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ON CONCENTRATORS AND RELATED APPROXIMATION CONSTANTS

A. V. BONDARENKO, A. PRYMAK, AND D. RADCHENKO

Abstract. Pippenger ([Pip77]) showed the existence of (6m, 4m, 3m, 6)-concentrator for each

positive integerm using a probabilistic method. We generalize his approach and prove existence

of (6m, 4m, 3m, 5.05)-concentrator (which is no longer regular, but has fewer edges). We apply

this result to improve the constant of approximation of almost additive set functions by additive

set functions from 44.5 (established by Kalton and Roberts in [KR83]) to 39. We show a more

direct connection of the latter problem to the Whitney type estimate for approximation of

continuous functions on a cube in Rd by linear functions, and improve the estimate of this

Whitney constant from 802 (proved by Brudnyi and Kalton in [BK00]) to 73.

1. Introduction

Our original motivation was the following Whitney-type inequality, valid for each f ∈

C([0, 1]d):

min
L

max
x∈[0,1]d

|f(x)− L(x)| ≤ w2(d) max
x,y∈[0,1]d

|f(x) + f(y)− 2f((x+ y)/2)|,

where the minimum is taken over all polynomials L in d variables of total degree ≤ 1 (linear

polynomials), and C([0, 1]d) is the space of all continuous real-valued functions on the unit

cube [0, 1]d. Brudnyi and Kalton (see [BK00]) showed that w2(d) ≤ 802 and conjectured that

w2(d) ≤ 2. We will show here that w2(d) ≤ 73, and improve some other constants along the

way.

The above estimates, however, stem from seemingly irrelevant combinatorial problem of

existence of certain concentrators. An (m, p, q, r)-concentrator is a bipartite graph with m

inputs and p outputs, not more than mr edges, such that for any set of k ≤ q inputs, there

exist k disjoint edges to some k outputs. Using a probabilistic argument, Pippenger [Pip77]

showed that (6m, 4m, 3m, 6)-concentrators exist for any integer m ≥ 1. Reducing the average

degree of inputs for large m is of primary interest in our context. Our main result is the

following theorem.

2010 Mathematics Subject Classification. Primary 41A63 (46A10). Secondary 05D40, 05C35.
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Theorem 1.1. For any large enough integer m there exists a (6m, 4m, 3m, 5.05)-concentrator.

For the proof, we use a modification of Pippenger’s approach, but this requires much more

technical estimates. Unfortunately, our method does not allow to prove that (6m, 4m, 3m, 5)-

concentrators exist for large m, but we conjecture that this is so, see Remark 2.2.

Pippenger’s concentrators were used by Kalton and Roberts in [KR83] to prove the following.

There exists an absolute constant K ≤ 44.5 such that for any algebra A of finite sets and any

map ν : A → R satisfying |ν(A ∪ B) − ν(A) − ν(B)| ≤ 1 whenever A ∩ B = ∅, there exists

an additive set-function µ : A → R (i.e., µ(A ∪ B) = µ(A) + µ(B) for A ∩ B = ∅), satisfying

|ν(A)−µ(A)| ≤ K for any A ∈ A. We remark that the same is true if one does not restrict the

elements of A to be finite sets, see [KR83, Proof of Theorem 4.1, p. 809]. From Theorem 1.1,

we immediately obtain the following improvement.

Corollary 1.2. K < 39.

Since Brudnyi and Kalton [BK00] reduced the problem of estimating w2(d) to the problem

of estimating K, Corollary 1.2 would provide an immediate (but insignificant) improvement of

the estimate on w2(d). We establish a more direct connection between these two questions and

prove the following.

Theorem 1.3. w2(d) < 73.

Using Corollary 1.2 and Theorem 1.3, one can follow [BK00] to obtain an improvement of

other approximation constants, including Whitney constant for unit balls of finite dimensional

lp-spaces, homogeneous Whitney constants, etc.

The paper is organized as follows. In Section 2, we state the main technical lemma and

use it to prove Theorem 1.1. The lemma itself is proved in Section 4 using reduction to a

non-linear optimization problem, which was resolved with the aid of a computer. The proof of

Corollary 1.2 and Theorem 1.3 can be found in Section 3.

2. Concentrators

Let
(
n
m

)
= n!

m!(n−m)!
be the binomial coefficient, and we set

(
n
m

)
= 0 if m < 0 or m > n. The

most technical part of our result is the following lemma, which will be proved later in Section 4.
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Lemma 2.1. For any large integer m, with s = ⌈5.7m⌉, we have

(2.1)
3m∑
k=1

k∑
l=0

k∑
r=0

(
s

l

)(
6m− s

k − l

)(
s− 4m

r

)(
8m− s

k − r

) (
8k−r
6k−l

)(
36m−s
6k−l

) < 1.

Now we show how Lemma 2.1 implies our main result closely following the idea of [Pip77]

with some extra necessary calculations appearing from non-regularity of the graph.

Proof of Theorem 1.1. Let s = ⌈5.7m⌉, N := 36m − s, and M := {0, 1, . . . , N − 1}. Any

permutation π on M defines a bipartite graph G(π) with inputs {0, 1, . . . , 6m − 1} and out-

puts {0, 1, . . . , 4m − 1}, where for every x ∈ M there is an edge from (x mod 6m) to (π(x)

mod 4m). There are 6m−s inputs of degree 6 and s inputs of degree 5; s−4m outputs of degree

7 and 8m−s outputs of degree 8. Total average degree of the inputs is at most 36m−5.7m
6m

= 5.05.

Following Pippenger, we want to compute the probability that a random (with respect to

the uniform distribution) permutation π is “bad”, that is for some k, 1 ≤ k ≤ 3m, there exists

a set A of k inputs and a set B of k outputs in G(π) such that every edge out of A goes into

B. Let l, 0 ≤ l ≤ k, be the number of vertices from A that have degree 5, and let r, 0 ≤ r ≤ k,

be the number of vertices from B that have degree 7. Then A corresponds to a set A of

6(k− l)+ 5l = 6k− l elements from M, and B corresponds to a set B of 8(k− r)+ 7r = 8k− r

elements from M. Note that A can be chosen in
(
s
l

)(
6m−s
k−l

)
ways, while B can be chosen in(

s−4m
r

)(
8m−s
k−r

)
ways, which is reflected in the first four factors of (2.1) (for some values of k and

r one or more of these binomial coefficients may be zero). The probability that a permutation

π sends each element of A into B is equal to

(8k − r)(8k − r − 1) . . . ((8k − r)− (6k − l) + 1)
(N − (6k − l))!

N !
=

(
8k−r
6k−l

)(
N

6k−l

) =

(
8k−r
6k−l

)(
36m−s
6k−l

) .
This shows that the probability that a permutation is “bad” is bounded by the left-hand side

of (2.1), and by Lemma 2.1, it is bounded by one. Hence, a “good” permutation exists, and

the existence of the required concentrator is proved. �

Remark 2.2. Essentially, [Pip77] considers the case of s = 0, and here we find the largest

possible s permitting generalization. It is easy to see from the proof of Theorem 1.1, that

if (2.1) is satisfied with s = 6m, then a (6m, 4m, 3m, 5)-concentrator exists. Let s(m) be

the largest value of s so that (2.1) is satisfied. For small values of m, the quotient s(m)/m

appears to be larger, and in fact, computer computations show that s(m)/m ≥ 6 for all

m ≤ 150 (but not for m = 151). However, as m → ∞, we have s(m)/m → c∗ ≈ 5.72489,
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see Remark 4.4. Hence, our refinement of Pippenger’s probabilistic approach allows to prove

asymptotic existence of (6m, 4m, 3m, 5.05)-concentrators, but does not imply the existence of

(6m, 4m, 3m, 5)-concentrators for large m. We conjecture that (6m, 4m, 3m, 5)-concentrators

do exist for large m, since our method shows that a random graph from certain configuration

space will provide “almost” the required concentrator. If an “average” object is “almost good”,

it is reasonable to expect that some “best” object will be “good”, but the proof may require a

completely different, and, perhaps, non-probabilistic approach.

3. Constants

Proof of Corollary 1.2. Following the proof of [KR83, Theorem 4.1, p. 811], we see that if

(6m, 4m, 3m, γ)-concentrators exists for large enough m, then

K ≤ 7 + 4γ − 4/3

2/3
.

For γ = 5.05, we obtain K ≤ 38.8 < 39. �

The following lemma is a slight modification of [KR83, Theorem 4.1] combined with new

concentrators, which uses a stronger condition on the function being approximated and achieves

a better constant.

Lemma 3.1. For any algebra A of sets and any map ν : A → R satisfying

(3.1) |ν(A) + ν(B)− ν(A ∩B)− ν(A ∪B)| ≤ 1 for any A,B ∈ A,

and ν(∅) = 0, there exists an additive set-function µ : A → R, satisfying |ν(A) − µ(A)| ≤ K̃

for any A ∈ A, where K̃ < 36.

Proof. Note that when ν(∅) = 0, the condition (3.1) implies |ν(A) + ν(B)− ν(A ∪B)| ≤ 1 for

any A ∩ B = ∅. Therefore, we can follow the proof of [KR83, Theorem 4.1] verbatim with a

small change that will be described now. Below g, a, A and S are the same as in the proof

of [KR83, Theorem 4.1]. We can replace the inequality g(A∩S) ≥ a− 5
2
on [KR83, Theorem 4.1,

p. 810] by a stronger g(A ∩ S) ≥ a− 3
2
using (3.1) for g as follows:

g(A ∩ S) ≥ g(A) + g(S)− g(A ∪ S)− 1 ≥
(
a− 1

2

)
+ a− a− 1 = a− 3

2
.

We used g(A) ≥ a − 1
2
, g(S) = a, and g(A ∪ S) ≤ a. Consequently, we can replace 9

2
by 7

2

everywhere in the proof of [KR83, Theorem 4.1]. Accordingly, if (6m, 4m, 3m, γ)-concentrators
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exist for large enough m, then

K̃ ≤ 5 + 4γ − 4/3

2/3
.

Hence, with γ = 5.05, we obtain K̃ ≤ 35.8 < 36. �

Proof of Theorem 1.3. We can assume that

(3.2) max
x,y∈[0,1]d

|f(x) + f(y)− 2f((x+ y)/2)| = 1

2
,

and prove that for some linear polynomial L we have |f(x)− L(x)| ≤ 73
2
, x ∈ [0, 1]d.

Let A be the algebra of all subsets of {1, 2, . . . , d}. Each element of A can be naturally

assigned to exactly one element of {0, 1}d (the set of all vertices of the cube [0, 1]d) as follows.

For any A ∈ A, let τ(A) = (x1, . . . , xd), where xj = 1 if j ∈ A, and xj = 0 otherwise. For any

f ∈ C([0, 1]d), we define a mapping ν : A → R as ν(A) = f(τ(A)) − f(0), A ∈ A. Under the

assumption (3.2), we first claim that (3.1) holds. Indeed, it is easy to see that

x̂ :=
τ(A) + τ(B)

2
=
τ(A ∩B) + τ(A ∪B)

2
∈ [0, 1]d,

so by (3.2),

|ν(A) + ν(B)− ν(A ∩B)− ν(A ∪B)| = |f(τ(A)) + f(τ(B))− f(τ(A ∩B))− f(τ(A ∪B))|

≤ |f(τ(A)) + f(τ(B))− 2f(x̂)|

+ |f(τ(A ∩B)) + f(τ(A ∪B))− 2f(x̂)|

≤ 1

2
+

1

2
= 1.

Applying Lemma 3.1, we obtain an additive set-function µ satisfying |ν(A) − µ(A)| ≤ 36 for

all A ∈ A. Note that by additivity of µ, the linear function

L̃(x1, . . . , xd) := µ({1})x1 + · · ·+ µ({d})xd

satisfies L̃(τ(A)) = µ(A), for any A ∈ A. Therefore, for the linear polynomial L defined as

L(x) := L̃(x) + f(0), we have the following estimate at the vertices of the cube:

|f(x)− L(x)| ≤ 36, x ∈ {0, 1}d.

Now we show that this implies the required estimate for all x ∈ [0, 1]d. Let

|f(x̃)− L(x̃)| = max
x∈[0,1]d

|f(x)− L(x)|.
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Without loss of generality, assume that x̃ ∈ [0, 1
2
]d (otherwise we replace 0 in the arguments

below by an appropriate vertex of the cube). Since 2x̃ ∈ [0, 1]d, we use (3.2) and L(0)+L(2x̃)−

2L(x̃) = 0 to conclude that

2|f(x̃)− L(x̃)| ≤ |f(2x̃)− L(2x̃)|+ |f(0)− L(0)|+ |f(0) + f(2x̃)− 2f(x̃)|

≤ |f(x̃)− L(x̃)|+ 36 +
1

2
.

Hence, |f(x̃)− L(x̃)| ≤ 73
2
, as required. �

4. Proof of Lemma 2.1

We need to prove (2.1), which is

3m∑
k=1

k∑
l=0

k∑
r=0

(
s

l

)(
6m− s

k − l

)(
s− 4m

r

)(
8m− s

k − r

) (
8k−r
6k−l

)(
36m−s
6k−l

) =:
3m∑
k=1

k∑
l=0

k∑
r=0

a(m, s, k, l, r) < 1.

Let us give an outline of the proof. The main idea is to show that a(m, s, k, l, r) ≤ e−cm for some

c > 0. This will imply the required bound for large m, because there are at most Cm3 terms of

summation. We begin with relating binomial coefficients to a more convenient function h(n,m)

in Lemma 4.1. Then we treat “smaller” values of k, i.e., k ≤ ⌈2.6m⌉, in Lemma 4.2. This

case is easier, since there is a simple estimate for
k∑

l=0

k∑
r=0

a(m, s, k, l, r) such that the bounding

function (of k) attains maximum at the boundary of the domain. For the remaining more

difficult case ⌈2.6m⌉ < k ≤ 3m, we reduce the problem to optimization of a certain function φ,

as described in Lemma 4.3. First, we show analytically that φ attains its maximum when k is

largest. Then we show that the largest value of φ over the remaining two variables l and r will

be attained at the only critical point of the domain, which is a solution of an algebraic system

of equations of degree 5. Numerical computations are used to verify the required conclusion on

the maximum value of φ.

Denote g(x) := x lnx, if x > 0, and g(0) := g(0+) = 0. Let h(x, y) := g(x)− g(y)− g(x− y).

Note that h is defined and continuous on {(x, y) : 0 ≤ y ≤ x}, and also

(4.1) h(λx, λy) = λh(x, y), λ > 0.

The following lemma relates the binomial coefficient
(
n
m

)
with h(n,m).
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Lemma 4.1. For any integer n ≥ 1 and 0 ≤ m ≤ n,

1

5
√
n
exp(h(n,m)) ≤

(
n

m

)
≤ exp(h(n,m)).

Proof. Stirling’s formula gives that for n ≥ 1

ln(n!) = ln(
√
2π) + n lnn+

1

2
lnn− n+ r(n),

where 0 < r(n) < 1
12n

. This immediately implies the required estimates. �

Now we estimate the required sum when k is not large.

Lemma 4.2. There is an integer m0 such that for any integers m ≥ m0 and s ≤ 6m, we have

(4.2)

⌈2.6m⌉∑
k=1

k∑
l=0

k∑
r=0

(
s

l

)(
6m− s

k − l

)(
s− 4m

r

)(
8m− s

k − r

) (
8k−r
6k−l

)(
36m−s
6k−l

) < 1

2
.

Proof. For simplicity, let q = q(m) := ⌈2.6m⌉. Since
k∑

l=0

(
s

l

)(
6m− s

k − l

)
=

(
6m

k

)
,

and
k∑

r=0

(
s− 4m

r

)(
8m− s

k − r

)
=

(
4m

k

)
,

it is enough to prove that
q∑

k=1

(
6m

k

)(
4m

k

) (
8k
5k

)(
30m
5k

) < 1

2
.

Using Lemma 4.1, for k ≤ q < 3m, we obtain

(4.3)

(
6m

k

)(
4m

k

) (
8k
5k

)(
30m
5k

) ≤ 5
√
30m exp(f(k,m)),

where

f(k,m) := h(6m, k) + h(4m, k) + h(8k, 5k)− h(30m, 5k).

We have
∂2

∂k2
f(k,m) =

3

k
+

4

6m− k
− 1

4m− k
> 0, k ∈ (0, 3m].

Therefore the maximum of the right hand side in (4.3) is attained for k = 1 or k = q. Hence,

(4.4)

q∑
k=1

(
6m

k

)(
4m

k

) (
8k
5k

)(
30m
5k

) < 15
√
30m3/2

(
exp(f(1,m)) + exp(f(q,m))

)
.
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It is easy to see that lim
m→∞

m3 exp(f(1,m)) = C, for some C > 0, hence lim
m→∞

m3/2 exp(f(1,m)) =

0. Also, by (4.1) and continuity of h,

lim
m→∞

f(a,m)

m
= h(6, 2.6) + h(4, 2.6) + h(8 · 2.6, 5 · 2.6)− h(30, 5 · 2.6) < −0.07,

and so lim
m→∞

m3/2 exp(f(q,m)) = 0. Therefore, the limit of the right hand side of (4.4) is zero

as m→ ∞, hence, it is smaller than 1
2
for large enough m, as required. �

The estimate of the remaining terms of (2.1) will be deduced from an optimization problem,

which we will describe now. The idea is to use Lemma 4.1 and (4.1) to establish asymptotics

of each term of the required sum.

Let

(4.5)

φ(c, k, l, r) := h(c, l)+h(6−c, k−l)+h(c−4, r)+h(8−c, k−r)+h(8k−r, 6k−l)−h(36−c, 6k−l).

Clearly, for c = 5.7 and k ∈ [2.6, 3] the above function φ is defined when

(4.6) k + c− 6 ≤ l ≤ k and k + c− 8 ≤ r ≤ c− 4.

Our optimization problem is described in the next lemma.

Lemma 4.3. The absolute maximum value of φ for c = 5.7 and any k ∈ [2.6, 3] over all l and

r given by (4.6) is a negative number.

Proof of Lemma 4.3. We claim that the absolute maximum of φ for c = 5.7 and k ∈ [2.6, 3]

over l and r given by (4.6) is achieved when k = 3. To simplify exposition, we will often present

computations for a general fixed c first, and then substitute c = 5.7 in the end.

Observe that under the change of variables

x = k − l, y =
c− 4− r

4− k
,

the inequalities (4.6) can be rewritten as

0 ≤ x ≤ 6− c and 0 ≤ y ≤ 1.

Therefore, we only need to show that for any fixed x, y specified above, we have

∂φ(c, k, x, y)

∂k
≥ 0, k ∈ [2.6, 3].
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It is straightforward to compute that

∂φ(c, k, x, y)

∂k
= (ln(c− k + x)− ln(k − x))

+ y(ln((4− k)y)− ln(c− 4− (4− k)y))

+ (1− y)(ln(4− 4y − k(1− y))− ln(k(1− y) + 4 + 4y − c))

+
[
(8− y) ln((8− y)k + 4 + 4y − c)

− (3− y) ln((3− y)k + 4 + 4y − c− x)− 5 ln(36− c− 5k − x)
]

=: D1(c, k, x) +D2(c, k, y) +D3(c, k, y) +D4(c, k, x, y).

Many intermediary estimates below directly follow from monotonicity of the logarithm and

bounds on the involved variables. We have

D2(c, k, y) =
(c− 4)

(4− k)

(4− k)y

(c− 4)

[
ln

(
(4− k)y

(c− 4)

)
− ln

(
1− (4− k)y

(c− 4)

)]
≥ (c− 4)

(4− k)

(4− k)y

(c− 4)

[
ln

(
(4− k)y

(c− 4)

)]
≥ −(c− 4)

e(4− k)
,

where we used the fact that mint∈(0,1] t ln t = −1/e. Similarly, we get

D3(c, k, y) =
(8− c)

(4− k)

(4− k)(1− y)

(8− c)

[
ln

(
(4− k)(1− y)

(8− c)

)
− ln

(
1− (4− k)(1− y)

(8− c)

)]
≥ (8− c)

(4− k)

(4− k)(1− y)

(8− c)

[
ln

(
(4− k)(1− y)

(8− c)

)]
≥ −(8− c)

e(4− k)
.

Clearly D1(c, k, x) ≥ D1(c, 3, 0), and similarly D4(c, k, x, y) ≥ D4(c, k, 0, y). With fixed c and

k, we claim that D4(c, k, 0, y) attains minimum at y = 1. Indeed,

∂D4(c, k, 0, y)

∂y
= ln

(
1− 5k

8k + 4− c+ (4− k)y

)
+

5(4− k)(4− c+ 4y)

(3k + 4− c+ (4− k)y)(8k + 4− c+ (4− k)y)

=: S1(c, k, y) +
S2(c, k, y)

S3(c, k, y)
≤ S1(5.7, 2.6, 1) +

S2(5.7, 2.6, 1)

S3(5.7, 2.6, 0)

= ln
15

41
+

16.1

116.51
< 0.
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Hence,

D4(c, k, 0, y) ≥ D4(c, k, 0, 1) = 5 ln

(
7k + 8− c

36− c− 5k

)
+ 2 ln

(
1 +

5k

2k + 8− c

)
=: T1(c, k) + T2(c, k) ≥ T1(5.7, 2.6) + T2(5.7, 2.6)

= 5 ln
20.5

17.3
+ 2 ln

20.5

7.5
> 2.

In summary,

∂φ(c, k, x, y)

∂k
≥ D1(c, 3, 0)−

(c− 4)

e(4− k)
− (8− c)

e(4− k)
+ 2 = ln

2.7

3
− 4

e
+ 2 > 0,

so φ(5.7, k, x, y) ≤ φ(5.7, 3, x, y), and we can now focus on the case k = 3.

With c = 5.7 and k = 3 the restrictions (4.6) become l ∈ [2.7, 3] and r ∈ [0.7, 1.7]. To find

the critical points of φ inside the domain we compute the partial derivatives of φ:

∂φ(c, 3, l, r)

∂l
= ln

(
(c− l)(3− l)(18− c− l)

l(3− c+ l)(6− r + l)

)
,(4.7)

∂φ(c, 3, l, r)

∂r
= ln

(
(c− 4− r)(3− r)(6− r + l)

r(5− c+ r)(24− r)

)
.(4.8)

The system of equations {∂φ
∂l

= 0, ∂φ
∂r

= 0} can be reduced to the following algebraic equation

of degree 5 on l:

(2c− 18)l5 + (−2c2 − 69c+ 846)l4 + (−2c3 + 123c2 + 189c− 11448)l3

+(2c4 + 12c3 − 2349c2 + 14256c+ 95256)l2 + (−48c4 + 1089c3 + 2916c2 − 125388c)l(4.9)

+126c4 − 4536c3 + 40824c2 = 0.

This reduction and some further computations were performed using Maple software1. When

l is found, r can be obtained from ∂φ
∂l

= 0, which is a linear equation on r. This allows us to

compute all critical points numerically with any given precision. In particular, for c = 5.7, we

get that there is only one critical point (l∗, r∗) ∈ (2.7, 3)× (0.7, 1.7), and it satisfies

|l∗ − l̄| < 10−7, |r∗ − r̄| < 10−7,

where (l̄, r̄) = (2.8959102, 1.078108) is an approximate numerical solution.

1A copy of the corresponding Maple worksheet is available at http://prymak.net/concentrators.pdf
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We want to prove that the value of φ at the critical point is negative, that is φ(5.7, 3, l∗, r∗) <

0. At the approximation of the critical point we have φ(5.7, 3, l̄, r̄) < −0.004, so it suffices to

show that φ cannot change much around our point, more precisely, we need

|φ(5.7, 3, l̄, r̄)− φ(5.7, 3, l∗, r∗)| < 0.004.

This can be done by estimating the partial derivatives of φ in a rectangle that contains both

(l∗, r∗) and (l̄, r̄), say in [2.89, 2.9]×[1.07, 1.08]. Rewriting (4.7) and (4.8) as sums of logarithms,

using monotonicity of the logarithm and the restrictions l ∈ [2.89, 2.9] and r ∈ [1.07, 1.08], it is

straightforward to show that ∣∣∣∣∂φ∂l
∣∣∣∣ < 10 and

∣∣∣∣∂φ∂r
∣∣∣∣ < 10.

Therefore, as required,

|φ(5.7, 3, l̄, r̄)− φ(5.7, 3, l∗, r∗)| < 20 · 10−7 < 0.004.

We proved that φ is negative at the only critical point inside the domain [2.7, 3]× [0.7, 1.7].

It remains to show that φ cannot achieve its maximum on the boundary of [2.7, 3]× [0.7, 1.7].

Indeed, from (4.7), it is easy to see that for any fixed r ∈ (0.7, 1.7), we have

lim
l→2.7+

∂φ(5.7, 3, l, r)

∂l
= +∞, and lim

l→3−

∂φ(5.7, 3, l, r)

∂l
= −∞.

Similar arguments apply to ∂φ
∂r
, for a fixed l ∈ (2.7, 3). This completes the proof of the lemma.

�

Finally, we are ready for a formal proof of the required estimate.

Proof of Lemma 2.1. In view of Lemma 4.2, we only need to show that

3m∑
k=⌈2.6m⌉+1

k∑
l=0

k∑
r=0

(
s

l

)(
6m− s

k − l

)(
s− 4m

r

)(
8m− s

k − r

) (
8k−r
6k−l

)(
36m−s
6k−l

) < 1

2
.

Each term of the sum can be estimated by Lemma 4.1 as follows:(
s

l

)(
6m− s

k − l

)(
s− 4m

r

)(
8m− s

k − r

) (
8k−r
6k−l

)(
36m−s
6k−l

) < 30
√
m exp(ψ(m, s, k, l, r)),

where

ψ(m, s, k, l, r) :=h(s, l) + h(6m− s, k − l) + h(s− 4m, r) + h(8m− s, k − r)

+ h(8k − r, 6k − l)− h(36m− s, 6k − l).
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Recalling that s = s(m) = ⌈5.7m⌉, h is continuous, and using (4.1), we see that

lim
m→∞

ψ(m, s, k, l, r)

m
= φ(5.7, k, l, r).

According to Lemma 4.3, φ(5.7, k, l, r) ≤ −δ, for some δ > 0. Therefore, for large enough m

and some δ1 > 0, we have

3m∑
k=⌈2.6m⌉+1

k∑
l=0

k∑
r=0

(
s

l

)(
6m− s

k − l

)(
s− 4m

r

)(
8m− s

k − r

) (
8k−r
6k−l

)(
36m−s
6k−l

) < 0.4 · 32 · 30m7/2e−δ1m,

which tends to zero as m → ∞, and so the required sum is smaller than 1
2
for large enough

m. �

Remark 4.4. Denote by c∗ the supremum of all c such that the statement of Lemma 4.3 remains

true. One can prove that c∗ is the unique solution of the equation

φ(c, 3, l(c), r(c)) = 0, c ∈ [5.7, 6],

where φ is given by (4.5), and l = l(c) ∈ [2.7, 3] and r = r(c) ∈ [0.7, 1.7] is the solution of the

system {∂φ
∂l

= 0, ∂φ
∂r

= 0}, see (4.7), (4.8). More detailed numerical computations show that

c∗ ∈ (5.724889, 5.72489). Hence, the maximum value of s = s(m) for which (2.1) holds satisfies

lim
m→∞

s(m)/m = c∗. For simplicity, we stated and proved the lemma for c = 5.7, as the optimal

value c∗ provides only slight improvement to the constants in Section 3.

Acknowledgments. The first author thanks the Mathematisches Forschungsinstitut Ober-

wolfach for their hospitality during the preparation of this manuscript and for providing a

stimulating atmosphere for research. The second author was supported by NSERC of Canada,

including the visit to Centre de Recerca Matemtica (Barcelona) in April 2012.

References

[BK00] Y. A. Brudnyi and N. J. Kalton, Polynomial approximation on convex subsets of Rn, Constr. Approx.

16 (2000), no. 2, 161–199.

[KR83] N. J. Kalton and JamesW. Roberts, Uniformly exhaustive submeasures and nearly additive set functions,

Trans. Amer. Math. Soc. 278 (1983), no. 2, 803–816.

[Pip77] Nicholas Pippenger, Superconcentrators, SIAM J. Comput. 6 (1977), no. 2, 298–304.



ON CONCENTRATORS AND RELATED APPROXIMATION CONSTANTS 13
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