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new methodology to process 
shifted excitation Raman difference 
spectroscopy data: a case study 
of pollen classification
f. Korinth1, A. S. Mondol1, c. Stiebing1, i. W. Schie1,2, C. Krafft1* & J. popp1,3

Shifted excitation Raman difference spectroscopy (SERDS) is a background correction method for 
Raman spectroscopy. Here, the difference spectra were directly used as input for SERDS-based 
classification after an optimization procedure to correct for photobleaching of the autofluorescence. 
further processing included a principal component analysis to compensate for the reduced signal to 
noise ratio of the difference spectra and subsequent classification by linear discriminant analysis. As a 
case study 6,028 Raman spectra of single pollen originating from plants of eight different genera and 
four different growth habits were automatically recorded at excitation wavelengths 784 and 786 nm 
using a high-throughput screening Raman system. Different pollen were distinguished according to 
their growth habit, i.e. tree versus non-tree with an accuracy of 95.9%. Furthermore, all pollen were 
separated according to their genus, providing also insight into similarities based on their families. 
Classification results were compared using spectra reconstructed from the differences and raw spectra 
after state-of-art baseline correction as input. Similar sensitivities, specificities, accuracies and 
precisions were found for all spectra with moderately background. Advantages of SERDS are expected 
in scenarios where Raman spectra are affected by variations due to detector etaloning, ambient light, 
and high background.

Raman spectroscopy is a vibrational spectroscopy technique that is used for the assessment of the chemical 
composition of samples. Even complex biological samples can be analyzed in a non-destructive and label-free 
manner and classified using their specific molecular fingerprints assessed by this  method1–4. However, intense and 
strongly varying backgrounds, e.g. due to autofluorescence (with or without photobleaching), detector etaloning 
effects and ambient light, are an often occurring challenge in Raman spectroscopy. If the Raman intensity is too 
low relative to the background intensity, Raman bands are hard to discern or are masked completely. Although 
it cannot be excluded that an autofluorescence background contains useful information, background correction 
procedures are state-of-art in Raman spectroscopy of biological material. Autofluoerescence contributions in 
Raman spectra seem to be sensitive, but specificity might be problematic due to bleaching and quenching effects, 
which are prone to variations and lack proper reproducibility.

Therefore, different approaches were suggested to tackle the challenge of intense and varying backgrounds. 
One option for autofluorescence is the destruction of the fluorophores by  photobleaching5–7, which is rather 
time-consuming and might cause side effects, such as sample contamination with chemiphotobleaching agents or 
thermal stress due to extended laser exposure of the sample. A review divided other techniques roughly into two 
groups: computational and instrumental background correction  methods8. Examples of typically used computa-
tional background correction algorithms are extended multiplicative signal  correction9,10 (EMSC), multiplicative 
signal  correction11 (MSC),  rubberband12,13, sensitive nonlinear iterative  peak14 (SNIP), and polynomial  fittings15. 
These approaches often require high computational effort and need experienced personal for the data analysis. 
Cordero et al. corrected a high fluorescence background in Raman spectra of bladder biopsies using  EMSC16. For 
in vivo Raman spectra of colorectal tissue Bergholt et al. corrected autofluorescence background by a high-order 
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polynomial  fitting17. The in vivo acquired Raman spectra of brain cancer by Desroches et al. were also back-
ground corrected using a  polynomial18. Galli et al. found a high fluorescence background in Raman spectra of 
brain biopsies, where 88.4–96.5% of the collected intensities were attributed to fluorescence. For separating the 
background-free Raman signal and the fluorescence profile a baseline estimation toolkit was used. The authors 
concluded that the classification was best, when both information were  used19.

Instrumental background correction methods for fluorescence rejection are time-gating approaches, where 
the fast Raman scattering is detected before the slower fluorescence emission, and phase or wavelength modulated 
techniques, where the Raman scattering changes according to the wavelength or phase modulation whereas the 
fluorescence emission does  not8. Another promising method is shifted excitation Raman difference spectroscopy 
(SERDS)20.

SERDS belongs to the instrumental background correction methods, which uses two slightly shifted excita-
tion wavelengths to acquire two Raman spectra consecutively at the same lateral position. The shift in excita-
tion wavelength is chosen to be only a few nanometers, leading to two slightly shifted Raman spectra with the 
same fluorescence background profile, since the same fluorophores are excited. After subtraction of the shifted 
Raman spectra from each other, the resulting difference spectrum is ideally free of background contributions 
and only contains Raman information. Furthermore, other constant spectral contributions such as ambient light 
or the system transfer function (e.g. detector etaloning effects) can be  suppressed21. Proof of principle studies 
demonstrated SERDS using several combinations of solvents and dyes as model analytes, especially for the 
introduction of new lasers with two or more excitation  wavelengths20,22–25. Sowoidnich and Kronfeldt analyzed 
different laser wavelengths for SERDS experiments on parts of beef and pork tissues like fat, connective tissue, 
bone and  meat26. Noack et al. conducted SERDS measurements to measure algae cultivation samples and moni-
tor sulfated exopolysaccharides (EPS) concentrations in the reactors. For this, 10 raw spectra were averaged, 
smoothed and baseline corrected before the subtraction. A principle component analysis (PCA) and different 
regression models were then applied to the smoothed difference spectra to determine the EPS concentration, 
which worked poorly for the partial least squares regression (PLSR) model, but very well for the support vec-
tor regression (SVR)  model27. Martins et al. studied molar teeth ex vivo and human skin in vivo using SERDS 
with an excitation wavelength of 830 nm/830.5 nm and regular Raman spectroscopy at 1,064 nm as a control. 
For data analysis the difference spectra were integrated to reconstruct the Raman  spectrum28. Gebrekidan et al. 
measured difference spectra of pig tissue (bone, fat, gland and mucosal). After a sophisticated data processing 
including normalization, first baseline correction, reconstruction and second baseline correction to receive 
fluorescence-free pure Raman spectra, a classification by PCA was  performed29. By measuring a plate of clear 
polystyrene, Maiwald et al. showed that SERDS was able to filter out ambient light passing through polystyrene. 
They also conducted SERDS in an orchard measuring the wax on the skin of an apple and the chlorophyll in a 
leaf using a handheld device with a high numerical  aperture30,31. Schmälzlin et al. obtained SERDS images from 
different samples, e.g. cross-section of a pig ear, skin and a dissolving brown sugar cube using a custom-built 
multi-focus probe head and an integral field spectrograph. This system was able to simultaneously detect 400 
spectra delivered by the probe head of 20 × 20  pixels32.

Since photobleaching and intensity variations due to e.g. laser power and filter characteristics often result in 
varying background intensities, most difference spectra are not completely background-free. This makes addi-
tional background correction steps necessary. Also reconstruction steps are usually implemented to transform 
the difficult to interpret difference spectra into accustomed Raman spectra. There are several reconstruction 
approaches, such as deconvolution, linear data manipulation, integration, kernel function, or non-negative 
least squares  fitting33–34. These reconstruction methods always harbor the risk of introducing artefacts into the 
reconstructed Raman spectrum, due to the correlation between the fixed wavelength shift and varying Raman 
band  widths35.

As a case study pollen samples of eight different plant genera were investigated. Pollen are a valuable case 
study, since their Raman spectra experience intensity differences in the fluorescence backgrounds (see sup-
plementary information in Ref.36). In palynology, pollen are taxonomically evaluated under a microscope con-
sidering their morphology. This is time-consuming and requires a highly trained expert to differentiate several 
hundreds of different pollen. There are several ideas for automatization and technical improvement of this gold 
 standard37–39. Other spectroscopic approaches like infrared  absorption40–42, laser-induced  breakdown43 or Raman 
scattering have been  applied35,43–55. Raman spectroscopy was implemented to build a spectral database of pollen 
including a chemometrical classification by their growth  habit36.

The approach in this work to differentiate several pollen genera uses difference spectra, that were obtained by 
novel processing of SERDS data, and lends itself as a case study to classify biological samples. The new stream-
lined method to handle and classify SERDS data of biological samples is based on their single difference spectra 
without a reconstruction step to retrieve the familiar profile of Raman spectra or baseline correction procedures. 
Furthermore, spectra were reconstructed from the differences and Raman spectra were processed by state-of-
art baseline correction. For classification using difference spectra, reconstructed spectra and baseline corrected 
spectra as input, a PCA followed by a linear discriminant analysis (PCA-LDA) was chosen. The classification 
results were compared with respect to sensitivities, specificities, accuracies and precisions.

Results and discussion
Data acquisition and processing. Representative raw spectra of a single birch and hazel pollen grain 
at three consecutively measured excitation wavelengths of λ1 = 784 nm (130 mW), λ2 = 785 nm (180 mW) and 
λ3 = 786 nm (200 mW) are shown in Fig. 1a. The series of consecutive measurements started with 784 nm fol-
lowed by 785 nm and 786 nm. The spectra show similarities in e.g. amide bands (1,310 and 1,650 cm−1) and the 
sporopollenin bands (1,007, 1,454 and 1614 cm−1) but vary in intensity. When separately evaluating the two sets 
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of Raman spectra, the Raman signals shift by approx. 16 cm−1 per 1 nm wavelength shift. Although the laser 
intensities increased from 130 to 180 mW and 200 mW for 784 nm, 785 nm, and 786 nm, the signal intensi-
ties decrease in the same order. This is due to photobleaching of the autofluorescence background. Therefore, 
the decrease of spectral background during the onset of the measurements is stronger than the increase of the 
Raman bands due to elevated laser intensities. Figure 1b shows the three resulting difference spectra. For the 
red and green difference spectra a 1 nm shift (green: 784–785 nm; red: 785–786 nm) was realized, whereas the 
black difference spectrum resulted from a 2 nm shift. A significant, variable offset remained between the dif-
ference spectra, clearly originating from the varying fluorescence profile, which is maximum for the 2 nm shift. 
Figure 1c shows the normalized and optimized difference spectra (see data preprocessing in the methods sec-
tion) of aforementioned difference spectra. The background is successfully corrected. Closer inspection reveals 
that a 1 nm shift results in difference spectra with higher noise than the 2 nm shift due to smaller amplitudes in 
the raw differences (see Fig. 1b). The shift in excitation wavelength should be near the full width at half maxi-
mum (FWHM) of the Raman band for the proper interpretation and reconstruction of a Raman spectrum. But 
since Raman bands have different FWHM as can be seen in Fig. 1a, there is not one wavelength shift that fits all 
FWHM of the Raman bands. Furthermore, technical parameters such as the transmission range of the laser line 
filter limit the wavelength shift to 2 nm.

Therefore, further data analysis was performed on the wavelength pair 784–786 nm. A trend is evident that 
negative difference bands are more intense than positive difference bands, which is a consequence of optimization 
step and the higher laser intensity at 786 nm. In the optimization step the subtrahend is multiplied by a factor to 
compensate for differences in background intensity. Since the subtracted spectra with the excitation wavelength 
of 786 nm always have a lower background due to photobleaching, all spectra are multiplied by an optimization 
factor larger than 1 resulting also in higher peak intensity and therefore more intense negative difference peaks.

Figure 2 gives an overview of the mean spectra (dark) and their respective standard deviation (shaded). 
Figure 2a shows the four tree pollen difference spectra and Fig. 2b the four non-tree pollen difference spectra 
for the 2 nm shift, that constitute the basis for the following classification. Figure 2c, d show the reconstructed 
Raman spectra after baseline correction, and Fig. 2e, f the raw Raman spectra (λex = 784 nm) after baseline cor-
rection for comparison. Spectral differences in the tree pollen occur between 1,600 and 1,750 cm−1, and in the 
high wavenumber region for larch, most likely due to higher lipid contributions of the conifer typical essential 
oils. Differences in non-tree pollen are also observed between 1,600 and 1,750 cm−1 and additionally in the low 
wavenumber region below 1,200 cm−1, which can be explained by their different families and growth habits 
(i.e. herb, grass, and shrub). One exception is rumex and cyclamen, which show a distinct difference in band 
structure although they stem from the same growth habit. In moor grass, the band near 1,600 cm−1 is weak. The 

Figure 1.  Overview of the data processing steps. top row, spectra of one birch pollen grain; bottom row, spectra 
of one hazel pollen grain; (a) raw spectra at the three different excitation wavelengths; (b) raw difference spectra; 
(c) normalized and optimized difference spectra; the color codes of excitation wavelengths are indicated on top.
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standard variations of the 1,600 cm−1 band is high for all pollen. In particular, some Raman spectra of birch, larch, 
hazel, alder and rumex pollen also have weak intensities near 1,600 cm−1. The reconstruction results in spectra 
that properly mimic the raw Raman spectra after both data were baseline corrected using the SNIP algorithm. 
The main difference between reconstructed and raw spectra is that the reconstruction algorithm reduces the 
spectral resolution. It is important to note that the subtraction algorithm does not alter the spectral resolution 
of the difference spectra.

Classification of tree vs non-tree pollen data. In the first classification step the whole data set was 
divided into a training data set and a test data set. A PCA was performed on the whole training data set of all 
pollen samples to separate major variations in the lower principal components (PCs) from noise in the higher 
PCs. Supplementary Fig. S1 shows the loadings of the first 15 PCs and the loading of the LDA model. Only the 
first 10 PCs accounting for ca. 68.6% of the variance were used for training the LDA model (for the explained 
variance curve see Supplementary Fig. S2). Intense variations in the loadings of the first 10 PCs can easily be 
seen. Almost no information is anymore provided in PC 14 and higher, whereas the high wavenumber region is 
dominated by noise starting from PC 11 due the lower quantum efficiency of the detector and hence lower signal 
intensities. A band assignment is not straightforward in the case of PC loadings based on difference spectra, 
since their variations are related to positive and negative Raman difference bands. This is also the case for the LD 
loading presented in Supplementary Fig. S1d. In the high wavenumber region the  CH3 stretching (symmetric 
and asymmetric) bands, the  CH2 stretching (symmetric and asymmetric) bands and the CH stretching bands 
overlap to a very broad convoluted band structure. Due to the 2 nm shift in excitation wavelength a lot of signal 
intensity is lost in the difference spectrum as the bands are shifted into each other. This, combined with the lower 
quantum efficiency of the detector, leads to a LD1 spectrum with more noise in the high wavenumber region.

The LD scores of the separation between tree pollen and non-tree pollen are shown in the box and whisk-
ers plots in Fig. 3. In the prediction of the test data, all scores with a negative LD1 score belong to the non-tree 
class, all scores with a positive LD1 score belong to the tree class. Some misclassifications can be seen for the real 
classes. However, the medians and 0.25/0.75 quantiles are well separated and away from the class boundary at 0.

The confusion matrix is provided in Table 1. High sensitivity, specificity, accuracy and precision of over 95% 
are achieved with the constructed PCA-LDA model on average for all classifiers. The two classes can be very 
well separated using the normalized and optimized difference spectra and the constructed PCA-LDA model. 
Of the 133 misclassified tree pollen 22% were alder, 28% hazel and 50% birch pollen. Larch pollen contain a lot 

Figure 2.  Mean and standard deviation of difference spectra (784–786 nm) after normalization and 
optimization for tree pollen (a) and non-tree pollen (b), spectra reconstructed from differences after SNIP 
baseline correction of tree pollen (c) and non-tree pollen (d) and Raman spectra (λex = 784 nm) after SNIP 
baseline correction for tree pollen (e) and non-tree pollen (f). High wavenumber regions were multiplied by 0.5.
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of lipids due to the conifer-typical essential oils, as also indicated in the difference spectra in Fig. 2, which leads 
to a clear separation without any misclassification.

Classification of the different pollen genera. To further analyze the feasibility of classification schemes 
based on SERDS difference spectra, the data set was separated into their simplified growth habits, i.e. tree and 
non-tree data, to classify each group into their genera. Again, the data sets were split into training and test, and 
a PCA-LDA model including internal cross validation was implemented for each group. The LD loadings for the 
discrimination of the different tree pollen types are shown in the Supplementary Fig. S3a and for the different 
non-tree pollen types in the Supplementary Fig. S3b. As before, the loadings and their interpretation are very 
complex. Nevertheless, LD3 for the non-tree separation shows a less intense spectrum. Consequently the noise 
has a much higher impact on the spectrum, which can be seen especially for the high wavenumber region.

For LDA modelling of the different tree pollen types, the first 13 PCs were used explaining a cumulative 
variance of 78.6% (for the explained variance curve see Supplementary Fig. S4). The LD scores for the different 
tree pollen types were successfully separated, which is shown in the LD score plot (Fig. 4). LD1 separates larch 
from the other trees, LD2 separates birch from the other trees and LD3 grossly separates alder from hazel. The 
3D score plot shows the separation of the scores of each type.

The classification results of the different tree pollen genera are summarized in Table 2. Especially the rates 
for the larch pollen samples show the best values: a specificity of 99.8% and an accuracy of 99.7% are the highest 
values for all pollen sample classifications. This is not surprising since larch is from a different family (Pinaceae) 
than the other three tree types (Betulaceae). Due to the high lipid content, larch pollen did not sediment very 
well onto the substrate causing an overall low number of automatically detected larch pollen samples for Raman 

Figure 3.  Box and whiskers LDA score plot for classification of tree vs. non-tree. Red, predicted classes of the 
scores of the test data set; green, real classes of the scores of the test data set.

Table 1.  Confusion matrix of non-tree versus tree classification: real classes vs. predicted classes of the 
classified test spectra; sensitivity, specificity, accuracy and precision in %.

Tree vs. non-tree

Real classes

Non-tree Tree

Non-tree, predicted 2,700 133

Tree, predicted 86 2,371

Sensitivity 96.9 94.7

Specificity 94.7 96.9

Accuracy 95.9 95.9

Precision 95.3 96.5
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spectra acquisition (in total 61 spectra). For the separation of the tree pollen types, approx. 90% of alder pollen, 
85% of hazel pollen, 97% of larch pollen and 94% of birch pollen were correctly classified.

Figure 4.  LDA score plots for classification and separation of different tree pollen genera. (a) LD1–LD2 plane 
of the score plot; (b) LD2–LD3 plane of the score plot; (c) LD1–LD3 plane of the score plot; (d) 3D score plot.

Table 2.  Confusion matrix for classification and separation of tree pollen types. Upper part: real classes vs. 
predicted classes of the classified test spectra; lower part: sensitivity, specificity, accuracy and precision in %.

Real classes

Alder Hazel Larch Birch

Alder, 
predicted 947 107 0 19

Hazel, 
predicted 54 696 2 16

Larch, 
predicted 3 2 59 0

Birch, 
predicted 52 14 0 533

Sensitivity 89.7 85.0 96.7 93.8

Specificity 91.3 95.7 99.8 96.6

Accuracy 90.6 92.2 99.7 96.0

Precision 88.3 90.6 92.2 89.0



7

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:11215  | https://doi.org/10.1038/s41598-020-67897-4

www.nature.com/scientificreports/

For the discrimination of the non-tree data set 11 PCs were included after an internal cross validation of the 
training data set, explaining 61.8% of the cumulative variance (the explained variance curve see Supplementary 
Fig. S5). The PCA-LDA model was then used for the classification of the test data set into the four different non-
tree types: mugwort, cyclamen, moor grass and rumex. The score plots of the test data classification are shown 
in Fig. 5. The cyclamen scores are separated from moor grass by LD1, and mugwort from all other non-tree 
pollen by LD2. The rumex scores can be best separated by LD3, but still exhibit a significant overlap with moor 
grass. In the 3D plot the scores of cyclamen and mugwort are very well separated from the other two classes, 
whereas rumex and moor grass have a larger overlap, thus making it hard to separate the two pollen types from 
one another. Table 3 shows the results of the classification of the non-tree pollen types and the corresponding 
classifiers in form of a confusion matrix.

In the separation between the different non-tree pollen, 98% of the cyclamen pollen, 74% of the rumex pollen, 
94% of the mugwort pollen and 79% of the moor grass pollen were correctly classified. Rumex and cyclamen are 
herbs, mugwort a shrub type plant and moor grass a grass. The SERDS spectra of rumex and moor grass pol-
len are quite similar resulting in the most misclassifications. The classification of grass pollen genera by Raman 
spectroscopy was challenging which was also found by Mondol et al.36.

Comparison with classification of reconstructed and raw Raman spectra. Reconstructed and 
raw Raman spectra after baseline correction as shown in Fig. 2 for tree and non-tree pollen were subjected to the 
analogous PCA-LDA classification. Confusion matrixes are presented in Supplementary Table S2. To simplify 
the comparison, average values for sensitivity, specificity, accuracy and precision were calculated and displayed 
in Supplementary Table S1. The classification rates of tree versus non-tree pollen agreed well for difference spec-
tra and spectra at 784 and 786 nm excitation, but are 2–3% lower for the reconstructed spectra. The classification 
rates of tree types varied between 88 and 98%, and the reconstructed spectra tended to give lower values than 

Figure 5.  LDA score plot for classification and separation of different non-tree pollen types. (a) LD1–LD2 
plane of the score plot; (b) LD2–LD3 plane of the score plot; (c) LD1–LD3 plane of the score plot; (d) 3D score 
plot.
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difference, 784 nm and 786 nm data. The classification rates of non-tree types show even stronger variations 
between 85 and 98%. Here, the 784 and 786 nm data gave slightly better results. Overall, the classification results 
differed only little. Another comparison of baseline corrected Raman spectra with difference spectra collected 
by wavelength modulation was presented for leukocytes and tumor cells and confirmed only small difference 
in classification  rates57. Similar to this pollen study, the spectral background was moderate in the previous cell 
study. A true benefit of SERDS is expected for high spectral background and contributions from ambient light 
and etaloning which cannot be suppressed by state-of-art baseline correction and goes well beyond.

conclusions
In this contribution, the methodology was described to use difference spectra based on SERDS for classifica-
tion of pollen data. Its main advantage is the analysis of single difference spectra by PCA and subsequent LDA 
with few PCs as input without complex data pre-processing. An optimization procedure compensated the pho-
tobleaching effects and minimized the remaining background in the difference spectra, whereas the normaliza-
tion was necessary to obtain the same intensity range for all measured pollen difference spectra. This resulted in 
a classification based on the spectral features of the difference spectra and not based on the overall intensity of 
the Raman spectrum of a pollen sample. A further improvement would be rapid, serial acquisitions of Raman 
spectra at both wavelengths, which suppresses photobleaching effects and avoids the optimization  procedure58. 
Since no reconstruction of the familiar profiles of Raman spectra is necessary, possible artefacts are not intro-
duced into the spectra. The down side of this direct classification using SERDS spectra is the difficult spectral 
analysis of difference spectra and especially the resulting PC and LD loadings. The increase in noise level due to 
the subtraction of two spectra compared to a single Raman spectrum is compensated by PCA, which separated 
the spectral variations in the first PCs from the noise in the higher PCs. The possibility to classify different pol-
len samples using normalized and optimized difference spectra by a linear PCA-LDA model was successfully 
demonstrated. In Supplementary Table S1 the average values for sensitivity, specificity, accuracy and precision 
for all classifications are shown that achieved good to very good results using difference spectra as input. Since 
birch, hazel and alder all belong to the same family, in case of birch and alder even to the same subfamily, the 
pollen could even be separated on a genus level. For comparison, the reconstructed spectra and the raw spectra at 
784 and 786 nm excitation after baseline correction were subjected to PCA-LDA classification. The classification 
rates only show small variations with a tendency of worse results for reconstructed spectra. This demonstrates 
the validity of our new approach based on difference spectra. The full potential of SERDS will become evident for 
Raman spectra that are affected by high autofluorescence background, ambient light or etaloning effects. Since 
the pollen detection, the laser focusing, the wavelength shifting and the data recording was fully automated, 
this streamlined method could be a robust and versatile system for the automated differentiation of different 
pollen into their genera.

Methods
Sample specifications. Pollen samples used in this study were collected by the Department of Indoor Cli-
matology (University Hospital Jena, Germany) over the last two decades and transferred to the Leibniz Institute 
of Photonic Technology (Jena, Germany) for storage and research purposes. Eight different pollen genera were 
analyzed, which can be grouped into two classes based on their growth habit: tree and non-tree (see Supplemen-
tary Table S3).

Set-up description and specification. The previously developed high throughput screening Raman 
spectroscopy platform (HTS-RS)59 was modified for the implementation of SERDS and the investigation of 
pollen grains. A tunable laser source (DLC DL pro 780, Toptica Photonics, Germany) with a tuning range from 
765 to 805 nm in combination with an amplifier (BoosTA Pro, Toptica Photonics, Germany) was fiber-coupled 
into a microscope set-up by a multimode fiber with a 60 µm core diameter and 0.22 NA (Thorlabs, Germany). 

Table 3.  Confusion matrix for classification and separation of non-tree pollen types. Upper part: real classes 
vs. predicted classes of the classified test spectra; lower part: sensitivity, specificity, accuracy and precision in %.

Real classes

Cyclamen Rumex Mugwort Moor grass

Cyclamen, 
predicted 897 0 18 0

Rumex, 
predicted 0 267 16 168

Mugwort, 
predicted 16 0 676 0

Moor grass, 
predicted 0 96 10 622

Sensitivity 98.2 73.6 93.9 78.7

Specificity 99.0 92.4 99.2 94.7

Accuracy 98.8 89.9 97.8 90.2

Precision 98.0 59.2 97.7 85.4
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The booster enhanced the laser power of the three operating wavelengths (λ = 784 nm/785 nm/786 nm) to the 
system. The incoming laser beam passed through a clean-up filter (785 ± 1.5 nm; Semrock, USA) and was col-
limated using a 30 mm focal length lens (Thorlabs, Germany). The collimated beam was guided to the back 
aperture of the microscope objective (60×, NA = 1, water immersion, Nikon, Japan) via a dichroic notch filter 
(785 nm, bandwidth 89 nm; Semrock, USA) and a 45° tilted mirror (Thorlabs, Germany). At the end of the 
objective, the pollen grains were excited with an approximate focus spot diameter of 10 µm on the sample plane. 
The back reflected Raman signals from the samples were collected and projected to a 100  mm focal length 
lens (Thorlabs, Germany) while passing through the same objective lens and the notch filter, which blocked 
most of the Rayleigh signal. An extra notch filter operating at 785 nm ± 19 nm (Laser Components, Germany) 
was placed before the 100 mm collection lens ensuring maximal rejection of Rayleigh signal propagation. The 
100 mm collection lens focused the Raman signal to a 100 µm, 0.22 NA multimode fiber (Thorlabs, Germany) 
coupling it to a spectrograph (IsoPlane160, Princeton Instruments, USA) with a 400 grooves/mm grating blazed 
at 750 nm. The Raman signals were projected to a charge-coupled device (CCD) (PIXIS-400BR-eXcelon; Prince-
ton Instruments, USA) with an operating temperature of − 60 °C. A bright field channel was integrated into the 
set-up for the automation of particle detection, of various calibrations and for visualization purposes. A white 
LED source (Thorlabs, Germany) was employed to illuminate the sample from below and the light was guided 
to a CCD camera (DCC1645C, Thorlabs, Germany) via a long pass filter (Semrock, USA) and a 70 mm focal 
length lens (Thorlabs, Germany). The bright field microscopic image was used in an in-house developed pollen 
detection algorithm for the automated detection of single pollen grain. All the required translations were real-
ized using two CONEX MFA-Series motor (Newport, USA) for xy plane and a MTS25-Z8 motor (Thorlabs, 
Germany) for z  direction36,59.

Sample preparation and data acquisition. Each pollen sample was suspended in 10  mL deionized 
water and pipetted onto a  CaF2 cover slip fully immersed in deionized water. After sedimentation of the pollen, 
single pollen samples were automatically detected, the signal focused and measured at three different excitation 
wavelengths (λ1 = 784 nm/130 mW; λ2 = 785 nm/180 mW; λ3 = 786 nm/200 mW) before moving to the next pol-
len. The acquisition time for each spectrum was 0.5 s with a short dwell time of 0.5 s after each measurement to 
allow for wavelength shifting.

Data preprocessing. The collected data was analyzed in  R60 using the following packages:  hyperSpec61, 
 cbmodels62,  Ramancal63,  rgl64,  pracma65,  gtools66 and  ROCR67. The raw spectra were first corrected for cos-
mic  spikes68, wavelength calibrated in relation to λex = 785 nm using 4-Acetaminophenole and then intensity 
calibrated using a white-light source calibration lamp (Raman Calibration Accessory—HCA, Kaiser Optical 
Systems, Inc., USA). Since the background between the different excitation wavelengths varies due to pho-
tobleaching and differences in laser intensity, the spectra of different excitation wavelengths were difference-
optimized before subtraction as described  previously35. For comparison, Raman spectra were reconstructed 
from the SERDS spectra by summation of the signal intensities ( S(n) =

∑
n

x=1
S(x) , where S(n) corresponds to 

the signal intensity at pixel n) and subsequent baseline correction using the SNIP  algorithm14,69. Furthermore, 
Raman spectra (λex = 784 nm and λex = 786 nm) were also baseline corrected (SNIP) after cosmic spike correc-
tion, wavelength and intensity calibration.

For each pollen type a Pearson correlation of the optimized difference spectra to the respective pollen type’s 
mean optimized difference spectrum was performed as a spectral quality control to detect outliers. To make 
sure that also pollen debris spectra, out-of-focus pollen spectra and pure water spectra are excluded from the 
data set, all spectra with a Pearson correlation coefficient below 0.52 were discarded, leading to 4–24% of spectra 
being discarded. However, for the larch pollen the highest percentage of 52% was discarded because of poor 
sedimentation and therefore a lot of out-of-focus measurements due to the high lipid content of the pollen.

The overall intensity of the Raman signal varies between pollen types. To make sure the classification occurs 
due to spectral features and not overall intensity differences, the difference spectra were normalized. The per-
formed normalization was a Euclidean-distance-like area normalization.

Data classification. The preprocessed, optimized and normalized data was separated into a test and train-
ing data set. The training data set was chosen in a way that every pollen type was represented by the same 
number of spectra (ca. 60% of the smallest data set resulting in 90 spectra). The remaining spectra were used for 
testing. As a classification scheme the training data was first dimensionally reduced using a Principal Compo-
nent Analysis (PCA) and then used to construct a Linear Discriminant Analysis (LDA) classification model. The 
models were internally validated using a tenfold cross validation to determine the optimal number of principal 
components (PCs) for building robust PCA-LDA models. In a first step 10 PCs of all eight pollen genera were 
classified into the two growth habits: tree and non-tree. In a second step 13 PCs of all measured tree pollen were 
classified based on their genera: alder, birch, hazel and larch. In the final step 11 PCs of all measured non-tree 
pollen were classified into their different genera: mugwort, cyclamen, moor grass and rumex. Herein, we present 
the Δλex = 2 nm shift in excitation wavelength (λ1 = 784 nm; λ2 = 786 nm; Δλex = λ1 − λ2 = 2 nm). For compari-
son, the same classification schemes were used on the reconstructed Raman spectra and the baseline corrected 
Raman spectra.
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