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A rigorous derivation and energetics of a wave equation
with fractional damping

Dedicated to Matthias Hieber on the occasion of his sixtieth birthday

Alexander Mielke, Roland R. Netz, Sina Zendehroud

Abstract

We consider a linear system that consists of a linear wave equation on a horizontal hypersur-
face and a parabolic equation in the half space below. The model describes longitudinal elastic
waves in organic monolayers at the water-air interface, which is an experimental setup that is rel-
evant for understanding wave propagation in biological membranes. We study the scaling regime
where the relevant horizontal length scale is much larger than the vertical length scale and provide
a rigorous limit leading to a fractionally-damped wave equation for the membrane. We provide the
associated existence results via linear semigroup theory and show convergence of the solutions
in the scaling limit. Moreover, based on the energy-dissipation structure for the full model, we de-
rive a natural energy and a natural dissipation function for the fractionally-damped wave equation
with a time derivative of order 3/2.

1 Introduction

This work is stimulated by the physical models investigated in [KS∗17a, KS∗17b], where longitudinal
elastic waves of a membrane are coupled to viscous fluid flow in the enclosing half space. The aims
are to understand the damping of the elastic waves through the coupling to the viscous fluid, on
the one hand, and to explain the appearance of the non-classical dispersion relation, on the other
hand. Denoting by k ∈ Rd−1 the horizontal wave vector and ω ∈ R the angular frequency, the
classical elastic wave satisfies a dispersion relation ω2 ≈ |k|2, while the longitudinal pressure waves,
here referred to as Lucassen waves (cf. [Luc68]), satisfy |ω|3/2 ≈ |k|2 such that the wave speed
c(k) = ω(k)/|k| depends on k.

The class of Lucassen waves attracted considerable attention over the last decade due to its bio-
physical relevance in living organisms, where the transmission of information over biologically relevant
distances and time scales is fundamental. The standard model describes the propagation of signals on
the vast network of nerve cells via a purely electrical mechanism, unable to explain a number of non-
electric phenomena, like the effectiveness of anesthetics scaling with their solubility in lipid membranes
[Mey99, Ove01] or the lower heat dissipation of a nerve in contrast to an electrical cable [TaB92]. As it
is known that, alongside the electrical signal, a mechanical displacement travels along the nerve fiber
[KK∗07, ElM15], there is a need for a more complete model incorporating these aspects. On the one
hand, experimental scientists (see [GB∗12, ShS14]), using a lipid monolayer spread at the air-water
interface as a minimal model, have shown that indeed pressure waves can propagate in such sys-
tems. On the other hand, from a more theoretical viewpoint, all possible surface-wave solutions for a
visco-elastic membrane atop a half space of viscous fluid have been determined in [KaN15], including
the experimentally observed Lucassen waves and their dispersion relations of the type |ω|3/2 ≈ |k|2.
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In particular, a fractionally-damped wave equation was derived for describing the Lucassen waves
efficiently in [KS∗17a, KS∗17b]. The biophysical relevance of Lucassen wave is demonstrated by the
fact that the wave solutions depend directly on the lateral membrane compressibility κ. For exam-
ple, adsorption of lipophilic substances, like anesthetics, into the membrane presumably alter κ and,
as a consequence, are expected to change the wave propagation properties. In addition to that, at
large amplitudes, the pressure pulse locally modifies the compressibility κ and thereby significantly in-
creases the propagation distance [ShS14]. This non-linear property suggests an all-or-none behavior,
which indeed is observed in nerve pulse propagation.

Here we want to understand this phenomenon using the mathematically most simple model, which is
given by the following coupled system:

ρmemb

..
U = κ∆xU − µ∂zv for t > 0, x ∈ Σ, (1.1a)

.
U(t, x) = v(t, x, 0) for t > 0, x ∈ Σ, (1.1b)

ρbulk
.
v = µ∆x,zv for t > 0, (x, z) ∈ Ω := Σ×]−∞, 0[. (1.1c)

In the physical setup of [KS∗17a, KS∗17b] the domain Σ = R1 denotes the membrane and U(t, x) ∈
R denotes the horizontal displacement (longitudinal motion) of the membrane. The half space Ω =
Σ×]−∞, 0[ ⊂ Rd is filled by a viscous fluid whose horizontal velocity component is v(t, x, z) ∈ R
(pure shear flow). Condition (1.1b) is a no-slip condition for the fluid along the membrane, while the
induced stress of the sheared fluid is included in (1.1a) via −µ∂zv(t, x, 0).

For mathematical purposes we can allow Σ ⊂ Rd−1, but to avoid any complications with boundary
conditions we assume that Σ is of the form

Σ = Rk×
(
R/(`Z)

)n
with ` > 0 and k + n = d−1. (1.2)

In particular, Σ is an additive group and (1.1) is translation invariant. In Section 2 we first show that
the system has the natural energy

E(U,
.
U, v) =

∫
Σ

{ρmemb

2

.
U2 +

κ

2
|∇U |2

}
dx+

∫
Ω

ρbulk

2
v2 dzdx (1.3)

as a Lyapunov function. This shows that the function space H := H1(Σ)×L2(Σ)×L2(Ω) is the
natural state space. Note that this includes periodic boundary conditions for x ∈ Σ = Rk×

(
R/(`Z)

)n
.

Moreover, we discuss suitable scalings of time t, the horizontal variable x ∈ Rd−1, and the vertical
variable z ∈ ]−∞, 0[. We can renormalize all constants such that the system of equations takes the
form

..
U = ∆xU − ∂zv|z=0 for t > 0, x ∈ Σ, (1.4a)
.
U = v|z=0 for t > 0, x ∈ Σ, (1.4b)
.
v = ε2∆xv + ∂2

zv for t > 0, (x, z) ∈ Ω, (1.4c)

with the parameter ε = µ/
√
ρmembk . The essential point is here that the scaling of the horizontal

variable x ∈ Rd−1 is different from the vertical variable z ∈ ]−∞, 0[, thus breaking the isotropy of
the diffusion µ∆x,zv in (1.1c).

Our interest lies in the case ε → 0. Indeed, in Section 2.4 we simply set ε = 0 in (1.4c) and show
that this limit allows us to solve the scalar one-dimensional (!!) heat equation

.
v = ∂2

zv on ]−∞, 0[
for each x ∈ Σ independently. Assuming the initial condition v(0, x, z) = 0 and using the Dirichlet
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A rigorous derivation and energetics of a wave equation with fractional damping 3

boundary condition v(t, x, 0) = Φ(t, x), the stress ∂zv(t, x, 0) can be explicitly expressed via the
heat kernel, namely

∂zv(t, x, 0) =

∫ t

0

1√
π(t−τ)

.
Φ(τ, x)dτ, (1.5)

see (4.3). It is this one-dimensional parabolic Dirichlet-to-Neumann map that introduces the fractional
damping into the wave equation. In particular, denoting the fractional (Caputo) derivative of order
α ∈ ]0, 1[ of the function g with g(0) = 0 by

CDαg : t 7→ 1

Γ(1−α)

∫ 1

0

1

(t−τ)α
.
g(τ)dτ, (1.6)

we see that the mapping in (1.5) takes the form ∂zv(t, x, 0) = ( CD1/2Φ)(t, x), which is a Caputo
derivative of order 1/2.

Indeed, if we solve (1.4) with ε = 0 and v(0, x, z) = 0, then we can eliminate v totally by exploiting

(1.5) with Φ =
.
U , and U has to solve

..
U(t, x) +

∫ t

0

1√
π(t−τ)

..
U(τ, x)dτ = ∆xU(t, x) for t > 0, x ∈ Σ. (1.7)

This is a fractionally-damped wave equation where the damping is generated by a fractional Caputo
derivative of order 3/2, and this fractional derivative acts locally with respect to the space variable
x ∈ Σ.

In Section 2.5 we follow the approach in [KaN15, KS∗17a, KS∗17a] and discuss the dispersion rela-
tions for our normalized system (1.4) and show that, for the limit case ε = 0, the dispersion relation
reads (iω)2 + (iω)3/2 + |k|2 = 0, where Imω ≥ 0 is enforced by the stability through the Lyapunov
function E . Hence, for small |k| we obtain the new dispersion relation

ω(k) =
(
±
√

3

2
+

i

2

)
|k|4/3 + O(|k|2)k→0.

There is a rich mathematical literature on linear and nonlinear partial differential equations involving
fractional time derivatives, see e.g. [VeZ08, VeZ10, PVZ10, KS∗16, VeZ17, Aka19]. Our focus is dif-
ferent, because we want to show that (1.7) appears as a rigorous limit for ε → 0+ in (1.4). For this,
in Section 3 we develop the linear semigroup theory by showing that the semigroups etAε : H → H
exist for all ε ≥ 0 and are bounded in norm by C(1+t). In Theorem 3.3 we establish the strong
convergence etAεw0 → etA0w0 for ε→ 0+, which holds for all t > 0 and w0 ∈ H. For more regular
initial conditions, w0 we obtain the quantitative estimate

‖etAεw0 − etA0w0‖H ≤
√
ε t (2.3+t)2

(
‖w0‖H + ‖∇xw0‖H

)
.

In Section 4 we return to the energetics and the dissipation for the damped wave equation. By starting
from the natural energy and dissipation in the PDE system (1.4) with ε = 0 and the explicit solution

for v(t, x, z) in terms of
.
U(τ, x), we obtain a natural energy functional E for the fractionally-damped

wave equation that is non-local in time:

E(U(t),
[ .
U(·)

]
[0,t]

) =

∫
Σ

{1

2

.
U(t, x)2 +

1

2
|∇U(t, x)|2

+

∫ t

0

∫ t

0

1

4
√
π(2t−r−s)3/2

.
U(r, x)

.
U(s, x)dsdr

}
dx, (1.8a)
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where
[ .
U(·)

]
[0,t]

indicates the dependence on
.
U(s) for s ∈ [0, t]. For solutions U of (1.7), we obtain

an energy–dissipation balance with a non-local dissipation:

d

dt
E(U(t),

[ .
U(·)

]
[0,t]

) = −
∫

Σ

∫ t

0

∫ t

0

1√
π(2t−r−s)1/2

..
U(r, x)

..
U(s, x)dsdr dx. (1.8b)

Related results are obtained in [VeZ08, GY∗15, VeZ15], but there typically only energy-dissipation
inequalities are derived. It is surprising to see that the two non-local kernels in (1.8) that depend on
t−r, t−s ∈ [0, T ] are only depending on the sum (t−r) + (t−s) = 2t−r−s, which derives from
very specific scaling properties of the heat kernel.

2 The formal modeling

In this section we describe the formal modeling, including the energy functional, the scalings and the
derivation of the fractionally-damped wave equation as the scaling limit.

2.1 The energy functional and the state space

We return to the full system (1.1) and observe that it has the form of a damped Hamiltonian system

with the total energy E(U,
.
U, v) given in (1.3). Indeed, taking the time derivative along solutions

t 7→ (U(t), v(t)) of (1.1) we find

d

dt
E(U(t),

.
U(t), v(t)) =

∫
Σ

(
ρmemb

.
U

..
U + κ∇x

.
U · ∇xU

)
dx+

∫
Ω

ρbulkv
.
vdxdz

(1.1a),(1.1c)
=

∫
Σ

Utµvz dx+

∫
Ω

µ v∆x,zvdxdz
(1.1b)
= −

∫
Ω

µ(|∇xv|2+v2
z)dxdz ≤ 0.

Here we used that the integration by parts
∫

Σ
∇x

.
U · ∇xU dx = −

∫
Σ

.
U∆xU dx does not generate

boundary terms because Σ has the form (1.2).

Thus, E acts as a Lyapunov function and it is a bounded quadratic form on the Hilbert space H =
H1(Σ)×L2(Σ)×L2(Ω), which we consider as the basic state space for our problem. In Section 3 we
will show that (1.1) has a unique solution for each initial value w0 = (U(0), U̇(0), v(0)) ∈ H.

More precisely, the system (1.1) can be written as a damped Hamiltonian system for the states X =

(U, P, p) where P = ρmemb

.
U and p = ρbulkv. WithH(U, P, p) = E(U, 1

ρmemb
P, 1

ρbulk
p) we have

.
U.
P.
p

 =
(
J−K

)
DH(U, P, p) with J =

 0 I 0
−I 0 0

0 0 0

 and K =

 0 0 0
0 ∗ µ∂z�|z=0

0 ∗ −µ∆x,z

,
where K : dom(K) ⊂ X→ X := L2(Σ)×L2(Σ)×L2(Ω) is defined as the self-adjoint, unbounded
operator induced by the quadratic dissipation potential

R∗(Π,Ξ, ξ) :=
µ

2

∫
Ω

|∇x,zξ|2 dxdz + χ∗(Ξ, ξ), with χ∗(Ξ, ξ) =

{
0 if Ξ = ξ|z=0,
∞ else.
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A rigorous derivation and energetics of a wave equation with fractional damping 5

2.2 A long-wave scaling

To obtain a first understanding of the different scaling of horizontal and vertical spatial variables, we
study the long-wave scaling for the wave equation. This mean that we scale the horizontal space
variable x and the time variable t with the same factor δ > 0. For the moment we assume that the
membrane constants ρmemb and k are given and of order 1, while ρbulk and µ are much smaller. More
general scalings are discussed in the following subsection.

Without loss of generality we keep U fixed and obtain velocities
.
U of order δ. Hence, to keep the no-

slip condition, we also need to rescale v by a factor δ. The main point is that we want z to be rescaled
by a smaller factor, let us say δα with α ∈ [0, 1[. This implies that ∂zv scales like δ1+α. Thus, to treat

the coupling term µ∂zv|z=0 of the same order as
..
U and∇xU , we need to assume that µ also scales

with δ, namely like δ1−α. Finally, we also assume the appropriate scaling for ρbulk, namely

x̂ = δ x, t̂ = δ t, ẑ = δα z, Û = U, v = δ v̂, µ = δ1−αµ̂, ρbulk = δαρ̂bulk.

Hence, this long-wave scaling with small δ is indeed suitable, if the bulk quantities ρbulk and µ are
much smaller than the membrane quantities ρmemb and stiffness k.

Inserting these scalings (and dropping the hats) we find the transformed system

ρmemb

..
U = κ∆xU − µ∂zv|z=0 and

.
U = v|z=0 on Σ,

ρbulk
.
v = µ(δ2−2α∆x+∂

2
z )v in Ω.

(2.1)

Here, the case of small δ is relevant, and in the limit δ → 0+ we obtain the fractionally-damped wave
equation.

2.3 Non-dimensionalizing by a general scaling

We fully non-dimensionalize the system by considering general rescalings, where we scale x, z, and
t independently:

x̂ = a x, t̂ = b t, and ẑ = c z,

but do not assume any scaling on the material parameters ρmemb, κ, ρbulk, and µ. We keep Û = U
(which is always possible by linearity), but need to rescale v = b v̂ to transform the no-slip condition.
U = v|z=0 into ∂t̂Û = v̂|ẑ=0. The transformed equations read (after dropping the hats) as follows

ρmembb
2
..
U = κa2∆xU − µbc ∂zv|z=0 on Σ, ρbulkb

2.v = µbc2∂2
zv + µa2b∆xv in Ω.

Dividing the equations by ρmembb
2 and ρbulkb

2 respectively, we can equate the first three of the four
coefficients to 1, namely

κa2

ρmembb2
= 1,

µc

ρmembb
= 1,

µc2

ρbulkb
= 1.

We obtain the solution

a2 =
ρ2

bulkµ
2

ρ3
membκ

, b =
ρbulkµ

ρ2
memb

, and c =
ρbulk

ρmemb

,

DOI 10.20347/WIAS.PREPRINT.2718 Berlin 2020



A. Mielke, R. R. Netz, S. Zendehroud 6

and the remaining fourth coefficient reads

ε :=
( µa2

ρbulkb

)1/2

=
a

c
=

µ
√
ρmembκ

.

The non-dimensionalized coupled system now reads

..
U = ∆xU − ∂zv|z=0 and

.
U = v|z=0 on Σ,

.
v = ε2∆xv + ∂2

zv in Ω,

which is exactly the renormalized system (1.4), which is studied subsequently.

Hence, the system (1.1) has a unique non-dimensional parameter ε = µ/
√
ρmemb k that describes

the effective anisotropy of the diffusion in the bulk Ω. Subsequently, we are interested in the case of
very small ε and indeed in the limit ε→ 0+.

We can interpret ε as the ratio of three different length scales. Choosing an arbitrary time scale t0 > 0,
we have the diffusion length `diff , the “equivalent membrane thickness” `thick, and the membrane travel
length `trav given by

`diff(t0) =
( µt∗
ρbulk

)1/2

, `thick =
ρmemb

ρbulk

, and `trav(t0) = t0cmemb = t0

( κ

ρmemb

)1/2

,

where cmemb is the wave speed in the undamped membrane. Now our dimensionless parameter ε is
given by

ε =
`diff(t0)2

`thick `trav(t0)
for all t0 > 0 .

To make the definition even more intrinsic, we may choose t0 as a characteristic time t∗ for the sys-
tem. We ask that the time t∗ is chosen such that the corresponding diffusion length scale equals the
equivalent membrane thickness, viz. `diff(t∗) = `thick. This yields

t∗ =
ρ2

memb

µρbulk

and `trav(t∗) = t∗cmemb =
ρ

3/2
membκ

1/2

µρbulk

.

The scalings of time and horizontal and vertical lengths are now given as

t = t∗ t̂, x = `trav(t∗) x̂, z = `thick ẑ.

This leads to the final relation

ε =
`thick

`trav(t∗)
=

µ
√
ρmembκ

.

Typical parameters for the experimental setup consisting of a lipid monolayer, such as DPPC at
the water-air interface, are ρmemb = 10−6 kg/m2, µ = 10−3 Pa s = 10−3 kg/(s m), and κ =
10−2 N/m, where for ρmemb the surface excess mass density was used. These parameters yield ε =
10. Although this value is not small, it does not contradict our argumentation. As shown in [KaN15],
different waves can coexist in such a system, the longitudinal capillary waves with |ω|3/2 ≈ |k|2 being
only one of them. In particular it is interesting that the dispersion of this wave, which has been known
in the literature since [Luc68], follows from our general calculation as a rigorous limit.
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2.4 The limit model and the fractionally-damped wave equation

We now study the limit equation by setting ε = 0 in the rescaled system (1.4). The justification of
taking this limit is given in the following section.

After setting ε = 0 we obtain the system
..
U(t, x) = ∆xU(t, x)− ∂zv(t, x, 0) for t > 0, x ∈ Σ, (2.2a)
.
U(t, x) = v(t, x, 0) for t > 0, x ∈ Σ, (2.2b)
.
v(t, x, z) = ∂2

zv(t, x, z) for t > 0, (x, z) ∈ Ω. (2.2c)

The point is now that the equation for (2.2c) can be solved explicitly by the use of the properly rescaled
one-dimensional heat kernel H(t, y) = (4πt)−1/2e−y

2/(4t). Note that x ∈ Ω appears now as a
parameter only, since the diffusion in x-direction is lost.

The solution of (2.2c) with the boundary condition (2.2b) and the initial condition v(0, x, z) = 0 takes
the explicit form

v(t, x, z) =

∫ t

0

2∂zH(t−τ, z)
.
U(τ, x)dτ,

see Section 4.1 for a derivation. Taking the derivative with respect to z and using that the heat kernel
H satisfies ∂2

zH = ∂tH we obtain

∂zv(t, x, z) =

∫ t

0

2∂tH(t−τ, z)
.
U(τ, x)dτ =

∫ t

0

2H(t−τ, z)
..
U(τ, x)dτ,

where for the integration by parts in the last identity we exploited
.
U(t, x, 0) = v(t, x, 0) = 0 and

H(0, z) = 0 for z < 0. Thus, evaluation at z = 0 and using H(t, 0) = (4πt)−1/2, the coupling term
in (2.2a) reduces to

∂zv(t, x, 0) =

∫ t

0

2H(t−τ, 0)
..
U(τ, x)dτ =

∫ τ

0

1√
π(t−τ)

..
U(τ, x)dτ. (2.3)

Through these formulas we see how kinetic energy is moved from the membrane via the no-slip
condition (2.2b) into the one-dimensional diffusion equation. Through the memory kernel in (2.3) the
energy is restored partially in a delayed fashion, which leads to a fractional damping, here of order
3/2. Because in the bulk Ω = Σ×]−∞, 0[ there is no coupling between different points x ∈ Σ, this
damping is non-local in time but local with respect to x ∈ Σ.

Joining everything we see that the limiting system (2.2) contains the fractionally-damped wave equa-
tion ..

U(t, x) +

∫ t

0

1√
π(t−τ)

..
U(τ, x)dτ = ∆U(t, x) on Σ. (2.4)

An analysis concerning existence of solutions and concerning the energetics is given in Section 4.

2.5 The dispersion relations

Following [KS∗17a] we consider special solutions of (3.1) obtained by a Fourier ansatz. For the tem-
poral growth factor µ = iω ∈ C with Reµ ≤ 0 and the wave vector k ∈ Rd−1 we set

(U(t, x), V (t, x), v(t, x, z)) = eµt+ik·x(a, b, c eγz
)

DOI 10.20347/WIAS.PREPRINT.2718 Berlin 2020
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with a, b, c, γ ∈ C and Re γ > 0. From V = Ut we obtain b = aµ, while v|z=0 = V implies
c = b = aµ. Finally, we have to satisfy the membrane equation Utt = ∆xU − vz|z=0 and the
diffusion equation ∂tv = ε2∆xv + ∂2

zv, which leads to the algebraic relations (since only a 6= 0 is
interesting) µ2 = −|k|2 − µγ and µ = −ε2|k|2 + γ2. As in [KS∗17a] we eliminate the variable γ
and obtain the dispersion relation

0 = Γ(µ, k) =
(
µ2+|k|2

)2 − ε2µ2|k|2 − µ3,

where we still need to be careful to satisfy Reµ ≤ 0 and Re γ > 0 with γ2 = µ+ε2|k|2.

For short waves, i.e. |k| � 1, we obtain the expansion

µ = −i|k| − |k|
2

(
ε2 − i

|k|

)1/2

+ h.o.t.

In the case ε > 0 this means that short waves travel at speed 1, but are damped proportional to |k|.
The limit ε = 0 leads to a significantly smaller damping, namely one of order |k|1/2.

As expected due to the scaling discussed in the previous subsections, the case of long waves, i.e.
|k| � 1, is not so sensitive with respect to ε. For all ε ≥ 0 we find the expansion

µ = −
(1

2
± i
√

3

2

)
|k|4/3 + h.o.t.

In particular, we find that the waves slow down for |k| → 0, because the wave speed takes the form
c(k) = Im(µ(k)/|k|) = ±|k|1/3

√
3/2+h.o.t. Moreover, the damping is very low, because it is

proportional to |k|4/3.

3 Convergence result for the semigroup

From now on it suffices to consider the rescaled system, where ε > 0 appears as the only small
parameter:

..
U = ∆xU − ∂zv|z=0 for t > 0, x ∈ Σ, (3.1a)
.
U = v|z=0 for t > 0, x ∈ Σ, (3.1b)
.
v = ε2∆xv + ∂2

zv for t > 0, (x, z) ∈ Ω = Σ×]−∞, 0[. (3.1c)

In this section we first prove existence of solutions for the initial-value problem and then show that in
the limit ε → 0 the corresponding solutions t 7→ wε(t) ∈ H converge strongly to t 7→ w0(t) in the
Hilbert space H. For this it is sufficient to employ the classical theory of Trotter and Kato, see e.g.
[Paz83, Sec. 3.3], where convergence of the resolvent implies convergence of the semigroup.

3.1 Formulation via strongly continuous semigroups

By introducing the variable V =
.
U and setting w = (U, V, v), we rewrite system (3.1) in the form.

w = Aεw and will show that the solutions w can be obtained in the form w(t) = etAεw0, i.e.
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A rigorous derivation and energetics of a wave equation with fractional damping 9

we have to show that Aε is the generator of a strongly continuous semigroup on the space H =
H1(Σ)×L2(Σ)×L2(Ω). We define the unbounded linear operators Aε : D(Aε) ⊂ H→ H via

D(Aε) =
{

(U, V, v) ∈ H2(Σ)×H1(Σ)×
(
Xε

1(Ω)∪Y ε(Ω)
) ∣∣ v|z=0 = V on Σ

}
,

Aε

 U
V
v

 =

 V
∆xU − (∂zv)|z=0

ε2∆xv + ∂2
zv

 .

Here the spaces Xε
λ(Ω) with λ > 0 and Y ε(Ω) are defined via

Xε
λ(Ω) :=

{
v ∈ L2(Ω)

∣∣ ε2∆xv + ∂2
zv − λv = 0, v|z∈0 ∈ H1(Σ)

}
and

Y ε(Ω) :=
{
v ∈ L2(Ω)

∣∣ ε2∆xv + ∂2
zv ∈ L2(Ω), v|z=0 = 0

}
.

We emphasize that the domain for ε = 0 is different from the domains for ε > 0, because of the miss-
ing x-derivatives for v in the first case. Nevertheless, the trace of v at z = 0 is well-defined in L2(Σ)
because ∂zv lies in L2(Σ,H1(]−∞, 0[)) and H1(]−∞, 0[) embeds continuously into C0(]−∞, 0[).

More precisely, for ε > 0 we may apply the classical elliptic regularity theory from [LiM72] which
shows that Y ε(Ω) is a closed subspace of H2(Ω) whereas Xε

λ(Ω) is only contained in H3/2(Ω) but
not in H2(Ω). In Step 3 of the proof below, we will show that for ε > 0 we have

Xε
λ(Ω) ∪ Y ε(Ω) = Xε

1(Ω) ∪ Y ε(Ω) for all λ > 0. (3.2)

For ε = 0 the spaces X0
λ(Ω) and Y 0(Ω) have lower regularity in x ∈ Σ, namely

X0
λ(Ω) =

{
v ∈ H1(Ω)

∣∣ v(x, z) = e
√
λzv(x, 0), v(·, 0) ∈ H1(Σ)

}
,

Y 0(Ω) :=
{
v ∈ L2

(
Σ; H2(]−∞, 0[)

) ∣∣ v(x, 0) = 0 a.e. in Σ
}
.

Since z 7→ ez − e
√
λz lies in H2(]−∞, 0[) and vanishes at z = 0, we easily see X0

λ(Ω)∪Y 0(Ω) =
X0

1 (Ω) ∪ Y 0(Ω) for all λ > 0.

Our first result in this section shows that for each ε ≥ 0 the operator Aε generates a strongly contin-
uous semigroup (etAε)t≥0 on H with a uniform growth rate 1.

Theorem 3.1 (Generation of semigroups) For all ε ≥ 0 the operatorsAε defined above are closed.
For Reλ > 0 the resolvents (Aε−λI)−1 : H→ D(Aε) ⊂ H exist and satisfy the estimate

∥∥(Aε−λI)−1
∥∥
H→H

≤ 1

λ− 1
for λ > 1. (3.3)

In particular, Aε is the generator of the strongly continuous semigroup etAε : H → H satisfying
‖etAε‖H→H ≤ 1 + t e/2 for t ≥ 0. Moreover, the functional energy

E0(U,
.
U, v) =

∫
Σ

{1

2

.
U(x)2 +

1

2
|∇U(x)|2 +

∫ 0

−∞

1

2
v(x, z)2 dz

}
dx (3.4)

is a Lyapunov function, i.e. along solutions the estimate E0(U(t),
.
U(t), v(t)) ≤ E0(U(s),

.
U(s), v(s))

holds for t > s ≥ 0.
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Proof. We first treat the case ε > 0 in Steps 1 to 3 and then discuss the differences for the case
ε = 0 in Step 4.

Step 1: A priori estimate. For α > 0 we use the norm | · |α on H1(Σ) defined via |U |2α = α2‖U‖2
2 +

‖∇xU‖2
2, where ‖ · ‖2 is the standard L2 norm on Σ.

For w = (U, V, v) ∈ D(Aε) and α ≥ 0 we obtain the estimate〈〈
Aεw,w

〉〉
α

:= 〈V, U〉α +

∫
Σ

(
∆xU−∂zv|z=0

)
V dx+

∫
Ω

(
ε∆xv+∂2

zv
)
vdzdx

=

∫
Σ

{
α2UV +∇U · ∇V −∇U · ∇V − (∂zv v)|z=0

−
∫ 0

−∞

(
ε2|∇xv|2 − (∂zv)2

)
dz + (∂zv v)|z=0

}
dx

=

∫
Σ

α2UV dx−
∫

Ω

(
ε2|∇xv|2 − (∂zv)2

)
dzdx

≤ α

2

(
α2‖U‖2

2 + ‖V ‖2
2

)
≤ α

2

〈〈
w,w

〉〉
α

=
α

2
|||w|||2α,

(3.5)

where we used the norm |||w|||α =
〈〈
w,w,

〉〉1/2
. For λ > 0 and F = (Aε−λI)w we obtain the

estimate

|||F |||α|||w|||α ≥ −
〈〈
F,w

〉〉
α

= −
〈〈

(Aε−λI)w,w
〉〉
α
≥
(
λ− α

2

)〈〈
w,w

〉〉
α

=
(
λ− α

2

)
|||w|||2α.

Thus, for α > 0 we have established the estimate

|||(Aε−λI)−1F |||α ≤
1

λ−α/2
|||F |||α for all λ > α/2. (3.6)

Because of ||| · |||1 = ‖ · ‖H1 we obtain∥∥∥(Aε−λI)−1
F
∥∥∥
H

=
∥∥w∥∥

H
≤ 1

Reλ− 1/
√

2

∥∥F∥∥
H
.

In particular, we have shown that the bounded linear operators Aε−λI : D(Aε) → H are injective.
The following steps show that these operators are also surjective, i.e. the resolvent equations have a
solution in D(Aε).

Step 2: Reduction of resolvent equation. It remains to show that for all λ > 0 the resolvent equation
(Aε−λI)w = F ∈ H has a solution in w = (U, V, v) ∈ D(Aε). In this step we reduce the problem
to an equation for U alone.

Writing F = (G,H, f) the system reads

on Σ : V − λU = G, ∆xU − ∂zv|z=0 − λV = H, V = v|z=0, (3.7a)

in Ω : ε2∆xv + ∂2
zv − λv = f. (3.7b)

Obviously, we can eliminate V using the first equation giving V = G+ λU .

Next, we solve (3.7b) for v. Together with the Dirichlet boundary condition v = V at z = 0, we obtain
a unique solution v = Vελ(f, V ). By classical elliptic regularity theory (see [LiM72]), for all λ > 0 the
bounded linear operator Vελ maps Hs(Ω)×Hs+3/2(Σ) to Hs+2(Ω). Because we have V ∈ H1(Σ)
and f ∈ L2(Ω), we treat the two inhomogeneities separately, namely Vελ(·, 0) : L2(Ω)→ Y ε(Ω) ⊂
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H2(Ω) and Vελ(0, ·) : H1(Σ)→ Xε
λ(Ω) ⊂ H3/2(Ω). As the equation for U uses ∂zv|z=0, we define

the operators

M ε
λ :

{
L2(Ω) → H1/2(Σ),
f 7→ ∂zV

ε
λ(f, 0)|z=0,

and N ε
λ :

{
H1(Σ) → L2(Σ),
V 7→ ∂zV

ε
λ(0, V )|z=0,

(3.8)

where N ε
λ is a Dirichlet-to-Neumann operator. It remains to solve an equation for U :

−∆xU + (λ2I + λN ε
λ)U = −H −M ε

λf − (λI +N ε
λ)G. (3.9)

Step 3. (Aε−λI)F ∈ D(Aε). Using F = (G,H, f) ∈ H and the mapping properties of Mλ and
N ε
λ, we see that the right-hand side in (3.9) lies in L2(Σ). Moreover, for λ > 0, the operator on the

left-hand side generates a bounded and coercive bilinear form on H1(Σ), because
∫

Σ
UN ε

λU dx =∫
Ω

(
ε2|∇xv|2 + (∂zv)2 + λv2

)
dz dx ≥ 0, where v = Vλ(0, U). This is of course the same

calculation as in Step 1. Thus, the Lax-Milgram theorem provides a unique solution U ∈ H1(Σ),
which by classical linear regularity lies even in H2(Σ). From V = G + λU we obtain V ∈ H1(Σ).
Finally, we obtain v = Vελ(f, V ) ∈ Xε

λ(Ω) ∪ Y ε(Ω).

Thus, we are done, if the identity (3.2) is established. For this we take any W ∈ H1(Σ) and consider
vλ := Vελ(0,W ) ∈ Xε

λ(Ω) and v1 := V1(0,W ) ∈ Xε
1(Ω). By the definition of Vελ(0, ·) we see that

the difference w := vλ − v1 satisfies the linear PDE

ε2∆xw + ∂2
zw − w = (1−λ)vλ ∈ H3/2(Ω), w|z=0 = 0.

Hence, we conclude w ∈ Y ε(Ω), which implies vλ = v1 + w ∈ Xε
1(Ω) ∪ Y ε(Ω) as desired.

Step 4. The case ε = 0. The a priori estimate in Step 1 works for this case, too. The elimination of V
and v works similarly, but now with the simplification that Nλ is explicitly given, namely N0

λ =
√
λI .

Together with X0
λ(Ω) ∪ Y 0(Ω) = X0

1 (Ω) ∪ Y 0(Ω) (see above) we conclude, and Theorem 3.1 is
established.

Step 5. Growth rates for the semigroup. From (3.6) we know that the semigroups etAε satisfy the growth
estimate |||etAεw|||α ≤ etα/2|||w|||α for all α ≥ 0. Setting α = min{1, α} and α = max{1, α} and
using the equivalence between | · |α and ‖ · ‖H1 = | · |1, we obtain

‖etAεw‖H ≤
1

α
|||etAεw|||α ≤

1

α
etα/2|||w|||α ≤

α

α
etα/2‖w‖H = max{α, 1/α}etα/2‖w‖H.

Optimizing with respect to α > 0 yields the bound et/2 for t ∈ [0, 2] and t e/2 for t ≥ 2, which implies
the final result ‖etAε‖H→H ≤ (1 + t e/2).

The final statement concerning E0 follows by setting α = 0, observing E0(w) = 1
2
|||w|||20, and the

contraction property |||etAεw|||0 ≤ e0·t|||w|||0 = |||w|||0.

3.2 Convergence of semigroups

The next result proves the convergence of the resolvents (Aε−λI)−1 as operators from H into itself
in the strong operator topology. The critical point is to understand the convergence of the Dirichlet-to-
Neumann operators N ε

λ to the limiting operator N0
λ , see (3.8).

Proposition 3.2 (Strong convergence of resolvents) For all λ > 0 and all F ∈ H we have the
strong convergence (Aε−λI)−1F → (A0−λI)−1F .
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Proof. Throughout the proof λ > 0 is fixed.

Step 1. Reduction to F in a dense subset Z of H. Let Z ⊂ H be given such that Z is dense in H
and that for all F ∈ Z we have (Aε−λI)−1F → (A0−λI)−1F as ε→ 0+.

For an arbitrary F ∈ H we consider Fn ∈ Z with Fn → F in H as n → ∞. By Step 1 in the proof
of Theorem 3.1 we know that the resolvents (Aε−λI)−1 are uniformly bounded by Cλ with respect
to ε > 0. Hence we have∥∥(Aε−λI)−1F − (A0−λI)−1F

∥∥
H

≤
∥∥(Aε−λI)−1(F−Fn)

∥∥
H

+
∥∥(Aε−λI)−1Fn − (A0−λI)−1Fn

∥∥
H

+
∥∥(A0−λI)−1(Fn−F )

∥∥
H

≤ Cλ‖F−Fn‖H +
∥∥(Aε−λI)−1Fn − (A0−λI)−1Fn

∥∥
H

+ Cλ‖F−Fn‖H.

Thus, for a given δ > 0 we can make the difference small by first choosing n so big thatCλ‖F−Fn‖H
< δ/3 and then choosing ε0 > 0 so small that the middle term is less than δ/3 for all ε ∈ ]0, ε0[ as
well. Thus, (Aε−λI)−1F → (A0−λI)−1F holds for all F ∈ H.

Step 2. Higher regularity for smooth right-hand sides F . We use that the system is translation invariant
in the domain Σ. Thus, if the partial derivatives ∂xjF lie in H, then the solutions wε = (Aε−λI)−1F
have an additional derivative in xj direction as well and satisfy the a priori estimate ‖∂xjwε‖H ≤
Cλ‖∂xjF‖H. Thus, for F in the dense subset

Z =
{
F ∈ H

∣∣∇xF ∈ H
}

(3.10)

we obtain the improved estimate ‖wε‖Z ≤ Cλ‖F‖Z where ‖F‖Z := ‖F‖H + ‖∇xF‖H.

Step 3. Convergence for ε → 0+. We now assume F ∈ Z and compare wε = (U ε, V ε, vε) =
(Aε−λI)−1F with w0 = (U0, V 0, v0) = (A0−λI)−1F . As in Step 1 of the proof of Theorem 3.1,
we estimate the difference wε − w0 as follows (choosing α > 0 with

√
α < 2λ):(

λ−
√
α

2

)〈〈
wε−w0, wε−w0

〉〉
α
≤ −

〈〈
(A0−λI)(wε−w0), wε−w0

〉〉
α

∗
=
〈〈

(0, 0, ε2∆xv
ε)>, wε−w0

〉〉
α

= −
∫

Ω

ε2∇xv
ε(∇vε−∇v0)dzdx

≤ Ĉαε
2‖wε‖Z(‖wε‖Z+‖w0‖Z) ≤ 2ε2ĈαCλ‖F‖2

Z → 0 as ε→ 0+ .

In the identity
∗
= we have used the cancellation arising from (A0−λI)w0 = F and

(A0−λI)wε = (Aε−λI)wε + (A0−Aε)wε = F − (0, 0, ε2∆xv
ε)> .

By the equivalence of the H norm and the norm induced by
〈〈
·, ·
〉〉
α

, we conclude ‖wε−w0‖H = C ε,
and Proposition 3.2 is proved.

Theorem 3.1 and Proposition 3.2 are the basis for the following result that states that the contraction
semigroups (etAε)t≥0 on H converge as ε → 0+ in the strong operator topology. Indeed, the proof
of the first part is a direct consequence of the Trotter–Kato theory, see [Paz83, Sec. 3.3], while the
second part uses explicit estimates.

Theorem 3.3 (Strong convergence of the solutions) Consider the operators Aε defined in Theo-
rem 3.1 and the induced contraction semigroups etAε : H → H for t ≥ 0. Then, for all initial
conditions w0 ∈ H, the solutions wε : [0,∞[ → H, t 7→ wε(t) = etAεw0 satisfy for all t ≥ 0 the
convergence wε(t)→ w0(t) as ε→ 0.
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Moreover, for initial conditions with additional derivatives in x-direction, namely w0 ∈ Z (cf. (3.10)) we
have the quantitative error estimate

‖wε(t)− w0(t)‖H ≤ ε
√
t (2.3+t)2 ‖w0‖Z for all t ≥ 0. (3.11)

Proof. It remains to show (3.11). For this we set δ = wε−w0 and perform a simple energy estimate,
where we use that wε = (U ε, V ε, vε) and w0 = (U0, V 0, v0) are sufficiently smooth solutions of
(3.1), because we have the extra regularity of w0 ∈ Z. We employ the norms ||| · |||α as defined in
(3.5) and find

1

2

d

dt
|||δ|||2α =

∫
Σ

α2(U ε−U0)(V ε−V 0)dx−
∫

Ω

{
|∂zvε−∂zv0|2 + ε2∇xv

ε · (∇xv
ε−∇xv

0)
}

dzdx

≤ α

2
|||δ|||2α − 0 + ε2‖∇xv

ε‖L2(Ω)

(
‖∇xv

ε‖L2(Ω) + ‖∇xv
0‖L2(Ω)

)
≤ α

2
|||δ|||2α + ε2‖w0‖2

Z 2
(
1 + t e/2

)2
,

where we used ‖∇xw
ε‖H ≤ ‖etAε∇xw0‖H ≤ ‖etAε‖H→H‖w0‖Z and the growth estimate from

Theorem 3.1. Using δ(0) = w0 − w0 = 0, the Gronwall lemma yields

|||δ(t)|||2α ≤ ε2

∫ t

0

2 eα(t−s)(1+s e/2)2 ds ‖w0‖2
Z.

For t ∈ [0, 2] we choose α = 1 and obtain

‖δ(t)‖2
H = |||δ(t)|||21 ≤ C∗t ε

2‖w0‖2
Z for t ∈ [0, 2]

where C∗ =
∫ 2

0
e2−s(1+se/2)2 ds ≈ 27.14... ≤ 2.34. For t ≥ 2 let α = 2/t ≤ 1 to obtain

‖δ(t)‖2
H ≤

1

α2
|||δ(t)|||2α ≤

t2

4

∫ t

0

2 e2(1−s/t)(1+se/2)2 ds ε‖w0‖2
Z

=
t3

32

(
(e2−5)e2t2 + 4(e2−3)et+ 8(e2−1)

)
ε2‖w0‖2

Z ≤
t

6

(
1 + t e/2)4 ε2‖w0‖2

Z.

Combining this with the result for t ∈ [0, 2] and using (e/2)4 ≤ 6, we arrive at ‖δ(t)‖2
H ≤

t (2.3+t)4 ε2‖w0‖2
Z for all t ≥ 0, which is the desired result (3.11).

4 Energy and dissipation functionals

We now show that the fractionally-damped wave equation (2.4) carries a natural energy-dissipation
structure. This is done in two different ways. First, we reduce the natural energy-dissipation structure
of the limiting system (3.1) with ε = 0 by eliminating the diffusion equation. For this we first study the
one-dimensional diffusion equation

.
v = ∂2

zv on the half line ]−∞, 0[ in detail. Second, we show by a
direct calculation that the energy-dissipation structure extends to a more general class of fractionally-
damped wave equations, where the time derivative of order 3/2 is replaced by order 1+α with α ∈
]0, 1[.
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4.1 Diffusion equation on the half line

We consider the following initial-boundary value problem on I := ]−∞, 0[:

.
v = ∂2

zv, v(0, z) = v0(z), v(t, 0) = ϕ(t). (4.1)

We always assume the compatibility condition v0(0) = ϕ(0).

Using the one-dimensional heat kernel H(t, y) = (4πt)−1/2 exp
(
−y2/(4t)

)
and the reflection prin-

ciple, the influence of v0 is described via KDir(t, z, y) = H(t, z−y) −H(t, z+y) such that homo-
geneous Dirichlet data follow from KDir(t, 0, y) = 0:

v(t, z) =

∫
I

KDir(t, z, y)v0(y)dy.

To obtain the influence of the inhomogeneous Dirichlet data at z = 0, we set v0 = 0 and make the
ansatz v(t, z) = w(t, z) + ϕ(t) such that w has to satisfy

wt = wzz −
.
ϕ(t), w(t, 0) = 0, w(0, z) = −ϕ(0) = 0.

With Duhamel’s principle (variation-of-constants formula) we obtain

w(t, z) = −
∫ t

0

∫
I

KD(t−s, z, y)
.
ϕ(s)dyds.

Setting G(y) :=
∫ y
−∞H(1, η)dη (such that G(−∞) = 0 and G(∞) = 1) we obtain

w(t, z) =

∫ t

0

.
ϕ(s)

(
G(z/

√
t−s)−G(−z/

√
t−s)

)
ds.

Putting both cases together, the full solution formula for (4.1) reads

v(t, z) =

∫
I

KDir(t, z, y)v0(y)dy + ϕ(t) +

∫ t

0

.
ϕ(s)

(
G(z/

√
t−s)−G(−z/

√
t−s)

)
ds.

For the analysis related to the fractionally-damped wave equation, we consider only the case v0 ≡ 0,
which implies ϕ(0) = 0 as well by continuity of the boundary-initial data. Doing integration by parts
for the time integral and using

∂s
(
∓G(±z/

√
t−s)

)
= H(1,±z/

√
t−s) z

2(t−s)3/2
= −∂zH(t−τ, z)

we arrive, for the case v0 ≡ 0, at the relation

v(t, z) =

∫ t

0

K0(t−τ, z)ϕ(τ)dτ with K0(t, z) = 2∂zH(t, z). (4.2)

Using ∂2
zH = ∂tH and doing another integration by parts (using ϕ(0) = 0 again) we find

∂zv(t, z) =

∫ t

0

K1(t−τ, z)
.
ϕ(τ)dτ with K1(t, z) = 2H(t, z). (4.3)

In particular, evaluating at z = 0, where H(t, 0) = 1/
√

4πt, we find

∂zv(t, 0) =

∫ t

0

.
ϕ(τ)√
π(t−τ)

dτ. (4.4)
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According to the definition (1.6), the boundary derivative ∂zv is the fractional Caputo derivative of
order 1/2 of ϕ, i.e. ∂zv(·, 0) = CD1/2ϕ.

We now derive an energy-dissipation balance for the diffusion equation by rewriting the natural L2

integrals in terms of the boundary value ϕ. The starting point is the classical relation

d

dt

∫
I

1

2
v(t, z)2 dz =

∫
I

v
.
vdz =

∫
I

v∂2
zvdz = v(t, 0)∂zv(t, 0)−

∫
I

(
∂zv(t, z)

)2
dz. (4.5)

For solutions v of (4.1) with v0 ≡ 0 and ϕ(0) = 0 we can rewrite this energy-dissipation balance
totally in terms of ϕ by using the following result.

Proposition 4.1 Assume that v is given via (4.2) and ∂zv by (4.3), then we can express twice the
energy

∫
I
v2 dz and the dissipation

∫
I
(∂zv)2 dz via∫

I

v2 dz =

∫ t

0

∫ t

0

M0(t−r, t−s)ϕ(r)ϕ(s)drds and (4.6a)∫
I

(∂zv)2 dz =

∫ t

0

∫ t

0

M1(t−r, t−s) .
ϕ(r)

.
ϕ(s)drds (4.6b)

where Mj(r, s) =

∫
I

Kj(r, z)Kj(s, z)dz =
2j√

4π (r+s)3/2−j
. (4.6c)

In particular, Mj(r, s) = M̃j(r+s) and ∂rM1(r, s) = ∂sM1(r, s) = −M0(r, s).

Proof. The relations (4.6a) and (4.6b) with Mj(r, s) =
∫
I
Kj(r, z)Kj(s, z) dz follow simply by the

definitions. Thus, it remains to establish the explicit formulas forM0 andM1 by exploiting the structure
of K0 = 2∂zH = − z

2t
2H and K1 = 2H . We obtain

Kj(r, z)Kj(s, z) = 4
( z2

4rs

)1−j 1

4π
√
rs

exp
(
−z

2

4r
− z2

4s

)
=
( z2

4rs

)1−j 1

π
√
rs

exp
(
−r+s

4rs
z2
)
.

An explicit integration with
∫∞

0
e−a

2x2 dx =
√
π/(2a) and

∫∞
0
x2e−a

2x2 dx =
√
π/(4a3) yields the

stated formulas for M0 and M1.

It is a surprising fact thatM0 andM1 depend only on the sum r+s rather than on r and s individually.
The relations in (4.6) allow us to rewrite the energy-dissipation balance (4.5) in terms of ϕ alone. We
obtain the identity

d

dt

∫ t

0

∫ t

0

1

2
M0(t−r, t−s)ϕ(s)ϕ(r)drds

= ϕ(t)

∫ t

0

.
ϕ(τ)√
π(t−τ)

dτ −
∫ t

0

∫ t

0

M1(t−r, t−s) .
ϕ(s)

.
ϕ(r)drds (4.7)

4.2 An energy-dissipation relation for fractional derivatives

Here we show that the identity (4.7) can be derived in an independent way, not using the Dirichlet-to-
Neumann map for the one-dimensional diffusion equation. We even generalize the result to the case
of general fractional derivatives CDαϕ, where (4.7) is the special case α = 1/2. For this we set

Nα
0 (r, s) =

α

Γ(1−α) (r+s)1+α
and Nα

1 (r, s) =
1

Γ(1−α) (r+s)α
. (4.8)

With this, we obtain the following result.
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Proposition 4.2 For all ϕ ∈ C1([0,∞[) with ϕ(0) = 0 we have the identity

d

dt

∫ t

0

∫ t

0

1

2
Nα

0 (t−r, t−s)ϕ(s)ϕ(r)drds

= ϕ(t) CDαϕ(t)−
∫ t

0

∫ t

0

Nα
1 (t−r, t−s) .

ϕ(s)
.
ϕ(r)drds.

Proof. We set r = t−ρ and s = t−σ and obtain

d

dt

∫ t

0

∫ t

0

1

2
Nα

0 (t−r, t−s)ϕ(s)ϕ(r)dsdr =
d

dt

∫ t

0

∫ t

0

1

2
Nα

0 (ρ, σ)ϕ(t−σ)ϕ(t−ρ)dσdρ

1
=

∫ t

ρ=0

∫ t

σ=0

1

2
Nα

0 (ρ, σ)
(
ϕ(t−σ)

.
ϕ(t−ρ) +

(.
ϕ(t−σ)ϕ(t−ρ)

)
dσdρ.

2
=

∫ t

ρ=0

∫ t

σ=0

Nα
0 (ρ, σ)ϕ(t−σ)

.
ϕ(t−ρ)dσdρ.

Here
1
= uses ϕ(0) = 0 such that the boundary terms arising from d

dt

∫ t
0
g(τ)dτ = g(t) vanish. In

2
=

we simply use the symmetry Nα
0 (r, s) = Nα

0 (s, r).

In the next step we perform an integration by parts with respect to σ ∈ [0, t] and use the fundamental
relation Nα

0 (ρ, σ) = −∂σNα
1 (ρ, σ). Hence, we continue

=

∫ t

ρ=0

{[
−Nα

1 (ρ, σ)ϕ(t−σ)
]∣∣∣t

0
−
∫ t

0

(
−Nα

1 (ρ, σ)
)(
−.
ϕ(t−σ)

)
dσ
}.
ϕ(t−ρ)dσdρ

=

∫ t

ρ=0

Nα
1 (ρ, 0)ϕ(t)

.
ϕ(t−ρ)dσdρ−

∫ t

0

∫ t

0

Nα
1 (ρ, σ)

.
ϕ(t−σ)

.
ϕ(t−ρ)dσdρ,

where we again used ϕ(0)=0. The definition ofNα
1 givesNα

1 (t−τ, 0) = 1/
(
Γ(1−α)(t−τ)α

)
, such

that the first term is indeed equal to ϕ CDαϕ. With this, the result is established.

We emphasize that the above result does not need the exact form of Nα
0 and Nα

1 as given in (4.8).
We only exploited the relations

Nα
0 (r, s) = Nα

0 (s, r), Nα
0 (r, s) = −∂sNα

1 (r, s), Nα
1 (r, 0) = 1/

(
Γ(1−α) rα

)
.

Clearly, there are many more functions satisfying these conditions. However, we also want positive
semi-definiteness of the kernels Nα

j , i.e.,∫ t

0

∫ t

0

Nα
j (r, s)ψ(s)ψ(r)dsdr ≥ 0 for all ψ ∈ C0([0,∞[), t > 0, and j ∈ {0, 1}.

For general Nα
j this positive semi-definiteness is a significant restriction, but for our chosen cases it

can be established as follows:

0 ≤
∫ ∞
y=0

(∫ t

r=0

yα−1/2

rα
e−y

2/rψ(r)dr
)2

dy

=

∫ ∞
y=0

∫ t

r=0

∫ t

s=0

yα−1/2

rα
e−y

2/rψ(r)
yα−1/2

sα
e−y

2/sψ(s)dsdrdy

=

∫ t

r=0

∫ t

s=0

∫ ∞
y=0

y2α−1

(rs)α
e−y

2(r+s)/(rs) dy ψ(r)ψ(s)dsdr.
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Using
∫∞

0
|y|2α−1e−by

2
dy = Γ(α)/(2bα), we obtain the desired result

0 ≤
∫ t

r=0

∫ t

s=0

Γ(α)

(r+s)α
ψ(r)ψ(s)dsdr for all ψ ∈ C([0, t]),

which holds for all α ≥ 0.

4.3 Energetics for the fractionally-damped wave equation

To derive the physically relevant energy-dissipation balance for the the fractionally-damped wave equa-
tion

..
U(t, x) +

∫ t

0

..
U(s, x)√
π(t−s)

ds = ∆U(t, x) (4.9)

we use the limiting system (2.2). The latter is a classical system of partial differential equations, and it
is easy to write down the physically motivated energy functional E and the corresponding dissipation
function D.

The total energy E is the sum of the kinetic and potential energy in the membrane Σ plus the kinetic
energy in the lower half space Ω = Σ×]−∞, 0[, where we consider v as the horizontal component of
a shear flow. This leads to E0 as defined in (3.4), and along the solutions of (2.2) the energy-dissipation
balance takes the form

d

dt
E0(U(t),

.
U(t), v(t)) = −D(U,

.
U, v) :=

∫
Ω

1

2
(∂zv)2 dzdx.

This shows that the only dissipation occurs by the (shear) viscosity of the fluid in the lower half space
Ω.

As explained in Section 2.4 and 4.1 we can eliminate v via (using ϕ(t, x) =
.
U(t, x, 0) and assuming

v(0, x, z) = 0 of all (x, z) ∈ Ω)

v(t, x, z) =

∫ t

0

2∂zH(t−τ, z)
.
U(τ, x)dτ, where H(t, z) =

e−z
2/(4t)

√
4πt

.

This allows us to eliminate ∂zv(t, x, 0) via (4.4) and we obtain the fractionally-damped wave equation
(4.9).

Using the formulas derived in Proposition 4.1 we obtain the reduced energy function E and the re-
duced dissipation function D in the form

E(U(t), [
.
U ][0,t]) :=

∫
Σ

{1

2

.
U(t)2 +

1

2
|∇xU(t)|2

+

∫ t

0

∫ t

0

1

4
√
π (2t−r−s)3/2

.
U(r, x)

.
U(s, x)drds

}
dx, (4.10a)

D(U(t), [
.
U ][0,t]) :=

∫
Σ

{∫ t

0

∫ t

0

1√
π (2t−r−s)1/2

..
U(r, x)

..
U(s, x)drds

}
dx. (4.10b)

Clearly, along solutions of the fractionally-damped wave equation (4.9) we have the reduced energy-
dissipation balance

d

dt
E(U(t), [

.
U ][0,t]) = −D(U(t), [

.
U ][0,t]). (4.11)
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Of course, it is possible to check this identity directly without any reference to the limiting system (2.2)
involving the hidden state variable v. For this we do the standard argument for energy conservation
for the wave equation plus the calculation in the proof of Proposition 4.2 for the parts non-local in time.

In the related works [VeZ08, GY∗15, VeZ15] other energy functionals where constructed for equations
with fractional time derivatives. However, the approach there is quite different and is less inspired by
the true energy and dissipation hidden in the eliminated state variable v.

Indeed, we may generalize the energy-dissipation balance (4.11) to the case of fractional damping of
order 1+α ∈ ]1, 2[. We consider (4.9) as a special case of the equation

..
U + CDα

.
U = ∆U on Σ. (4.12)

Taking into account the calculations in Section 4.2 we define the energy Eα and the dissipation func-
tion Dα via

Eα(U(t), [
.
U ][0,t]) :=

∫
Σ

{1

2

.
U(t)2 +

1

2
|∇xU(t)|2 (4.13a)

+

∫ t

0

∫ t

0

α/2

Γ(1−α)(2t−r−s)1+α

.
U(r, x)

.
U(s, x)drds

}
dx,

Dα(U(t), [
.
U ][0,t]) :=

∫
Σ

{∫ t

0

∫ t

0

1

Γ(1−α)(2t−r−s)α
..
U(r, x)

..
U(s, x)drds

}
dx. (4.13b)

Clearly, for sufficiently smooth solutions of the fractionally-damped wave equation (4.12) we have the
reduced energy-dissipation balance

d

dt
Eα(U(t), [

.
U ][0,t]) = −Dα(U(t), [

.
U ][0,t]). (4.14)

5 Conclusion and outlook

In this work we have shown that the fractionally-damped wave equation can be obtained as a scaling
limit from a bulk-interface coupling between a wave equation for a membrane and a viscous fluid
motion in the adjacent half space. The coupling is such that the natural mechanical energies act as a
Lyapunov function. We have identified the physical scaling parameters like the equivalent membrane
thickness `thick = ρmemb/ρbulk for the vertical scaling and the effective travel length `trav(t∗) =

ρ
3/2
membκ

1/2/(µρbulk) for the horizontal scaling. Thus, taking the limit ε→ 0 in the critical parameter

ε =
`thick

`trav(t∗)
=

µ
√
ρmemb κ

leads to the appearance of the fractionally-damped wave equation.

The first main outcome of the mathematical analysis is that the system is stable uniformly with respect
to ε and that it converges strongly in the natural energy space H in the sense of linear semigroup
theory. For initial data with higher horizontal regularity a convergence rate could be derived. Thus, the
fractional time derivative of order 3/2 appears naturally as a consequence of the Dirichlet-to-Neumann
map of a one-dimensional parabolic equation on the half line.

The second outcome of our approach is the energy-dissipation structure for the fractionally-damped
wave equation which is derived by integrating out the “hidden states” v in the fluid layer in the full
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mechanical energy-dissipation structure of the coupled system of partial differential equations. As
expected, we obtain quadratic functionals for the reduced energy and the reduced dissipation function
that are non-local in time, thus keeping track of information stored in the hidden state variable v.
It is surprising that both quadratic functionals obtained have memory kernels Mj(t−r, t−s) that
depend only on the sum (t−r) + (t−s). It is certainly important to understand where this special
structure comes from and how it relates to more general energy-dissipation structures as introduced
in [VeZ08, GY∗15, VeZ15].

A major restriction occurs through our assumption v(0, x, z) = 0 for a.a. (x, z) ∈ Ω, which implies.
U(0, x) = 0. We expect that this assumption can be avoided by suitably generalizing the Caputo
derivative and by extending the memory kernel to negative time, thus allowing for some pre-initial
conditions. This will be the content of further research.

This work is understood as a first step to understand the principles behind damping based on fractional
time-derivatives. In subsequent works we plan to extend the analysis to a more physical model, namely
that of a true membrane over a viscous incompressible fluid governed by the Navier-Stokes equations.
The approach based on partial differential equations developed here, will then allow us to study the full
vector-valued case v(t, x, z) ∈ Rd including the associated nonlinearities. It will be interesting to see
under what conditions the relevant scalings in the nonlinear setting will be the same as in the linear
theory in [KS∗17a, KS∗17b]. Moreover, it will be critical to see the occurrence of fractional damping,
which relies on the linearity of the Dirichlet-to-Neumann map of the parabolic equation on the vertical
half line.
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