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Abstrat. Optimal a posteriori error estimates in L∞(0, T ; L2(Ω)) are derived for the �niteelement approximation of Allen-Cahn equations. The estimates depend on the inverse of asmall parameter only in a low order polynomial and are valid past topologial hanges of theevolving interfae. The error analysis employs an ellipti reonstrution of the approximatesolution and applies to a large lass of onforming, nononforming, mixed, and disontinuousGalerkin methods. Numerial experiments illustrate the theoretial results.1. IntrodutionIn this paper, we derive optimal a posteriori error estimates in L∞(0, T ;L2(Ω)) for the �niteelement approximation of the Allen-Cahn problem
∂tu − ∆u + ε−2f(u) = 0 in (0, T ) × Ω,

∂nu = 0 on (0, T ) × ∂Ω,

u(0, ·) = u0,

(1)with T > 0, Ω ⊆ R
d, d = 2, 3, u0 ∈ L2(Ω), f(u) = u3 − u, and 0 < ε ≪ 1. Our ultimate goalis to prove estimates that are robust in the small parameter ε past generi singularities in theevolution desribed by (1).The mathematial model (1) is the simplest version of a phase �eld model and was introduedin [AC79℄ to model the motion of phase boundaries by surfae tension. The interfae Γt :=

{x ∈ Ω : u(x, t) = 0} separates regions in whih u(t, ·) ≈ +1 from those in whih u(t, ·) ≈ −1.As ε → 0, the evolution of the interfae approahes the motion of a hypersurfae governedby Brakke's mean urvature �ow [Bra78, Ilm93℄. An important feature of the di�use interfaemodel (1) is that topologial hanges in Γt are aptured whereas sharp interfae models typiallyrequire arti�ial adaptations to model suh e�ets.A straightforward error analysis for the numerial approximation of (1) leads to an exponentialdependene of error estimates on ε−1. The �rst suessful attempt to establish robust a priorierror estimates, i.e., error estimates that depend on ε−1 only in a polynomial, for the approx-imation of Allen-Cahn equations is due to [FP03℄. Those results are based on uniform boundsfor the prinipal eigenvalue of the linearized Allen-Cahn operator about the exat solution, i.e.,for the quantity
−λAC(t) := inf

v∈H1(Ω)\{0}

‖∇v‖2 + (f ′(u(t))v, v)

‖v‖2
,where (·, ·) and ‖ · ‖ denote the inner produt and the norm in L2(Ω), respetively. Suhbounds are available as long as (1) desribes the smooth evolution of a developed interfae Γt,f. [AF93, Che94, dMS95℄. The ideas of [FP03℄ have been arried over to an a posteriori erroranalysis in [KNS04, FW05℄ employing a ontinuation argument. Instead of using a priori boundsfor λAC(t) to derive a posteriori error estimates, it has been proposed in [Bar05℄ to extrat therelevant information about the stability of the evolution from the approximate solution U byonsidering the prinipal eigenvalue of the linearized Allen-Cahn operator about U(t), i.e.,

−ΛAC(t) := inf
v∈H1(Ω)\{0}

‖∇v‖2 + (f ′(U(t))v, v)

‖v‖2
.This still allows to rigorously derive a posteriori error estimates and establishes a mehanism todetet ritial times at whih uniform bounds for λAC and its approximation ΛAC break down.In the reent paper [BMO09b℄ it has been shown that the weaker bound

∫ T

0
Λ+

AC(t) dt ≤ C0 + log(ε−κ)1



is su�ient for a robust a posteriori error analysis and that this bound is realisti for generitopologial hanges of Allen-Cahn evolutions. Spei�ally, the omputable left-hand side of theestimate enters the error estimates of [BMO09b℄ exponentially and hene no bounds are requireda priori.The estimates of [BMO09b℄ hold provided that the omputable upper bound ηL2(H1) for theerror in L2(0, T ;H1(Ω)) satis�es
ηL2(H1) ≤ Cε4+3κwhih imposes restritive onditions on disretizations sine we only expet ηL2(H1) ∼ ε−5/2(τ +

h) for an impliit sheme with temporal and spatial step sizes τ and h, respetively. Thequantity ηL2(H1) also ontrols the error in the weaker norm of L∞(0, T ;L2(Ω)) but this bound issuboptimal sine the optimal onvergene rate is τ +h2 for the error measured in this norm. Byestablishing optimal estimates for the error in L∞(0, T ;L2(Ω)) we expet to obtain a posteriorierror estimates that are valid under less restritive onditions on the orresponding omputableestimator ηL∞(L2).Optimal a posteriori error estimates in L∞(0, T ;L2(Ω)) for paraboli problems have been de-rived under ertain onditions on triangulations in [EJ95a, EJ95b℄ using duality arguments. Adi�erent approah to the derivation of suh estimates by energy tehniques has been proposedand analyzed for semidisrete shemes in [MN03℄ and investigated for fully disrete shemesin [LM06, GL08℄. The approah onsists in onstruting at eah time step tj a funtion wjsuh that the approximate solution U j of the linear paraboli problem at time tj is the Galerkinapproximation to an ellipti problem whose exat solution is wj . This onept is alled ellip-ti reonstrution and allows to derive a posteriori error estimates for paraboli problems byreduing a large part of the analysis to known a posteriori error estimates for ellipti prob-lems. Ellipti reonstrution may be regarded as the a posteriori analogue of ellipti projetionwhih has been used to derive optimal a priori error estimates in L∞(0, T ;L2(Ω)) for paraboliequations in [Whe73℄.We ombine the method of ellipti reonstrution of [MN03, LM06℄ with tehniques reently de-veloped in [BMO09b℄ to derive robust and optimal a posteriori error estimates in L∞(0, T ;L2(Ω))for the numerial approximation of the nonlinear paraboli partial di�erential equation (1). Let
(U j)j=0,1,...,J ⊂ L2(Ω) denote a sequene of approximations to the exat solution of (1) obtainedwith the impliit Euler sheme in time and some �nite element method in spae, i.e., for given
U j−1 ∈ V

j−1
h the funtion U j ∈ V

j
h satis�es(2) τ−1

j (U j − U j−1, V ) + aj
h(U j , V ) = −ε−2(f(U j), V )for all V ∈ V

j
h. Here, τj is a time-step size, V

j
h an approximation spae, and aj

h a bilinearform on V
j
h that approximates the Laplae operator. We let U ∈ H1(0, T ;L2(Ω)) denote thefuntion that is obtained by pieewise a�ne interpolation of the approximations (U j)j=0,1,...,Jsubordinate to the partition of the time interval (0, T ) de�ned by the time steps (τj)j=1,2,...,J .Under moderate onsisteny and ompatibility onditions on the bilinear forms aj

h, f. (7) andAssumption (COMP) below, that allow onforming, nononforming, mixed, and disontinuous2



Galerkin methods, we establish the omputable error bound
sup

s∈(0,T )
‖(u − U)(s)‖ ≤ max

j=0,1,...,J
EL2(U j ; Vj

h)

+ 8
{ J∑

j=0

τj

(
τj‖dt∆

j
hU j‖ + τjε

−2Cf ′,Ij
‖dtU

j‖ + EL2(dtU
j; V̂j

h) + ε−2Cf ′,Ij
max

k=j−1,j
EL2(Uk; Vk

h)
)

+ ε−1
( J∑

j=0

τjCCℓ

(
τ−2
j ‖hj(U

j−1 − P j
hU j−1)‖2 + ε−4‖hj(f(U j) − P j

hf(U j))‖2
))1/2

+ ‖u0 − U0‖ + EL2(U0; V0
h)

}
exp

(
4

J∑

j=0

τj

(
(1 − ε2)Λ

j
AC + 1 + ε−2ηj

f ′

)+
)
,whih holds provided that the terms inside the urly brakets, denoted ηL∞(L2), and the expo-nential fator, denoted E, satisfy(3) ηL∞(L2) ≤

ε4

(4µgCS(1 + T ))2
(4E)−3 ≤ Cε4+3κThe symbol dt denotes the bakward di�erene operator, −∆j

h is a disrete version of the Laplaeoperator de�ned by aj
h, hj is a positive meshsize funtion, P j

h is the L2 projetion onto V
j
h,

Cf ′,Ij
, ηj

f ′ , and µg are omputable quantities related to the nonlinearity f , and Λ
j
AC standsfor a omputable upper bound for ΛAC(tj). We refer the reader to the subsequent setionsfor further details. It is important to notie the linear aumulation of error estimators forspae and time disretization residuals in the �rst sum inside the urly brakets on the right-hand side of our error estimate. To evaluate the upper bound it is not neessary to ompute

∆j
hU j expliitly sine this term is known from (2). Moreover, the omputation of the nonloaloperator P j

h an be avoided if the sheme (2) and the error estimate are slightly modi�ed byinorporating appropriate loal mesh transfer operators, f. Remark 4.4 below. For lowest orderonforming methods based on regular triangulations T j
h of Ω that de�ne the spaes V

j
h theestimator EL2(U j ; Vj

h) is, up to generi onstants, given by
EL2(U j ; Vj

h) =
∥∥h2

j

(
τ−1
j (U j − P j

hU j−1) + ε−2P j
hf(U j)

)∥∥ +
∥∥h

3/2
j

[
∇U j · n

Fj
h

]∥∥
L2(∪Fj

h)
,where we use standard notation for the jumps aross element sides ontained in F j

h, f. Re-mark 4.1 below. Analogously, the estimator EL2(dtU
j ; V

j−1/2
h ) is given by

EL2(dtU
j; V̂j

h) =
∥∥ĥ2

jdt

(
τ−1
j (U j − P j

hU j−1) + ε−2P j
hf(U j)

)∥∥ +
∥∥ĥ

3/2
j

[
∇dtU

j · n bFj
h

]∥∥
L2(∪ bFj

h)
,where the triangulation T̂ j

h de�nes V̂
j
h and is the �nest ommon oarsening of T j

h and T j−1
h .A similar estimator is needed to obtain pointwise ontrol over ertain residuals related to thenonlinearities in the error equation.We expet that ηL∞(L2) ∼ ε−7/2(τ +h2) and therefore, we obtain a signi�antly weaker onditionfor the validity of the error estimate than the one in [BMO09b℄. For smooth evolutions ofdeveloped interfaes we dedue E ∼ 1 from [Che94, dMS95℄ while for evolutions that undergotopologial hanges we observe E ∼ ε−κ with a small number κ, f. [BMO09b℄. In partiular, Edoes not grow exponentially in ε−1.As a byprodut we obtain an error estimate in the seminorm of L2(0, T ;H1(Ω)) that holds undera signi�antly weaker ondition than the one stated in [BMO09b℄, namely, if (3) holds then we3



have for a lowest order onforming method that
∫ T

0
‖|(u − U)(s)‖|2 ds ≤

J∑

j=0

τj

2

(
E2

H1(U
j−1, Vj−1

h ) + E2
H1(U

j , Vj
h)

)
+ 2ε−2η2

L∞(L2)E
2,with ‖| · ‖| = ‖∇ · ‖ and

EH1(U j ; Vj
h) =

∥∥hj

(
τ−1
j (U j − P j

hU j−1) + ε−2P j
hf(U j)

)∥∥ +
∥∥h

1/2
j

[
∇U j · n

Fj
h

]∥∥
L2(∪Fj

h)
.In ontrast to the result of [BMO09b℄ we assume H2 regularity of the Laplae operator in Ω andwe require one additional order of di�erentiability of the potential funtion f here. A similarresult an be derived for nononforming and disontinuous Galerkin �nite element methods byhoosing an appropriate extension ‖| · ‖| of the seminorm in H1(Ω). For ease of presentation wedo not aim at stating the most general onditions on disretizations that lead to suh estimatesand instead refer the reader to [GL08℄ for a related, more detailed disussion in ase of the linearheat equation.Our estimates naturally lead to adaptive algorithms for the e�ient approximation of (1) byloal mesh re�nement. The ontributions to the right-hand sides of our estimates an be atego-rized into loalizable estimators related to spatial and temporal disretization errors as well asmesh-hange and osillation residuals whih allows an individual loal adjustment of time-stepand mesh-sizes. Owing to the strongly loalized features of solutions to (1), adaptivity is offundamental importane for the development of e�ient approximation shemes and the teh-niques disussed in this paper diretly transfer to other, more sophistiated phase �eld modelssuh as Ginzburg-Landau, Cahn-Hilliard, and Cahn-Larhé equations, f. [BM08, BMO09a℄.In partiular, the estimates presented in this paper do not rely on the validity of a maximumpriniple.The outline of this paper is as follows. We state some preliminaries in Setion 2, derive anabstrat a posteriori error estimate in Setion 3, and disuss the appliation to various �niteelement methods in Setion 4. Numerial experiments that illustrate the reliability of our methodare reported in Setion 5. 2. PreliminariesLet Ω ⊂ R

d, d = 2, 3 be a bounded, polygonal or polyhedral Lipshitz domain. The outer unitnormal on ∂Ω is denoted by n and ∂nv is the normal derivative of a funtion v on ∂Ω. For areal number r ≥ 0 we set Br := {x ∈ R
ℓ : |x| < r}; the positive part of a real number is denotedby s+, i.e., s+ = max{s, 0} for all s ∈ R. Standard notation is used for Sobolev and Lebesguespaes and we write ‖ · ‖ whenever ‖ · ‖L2(Ω) is meant; (·, ·) is the inner produt in L2(Ω; Rℓ),

ℓ ∈ N. For a Banah spae X its dual is denoted X∗ and 〈·; ·〉 is the orresponding dualitypairing. We de�ne
V := H1(Ω)and write ‖ · ‖∗ for the indued norm on V
∗. The bilinear form a : V × V → R is for v,w ∈ Vde�ned through(4) a(v,w) := (∇v,∇w).We assume that 0 < ε ≤ 1 and that the potential funtion f has the following properties.Assumption (POT). (i) There exists a nonnegative funtion F ∈ C3(R) suh that f = F ′.(ii) There exists Cf ≥ 0 suh that f ′(u) ≥ −Cf for all u ∈ R.(iii) There exist δ > 0 with δ < 2 if d = 2 and δ ≤ 1 if d = 3 and a nonnegative funtion

g ∈ C(R) suh that for all a, b ∈ R we have
(
f(a) − f(b) − f ′(b)(a − b)

)
(a − b) ≥ −g(b)|a − b|2+δ .4



For F (u) = (u2 − 1)2/4, u ∈ R, and f = F ′ the estimate f ′(u) = 3u2 − 1 ≥ −1, u ∈ R, and theTaylor expansion
f(a) − f(b) − f ′(b)(a − b) = 3b(a − b)2 + (a − b)3,valid for all a, b ∈ R, imply that (POT) holds with Cf = 1, δ = 1, and g(b) = 3|b|, b ∈ R.Assumption (POT) implies that there exists a unique funtion

u ∈ XAC := H1(0, T ; V∗) ∩ L∞(0, T ; V)satisfying u(0) = u0 ontinuously in L2(Ω) and(5) 〈∂tu(t), v〉 + a(u(t), v) = −ε−2(f(u(t)), v)for almost every t ∈ (0, T ) and every v ∈ V. The funtion u is alled weak solution of theAllen-Cahn equation. We suppress the dependene of u upon ε but stress that all appearingonstants do not depend on ε−1. Notie that (5) is the L2 gradient �ow of the energy funtional
Eε(u) :=

1

2

∫

Ω
|∇u|2 dx + ε−2

∫

Ω
F (u) dx.The following generalization of Gronwall's lemma, whih allows an additional superlinear termthat an be ontrolled as long as the funtion remains su�iently small, is an essential tool forour error analysis. Its proof is adapted from [KNS04, BMO09b℄.Lemma 2.1 (Generalized Gronwall lemma). Suppose that the nonnegative funtions y1 ∈

C([0, T ]), y2, y3 ∈ L1(0, T ), α ∈ L∞(0, T ), and the real number A ≥ 0 are suh that y1 ismonotonially inreasing and that
y1(t) +

∫ t

0
y2(s) ds ≤ A +

∫ t

0
α(s)y1(s) ds +

∫ t

0
y3(s) dsfor all t ∈ [0, T ]. Assume that for B ≥ 0, β > 0, and every t ∈ [0, T ] we have

∫ t

0
y3(s) ds ≤ Byβ

1 (t)

∫ t

0
(y1(s) + y2(s)) ds.Set E := exp

( ∫ T
0 α(s) ds

) and assume that 4AE ≤ (4B(1 + T )E)−1/β . We then have
y1(T ) +

∫ T

0
y2(s) ds ≤ 4A exp

(∫ T

0
α(s) ds

)
.Proof. Set θ := 4AE if A > 0 and let θ > 0 suh that 2B(1 + T )θβE ≤ 1 otherwise. De�ne

Iθ :=
{
t′ ∈ [0, T ] : Υ(t′) := y1(t

′) +

∫ t′

0
y2(s) ds ≤ θ

}
.Sine y1(0) ≤ A < θ and sine Υ is ontinuous and monotonially inreasing we have Iθ = [0, tm]for some 0 < tm ≤ T . For every t ∈ [0, tm] we have

y1(t) +

∫ t

0
y2(s) ds ≤ A +

∫ t

0
α(s)y1(s) ds + Byβ

1 (t)

∫ t

0
(y1(s) + y2(s)) ds

≤ A +

∫ t

0
α(s)y1(s) ds + B(1 + T )θ1+β.An appliation of Gronwall's lemma, f., e.g., [IT79℄, the ondition on A, and the hoie of θyield that for all t ∈ [0, tm] we have

y1(t) +

∫ t

0
y2(s) ds ≤ (A + B(1 + T )θ1+β)E ≤ θ

2
.5



This implies Υ(tm) < θ, hene tm = T , and thus proves the lemma if A > 0. If A = 0 we mayhoose θ arbitrarily small to dedue the assertion. �Remark 2.2. The fator 4 on the right-hand side of the estimate of the lemma an be replaedby any number bigger than 2 or by 2 if α 6≡ 0.3. Abstrat a posteriori error analysisGiven a sequene of positive time steps (τj)j=0,1,...,J that de�nes the partition 0 = t0 < t1 < ... <

tJ = T of (0, T ) and subspaes (Vj
h)j=0,1,...,J of L2(Ω), we assume that (U j)j=0,1,...,J ⊂ L2(Ω) issuh that for j = 1, 2, ..., J we have U j ∈ V

j
h and

τ−1
j (U j − U j−1, V ) + aj

h(U j , V ) = −ε−2(f(U j), V )for all V ∈ V
j
h. Here, aj

h : V
j
h × V

j
h → R is a bilinear form that approximates the bilinear form

a from (4). Equivalently, we have for j = 1, 2, ..., J that(6) τ−1
j (U j − P j

hU j−1) − ∆j
hU j = −ε−2P j

hf(U j),where P j
h : L2(Ω) → V

j
h denotes the L2 projetion onto V

j
h and −∆j

h : V
j
h → V

j
h is for V ∈ V

j
hde�ned through the identity

(−∆j
hV,W ) = aj

h(V,W )for all W ∈ V
j
h. We assume that for j = 0, 1, ..., J onstant funtions are inluded in V

j
h and aj

hvanishes for onstant funtions, i.e.,(7) 1 ∈ V
j
h and aj

h(V, 1) = 0for all V ∈ V
j
h. This ensures that the ellipti reonstrution of a funtion −∆j

hV for V ∈ V
j
h iswell de�ned.De�nition 3.1 (Ellipti reonstrution). For j = 0, 1, ..., J de�ne

ξj
h := −∆j

hU jand let wj ∈ V be suh that
(∇wj ,∇v) = (ξj

h, v) and ∫

Ω
wj dx =

∫

Ω
U j dxfor all v ∈ V. Let w,U ∈ H1(0, T ;L2(Ω)) be for j = 1, 2, ..., J and t ∈ [tj−1, tj] de�ned through

w(t) := ℓj−1(t)w
j−1 + ℓj(t)w

j ,

U(t) := ℓj−1(t)U
j−1 + ℓj(t)U

j ,where ℓj(t) = (t − tj−1)/τj and ℓj−1(t) = 1 − ℓj(t) for t ∈ [tj−1, tj].Notie that for j = 0, 1, ..., J we have
−∆wj = ξj

h in Ω, ∂nwj = 0 on ∂Ω.Moreover, owing to the de�nition of −∆j
h, we have that U j ∈ V

j
h is for j = 0, 1, ..., J the Galerkinapproximation of the Poisson problem with homogeneous Neumann boundary onditions andright-hand side ξj

h = −∆j
hU j, i.e., we have

a(wj , v) = (ξj
h, v), aj

h(U j , V ) = (ξj
h, V )for all v ∈ V and all V ∈ V

j
h. 6



Lemma 3.2 (Perturbed paraboli evolution). For j = 1, 2, ..., J and t ∈ (tj−1, tj) de�ne
Γ(w,U ; t) ∈ V

∗ through
Γ(w,U ; t) := ∂t(w − U) − ∆(w − wj) − τ−1

j (U j−1 − P j
hU j−1) + ε−2(f(w) − P j

hf(U j)).Then we have for almost every t ∈ (0, T ) that(8) ∂tw − ∆w = −ε−2f(w) + Γ(w,U ; t).Proof. The identity follows from (6) upon noting that
∂tU − τ−1

j (U j − P j
hU j−1) = −τ−1

j (U j−1 − P j
hU j−1)and 〈∆wj − ∆j

hU j , v〉 = 0 for all v ∈ V. �The motivation for the following theorem is that the quantity exp
( ∫ T

0 λ+
AC(s) ds

) is bounded bysome power of ε−1 and that omputable bounds are available for the di�erene w−U in variousnorms whih an be made arbitrarily small by loal mesh re�nement.Theorem 3.3 (General a posteriori estimate). Let δ, Cf , and g be as in (POT). Suppose that
ΛAC ∈ L1(0, T ) is suh that for almost every t ∈ (0, T ) we have

−ΛAC(t) ≤ −ΛAC(t) := inf
v∈V\{0}

‖∇v‖2 + ε−2(f ′(U(t))v, v)

‖v‖2and assume that ηΓ,0, ηΓ,1, ηf ′ : (0, T ) → R and µg ∈ R are suh that
〈Γ(w,U ; t), v〉 ≤ ηΓ,0(t)‖v‖ + ηΓ,1(t)‖∇v‖

‖f ′(w(t)) − f ′(U(t))‖L∞(Ω) ≤ ηf ′(t),

sup
s∈(0,T )

‖g(w(s))‖L∞(Ω) ≤ µgfor almost every t ∈ (0, T ) and all v ∈ V and set µΛ(t) := 8
(
(1− ε2)ΛAC(t) + Cf + ε−2ηf ′(t)

)+.If
η2 := 16

( ∫ T

0
ηΓ,0 ds

)2
+ 4ε−2

∫ T

0
η2
Γ,1 ds + 4‖u0 − w0‖2

≤ ε8/δ

(8µgCS(1 + T ))2/δ

(
4 exp

( ∫ T

0
µΛ ds

))−1−2/δthen
sup

s∈(0,T )
‖(u − U)(s)‖ ≤ sup

s∈(0,T )
‖(U − w)(s)‖ + 2η exp

(1

2

∫ T

0
µΛ ds

)and, for any seminorm ‖| · ‖| de�ned on the span of V ∪ ⋃J
j=0 V

j
h suh that ‖|v‖| = ‖∇v‖ for all

v ∈ V,
(∫ T

0
‖|(u − U)(s)‖|2 ds

)1/2
≤

(∫ T

0
‖|(U − w)(s)‖|2 ds

)1/2
+ ε−1

√
2η exp

(1

2

∫ T

0
µΛ ds

)
.Proof. We abbreviate ̺ := u − w and omit the argument t in the following. Subtrating (8)from (5) and testing the resulting equation by ̺ we have, inorporating (iii) of (POT),

1

2

d

dt
‖̺‖2 + ‖∇̺‖2 = −ε−2(f(u) − f(w), ̺) − 〈Γ(u,w), ̺〉

≤ −ε−2(f ′(w)̺, ̺) + ε−2‖g(w)‖L∞(Ω)‖̺‖2+δ
L2+δ(Ω)

+ ηΓ,0‖̺‖ + ηΓ,1‖∇̺‖

≤ −ε−2(f ′(U)̺, ̺) + ε−2ηf ′‖̺‖2 + ε−2µg‖̺‖2+δ
L2+δ(Ω)

+ ηΓ,0‖̺‖ + ηΓ,1‖∇̺‖.7



Hölder's and Young's inequality, item (ii) of (POT), and straightforward manipulations lead to
1

2

d

dt
‖̺‖2 + ‖∇̺‖2 ≤ −(1 − ε2)ε−2(f ′(U)̺, ̺) + Cf‖̺‖2 + ε−2ηf ′‖̺‖2

+ ε−2µg‖̺‖2+δ
L2+δ(Ω)

+ ηΓ,0‖̺‖ +
1

2ε2
η2
Γ,1 +

ε2

2
‖∇̺‖2.The assumed property of ΛAC implies that we have

−ε−2(f ′(U)̺, ̺) ≤ ΛAC‖̺‖2 + ‖∇̺‖2.This yields that
d

dt
‖̺‖2+ε2‖∇̺‖2 ≤ 2ηΓ,0‖̺‖+ε−2η2

Γ,1+2
(
(1−ε2)ΛAC +Cf +ε−2ηf ′

)+‖̺‖2 +2ε−2µg‖̺‖2+δ
L2+δ(Ω)

.We integrate this estimate over (0, t) and employ Hölder's and Young's inequality to verify that(9) 1

2
sup

s∈(0,t)
‖̺‖2 +

ε2

2

∫ t

0
‖∇̺‖2 ds ≤ ‖̺(0)‖2 +

1

4
sup

s∈(0,t)
‖̺‖2 + 4

( ∫ t

0
ηΓ,0 ds

)2

+ ε−2

∫ t

0
η2
Γ,1 ds +

1

4

∫ t

0
µΛ sup

r∈(0,s)
‖̺‖2 ds + 2ε−2µg

∫ t

0
‖̺‖2+δ

L2+δ(Ω)
ds,where we used that sups∈(0,t) a(s) + b(t) ≤ 2c(t) if a(t) + b(t) ≤ c(t) for all t ∈ (0, t). Theonditions on δ in (iii) of (POT) together with Hölder's inequality and a Sobolev estimatepermit us to derive the bound(10) ∫ t

0
‖̺‖2+δ

L2+δ(Ω)
ds ≤

∫ t

0
‖̺‖δ‖̺‖2

L4/(2−δ)(Ω)
ds ≤ CS

(
sup

s∈(0,t)
‖̺‖2

)δ/2
∫ t

0
(‖̺‖2 + ‖∇̺‖2) ds.Setting

y1(t) := sup
s∈(0,t)

‖̺(s)‖2, y2(t) := 2ε2‖∇̺(t)‖2, y3(t) := 8ε−2µg‖̺(t)‖2+δ
L2+δ(Ω)for almost every t ∈ (0, T ), the estimates (9) and (10) show that we are in the situation ofLemma 2.1 with A = η2, B = 8ε−4µgCS , E = exp

( ∫ T
0 µΛ(s) ds

), and β = δ/2. Hene, theassumption on η implies that
sup

s∈(0,T )
‖̺(s)‖2 + 2ε2

∫ T

0
‖∇̺(s)‖2 ds ≤ 4η2 exp

( ∫ T

0
µΛ ds

)
.Appliations of the triangle inequality yield the asserted estimates. �4. Appliation to finite element methodsWe next disuss how Theorem 3.3 an be spei�ed for various spatial disretizations of (1). Owingto the employed ellipti reonstrution, this redues to a posteriori error estimates for elliptiequations and we assume that we are given a posteriori error estimators for the approximationerror of the Poisson problem in various norms. For the disussion of the onstrution of aomputable funtion ΛAC that ful�lls the requirements of Theorem 3.3 we refer the readerto [BMO09b℄.Assumption (ESTLp). The subspae Vh and the bilinear form ah : Vh × Vh → R satisfyassumption (ESTLp) if for all ξ ∈ L2(Ω) with ∫

Ω ξ dx = 0 the following holds: If w ∈ V and
W ∈ Vh are suh that ∫

Ω W dx =
∫
Ω w dx and

a(w, v) = (ξ, v) and ah(W,V ) = (ξ, V )8



for all v ∈ V and all V ∈ V̂h for some nontrivial subspae V̂h ⊆ Vh then for p = 2 and p = ∞we have
‖w − W‖Lp(Ω) ≤ ELp(W, ξ; V̂h)for a omputable quantity ELp(W, ξ; V̂h).Remark 4.1. For lowest order onforming methods assumption (ESTLp) is well establishedprovided that the Laplae operator is H2 regular in Ω, f., e.g., [No95, Ver96, DDP00, NSSV06℄.In partiular, we may hoose

EL2(W, ξ; V̂h) = C2

(
‖h2

bTh
(∆bTh

W + ξ)‖ + ‖h3/2
bTh

[∇W · n bFh
]‖L2(∪ bFh)

)
,

EL∞(W, ξ; V̂h) = C∞ log(hbTh
)4/3

(
‖hbTh

(∆bTh
W + ξ)‖L∞(Ω) + ‖h1/2

bTh
[∇W · n bFh

]‖L∞(∪ bFh)

)
,if V̂h is the lowest order onforming �nite element spae related to the regular triangulation T̂hwith meshsize funtion hbTh

whose minimum is hbTh
and with interelement sides ontained in F̂h;

∆bTh
denotes the elementwise appliation of the Laplae operator on T̂h.Another assumption is needed that guarantees ompatibility of suessive disretizations of theLaplae operator.Assumption (COMP). For j = 1, 2, ..., J there exists a subspae V

j−1/2
h ⊆ V

j−1
h ∩ V

j
h and abilinear form

a
j−1/2
h :

(
V

j−1
h + V

j
h

)
× V

j−1/2
h → Rsuh that the pair (V

j−1/2
h , a

j−1/2
h ) satis�es assumption (ESTLp) and

a
j−1/2
h (W1 + W2, V ) = aj−1

h (W1, V ) + aj
h(W2, V )for all W1 ∈ V

j−1
h , W2 ∈ V

j
h, and V ∈ V

j−1/2
h .Remarks 4.2. (i) Requiring that the pair (V

j−1/2
h , a

j−1/2
h ) satis�es assumption (ESTLp) avoidsthat assumption (COMP) is trivially satis�ed with the hoie V

j−1/2
h = {0}.(ii) Assumption (COMP) is trivially satis�ed if the same spatial disretization that ful�lls (ESTLp)is used in eah time step.(iii) For lowest order onforming methods assumption (COMP) is satis�ed provided that thereexists a ommon oarsening T̂h of the triangulations T j−1

h and T j
h that de�ne the spaes V

j−1
hand V

j
h, respetively. In this ase an e�ient hoie for V

j−1/2
h is the �nite element spae de�nedthrough the �nest ommon oarsening of T j

h and T j−1
h , f. [LM06℄.In the following, hj ∈ L∞(Ω) denotes for j = 1, 2, ..., J a positive meshsize funtion related tothe spae V

j
h. In partiular, we assume that there exists a onstant CCℓ > 0 suh that for every

v ∈ V and j = 1, 2, ..., J we have the Clément type quasi-interpolation estimate
inf

V ∈V
j
h

‖h−1
j (v − V )‖ ≤ CCℓ‖∇v‖.Given any sequene (aj)j=0,1,...,J we set

dta
j := τ−1

j (aj − aj−1)for j = 1, 2, ..., J . If (COMP) is satis�ed and all involved bilinear forms ful�ll (ESTLp) then weimmediately obtain bounds for the funtional Γ. Reall that ξj
h = −∆j

hU j and −∆wj = ξj
h for

j = 0, 1, ..., J . 9



Proposition 4.3 (Computable bounds). Suppose that the pairs (Vj
h, aj

h), j = 0, 1, ..., J , sat-isfy (ESTLp) and that assumption (COMP) holds. Then,(a) we have
〈Γ(w,U ; t), v〉 ≤

(
ηt
Γ,0(t) + ηs

Γ,0(t)
)
‖v‖ + ηc

Γ,1(t)‖∇v‖with ηt
Γ,0, ηs

Γ,0 and ηc
Γ,1 de�ned for t ∈ (tj−1, tj ], j = 1, 2, ..., J by

ηt
Γ,0(t) := ‖∆j−1

h U j−1 − ∆j
hU j‖ + ε−2Cf ′,Ij

‖U j−1 − U j‖,
ηs
Γ,0(t) := EL2(dtU

j, dtξ
j
h; V

j−1/2
h ) + ε−2Cf ′,Ij

max
k=j−1,j

EL2(Uk, ξk
h; Vk

h),

ηc
Γ,1(t) := CCℓτ

−1
j ‖hj(U

j−1 − P j
hU j−1)‖ + CCℓε

−2‖hj(f(U j) − P j
hf(U j))‖where for ℓ = 1, 2 we set(11) Cf(ℓ),Ij

:= ‖f (ℓ)‖L∞(Bdj
), dj := max

k=j−1,j

(
‖Uk‖L∞(Ω) + EL∞(Uk, ξk

h; Vk
h)

)
;(b) we have

sup
s∈(0,T )

‖(U − w)(s)‖ ≤ max
j=0,1,...,J

EL2(U j, ξj
h; Vj

h)and
‖u0 − w0‖ ≤ ‖u0 − U0‖ + EL2(U0, ξ0

h; V0
h);() with Cf ′′,Ij

from (11) we have for t ∈ [tj−1, tj ], j = 1, 2, ..., J that
‖f ′(w(t)) − f ′(U(t))‖L∞(Ω) ≤ Cf ′′,Ij

max
k=j−1,j

EL∞(Uk, ξk
h; Vk

h);(d) we have
sup

s∈(0,T )
‖g(w(s))‖L∞(Ω)

≤ max
j=0,1,...,J

(
‖g(U j)‖L∞(Ω) + Cg′,Ij

‖U j − U j−1‖L∞(Ω) + Cg′,Ij
max

k=j−1,j
EL∞(Uk, ξk

h; Vk
h)

)
,where Cg′,Ij

is de�ned as in (11) with f (ℓ) replaed by g′.Proof. (a) Given t ∈ (tj−1, tj), j = 1, 2, ..., J , we reast the funtional Γ as
〈Γ(w,U ; t), v〉 = 〈∂t(w−U), v〉+(∇(w−wj),∇v)+τ−1

j (U j−1−P j
hU j−1, v)+ε−2(f(w)−f(U), v)

+ ε−2(f(U) − f(U j), w) + ε−2(f(U j) − P j
hf(U j), w) =: T1 + T2 + ... + T6and split the proof of (a) into three parts.Part 1: time disretization residuals. Using ℓj−1(t) = 1 − ℓj(t) ≤ 1 and the de�nitions of wjand wj−1 we have

T2 = (∇[ℓj−1(t)w
j−1 + ℓj(t)w

j − wj ],∇v) = ℓj−1(t)(∇(wj−1 − wj),∇v)

= ℓj−1(t)(−∆j−1
h U j−1 + ∆j

hU j, v) ≤ ‖∆j−1
h U j−1 − ∆j

hU j‖‖v‖.Similarly, using the identity
f(U) − f(U j) =

(∫ 1

0
f ′(rU + (1 − r)U j−1) dr

)
(U − U j)we derive the estimate

T5 = ε−2(f(U) − f(U j), v) ≤ ε−2Cf ′,Ij
‖U − U j‖‖v‖ ≤ ε−2Cf ′,Ij

‖U j−1 − U j‖‖v‖.10



Part 2: oarsening and osillation residuals. For the ontributions T3 and T6 we get for arbitrary
V ∈ V

j
h

T3 + T6 = τ−1
j (U j−1 − P j

hU j−1, v − V ) + ε−2(f(U j) − P j
hf(U j), v − V )

≤
(
τ−1
j ‖hj(U

j−1 − P j
hU j−1)‖ + ε−2‖hj(f(U j) − P j

hf(U j))‖
)
‖h−1

j (v − V )‖.A minimization over V leads to the ontribution ηc
Γ,1(t).Part 3: spae disretization residuals. Noting that

a(dtw
j , v) = (dtξ

j
h, v)for all v ∈ V and that owing to (COMP)

a
j−1/2
h (dtU

j , V ) = (dtξ
j
h, V )for all V ∈ V

j−1/2
h we dedue with (ESTLp) that

T1 = (dtw
j − dtU

j, v) ≤ ‖dtw
j − dtU

j‖‖v‖ ≤ EL2(dtU
j, dtξ

j
h; V

j−1/2
h )‖v‖.Moreover, we have

T4 = ε−2(f(w) − f(U), v) ≤ ε−2Cf ′,Ij
‖w − U‖‖v‖

≤ ε−2Cf ′,Ij
max

k=j−1,j
‖wk − Uk‖‖v‖ ≤ ε−2Cf ′,Ij

max
k=j−1,j

EL2(Uk, ξk
h; Vk

h)‖v‖.A ombination of the estimates implies (a). The proofs of (b), (), and (d) are analogous. �Remark 4.4. The omputation of P j
hU j−1 and P j

hf(U j) in the evaluation of ηc
Γ,1 an be avoidedby using a modi�ed sheme whih omputes for j = 1, 2, ..., J the funtion U j ∈ V

j
h suh that

τ−1
j (U j − Ij

hU j−1, V ) + aj
h(U j , V ) = −ε−2(Ij

hf(U j), V )for all V ∈ V
j
h. Here, Ij

h : C(Ω) → V
j
h is an appropriate mesh-transfer operator, e.g., the nodalinterpolation operator related to V

j
h in ase of a onforming method. The quantity ηc

Γ,1(t) ofProposition 4.3 is then substituted by
ηc
Γ,0(t) = τ−1

j ‖U j−1 − Ij
hU j−1‖ + ε−2‖f(U j) − Ij

hf(U j)‖and the third line of the error estimate stated in the introdution is is interhanged with
J∑

j=1

τj

(
τ−1
j ‖U j−1 − Ij

hU j−1‖ + ε−2‖f(U j) − Ij
hf(U j)‖

)
.A signi�antly weaker version of (COMP) an be imposed. If the property (COMP') stated belowis assumed then the quantity EL2(dtU

j, dtξ
j
h; V

j−1/2
h ) appearing in the estimate of Proposition 4.3needs to be replaed by

CL2(τ−1
j U j−1, τ−1

j U j, dtξ
j
h; Vj−1

h , Vj
h).Assumption (COMP'). Suppose that for ξj−1, ξj ∈ L2(Ω) satisfying ∫

Ω ξj−1 dx =
∫
Ω ξj dx = 0and W j−1 ∈ V

j−1
h and W j ∈ V

j
h we have that

aj−1
h (W j−1, V j−1) = (ξj−1, V j−1) and aj

h(W j, V j) = (ξj , V j)for all V j−1 ∈ V
j−1
h and V j ∈ V

j
h. Then

‖W j − W j−1‖ ≤ CL2(V j−1, V j , ξj − ξj−1; Vj−1
h , Vj

h)with a omputable quantity CL2(V j−1, V j , ξj − ξj−1; Vj−1
h , Vj

h).11



Appropriate error estimators are required to bound the approximation error in an extension ofthe seminorm of L2(0, T ;H1(Ω)). The following assumption and the onditions of Proposition 4.6below hold for a large lass of onforming and nononforming �nite element methods, e.g., withthe broken H1 seminorm on a partition of Ω that is a ommon re�nement of all employedtriangulations or partitions that de�ne the spaes V
j
h, j = 0, 1, ..., J .Assumption (ESTH1). The subspae Vh, the bilinear form ah : Vh × Vh → R, and theseminorm ‖| · ‖| de�ned on the span of V ∪ Vh satisfy ondition (ESTH1) if for all ξ ∈ L2(Ω)with ∫

Ω ξ dx = 0 the following holds: If w ∈ V and W ∈ Vh are suh that ∫
Ω W dx =

∫
Ω w dxand

a(w, v) = (ξ, v) and ah(W,V ) = (ξ, V )for all v ∈ V and all V ∈ Vh then we have
‖|w − W‖| ≤ EH1(W, ξ; Vh)for a omputable quantity EH1(W, ξ; Vh).Remark 4.5. Assumption (ESTH1) is well established for onforming methods, f., e.g., [Ver96℄,and also holds for mixed, nononforming, and disontinuous Galerkin methods, f., e.g., [Car97,RW03, Ain05℄ with appropriate hoies of extensions of the H1 seminorm.Proposition 4.6 (Energy norm estimate). If (ESTH1) is satis�ed for all triples (Vj

h, aj
h, ‖| · ‖|),

j = 0, 1, ..., J , with the same seminorm ‖| · ‖| then
∫ T

0
‖|(U − w)(s)‖|2 ds ≤

J∑

j=1

τj

2

(
E2

H1(U
j−1, ξj−1

h ; Vj−1
h ) + E2

H1(U
j , ξj

h; Vj
h)

)
.Proof. For every j = 1, 2, ..., J we dedue with Jensen's inequality that

‖|(U − w)(s)‖|2 =
(
ℓj−1(s)‖|U j−1 − wj−1‖| + (1 − ℓj−1(s))‖|U j − wj‖|

)2

≤ ℓj−1(s)‖|U j−1 − wj−1‖|2 + (1 − ℓj−1(s))‖|U j − wj‖|2.Noting ∫ tj
tj−1

ℓj−1(s) ds = τj/2 and inorporating (ESTH1) implies the assertion. �5. Numerial experimentsWe disuss our error estimate with numerial experiments leading to a generi topologial hangein an evolution proess governed by (1) in two dimensions. Motivated by our estimates we employthe following strategy to e�iently simulate Allen-Cahn proesses with a �xed time-step size.We let IT denote the nodal interpolation operator assoiated to the lowest order onforming�nite element spae de�ned by a triangulation T .Algorithm (ADAPT). Given a tolerane σ > 0 iterate for j = 1, 2, ..., J the following steps:(a) Coarsen elements in TC ⊆ Tj−1 to obtain a triangulation Tj,0 with
ηc,1
Γ,1(tj) := τ−1

j ‖hj(U
j−1 − ITj,k

U j−1)‖ ≤ σ

10
.Set k := 0.(b) Compute U j,k ∈ V

j,k
h suh that for all V ∈ V

j,k
h we have

τ−1(U j,k − ITj,k
U j−1, V ) + (∇U j,k,∇V ) = −ε−2(ITj,k

f(U j,k), V ).12



() Re�ne elements K ∈ Tj,k for whih
ε−2h2

K‖τ−1
j (U j,k − ITj,k

U j−1) + ε−2ITj,k
f(U j,k)‖ + h

3/2
K ‖[∇U j,k · nFj,k

]‖L2(K∩(∪Fj,k))

=: ηs,2
Γ,0(tj)|K ≥ (1/2) max

K ′∈Tj,k

ηs,2
Γ,0(tj)|K ′ ,set k := k + 1, and go to (b) if ∑

K∈Tj,k

(
ηs,2
Γ,0(tj)|K

)2 ≥ σ2.(d) Update U j := U j,k, set j := j + 1, and go to (a).We tried Algorithm (ADAPT) with initial data that de�ne a irular initial interfae.Example 5.1 (Vanishing partile). Let Ω := (−2, 2)2, set r := 1, and de�ne d(x) := |x| − r for
x ∈ Ω. For given ε > 0 and x ∈ Ω let

u0(x) := − tanh
(
d(x)/(

√
2ε)

)
.

Figure 1. Evolving interfae and adaptively re�ned and oarsened triangula-tions for t = 0, 0.31, and 0.48 obtained with Algorithm (ADAPT) in Example 5.1with ε = 1/16 and σ = ε/10.Snapshots of the evolution de�ned by the initial data of Example 5.1 for ε = 1/16 together withadaptively generated triangulations are shown in Figure 1. The approximations were obtainedwith the uniform time-step size τ = ε3/16 and the parameter σ = ε/10. We see that the interfae
Γt undergoes a topologial hange at t ≈ 0.49 when the partile vanishes. The employed adaptivestrategy re�nes the grid loally around the interfae Γt where large gradients our and oarsensthe triangulations when the interfae has advaned.For ε = 2−ℓ, ℓ = 2, 3, ..., 6 we plotted in Figure 2 the numerially omputed eigenvalue ΛAC(t)(left plot) as a funtion of t and the integral over (0, t) of its positive part (right plot), i.e., thefuntions

t 7→ ΛAC(t), t 7→
∫ t

0
Λ+

AC(s) ds.The results of the experiment show that a uniform bound for ΛAC(t) breaks down when thetopologial hange ours and we observe maxt∈(0,T ) ΛAC(t) ∼ ε−2. In ontrast, the integratedeigenvalue grows logarithmially in ε−1, i.e., we have(12) ∫ T

0
Λ+

AC(t) dt ∼ C0 + log(ε−κ).Therefore, robust a posteriori error estimation in L∞(0, T ;L2(Ω)) is possible past topologialhanges in this prototypial example.For �xed ε = 1/8 and dereasing toleranes σ = 2−ℓε/10, ℓ = 0, 1, 2, 3, we plotted in Fig-ure 3 the error estimator ηL∞(L2) de�ned through the approximate solution obtained with Al-gorithm (ADAPT) as a funtion of t ∈ [0, 0.6] and the number of degrees of freedom requiredto redue the spatial disretization residuals below the tolerane σ. Consequently, we observe a13
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Figure 2. Approximated eigenvalue ΛAC(t) in Example 5.1 as a funtion of
t ∈ [0.42, 0.52] (left) and the integral of its positive part over (0, t) as a funtionof t ∈ [0, 0.6] (right). The eigenvalue grows like ε−2 at the time of the topologialhange while its temporal integral only grows logarithmially in ε−1.linear relation between ηL∞(L2) and σ. The numbers of degrees of freedom shown in the rightplot of Figure 3 depend inverse proportionally on σ, i.e., twie as many degrees of freedom arerequired to derease the approximation error by a fator 1/2. This relation orresponds to thequadrati saling ηL∞(L2) ∼ h2 and the fat that the theoretial mesh-size is h2 = N−1

h for thenumber of nodes Nh in a two-dimensional triangulation Th. To illustrate the signi�ant inreasein e�ieny of the proposed adaptive method, we heked that to derease the error estimatorbelow the largest tolerane σ = ε/10 using uniform grids, roughly eight times as many nodesare required as in the ase of an adaptive approah. We remark that in order to guarantee themesh ompatibility ondition (COMP) we either re�ned or oarsened the mesh in eah timestep. One the partile has disappeared at t ≈ 0.49, the grid is maximally oarsened.
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Figure 3. Estimator ηL∞(L2) as funtion of t ∈ [0, 0.6] (left) and degreesof freedom of adaptively generated triangulations needed to redue spatial dis-retization residuals below the tolerane σ (right) for �xed ε = 1/8 and τ =
0.00024.To verify the expeted saling properties of the estimators ηL∞(L2) and ηL2(H1) we ran experi-ments with uniform triangulations in whih either ε or h was �xed. The results for �xed ε = 1/8and dereasing disretization parameters h = 2−ℓ, ℓ = 5, 6, 7 and τ = h2/32 shown in Figure 4on�rm that we have ηL∞(L2) ∼ h2 and ηL2(H1) ∼ h. These experimental onvergene ratesan be read from the slopes of the urves shown in the left plot of Figure 6 where we displayed14



the total estimators at the �nal time t = 0.6 versus the mesh-size h of the underlying uniformtriangulations with a logarithmi saling used for both axes. We also observe in Figure 4 thelinear aumulation of ontributions to ηL∞(L2) while the estimator ηL2(H1) grows proportionallyto t1/2 in time.
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Figure 4. Estimators ηL∞(L2) and ηL2(H1) as funtions of t ∈ [0, 0.6] for h =

1/32, 1/64, 1/128 and τ = h2/32 and �xed ε = 1/8.We ran the same experiment with a �xed uniform triangulation of mesh-size h = 1/64 and �xedtime-step size τ = 0.00003 but varying ε = 2−ℓ, ℓ = 2, 3, 4, 5. The orresponding values for
ηL∞(L2) and ηL2(H1) as funtions of t ∈ [0, 0.6] are shown in the left and right plot of Figure 5,respetively. The graphs reveal a polynomial dependene on ε−1 and the double-logarithmisaling used in the right plot of Figure 6 shows that we have ηL∞(L2) ∼ ε−7/2 and ηL2(H1) ∼ ε−5/2in this example. This an also be understood diretly from the de�nitions of the estimators sine
‖D2u(t)‖ ≤ ε−3/2 if u(t) represents a developed interfae.
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Figure 5. Estimators ηL∞(L2) and ηL2(H1) as funtions of t ∈ [0, 0.6] for ε =
1/4, 1/8, 1/16, 1/32 and �xed mesh-size h = 1/64, τ = 0.00003.Although the proposed estimator ηL∞(L2) has a worse dependene on ε−1 than ηL2(H1), itsquadrati onvergene in h makes it superior sine a reasonable resolution of interfaes requires

h ≪ ε.Aknowledgements: The authors aknowledge stimulating disussions with Christoph Ortner.15
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