Here, Kl and Il are modified Bessel functions, and c1 and c2 are constant which can be chosen 
arbitrarily and be used to obtain continuous dispersion functions across the region with neff = 
nhost. The functions (Eqs. (7) and Eqs. (8)) are well defined, which can be seen by considering 
the situation of neff = nstrand with l = 0 for which obviously no state can exist and the wave 
vector defined in Eq. (5) transforms into the waveguide parameter V = k0a·((nstrand)

2 - 
(nhost)

2)1/2. In this case the terms in square brackets of Eqs. (7) are positive for all 
combinations of V and q (q > b/a) and thus the functions are well defined for the binary 
function approach. The two constant c1 and c2 can be choosen arbitrarily and are set here to c1 
= c2 = 2/π so that the case of both fb and ft being positive refers to the situation of zero density 
of states (i.e., a positive product indicates a photonic band gap) and that the dispersion 
functions are continuous across neff = nhost. 
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