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ABSTRACT
Photos, drawings, figures, etc. supplement textual information in
various kinds of media, for example, in web news or scientific pub-
lications. In this respect, the intended effect of an image can be
quite different, e.g., providing additional information, focusing on
certain details of surrounding text, or simply being a general il-
lustration of a topic. As a consequence, the semantic correlation
between information of different modalities can vary noticeably,
too. Moreover, cross-modal interrelations are often hard to describe
in a precise way. The variety of possible interrelations of textual
and graphical information and the question, how they can be de-
scribed and automatically estimated have not been addressed yet
by previous work. In this paper, we present several contributions to
close this gap. First, we introduce two measures to describe cross-
modal interrelations: cross-modal mutual information (CMI) and
semantic correlation (SC). Second, a novel approach relying on deep
learning is suggested to estimate CMI and SC of textual and visual
information. Third, three diverse datasets are leveraged to learn an
appropriate deep neural network model for the demanding task.
The system has been evaluated on a challenging test set and the
experimental results demonstrate the feasibility of the approach.
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1 INTRODUCTION
“A picture is worth a thousand words.” This insight is often utilized
to enhance, for instance, textual information in documents, where
photos, graphics, diagrams are inserted to supplement textual in-
formation. But a bunch of other cross-modal interrelations exists.
For example, supplementing a video sequence with music, overlaid
speech, and/or overlaid text is very common. In the early stage
of (silent) movies, text inserts were used to complement visual
scene content with additional text information. Interestingly, in
the very early stage of film, text inserts (intertitles) were even used
to inform the audience about what will happen in the subsequent
shot. This, however, changed soon and intertitles were used in a
much more creative and complementary way1. Talks in lectures
or scientific presentations are complemented with slides2 which
themselves often consist of a mixture of textual, visual, and audio-
visual information. Also in the field of software engineering visual
representations are exploited, e.g., via specialized diagrams based
on the Unified Modeling Language, to describe and understand
complex software architectures. These examples hint at the power –
but also at the complexity – of combining two or more modalities to
convey information in a more appropriate or more understandable
way. In this respect, this paper focuses on describing and measuring
interrelations of textual and visual information, in short, image-text
relations.

In general, two or more different modalities can be used to con-
vey information in a better way. On the other hand, an additional
modality (or communication channel) does not always provide an
improvement by means of information gain. It can be observed that
complementary information is often added for aesthetic reasons
or as a visual anchor, e.g., in Web news. For example, textual and
visual information is often more related to one another in scientific
documents than it is in Web news (cp. Figure 1), we will get back to
that later. But how can we describe precisely which and how much
information is shared by a text and a related image? How can we
describe if the visual information emphasizes an aspect of the text
or vice versa, and how can we measure by which means textual
and visual information are used complementary?

In recent years, Natural Language Processing (NLP) and Com-
puter Vision (CV) have been employed and combined to tackle
interesting challenges that are somewhat related to these questions,
for instance, automatic image captioning or multimodal document
retrieval. Increasing computational power and deep learning have
1In fact, during the first Academy Awards ceremony in 1929, an Oscar was awarded
for Best Writing – Title Cards, but there was never again an award for intertitles.
2Though their usefulness might be questionable in some cases.
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(a) News articles are of-
ten loosely tied to their
co-occurring image.

(b) Encyclopedia articles are
typically mainly concerned
about the content of an
enclosed image.

Figure 1: Examples of image-text pairs with low (a)3 and
high (b)4 semantic correlation.

enabled impressive systems such as NeuralTalk2 [12] that gener-
ates image descriptions in real-time. However, the focus of these
approaches is to generate precise descriptions of the scene content
that is depicted in an image, whereas they do not aim at provid-
ing complementary information. Some approaches investigate the
interrelations of text and images, but they simply assume that an
image is always semantically related to its surrounding text [23, 27].
For the latter, it is easy to find examples showing that this is clearly
not true, for example, by simply exploring today’s online news in
the World Wide Web. On the other hand, automatic recognition
of image-text interrelations and correlations in terms of quantity
(how much information is shared) and quality (how much meaning
is shared) would open up new possibilities to address a variety
of interesting challenges and applications: For example, news re-
trieval can be optimized by selecting articles that include images
that show specific aspects for a topic or providing a diverse result
set, respectively.

In this paper, we present two main contributions that aim at
illuminating the gap between – as well as relations of – textual
and visual information5. First, two measures are introduced that
describe different aspects of image-text interrelations: Cross-modal
Mutual Information (CMI) and Semantic Correlation (SC). Cross-
modal Mutual Information captures the amount of information that
is shared, while Semantic Correlation measures how much meaning
is shared among text and image. In Section 3, it is explained and
derived why two complementary measures are required to describe
image-text relations. As a second main contribution, we present a
novel deep learning framework to automatically estimate image-
text interrelations by means of CMI and SC. This deep learning
framework consists of an autoencoder that exploits a multimodal
embedding in order to gather a compact representation of a multi-
modal document, i.e., a text (document) plus an image in our case.
The network uses the popular InceptionV3 [19] model to encode
images. The overall encoding architecture is based on the Neural
Image Caption Generator fromGoogle [20], which we have extended

3Source: https://en.wikinews.org/wiki/Turing_test_beaten_by_Russian_chatterbot
(Accessed: 2/3/17)
4Source: https://simple.wikipedia.org/wiki/Air (Accessed: 2/3/17)
5It is assumed that image and text are jointly placed on purpose.

by an hierarchical text encoding that enables the comprehension
of sentences as entities appearing in the context of a variable-sized
text. The compact multimodal embedding representation is finally
used to train a classifier in order to infer CMI as well as SC. Ex-
perimental results demonstrate the feasibility of the approach on a
challenging test set including Web news and Wikipedia pages.

The remainder of the paper is structured as follows. Related
work is presented in Section 2. Section 3 motivates, introduces and
explains in detail the two measures CMI and SC for describing
image-text relations. Subsequently, the deep learning architecture
for automatically estimating image-text relations is explained in
Section 4. The experimental results are presented in Section 5, while
Section 6 concludes the paper and outlines areas for future work.

2 RELATEDWORK
Many researchers have moved their focus onto tasks involving mul-
tiple modalities, especially for tasks laying on the edge of Natural
Language Processing and Computer Vision. One interesting idea is
to think of the syntax and semantics of images and texts, respec-
tively, being arranged in a hidden latent space, where both modal-
ities can be projected to a multimodal embedding space [7, 8, 11–
14, 20, 24].

The approach which proved to be most promising involves deep
neural networks to generate the embedding space. A more fine-
grained approach has been proposed by Karpathy and Li [12] and
Karpathy et al. [11]. They intentionally assimilate decompositions
of their representations (in addition to the full input) and ensure
that those match up in the embedding space as well.

Vinyals et al. [20] use a simpler approach, motivated by recent
advances in statistical machine translation [21]. They generate im-
age captions by transforming an image to a compact representation
(a fixed embedding) via deep CNNs (convolutional neural networks)
and then using an RNN (recurrent neural network), conditioned on
the image and all previously predicted words, to produce sentences.
Their system is trained in an end-to-end fashion, such that any
detail and context can be revealed by the hidden structure.

A general advantage of multimodal embeddings is that they
can be used in a number of applications, e.g., for image-sentence
retrieval tasks by using ranking algorithms or for text generation
by training a network above the embedding space. Ngiam et al. [16]
show that multimodal embeddings learned via autoencoders can
even enhance results on tasks that do not obviously incorporate
more than one modality.

Some approaches also consider the generation of more realistic
image captions, thus captions that do not state what is visually
obvious, and aim to build a bridge that connects an image with
its context. Ramisa et al. [18] report on various tasks on collected
news articles including caption generation. Also Feng and Lapata
[6] suggest an approach to generate context-aware captions on
another news corpora. However, current captioning results in this
field are poor, which may come from the loose relation between
an article text and its image. Beside caption generation, they also
propose a method to extract a sentence from the article text that can
serve as a legitimate image caption. But in general it is doubtable
that co-occurring text provides appropriate captions.
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There is a variety of other applications involving or leveraging
multiple modalities (e.g., question answering [22]). For instance,
Izadinia et al. [10] show that pure NLP tasks, i.e., paraphrase detec-
tion, can benefit from learning semantic correspondences of visual
similar scenes.

While a larger number of proposals is exploiting more than one
modality, only few works concentrate on a closer investigation
of the relation between co-occurring image-text pairs and how to
utilize this relation. Yanai and Barnard [25] are trying to estimate
the uncertainty of how an image region will be affected by a concept
using an entropy measure. Here, they directly want to estimate the
visualness of adjectives. For instance, the word dark is considered
to be more visual than the word religious, simply because there
is less variability in how an image region can be modified by an
associated concept such as dark compared to a concept, that does
not as easily reveal its influence (e.g., a religious image region might
still depict anything from churches to ancient vases).

There are also some attempts to model semantic correlation
between images and texts [23, 26, 27]. Xue et al. [23] propose an
approach to estimate semantic correlation by aligning the semantics
of visual and textual blobs (local image regions and words) . In
order to assign blobs to a document of another modality, they
have to make the assumption that co-occurring image-text pairs
do express the same semantics. This assumption allows them to
transfer a distribution of hidden topics learned among entities from
one modality to another one, such that, e.g., visual blobs can be
assigned to a textual document. In this case, the assumption is true
since they are utilizing an image tagging dataset, i.e., each image is
tagged with words that have a high semantic relevance with respect
to that image.

3 IMAGE-TEXT RELATIONS
As the analysis of related work reveals, different levels of semantic
image-text interrelations have not been investigated yet. In this
section, we provide an analysis of important aspects of image-text
interrelations and derive two measures to appropriately capture
their characteristics. In particular, we are interested in the question
in which way visual and textual data complement one another.
Humans are involved at both sides of the communication channel:
Humans intentionally add visual information to text (or vice versa)
in order to supplement additional (normally complementary) infor-
mation, and humans perceive and interpret such kind of bi-modal
information. Of course, the intended effect is not always achieved
and depends onmany aspects (e.g., knowledge of creator and viewer
etc.). Human knowledge about textual facts and depicted visual
content plays a vital role in this process of communication. Before
we introduce two measures to describe image-text interrelations,
we discuss some examples of image-text pairs that share different
kinds of information.

3.1 Examples for Image-Text Relations
The understanding of the image-text interrelations requires an
analysis of 1.) what can be expressed by either of those modalities
and 2.) how humans perceive and evaluate their co-occurrence.

Figure 2 shows the rare case, that a text and an image actually
have the same information content. If each entity of one modality

A gray circle with a diameter of 1cm.

Figure 2: Example of a text and an image that convey the
same information.

would have a corresponding entity in the othermodality that exactly
contains the same information, then one might claim either one
of the modalities is obsolete. However, it is easier for humans to
perceive attributes such as shape and color from an image, whereas
the exact size is easier to read from a text. In fact, human capabilities
of judging absolute measures of a visual object’s length, size, area
without any additional supporting information is rather limited.
Hence, a certain modality can make the same information more
difficult (or easier) to perceive. This leads to a natural usage where
the depicted information shall complement one another such that
each modality depicts partially unique information, that is easier
to read from compared to other modalities.

Moreover, some kind of information cannot be encoded in one
modality as succinctly and precisely as in another one. For instance,
the sentence

Ada Lovelace was born in 1815.

has no proper representation in an image without using text. An
image that aims to convey the same information would necessarily
express a lot of redundant additional information, such as events
unique to the year 1815. The same applies for the reverse direction.
There is neither a text that precisely describes the shape of a certain
maple leaf nor its texture. Both observations lead to the conclusion
that each modality plays an essential role to convey certain kinds of
information by either addressing strengths or avoiding weaknesses
of human visual perception.

Interrelations of images and texts can be understood as the align-
ment of concepts. Again, we consider an example:

A family of four is sitting at a table having a warm meal.
They are all talking vividly about their day.

The sentence equally fits to the images in Figure 3a and 3c, re-
spectively. But when relating the sentence to Figure 3b, where the
family is expressing a sad mood, this is intuitively perceived as a
contradiction (or in other words: a negative correlation). The con-
tradiction of concepts is that a sad mood normally is not aligned
with a vivid conversation as we know from our own experience.
However, the reason for human intuition when judging the in-
terrelation of such co-occurrences is often not obvious nor easily
expressible. More precisely, the alignments that define the inter-
relation are hidden. To some extent, this is similar to the problem
of paraphrase detection, where humans are easily able to judge
whether sentences express the same meaning but struggle to de-
liver a sensible and consistent reasoning for that claim in terms
of syntactic and semantic justifications. While the annotation in
the case of paraphrase detection is clear, it is not obvious how to
quantify or rate the relation of image-text pairs as they usually do
not represent the same meaning as outlined above. Moreover, they
complement one another such that a good annotation would take
into account the rationale or purpose of their co-occurrence.
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(a) Happy facial expressions. (b) Sad facial expressions.

(c) Color of plates has
changed.

Figure 3: The images (b) and (c) only differ in a certain con-
cept from the image (a). The effect of the modification de-
pends on the textual context.

3.2 Measures for Image-Text Relations
Three major goals are associated with the proposed measures for
describing image-text relations. First, the measures should be easily
explainable to humans, in particular for annotation and retrieval
processes. Second, the descriptions, i.e., labels, for a given image-
text pair should be easily inferable and disagreements between an-
notators should be avoided as far as possible. Third, the descriptions
should be expressive, i.e., revealing distinguishable and high-quality
relations. This goal enlarges the pool of possible future applications.

Judging several distinct aspects of complex inter-modal rela-
tions is easier than estimating a single score or classifying them
into certain categories. This claim assumes that a one-dimensional
categorization that meets the previously stated goals is not easily in-
ferable. Therefore, we suggest to judge inter-modal relations based
on two measurements, namely Cross-modal Mutual Information and
Semantic Correlation.

Cross-modalMutual Information (CMI) focuses solely on the
mutual presence of concepts. Note, that the outlined measurement
of Cross-modal Mutual Information is not equivalent to the term
of mutual information in information theory. In order to better
phrase its purpose, we take over the idea of visualness of concepts
introduced in [2, 25] as explained in Section 2. Image captioning
samples are a prominent example for high CMI for two reasons.
First, the text exclusively focuses on the image content6, thus only
a few concepts are depicted solely in the image. Second, the shared
concepts are highly visual, meaning that they have clearly defined
representations in both modalities. On the other hand, image-text
pairs occurring in news articles are usually characterized by a rather
loose intersection in terms of information content. For instance, an
article about austerity politics associated with an image depicting
a piggy bank shares only one concept “saving money”. Hence, the
amount of shared concepts is low, but also the visualness of the con-
cept is low. A concept that has low visualness (e.g., “spring”, “saving
money”, “religious”) tolerates an immense variety among possible

6This would also allow us to view the CMI relation of captioning samples as an
inclusion, since the text does not express concepts that are not covered by the image.

visual representations. The detection of concepts with low visu-
alness is particularly difficult as it requires extensive background
knowledge. However, visualness alone is not a sufficient measure to
judge the salience of a concept. Even highly visual concepts might
represent negligible details depending on the context. Hence, the
annotator has to estimate the amount of shared concepts as well as
their influence and importance.

Cross-modal Mutual Information solely does not sufficiently de-
scribe inter-modal relations. Irrespective of the amount of shared
concepts, the appearance of only one pair of contradicting concepts
might lead to an unfitting or disturbing image-text relation. There-
fore, we propose a second measure called Semantic Correlation,
which aims to reveal how much meaning a text and an image share.
This measure aims to mimic human intuition with respect to the so-
phisticated ability to detect matching pairs by considering context
and regardless of the amount of shared information. A negative
score shall indicate that the co-occurrence of an image and a text
disturbs the comprehension of the depicted information, whereas a
positive score eases the transfer of knowledge. The measure can
be illustrated as follows. If two entities do not have any concepts
in common, they are considered as unrelated (no correlation). If
concepts appear that contradict one another, the correlation shall
be estimated as negative. Depending on the relevance of the con-
tradicting concepts, the negative correlation might be low or high.
For instance, a color might be wrongly stated in the text. If this
incorrectly referred object does only play a minor/negligible role
compared to the overall content, the comprehension task is only
insignificantly perturbed and even positive correlation can be as-
signed. We suggest to use an interval of [0,1] for CMI and [-1, 1]
for SC, respectively, and refer to the description of our annotation
process in Section 4.4.

4 ESTIMATING IMAGE-TEXT RELATIONS
In this section, we describe in detail the proposed deep learning
framework for automatically estimating image-text interrelations.
The framework consists of two main components, an autoencoder
and a classifier.

The overall goal of this work is to develop a system that mimics
human intuition when judging the interrelation of co-occurring
images and texts. Therefore, it is essential that the system is able to
comprehend individual modalities and to correctly evaluate their
coexistence. Our main incentive is that humans use and compre-
hend several modalities to convey information that complements
one another. This insight has been already stated by others (e.g.,
[1]), but it has been weakly addressed by related work as outlined
in Section 2. There are two reasons for that. First, it is very difficult
to model human intuition that includes visual perception as well
as complex cognitive processes. Second, immense computational
power is necessary to process a sufficient amount of data to learn
appropriate models to achieve at least a basic understanding of the
world, which is necessary when considering multimodal documents
from unconstrained domains.

The human learning process is twofold: supervised and unsuper-
vised. We are observing the world and draw our own conclusions,
but we get also directed and corrected by the people surrounding us.
For instance, if we observe elephants, we are capable of extracting
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prominent features (shape, trunk, skin color, etc.) and generalize
all elephants into a single concept without supervision. However,
someone has to tell us that these mammals are called “elephants”.
Hence, the overwhelming majority – but also the apparently more
complicated – part of the learning task is done fully unsupervised.
Nonetheless, this insight is encouraging since it allows us to train
a complex system with just a small fraction of supervised training
data or intervention, respectively. Still, annotated training data is
necessary to direct the learning process such that the semantic
outcome is aligned with our understanding of the world.

4.1 The Autoencoder Network Structure
As it has been highlighted during the description of our measure-
ments (CMI and SC), extensive knowledge about the world is re-
quired to quantify the co-occurrence of images and texts. More
precisely, concepts have to be generalized within and across modal-
ities. For instance, synonyms and paraphrases in sentences and
texts, respectively, have to be identified as well as objects and ac-
tions in images. The generalized concepts within modalities have
to be mapped to a multimodal representation.

A supervised scheme would require an infeasible amount of
annotated data – representing as many constellations of image-
text relations as possible – to accomplish this goal. Therefore, we
propose to learn this ability via an unsupervised learning scheme.
One obvious proper realization of this learning scheme would be
through GANs (generative adversarial networks) [9], as they are
uniquely capable of learning the semantics rather than the syntax
of the input space. For instance, Radford et al. [17] have shown that
GANs allow vector arithmetics on images similar to word embed-
dings. However, since we intend to directly learn feature vectors,
we decided to use an autoencoder architecture instead. The encoder
network compresses the input to a low-dimensional representation
that contains less redundant information. Subsequently, a decoder
network decompresses this intermediate representation back to the
original input encoding. The intermediate representation can be
considered as a feature vector that describes the complete input in
a vector space of lower dimension. To achieve this, the encoder has
to generalize concepts (e.g. objects, shapes, or poses in images) that
are available in the input data.

As a point of departure, we use the implementation of Vinyals
et al. [20] to build our ownmodel. Figure 4a depicts the autoencoder.
Image-text pairs are mapped to an intermediate feature represen-
tation, called article embedding ae . The decoding network tries to
restore the initial input from this embedding ae . To encode images,
we leverage InceptionV3 [19] followed by a fully-connected layer
(FC) to generate a final image embedding. All FC and LSTM (long
short-term memory) layers in our networks use dropout for reg-
ularization. Texts are embedded in a hierarchical LSTM network
that considers a sentence as a sequence of words and a text as a
sequence of sentences. To generate a proper initialization of word
embeddings, aWord2Vec model [15] has been trained prior to the
autoencoder training. The network can basically adjust to dynam-
ically sized sentences and text, respectively (although sentences
are constrained by a maximum length). The hierarchical structure
enables a more natural way of text processing since it allows us
to consider sentences as self-contained entities. Furthermore, it is

(a) The autoencoder encodes an image-text pair into a compact rep-
resentation. Subsequently, a decoder network tries to restore the
original image-text pair.

(b) The classifier uses the encoding architecture from the autoen-
coder to map an input pair to a multimodal embedding. A multi-
class classifier on top of that embedding quantifies the image-text
relation.

Figure 4: The simplified architectures of the autoencoder (a)
and classifier (b).

doubtable that a single LSTM layer can process a text as a plain
sequence of tokens, as it is more difficult to maintain long-term de-
pendencies if the input sequence becomes too long. The last output
that is generated by an LSTM layer for a given input sequence is
considered as a sentence or text embedding, respectively. To gen-
erate the text embedding, the first input to the LSTM layer is the
image embedding in order to emulate a natural article processing
(reading the text under consideration of the enclosed image). After
the whole text has been processed, the image is reconsidered due
to a further FC layer, that produces the final article embedding ae .

Ideally, ae can be decompressed by the decoder network with-
out loss of information compared to the original input. The basic
architecture of the decoder network is depicted on the right side of
Figure 4a. The decoder is split into two networks that receive ae as
input.

The upper part of the decoding network represents the image
decoding. The image decoder computes a thumbnail via a fully-
connected layer to extract visual information from ae . This thumb-
nail is then gradually up-sampled and refined through a series
of CNN layers until the size of the input image is reached. More
precisely, the network consists of three up-sample layers, each fol-
lowed by a convolutional layer. The up-sample layers use nearest
neighbor interpolation to increase the input size. The consecutive
CNN layers are using 32, 8, and 3 feature maps, respectively. A
squared-error loss evaluates the prediction compared to the input
image.

The lower part of the decoding network depicts the text decoder.
The text decoding architecture is reverse to the text encoding archi-
tecture. An LSTM layer generates a sequence of predicted sentence

Oral Session 1: Vision and Language (Oral Presentation) ICMR’17, June 6–9, 2017, Bucharest, Romania

18



ICMR ’17, , June 6–9, 2017, Bucharest, Romania Christian Henning⋄ and Ralph Ewerth⋄,⋆

embeddings. Therefore, at each time step it takes the article em-
bedding ae as input in addition to its previous state. Analogously,
predicted sentence embeddings are decoded into tokens. The text
decoding network does not allow dynamically sized predictions.
The same restriction applies for the number of tokens in predicted
sentences.

To estimate the quality of the predicted token embeddings, they
have to be retranslated to words of the vocabulary. This is done by
computing the cosine similarity between the predicted word em-
bedding and all embeddings of words in the vocabulary. A softmax
layer followed by a cross-entropy loss is used to compare the token
predictions with the input text.

4.2 The Classifier Network Structure
The classifier combines the already accomplished achievements.
Therefore, annotated samples are mapped to a feature represen-
tation via an encoder network, which has been learned by the
autoencoder. Subsequently, a classifier network (left-hand side of
Figure 4b) tries to infer CMI and SC labels for the sample. Recall,
that the feature representation ideally contains all the information
comprised by the input entities, as the features were trained with
the ability to restore this input from them. Hence, the feature rep-
resentation can be viewed as machine-readable representation of
the sample, that hopefully allows an elementary concept matching
even for non-visual concepts.

The encoding network is initialized via a pre-trained autoen-
coder model. In the best case, the encoder network does not require
further weight modifications. Remember, that we justify a small
annotated dataset with the unsupervised learning of strong fea-
ture representations. So, the supervised process is only needed to
learn the relatively small classifier network on top of a complex
encoder network. The encoded sample ae is processed by a series of
two fully-connected layers, that shall reveal the hidden alignments
between textual and visual concepts. Subsequently, two separate
fully-connected units are computing the final MI and SC predic-
tion, respectively. As an alternative, we will also evaluate a SVM
(Support Vector Machine) implementation [4] for classification.

4.3 Datasets
To meet the claims with respect to comprehending complex inter-
modal relations and to appropriately train the autoencoder and
classifier, a diverse training database is needed. This database should
sufficiently encode knowledge about the world, represent natural
co-occurrences and enable the understanding of the semantics of
images and text. For this purpose, we have leveraged three different
datasets.

The first dataset shall enable the system to learn a translation of
salient information from one modality to another. Therefore, the
image captioning dataset MS COCO [3] is used, since such a dataset
uniquely represents alignments of highly visual concepts between
both modalities. The BBC news article set from [5] is used as an
example corpus of particularly complicated image-text relations,
since their content is typically loosely correlated and the meaning
of their co-occurrence usually hard to infer. In most cases, there
are neither direct references in the text to the image content nor is
their semantic correlation easily inferable. Even humans do often

need the provided caption to understand why the image fits to its
article.

In addition, a dataset of encyclopedia articles is included in order
to incorporate knowledge about the world. An online-encyclopedia
such as Wikipedia is a powerful knowledge base that at the same
time is structured and sufficiently trustworthy. Wikipedia contains
general knowledge about the world and its entities, but also spe-
cialized knowledge about individuals, historic as well as recent
events, or even proprietary products. However, many articles are
not or at least difficult to understand for someone who is outside
the subject area. Therefore, we have decided to use Simple English
Wikipedia7 (SimpleWiki) instead of the more extensive but also
more complex English Wikipedia. SimpleWiki is the same as the
normal Wikipedia, except that it aims to convey complex matters
with simple textual descriptions. Such an encyclopedia dataset is
necessary, since the understanding of relations between different
modalities often requires background knowledge. We have created
an encyclopedia dataset, that we call SimpleWiki dataset, by down-
loading articles from SimpleWiki and generating image-text pairs.
We allow all occurring image types, such as photos, charts, maps,
and drawings. An image is either matched with the text of its en-
closed section or with the text of the full article in case when the
image is associated with the summary. Currently, our SimpleWiki
dataset consists of 2, 999 image-text pairs.

4.4 The Annotation Process
Annotations have been gathered for subsets of all three datasets
described in section 4.3. Although we basically allow real-valued
data for both measures, we have simplified the annotation process
and used only five different levels for each. The distribution of
labels is shown in Table 1 and 2). In addition to judging Cross-modal
Mutual Information and Semantic Correlation, text snippets were
marked that can be considered as specifically relevant given the
current image and to select the image type of the depicted image
(e.g., photograph, map, chart, etc.).

In total, 761 annotations have been generated for the BBC News
(205) and SimpleWiki (556) dataset by one of the authors. We have
defined detailed label descriptions and examples in order to pre-
cisely judge the intermodal relation in the desired and a repro-
ducible manner. The exact distribution of image types among those
datasets shows that our overall dataset is still biased towards pho-
tos, because 71% of the SimpleWiki and 97% of the news samples
are photos. In future work, this imbalance may be addressed by
incorporating scientific articles into the dataset.

Since the MS COCO dataset has a homogeneous image-text-
relation type by means of our measures, we have assigned high
CMI and SC values to the 100 samples taken from this dataset. This
step has been undertaken to reduce a strong label imbalance among
CMI labels, since in natural image-text co-occurrences the text
normally does not state obvious visual facts. To prevent the system
from overfitting by learning the length of the text (an image caption
is always a single sentence), we have concatenated a random subset
of all 5 provided reference captions to generate an image-text pair.

7https://simple.wikipedia.org
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Label 0 0.25 0.5 0.75 1.0
Meaning T ∩ I = ∅ T ∩ I , ∅

# Samples 44 157 466 52 107
Table 1: Distribution of CMI labels in the newly annotated
dataset.

Label -1.0 -0.5 0.0 0.5 1.0
# Samples 7 31 109 138 541

Table 2: Distribution of SC labels in the newly annotated
dataset.

The final distributions of Cross-modal Mutual Information and
Semantic Correlation labels are shown in Table 1 and Table 2, respec-
tively. As stated in the previous section, most image-text pairs share
concepts of both types, abstract (e.g., spring) or highly visual. This
is the reason why there are more sublevels between 0 and 1 for CMI.
In the annotation process, the amount of shared concepts has to be
rated from label 0 (no intersection) to label 1 (large intersection)
based on definitions for each case. Some samples have been marked
as invalid, because the automatic retrieval of SimpleWiki samples
has led to meaningless text extractions in rare cases. Altogether, 826
pairs have been sampled to generate a dataset for the classification
scenario.

However, our initial claim, that the semantic correlation of co-
occurring image-text pairs is not necessarily high, has been verified.
News articles in our dataset have an average Semantic Correlation
of 0.15, whereas SimpleWiki articles have an average SC of 0.88.

5 EXPERIMENTAL RESULTS
In this section, experimental results are presented for the proposed
approach relying on a deep learning architecture to judge image-
text relations. All experiments have been conducted using the sys-
tem explained in Section 4, the dataset described in Section 4.3, and
the annotated subset explained in Section 4.4, respectively.

5.1 Experimental Setup
Autoencoder (AE) and classifier (CL) are using stochastic gradient
descent (SGD) with mini-batches and an initial learning rate of 0.1.
The learning rate is halved every time a complete sweep through
the training set has been accomplished. A mini batch consists of 16
image-text pairs. Note, that all samples within a batch are padded
to have the same size as the largest sample. To further reduce this
maximum size, texts have been truncated during preprocessing.
We have found out that a maximum text size of 50 sentences and
a maximum sentence length of 40 tokens yielded a manageable
memory utilization per batch. This restriction does not severely
distort the sample texts since only a few samples are affected by
this measure.

In order to be included in the vocabulary, a word has to appear
at least 10 times in the AE training set. Furthermore, a dictionary
has been used to translate words from British English to American
English for all samples taken from the BBC News Database. In this

Figure 5: Example input-output image pairs of the trained
autoencoder. These are randomly chosen unseen samples,
i.e., they have not been seen during training.

way, the vocabulary could be reduced from its original size of 59, 349
tokens to a final size of 12, 591.

The complete AE dataset is decomposed into three parts. 202, 654
samples have been generated from the MS COCO validation set
(all image-caption pairs). In addition, all 3, 361 image-text pairs
from the BBC News Corpora and 2, 999 image-text pairs from the
SimpleWiki dataset have been included. From this randomly shuf-
fled corpus, samples have been selected to generate a disjoint split
of 190, 202 training and 6, 270 validation samples8. The image en-
coding network has been initialized with weights of a pre-trained
InceptionV3 model. Initial word embedding estimates have been
taken from a Word2Vec implementation that was trained among
the whole text contained in the dataset.

As outlined in Section 4.4, the CL dataset consists of 826 samples.
The dataset has been divided in a training set consisting of 734
samples and a test set consisting of 92 samples. The CL encoding
network has been initialized with the weights learned during AE
training. Both systems use 300-dimensional word embeddings, 600-
dimensional sentence and image embeddings, as well as 2400-dimen-
sional article embeddings. Input images are scaled to size 300× 300.

5.2 Performance of the Autoencoder
The capabilities of the AE are depicted in Figure 5. To make a quali-
tative statement about its performance, we measure the perplexity.
During training, the image perplexity has decreased by 16.6% and
the text perplexity by 5.5%, respectively.

As it can be seen, the AE is capable to store the global image
contours in the extremely dense intermediate image embedding.

8The remaining samples are allocated for future usage.
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Experiment Accuracy CMI Accuracy SC

CL 0.6953 0.7344

Eno AECL 0.5625 0.6562

EAESVM 0.6875 0.7125

EMF
RAND 0.5642 0.6550

Table 3: The overall accuracy of predicting the correct CMI
and SC labels that has been achieved in our experiments.
The first row contains the results of the trained CL model.

Small architectural improvements may be sufficient to represent the
salient semantics, such that the decoded image can be interpreted
without the need of knowing the original input.

However, the text encoding has not been as successful yet. This
may be due to the careful engineering of the utilized InceptionV3
model which has no counterpart in the text decoding network. Yet,
it can be assumed that the AE architecture is suited for feature
learning and especially for conceptualization.

5.3 Performance of the Classifier
The encoder network of the CL has been initialized with the AE
weights from the previous section. The article embeddings gener-
ated with the AE encoder do not fully contain the salient semantics
yet. Therefore, the encoder network for article embeddings and
the classifying network (Figure 4b) have been trained jointly in the
supervised learning process. To minimize the risk of overfitting in
this setting, we omitted one intermediate FC layer of the classifying
network in Figure 4b. Furthermore, we stated the prediction of CMI
and SC as multiclass problems using a cross-entropy loss.

In addition, the following systems have been setup as reference
baselines for comparison:

• Eno AECL : The trained classifier CL is used, but with randomly
initialized weights in the encoder network, i.e., pre-trained
AE is not used.

• EAESVM: A multiclass SVM [4], trained with the feature vec-
tors of article embeddings ae that have been generated by
the trained AE model from Section 5.29.

• EMF
RAND: A random baseline, i.e., a “classifier” that simply

outputs the most frequent label.
The accuracy achieved in all the previously described experi-

ments is depicted in Table 3. The experimental results show that
the deep learning architecture is basically able to predict image-text
relations by means of CMI and SC. In both cases, the deep learning
system outperforms the SVM approach. The results also reveal that
the proposed pipeline consisting of an unsupervised pre-training
and supervised refinement is necessary. Without the initialization
of pre-trained weights, the classifier does not even outperform the
random baseline.

6 CONCLUSIONS
In this paper, we have presented a novel approach to estimate the
relations of co-occurring image-text pairs. Based on an analysis by

9A suitable value for weight-decay has been found via grid search.

which means interrelations can differ, we have derived two mea-
sures to describe image-text relations: Cross-modal Mutual Infor-
mation and Semantic Correlation. Furthermore, we have proposed
a deep learning architecture that consists of both an unsupervised
as well as a supervised learning component. The purpose of the
unsupervised autoencoder is to achieve a compact representation
of multimodal image-text relations while at the same time minimiz-
ing the supervision efforts, i.e., reducing the number of required
training samples. A deep neural classifier was trained using the
autoencoder representation. In addition, we constructed several
baseline systems to highlight the strengths of the designed sys-
tem. The baseline systems have been consistently outperformed
by the proposed deep learning system. Moreover, we highlighted
the necessity of the full learning pipeline, consisting of unsuper-
vised concept clustering and supervised concept-relation learning.
Hence, the feasibility of the proposed deep learning system has
been demonstrated for the challenging task of estimating image-
text relations.

In future work, we are planning to improve the intermediate
autoencoder representation by using a more sophisticated network
structure. An expressive article embedding may enable an alter-
native fully unsupervised approach that involves an estimate of
the pointwise mutual information of two entities. Since probabil-
ity estimates drawn from the initial modality representations are
presumably not expressive enough, they can be computed from the
feature distribution in article embeddings. Hopefully, this approach
will resolve currently existing shortcomings due to insufficient size
of annotated training data. Finally, we will improve the annotation
process by employing a group of annotators and investigating in
detail the level of subjective judgments by means of inter-coder
agreement.
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