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Equidistribution of Elements of Norm 1 in Cyclic
Extensions

KATHLEEN L. PETERSEN and CHRISTOPHER D. SINCLAIR

August 26, 2014

Abstract

Upon quotienting by units, the elements of norm 1 in a number field K form a countable
subset of a torus of dimension r1 + r2 − 1 where r1 and r2 are the numbers of real and pairs
of complex embeddings. When K is Galois with cyclic Galois group we demonstrate that this
countable set is equidistributed in this torus with respect to a natural partial ordering.

MSC2010: 11K36 11R42 11R04 11R27
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1 Introduction
Let K be a number field of degree d over Q. We will eventually restrict ourselves to Galois exten-
sions with cyclic Galois group, but for the moment we maintian generality. Let N be the subset of
elements in K with norm (N = NK/Q) equal to 1. We also define o, U and W to be, respectively,
the ring of integers, the group of units and the group of roots of unity of K.

The set of archimedean places is denoted S∞, and has cardinality r1+r2 where r1 is the number
of real places and r2 is the number of complex places. For each place v ∈ S∞ we denote by ‖ · ‖v
either the usual absolute value if v is real, or the usual absolute value squared if v is complex. We
define the regulator map log : K× → Rr1+r2 by

α 7→ (log ‖α‖v)v∈S∞
.

We also define Σ : Rr1+r2 → R by x 7→ x1 + x2 + · · ·+ xr1+r2 . Then, by the proof of Dirchlet’s
Unit Theorem, logU is a lattice in ker Σ and the kernel of log restricted to U is W . This is most
usually stated as

U ∼= W × Zr1+r2−1.

Since logU is a lattice in ker Σ,
T := ker Σ/ logU, (1.1)

is isomorphic to the torus Tr1+r2−1. It follows from the definition of the norm that logN lies in
ker Σ and hence Ñ := logN/ logU is a countable subset of T .

The point of this paper is to show that when K is a cyclic extension of Q, there is a canonical
partial ordering on Ñ for which it is equidistributed in T .
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2 Equidistribution in Cyclic Extensions

1.1 An Ordering on Ñ

From here forward we will assume that K is Galois over Q with cyclic Galois group G generated
by σ. Note that this implies that K is either totally real, or totally imaginary, but we will still write,
for instance, U ∼= W × Zr1+r2−1 with the understanding that one of r1 and r2 is 0.

We will define an ordering on Ñ by devising an ordering on h : N→ Z>0 with the property that
if β ∈ N and υ ∈ U then h(υβ) = h(β).

By Hilbert’s Theorem 90, if β ∈ N, there exists α ∈ o such that β = α/σ(α). Define π :
K× → N by π(α) = α/σ(α). We will say α ∈ o× is a visible point for β if π(α) = β and |N(α)|
is minimal for all integers with this property. That is, Hilbert’s Theorem 90 implies that for every
β ∈ N there is a visible point α, and in this situation, we define

h(β) = |N(α)|.

Claim 1.1. Assume that α ∈ o is a visible point for β, and γ ∈ o×. Then β = π(γ) if and only if
there exists a non-zero rational integer n such that γ = nα.

Proof. If π(α) = π(γ) then
α

γ
=
σ(α)

σ(γ)
= σ

(
α

γ

)
,

and hence α/γ is fixed by G. It follows that there exist relatively prime rational integers m and n
such that α/γ = m/n, and by the minimality of |N(α)|, |m| < |n|. Thus both α and γ = nα/m
are algebraic integers which map onto β.

If we assume n/m > 0, then for j = bn/mc we have γ − jα is an algebraic integer, with

π(γ − jα) = π
(( n

m
− j
)
α
)

=
(n/m− j)α

σ((n/m− j)α)
= π(α),

and

|N(γ − jα)| =
∣∣∣N (( n

m
− j
)
α
)∣∣∣ =

( n
m
− j
)d
|N(α)| < |N(α)|.

The only possible situation which does not violate the minimality of |N(α)| is that when n/m = j.
That is, when n/m is an integer. In this situation γ = nα.

The case when n/m < 0 is similar.
Conversely, if γ = nα and alpha is a visible point for β we have

β = π(α) =
α

σ(α)
=

nα

nσ(α)
=

nα

σ(nα)
= π(nα) = π(γ).

This proves in particular, that α is a visible point for β if and only if −α is.

Claim 1.2. • If υ ∈ U then there exists u ∈ U such that υ = π(u).

• If β ∈ N and υ ∈ U , then h(υβ) = h(β).

Proof. Assume that υ ∈ U . First, we show that υ = π(u) where u = σ(υ). As σd is the identity, it
follows that υ = σd−1(u). Therefore

υ = σd−1(u) =
uσd−1(u)

u
=

uσd−1(u)

σ(u)σd−1(u)
=

u

σ(u)
= π(u).
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For the second assertion, assume that α is the visible point corresponding to β. Then π(α) =
α/σ(α) = β. Moreover, if u be a visible point for υ ∈ U , then

π(uα) =
uα

σ(uα)
=

u

σ(u)

α

σ(α)
= υβ.

Therefore h(υβ) = |N(uα)| = |N(α)| = h(β).

Given β ∈ N we define β̃ = log β+logU ∈ Ñ. Here and throughout, tildes will mark quantities
which are invariant under multiplication by a unit. By Claim 1.2 we may define h : Ñ → Z>0 by
h(β̃) = h(β), and we may finally explicitly state our main theorem.

Theorem 1.3. With with the partial ordering specified by h, Ñ is equidistributed in T .

1.2 Equidistribution of Ñ in T
Given r > 0 we define

Ñ(r) = {β̃ ∈ Ñ : h(β̃) < r}.

By Weyl’s criteria, Ñ is equidistributed with respect to h if, for any character χ : T → T,

lim
r→∞

1

#Ñ(r)

∑
β̃∈Ñ(r)

χ(β̃) =

∫
T

χdµ,

where µ is Haar (probability) measure on T . This is equivalent to

lim
r→∞

1

#Ñ(r)

∑
β̃∈Ñ(r)

χ(β̃) =

{
1 if χ is trivial;
0 otherwise.

The function
r 7→

∑
β̃∈Ñ(r)

χ(β̃)

is the summatory function of the L-series

L(χ; s) =
∑
β̃∈Ñ

χ(β̃)

h(β̃)s
.

This observation is useful since asymptotics of the summatory function (as a function of r) follow
from analytic properties of L(χ; s) using standard Tauberian theorems. Specifically, if we can show
that, for the trivial character χ0, L(s, χ0) has a pole at s = σ0 and there exists ε > 0 such that for
all other characters, L(s, χ) is analytic for Re(s) > σ0 − ε, then there exists a non-zero constant C
such that as r →∞,

#Ñ(r) ∼ Crσ0 and
∑

β̃∈Ñ(r)

χ(β̃) = o(rσ0),

and Weyl’s criteria will be satisfied. See [3, Ch.VII §3].



4 Equidistribution in Cyclic Extensions

1.3 Rewriting the L-series
We begin with a lemma summarizing useful facts about h and π.

Lemma 1.4. Suppose α is a visible point for β, u is a unit and n a natural number, then

• ndh(β̃) = |N(nα)|,

• h(ũβ) = h(β̃)

• π̃(nα) = π̃(α)

• π̃(uα) = π̃(α).

Proof. The first is simply the observation that

ndh(β̃) = nd|N(α)| = |N(nα)|.

The second is a restatement of Claim 1.2 using the fact that h(β̃) = h(β). For the third item,

π(nα) =
nα

σ(nα)
=

n

σ(n)

α

σ(α)
=

α

σ(α)
= π(α),

since σ acts trivially on Q. The final statement follows since

π̃(uα) = log π(u) + log π(α) + logU = log π(α) + logU = π̃(α).

Given α ∈ V, we write α̃ = αU to be a coset of U , and we define

Ṽ =
⋃
α∈V

α̃.

Lemma 1.4 and Claim 1.1 imply that π extends to an injective map from Ṽ onto Ñ. It follows that

L(χ; s) =
∑
β̃∈Ñ

χ(β̃)

h(β̃)s
=
∑
α̃∈Ṽ

χ(π̃(α))

|N(α)|s
.

Note that, since N(α) = ±N(uα) for u ∈ U , |N(α)| is well-defined for any α ∈ α̃ and hence the
latter sum is well-defined. Multiplying and dividing by ζ(ds), we have

L(χ; s) =
1

ζ(ds)

∞∑
n=1

∑
α̃∈Ṽ

χ(π̃(α))

nds|N(α)|s
=

1

ζ(ds)

∞∑
n=1

∑
α̃∈Ṽ

χ(π̃(nα))

|N(nα)|s

Since each non-zero algebraic integer γ can be written uniquely as nα for visible point α and positive
integer n, by Lemma 1.4 we have

L(χ; s) =
1

ζ(ds)

∑
γ∈Õ

χ(π̃(γ))

|N(γ)|s

where Õ = o×/U . The set Õ corresponds to the non-zero principal (integral) ideals P . Therefore,
we can write this as a sum over P by setting χ̂(γo) := χ(π̃(γ)), so that

L(χ; s) =
1

ζ(ds)

∑
a∈P

χ̂(a)

Nas
.



K. L. Petersen and C. D. Sinclair 5

2 Analytic Properties of L(χ; s)
It is convenient to define

Ξ1(χ̂; s) =
∑
a∈P

χ̂(a)

Nas
,

so that L(χ; s) = Ξ1(χ̂; s)/ζ(ds). The 1 subscript reflects the fact that we wish to see Ξ1 as a partial
zeta function—that is a subsum over the ideal class of principal ideals—of some complete zeta
function given as a sum over all non-zero integral ideals. We will call this complete zeta function,
once it is suitably defined, Ξ(χ̂; s) and we will show that it is a Hecke zeta function. Equidistribution
will follow from known analytic properties of partial Hecke zeta functions, together with standard
Tauberian theorems.

To see Ξ1(χ̂; s) as a partial zeta function of a Hecke zeta function we must extend χ̂ to a Hecke
character, that is to a character on the idéle class group. Recall that for each place v of K, Kv is the
completion of K with respect to v and, if v is non-archimedean Uv is the subset of Kv with absolute
value less than 1 (the choice of representative absolute value for the place is irrelevant). The group
of idéles is the restricted direct product over all places v of K×v with respect to Uv (since we have
not defined Uv for archimedean places, K×v always appears for these terms in the product). For a
finite set of non-archimedean places S (which we index by their corresponding prime ideals), we
denote by

JS =
∏
p∈S

K×p ×
∏
p6∈S

Up,

and we denote the product of K×v over archimedean places by

E∞ =
∏
v|∞

K×v
∼= (R×)r1 × (C×)r2 .

Then the group of idéles of K is
J =

⋃
S

E∞ × JS ,

where the union is over all finite sets of non-archimedean places and multiplication is component-
wise. The set K× embeds in J via the diagonal map, and a Hecke character (for our purposes)
is a continuous homomorphism J → T which is trivial on K× as identified with its image under
this embedding.1 We call the restriction of a Hecke character to E∞, the infinite component of the
character. We will make use of the fact that any character on E∞ appears as the infinite component
of a Hecke character if and only if it is trivial on units [2, p.78].

Recall that for the principal integral ideal a = αo, we defined

χ̂(a) = χ(π̃(α)) = χ(log π(α) + logU).

This allows us to view χ as a homomorphism from o \ {0} into T which is trivial on units. Since o
embeds into Rr1 × Cr2 as a lattice, we can view χ̂ as a homomorphism from this lattice (minus the
origin) in E∞ to T. It remains to extend this homomorphism to a continuous homomorphism on all
of E∞.

To do this, we remark that the Galois group of K acts on the infinite places of K. Let w be a
(fixed) infinite place, and set w′ = σ(w). Then σ extends to a continuous map Kw → Kw′ [4, §1].
In particular, since K is Galois over Q, we have Kw = Kw′ (as metric spaces) and hence σ is a

1We omit any discussion of the conductor of a Hecke character, since in our situation it will always be o.



6 Equidistribution in Cyclic Extensions

continuous automorphism of Kw. If an ∈ K×w and σ(an) → 0 then since σ is continuous on Kw

and σd is the identity, σ(an)→ 0 implies that

an = σd−1 ◦ σ(an)→ σd−1(0) = 0.

It follows that, the map π : a 7→ a/σ(a) extends to a continuous function on K×w . Likewise, the
map log ◦π : E∞ → Rr1+r2−1 given by

log ◦π(a) := (log ‖π(av)‖v)v∈S

is a continuous extension of the map α 7→ log π(α) to E∞ by viewing K× as a subset of E∞ using
the diagonal (canonical) embedding of K× into E∞. To see that log ◦π(E∞) is in ker Σ it suffices
to note that K× is dense in E∞ and log ◦π(K×) ⊆ ker Σ. It follows that

χ(a) := χ (log ◦π(a) + logU)

is a continuous character on E∞ which agrees with χ (log ◦π(α) + logU) on canonical embedding
of o \ {0} ↪→ E∞. It follows that there is a unique extension to a Hecke character on the idéles of
K. We call this character χ̂, since it agrees with χ̂ on o \ {0}, and hence on principal ideals. Notice
that χ̂ is trivial exactly when χ is the trivial character on Tr1+r2−1.

The associated Hecke zeta function for this character is given by

Ξ(χ̂; s) =
∑
a∈I

χ̂(a)

Nas
,

where I is the set of non-zero integral ideals of o. Note that Ξ1(χ̂; s) as defined before, is exactly
the partial zeta function of Ξ(χ̂; s) over principal ideals.

We approach the end of our journey. In [1] it is proved that Ξ1(χ̂; s) has an analytic continuation
(as a function of s) to the entire plane, except when χ̂ is trivial, in which case it has a meromorphic
continuation to a function with a single simple pole at s = 1. It follows that, if χ is nontrivial, then
so is χ̂, and L(χ; s) = Ξ1(χ̂; s)/2ζ(ds) has an analytic continuation to the half-plane Re(s) > 1/d.
If χ is trivial, then L(χ; s) has a meromorphic continuation to the same half-plane, but with a simple
pole at s = 1. Weyl’s criteria now follows from the standard Tauberian theorems presented in
Section 1.2.
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