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Abstract
The quantification of uncertainties in image segmentation based on the Mumford–Shah model is studied. The aim is to
address the error propagation of noise and other error types in the original image to the restoration result and especially the
reconstructed edges (sharp image contrasts). Analytically, we rely on the Ambrosio–Tortorelli approximation and discuss the
existence of measurable selections of its solutions as well as sampling-based methods and the limitations of other popular
methods. Numerical examples illustrate the theoretical findings.
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uncertainties · Error propagation due to noise · Measurable selections · Numerical methods

1 Introduction

In the use of modern imaging techniques in medicine and
embedded artificial intelligence systems for an automated
investigation of anatomical structure or the classification of
objects (human, tree, cloud, etc.), one of the fundamental
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steps is the division of a given image into distinct areas with
characteristic properties; see, e.g., [35, Chapter 2] and [12,
Part II]. In this context, image segmentation is concerned
with the problem of identifying regions with approximately
homogeneous features (such as color or gray values, and tex-
ture)within given image data. The boundary curve separating
such homogeneous features is called the edge set or simpy
the edge.

Over the years, different approaches have been proposed
in order to accomplish this task by solving, e.g., suitably
defined partial differential equations or byminimizing appro-
priate energies. The latter technique leads to variational
models; see, e.g., [15–17,22,24–26,30,32] and the mono-
graphs [33], [5, Chapter 4] or [18, Chapter 7] as well as
the references therein for an overview.

In this work, we focus on the Mumford–Shah energy
(model)

MSg(u, Γ ) := 1

2

∫
Ω\Γ

|∇u|2dx + αH1(Γ ) + β

2
‖u − g‖2

L2(Ω)
, (MS)

which was introduced in [32]. Here, g ∈ L2(Ω) is a given
grayscale image, possibly degraded by noise, whereΩ ⊂ R

2

represents the image domain, and α, β > 0 are given param-
eters. Further, H1 denotes the one-dimensional Hausdorff
measure. In order to discuss the structure of MSg , we note
that the third term is a least-squares data fitting term involv-
ing our desired reconstruction u and the data g. It is inspired
by a maximum likelihood argument regarding the statistical
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properties of the underlying noise. Since theMumford–Shah
model aims to establish a division inmonochromatic regions,
the (generalized) gradient of the reconstructed image is min-
imized (penalized when viewed together with the choices of
α and β) over the complement of the edge set Γ in Ω . This
motivates the first term in MSg . In order to achieve a cer-
tain robustness in finding Γ with respect to noise, the length
of the edge set is penalized in the second term. Moreover,
penalizing the length of Γ secures a Caccioppoli property of
the edge set.

The aim associated with the above Mumford–Shah model
typically is to find a restored image u : Ω → R and an edge
set Γ , which separates homogeneous regions of interest, by
minimizing MSg; see (MS) above. In this context, the Haus-
dorff term in MSg is one ingredient yielding existence of a
minimizing pair (ug, Γg). We note that such a minimizer is
attached to the specific realization of the noise ξ contained in
the data, i.e., g = g0 + ξ with g0 representing the underlying
true image.

Obviously, the location of Γg within Ω is influenced by
the specific realization ξ of an associated random process
and might not properly reflect the location of the true edge
Γg0 pertinent to g0. Indeed, rather than computing Γg one is
merely interested in estimating the uncertainty in the location
of the reconstructed edge set, given statistical properties of
the underlying random process. This brings us into the realm
of uncertainty quantification of geometric objects.

In general, one of the fundamental components of predic-
tive estimation in uncertainty quantification is to analyze how
uncertainty propagates through a given mathematical model;
also known as model prediction [38, Chap. 9]. We observe
that the vast majority of the existing literature on the propa-
gation of uncertainty is concerned with well-defined systems
whose (unique) solutions are given by real numbers, vectors,
matrices, or distributed parameters; see, e.g., [38, Chap. 9,
Chap. 10] or for an introduction with emphasis on methods
also [39].

However,within the context of imageprocessing (segmen-
tation, in particular), variationalmodels of crack propagation,
or free discontinuity problems in general, the output of the
model is a geometric quantity, which itself does not even live
in a linear space; see [6] and the references therein. Due to
the associated complexity, we emphasize the role played by
the geometric variable (the edge set). In fact, of the existing
methods for the propagation of uncertainty: direct evaluation
of the mean and variance of a quantity of interest, sampling
methods, perturbationmethods, and spectral representations,
only sampling methods appear to be possible.

In contrast to inverse problems, where Bayesian tech-
niques admitting probability densities to characterize the true
value are utilized,we are here confronted ratherwith a kind of
forward problem. It is also worth mentioning that the model
considered in this work yields solution pairs consisting of the

restored image and associated edge set, which is not guar-
anteed to be unique due to a lack of strict convexity of the
objective in the Mumford–Shah problem.

Our intention here is to therefore draw attention to an
important but somewhat neglected class of problems for
uncertainty quantification. As a means of investigating these
models, in particular the edge set, we later propose the notion
of generalized cumulative distribution function and point-
wise quantiles.Of course, pointwise averages, variances, etc.,
are also conceivable. However, we believe that an estimation
of the probability of an edge appearing within a given image
patch (or a patch of pixels in the discrete setting) is the more
valuable information.

Let us now return to the Mumford–Shah model and intro-
duce the associated variational framework. Given sufficient
Sobolev regularity of u on the set Ω\Γ , this leads us to the
following minimization problem:

minimize MSg(u, Γ ) over (u, Γ ) ∈ A,

with A := {(u, Γ ) : Γ ⊂ Ω closed and u ∈ H1(Ω\Γ )}.

Note that (MS) constitutes the renownMumford–Shah prob-
lem. The interested reader is referred to the original paper
[32] for more details, and for a condensed overview includ-
ing a discussion of the existence of solutions we point to [6]
and the references therein. Uniqueness of a solution cannot
be expected in general as it can be seen in a one-dimensional
counter example in [18, Section 7.4.5]. The analytic diffi-
culties arise due to the set-variable Γ as well as u being an
element of a space depending on this set. Moreover, we have
the Hausdorff measure directly appearing in the functional.
These aspects not only significantly complicate the analysis
of (MS), but they also challenge the numerical treatment.

An elegant way to address these issues is due to Ambrosio
and Tortorelli (cf. [10,11]). Driven by the analytical notion
of Γ -convergence, the main idea is to treat the edge set
along with its Hausdorff measure by a phase field approach.
In fact, the so-called Ambrosio–Tortorelli functional AT g

ε :
H1(Ω) × K → R is defined by

ÃT
g
ε (u, z) := 1

2

∫
Ω

(z2 + η)|∇u|2dx

+ α

2

(
ε

∫
Ω

|∇z|2dx + 1

4ε

∫
Ω

(z − 1)2dx

)

+ β

2

∫
Ω

|u − g|2dx,

together with the constraint set

K :=
{
y ∈ H1(Ω) : 0 ≤ y ≤ 1 almost everywhere (a.e.) on Ω

}
.

As before, the quantity u ∈ H1(Ω) denotes the restored
image. The geometric quantity Γ , on the other hand, is
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approximated by the function z ∈ H1(Ω), which can be
interpreted as an edge indicator. In this context, the zero-
level set of z is associated with an edge and the level set
associated with z = 1 relates to the absence of such an edge.
From this, we see that the first term in ÃT

g
ε refers to the first

term of (MS). The second and third terms approximate the
Hausdorff measure. The remaining terms are the data fitting
term as well as an additional regularization for the restored
image u withweighting factor η > 0. This term ensures coer-
civity. In [11], it is shown that the sequence of minimization
problems

minimize AT g
ε (u, z) over (u, z) ∈ H1(Ω) × K , (AT)

Γ -converges in the strong L1(Ω;R2)-topology to the origi-
nal Mumford–Shah problem (MS) as ε → 0 and η = o(ε),
with o(t)

t → 0 as t → 0.
As motivated above, given noisy observations g, we are

interested in studying the influence of random errors and
other data transformation effects in the image data on the
reconstruction of edges in the image. The degradation model
underlying our study is given by

g = Lg0 + ξ,

where L is a linear continuous operator from L2(Ω) to
L2(Ω), i.e., L ∈ L(L2(Ω)). Note that L may model image
blur, subsampling or Fourier and wavelet transforms, respec-
tively, to mention only a few. Moreover, ξ ∈ L2(Ω) is an
oscillating map with zero mean. From a stochastic point of
view, L and ξ constitute realizations of stochastic processes.
We also assume that L does not annihilate constant functions,
i.e. L1 �= 0.

Since Γ in (MS) is a set, a mathematically meaning-
ful notion of uncertainty propagation of this object is not
immediately clear. In view of this, the Ambrosio–Tortorelli
formulation offers a transformation of this geometric fea-
ture to a functional variable which is more amenable to the
study of the propagation of uncertainty. Taking account of
the additional data transformation operator L in our model,
AT g

ε becomes

AT g
ε (u, z) := 1

2

∫
Ω

z2|∇u|2dx

+ α

2

(
ε

∫
Ω

|∇z|2dx + 1

4ε

∫
Ω

(z − 1)2dx

)

+ β

2

∫
Ω

|Lu − g|2dx + η

2

∫
Ω

|∇u|2dx,

which constitutes the segmentation model under investiga-
tion in this paper.

The rest of the paper is organized as follows. In Sect. 2, we
provide a collection of important results on the Ambrosio–

Tortorelli functional concerning properties of the functional
as well as first-order conditions for its minimizers. These
will be used in Sect. 3 to give a mathematical justification of
random processed image and edge indicators in the sense of
measurable selections based on the theorem of Kuratowski–
Ryll–Nardzewski. In Sect. 4, we briefly discuss frontiers of
popular techniques in uncertainty quantification before we
turn our attention to sampling-based methods. We conclude
our work in Sect. 5 with numerical examples.

2 Properties of the Deterministic Problem

Nowwecollect several properties of theAmbrosio–Tortorelli
functional and its minimizers. In order to reduce technicali-
ties in the subsequent proofs,we establish the following norm
equivalence. Below, ‖·‖L2(Ω) denotes the usual L

2(Ω)-norm
on a bounded domain Ω ⊂ R

d and H1(Ω) is the Sobolev
space of functions in L2(Ω) with generalized gradient in
L2(Ω)d ; see, e.g., [3].

Lemma 1 Let L ∈ L(L2(Ω)) with L1 �= 0. Then the norm

|||u|||2 := ‖∇u‖2L2(Ω)
+ ‖Lu‖2L2(Ω)

and the usual H1-norm, i.e., ‖u‖2
H1(Ω)

= ‖∇u‖2
L2(Ω)

+
‖u‖2

L2(Ω)
, are equivalent on H1(Ω).

Proof Let u ∈ H1(Ω) be chosen arbitrarily. At first, we see

|||u|||2 = ‖∇u‖2L2(Ω)
+ ‖Lu‖2L2(Ω)

≤ ‖∇u‖2L2(Ω)
+ ‖L‖2L(L2(Ω))

‖u‖2L2(Ω)

and hence |||u||| ≤ max
(
1, ‖L‖L(L2)

) ‖u‖H1(Ω), where ‖ ·
‖L(L2) denotes the operator norm for linear bounded opera-
tors from L2(Ω) to L2(Ω).

For proving the inverse inequality we define the quan-
tity m := 1

λd (Ω)

∫
Ω
udx ∈ R, where λd denotes the

d-dimensional Lebesgue measure, and let CP > 0 be the
Poincaré constant, which is the (smallest) real number ful-
filling the Poincaré inequality

‖u − m‖L2(Ω) ≤ CP‖∇u‖L2(Ω) for all u ∈ H1(Ω),

see, e.g., [2, Corollary 5.4.1]. Using the above, we find

‖u‖2H1(Ω)
= ‖∇u‖2L2(Ω)

+ ‖u‖2L2(Ω)
= ‖∇u‖2L2(Ω)

+ ‖u − m‖2L2(Ω)
+ λd (Ω)m2

≤ (1 + C2
P )‖∇u‖2L2(Ω)

+ λd (Ω)
1

‖L1‖2
L2(Ω)

‖mL1‖2L2(Ω)
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≤ (1 + C2
P )‖∇u‖2L2(Ω)

+ 2λd (Ω)
1

‖L1‖2
L2(Ω)(

‖L(u − m)‖2L2(Ω)
+ ‖Lu‖2L2(Ω)

)

≤
(
1 + C2

P + 2λd (Ω)C2
P

‖L‖2L(L2(Ω))

‖L1‖2
L2(Ω)

)
‖∇u‖2L2(Ω)

+ 2λd (Ω)
1

‖L1‖2
L2(Ω)

‖Lu‖2L2(Ω)

≤ max

(
1 + C2

P + 2λd (Ω)C2
P

‖L‖2L(L2(Ω))

‖L1‖2
L2(Ω)

,

×2λd (Ω)
1

‖L1‖2
L2(Ω)

)
|||u|||2,

which completes the proof. 	

From now on, we equip the Sobolev space H1(Ω) for

the processed image u with the new norm ||| · |||, whereas
the norm of the z-component remains unchanged. Next we
consider continuity properties of the Ambrosio–Tortorelli
functional.

Theorem 2 Themapping AT g
ε : H1(Ω)×K → R is weakly

lower semi-continuous.

Proof Let (un, zn)⇀(u, z) be a weakly convergent sequence
in H1(Ω) × K . Then there exists a subsequence (not
relabeled) such that the limes inferior is attained and
zn → z converges additionally pointwise almost everywhere
(Fischer-Riesz). Using Lebesgue’s dominated convergence
theorem, we obtain zn∇un⇀z∇u in L2(Ω;Rd). Eventually,
we obtain by the weak lower semi-continuity of the L2-norm
that

AT g
ε (u, z) = 1

2
‖z∇u‖2L2(Ω;Rd )

+ η

2
‖∇u‖2L2(Ω;Rd )

+ β

2
‖Lu − g‖2L2(Ω)

+ α

8ε
‖z − 1‖2L2(Ω)

+ αε

2
‖∇z‖2L2(Ω)

≤ lim inf
n→∞

1

2
‖zn∇un‖2L2(Ω;Rd )

+ lim inf
n→∞

η

2
‖∇un‖2L2(Ω;Rd )

+ lim inf
n→∞

β

2
‖Lun − g‖2L2(Ω)

+ lim inf
n→∞

α

8ε
‖zn − 1‖2L2(Ω)

+ lim inf
n→∞

αε

2
‖∇zn‖2L2(Ω)

≤ lim inf
n→∞ AT g

ε (un, zn),

which proves the lower-semicontinuity of AT g
ε . 	


Using the direct method of calculus of variations in com-
bination with Lemma 1 and Theorem 2, it is not difficult to

derive the existence of a solution of (AT). Due to the noncon-
vexity of AT g

ε , uniqueness cannot be expected in general.
For the sake of characterizing critical points, we turn our

attention to necessary first-order optimality conditions. The
derivation of a corresponding system is challenged by the
nonsmoothness of AT g

ε with respect to the H1(Ω)×H1(Ω)-
topology together with the presence of the constraint set K .
We address these issues by using a truncation argument. In
fact, for all u, z ∈ H1(Ω) with z ∈ L∞(Ω) it holds that
AT g

ε (u, z) < ∞ as well as

AT g
ε (u,max(min(z, 1), 0)) ≤ AT g

ε (u, z).

The constraint set is then substituted by z ∈ X with X :=
H1(Ω)∩L∞(Ω) togetherwith the norm‖·‖2X := ‖·‖2

H1(Ω)
+

‖ · ‖2L∞(Ω). Consequently, we obtain

min
(u,z)∈H1(Ω)×K

AT g
ε (u, z) = min

(u,z)∈H1(Ω)×X
AT g

ε (u, z), (1)

and the respective sets ofminimizers coincide. The advantage
of the righthand side formulation in (1) lies in the fact that
the Ambrosio–Tortorelli functional is continuously Fréchet
differentiable on H1(Ω) × X with derivative

〈
DAT g

ε (u, z), (ϕ, ψ)
〉
H1×X

=
∫

Ω

(
(z2 + η)∇u∇ϕ + β(Lu − g)Lϕ

)
dx

+
∫

Ω

(
zψ |∇u|2 + αε∇z∇ψ + α

4ε
(z − 1)ψ

)
dx

=: a(u, z;ϕ) + b(u, z;ψ).

Here, 〈·, ·〉 denotes the dual pairing between H1(Ω) × X
and its dual. Then the stationarity system associated with the
problem on H1(Ω) × X in (1) in its weak form reads

ag(u, z;ϕ) =
∫

Ω

(z2 + η)∇u∇ϕdx

+ β

∫
Ω

(Lu − g)Lϕdx = 0, (2a)

b(u, z;ψ) =
∫

Ω

|∇u|2zψdx + αε

∫
Ω

∇z∇ψdx

+ α

4ε

∫
Ω

(z − 1)ψdx = 0. (2b)

for all ϕ ∈ H1(Ω) and ψ ∈ X . Utilizing coercivity proper-
ties of the involved inner products, one readily obtains the a
priori bounds

min(η, β)|||u||| ≤ β‖g‖L2(Ω), and (3a)

min
(
αε,

α

4ε

)
‖z‖H1(Ω) ≤ α

4ε
λd(Ω)

1
2 . (3b)
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Moreover, we deduce z ∈ K , which results from (2b) by
testing with ψ = −(z− 1)+ + (−z)+ with (·)+ = max{0, ·}
in a pointwise sense; see also [14, Prop. 1.3].

After clarifying existence of solutions and first-order nec-
essary conditions, we next drawour attention to the following
convergence result.

Theorem 3 Suppose there exists a bounded sequence
((u j , z j )) j∈N ⊂ H1(Ω) × X such that

|ag(u j , z j ;ϕ)| ≤ μ j |||ϕ||| ∀ϕ ∈ H1(Ω), (4a)

|b(u j , z j ;ψ)| ≤ ν j‖ψ‖H1(Ω) ∀ψ ∈ X . (4b)

Further, let (μ j , ν j ) → 0 and z j ∈ K for all j ∈ N. Then
there exist a point (u∗, z∗) and a subsequence such that

(u jk , z jk ) → (u∗, z∗) in H1(Ω;R2), and (u∗, z∗) solves (2).

Proof The result follows from a straight forward adaptation
of the proof in [14, Theorem 4.1]. 	


The above result is useful when studying properties of
solution sets of (2) and for the convergence analysis of a
splitting-type algorithm in function space for iteratively solv-
ing (2).We continue here by studying such a splittingmethod
and postpone the former aspect to Sect. 3.

Algorithm 1: Splitting Method
Data: parameters α, β, ε, η, image data g, starting values

u0 ∈ H1(Ω), z0 ∈ K
Result: u ∈ H1(Ω), z ∈ K fulfilling (2)

1 for j = 0, 1, 2, . . . do
2 u j+1 = argminu∈H1(Ω) AT

g
ε (u, z j );

3 z j+1 = argminz∈K AT g
ε (u j+1, z);

4 end

We note that the algorithm splits the overall nonconvex
minimization problem into the iterative solution of two sub-
sequent problems. Indeed within one iteration, in each step a
convex quadratic minimization problem needs to be solved,
which is equivalent to solving a linear partial differential
equation (PDE), respectively. The convergence of this itera-
tion scheme can then be obtained by applying a result due to
[23] concerning the decay of the distance of two consecutive
image iterates.

Corollary 4 Let (u j , z j ) j∈N be the sequence generated by
the splitting algorithm. Then there exists a stationary point
(u∗, z∗) ∈ H1(Ω) × X and a subsequence such that

(u jk , z jk ) → (u∗, z∗) (strongly) in H1(Ω;R2).

Proof Adapting [23, Lemma 2.3.9 and Theorem 2.3.10], we
obtain

∞∑
j=1

|||u j+1 − u j |||2 < ∞, which implies lim
j→∞ |||u j+1 − u j ||| = 0.

Since u j+1 = argminu∈H1(Ω) AT
g
ε (u, z j ) it holds that

ag(u j+1, z j ;ϕ) = 0 for all ϕ ∈ H1(Ω).

Hence, we obtain for every ϕ ∈ H1(Ω) that

|ag(u j , z j ; ϕ)|
= |ag(u j+1, z j ; ϕ) − ag(u j , z j ;ϕ)|

=
∣∣∣∣
∫
Ω

(z2j + η)(∇u j+1 − ∇u j )∇ϕdx + β

∫
Ω

(Lu j+1 − Lu j )Lϕdx

∣∣∣∣
≤ (1 + η)‖∇u j+1 − ∇u j‖L2(Ω)‖∇ϕ‖L2(Ω)

+ β‖Lu j+1 − Lu j‖L2(Ω)‖Lϕ‖L2(Ω)

≤ max(1 + η, β)|||u j+1 − u j ||| · |||ϕ|||. (5)

Since b(u j , z j ;ψ) = 0 for all ψ ∈ X , we see that the
conditions of Theorem 3 are fulfilled with μ j = max(1 +
η, β)|||u j+1 −u j ||| and ν j = 0. Hence, the assertion follows.

	

We point out that the last estimate in (5), leading to

max(1+η, β)|||u j+1−u j ||| ≤ tol for some tolerance tol > 0,
can also be used as a numerically useful stopping criterion
for the splitting algorithm.

With these results at hand, we are now able to derive finer
properties of the dependence of the solutions of the min-
imization problem and the first-order system on the given
image data, respectively.

3 Existence of Measurable Selections

Next we introduce the concept of uncertain edges. As moti-
vated earlier, we assume that the real image is inaccessible
due to corruption by (random) noise and a deterministic
degradation operator. The resulting data are therefore mod-
eled by a random variable, which we denote in the following
again by g for the sake of readability. Rather than addressing
the issue of finding a reconstruction of the image along with
an edge set, we seek to study the propagation of noise into
the solution.

3.1 Measurable Selections for Ambrosio–Tortorelli

For the reasonsmentioned above,we focus on theAmbrosio–
Tortorelli approximation (AT) of theMumford–Shah energy.
The main issue now is to establish existence of random vari-
ables of solutions as well as their characterization. For this
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purpose we define the following set-valued solution opera-
tors Smin,Sstat : L2(Ω) ⇒ H1(Ω;R2) defined by

Smin(g) := argmin{AT g
ε (u, z) : (u, z) ∈ H1(Ω) × K },

Sstat(g) := {(u, z) ∈ H1(Ω) × K : (u, z) solves (2) for g}.

We start by providing structural properties of these operators.

Theorem 5 Let S ∈ {Smin,Sstat}. Then the following prop-
erties hold true:

(i) S has nonempty and compact values.
(ii) For all closed sets C ⊂ H1(Ω) × K, it holds that

S−1(C) ⊂ L2(Ω) is closed,

where we use S−1(C) := {g ∈ L2(Ω) : S(g) ∩ C �= ∅}.

Proof We split the proof into several steps. Below C ⊂
H1(Ω) × K always denotes a closed set.

Step1 (Nonemptiness). Sinceweknow that theAmbrosio–
Tortorelli problem has a minimizer for every g ∈ L2(Ω), it
holds that Smin(g) �= ∅. Since every minimizer fulfils the
stationarity system, Sstat(g) �= ∅ follows, as well.

Step 2 (Smin(g) is closed). Let m := min(u,z)∈H1(Ω)×K
AT g

ε (u, z). Then we rewrite

Smin(g) = argmin{AT g
ε (u, z) : (u, z) ∈ H1(Ω) × K }

= {(u, z) ∈ H1(Ω) × K : AT g
ε (u, z) ≤ m} =: levm AT g

ε .

Since according to Theorem 2 the Ambrosio–Tortorelli func-
tional is (weakly) l.s.c. on H1(Ω) × K with respect to the
H1(Ω;R2)-topology, we find that Smin(g) is closed.

Step3 (Sstat(g) andSmin(g) are compact). Let (un, zn)n∈N ⊂
Sstat(g) be a sequence of stationary points. Then this
sequence is bounded in H1(Ω) × X by the a priori esti-
mate (3), and zn ∈ K holds true, as well. We apply Theorem
3 with μ j = ν j = 0 and get the existence of a station-
ary point together with a strongly H1(Ω;R2)-convergent
subsequence. Thus, the compactness of Sstat as well as the
compactness of Smin(g) (using Step 2) are established.

Step 4 (Proof of (ii) for Sstat). Let (gn)n∈N ⊂ S−1
stat(C)

be a (strongly) L2(Ω)-convergent sequence with limit g ∈
L2(Ω). We show g ∈ S−1

stat(C). For this purpose, let
(un, zn)n∈N ⊂ C be a sequence of stationary points for gn ,
n ∈ N. Then, 0 ≤ zn ≤ 1 holds almost everywhere and

agn (un, zn;ϕ) = 0 ∀ϕ ∈ H1(Ω),

b(un, zn;ψ) = 0 ∀ψ ∈ X ,

for every n ∈ N. Again, we get the boundedness of
((un, zn))n∈N in H1(Ω) × X by the uniform boundedness

of ‖gn‖L2(Ω), n ∈ N, combined with the a priori bound (3).
Moreover, we find

|ag(un, zn;ϕ)| = |ag(un, zn;ϕ) − agn (un, zn;ϕ)|
=
∣∣∣∣β
∫

Ω

(gn − g)Lϕdx

∣∣∣∣
≤ β‖gn − g‖L2(Ω)‖Lϕ‖L2(Ω).

Since gn → g in L2(Ω), the conditions of Theorem 3 are
fulfilled for gwithμn = β‖gn−g‖L2(Ω) and νn = 0. Hence,
there exists a stationarypoint (u∗, z∗) togetherwith a strongly
H1(Ω;R2)-convergent subsequence of (un, zn)n∈N. Since
(un, zn) ⊂ C for all n ∈ N and C is closed, we obtain
(u∗, z∗) ∈ C . Therefore, Sstat(g) ∩ C �= ∅ and, hence, g ∈
S−1
stat(C).
Step 5 (Proof of (ii) for Smin). Let (gn)n∈N ⊂ S−1

min(C)

be a strongly L2(Ω)-convergent sequence with limit g ∈
L2(Ω). We show g ∈ S−1

min(C). Take (un, zn)n∈N ⊂ C as a
corresponding sequence of minimizers for gn , n ∈ N. For all
n ∈ N and all (u, z) ∈ H1(Ω) × K it thus holds that

AT gn
ε (un, zn) ≤ AT gn

ε (u, z).

Since every minimizer is a stationary point, we obtain from
the arguments of step 4 a stationary point (u∗, z∗) ∈ C and a
strongly H1(Ω;R2)-convergent subsequence (unk , znk )k∈N.
Then (u∗, z∗) is also a minimizer. In fact, we have

AT g
ε (u∗, z∗) ≤ lim inf

k→∞ AT g
ε (unk , znk )

= lim inf
k→∞

(
AT

gnk
ε (unk , znk )

+β(Lunk − gnk , gnk − g)L2(Ω)

β

2
‖gnk − g‖2L2(Ω)

)

= lim inf
k→∞ AT

gnk
ε (unk , znk ) ≤ lim

k→∞ AT
gnk
ε (u, z)

= AT g
ε (u, z).

Since (u, z) was arbitrary, we conclude that (u∗, z∗) is also
a minimizer for g. Hence S−1

min(C) is closed. This completes
the proof. 	


The aim is to construct a random variable, whose values
are the solutions of (AT) for the given image and for almost
every realization of noise. This quantity then defines an asso-
ciated reconstructed image and edge indicator, respectively.
Therefore we aim at using the Kuratowski–Ryll-Nardzewski
measurable selection theorem, which we state here for ease
of reference and refer the interested reader to [13, Theorem
6.6.7].

Theorem 6 (Kuratowski and Ryll-Nardzewski). Let Y be a
Polish space, (X ,A) a measurable space and Ψ : X ⇒ Y
a set-valued operator such that
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(i) Ψ (x) is nonempty and closed for all x ∈ X , and
(ii) for all U ⊂ Y open, it holds that Ψ −1(U ) = {x ∈ X :

Ψ (x) ∩U �= ∅} ∈ A.

Then there exists a measurable selection, i.e., a mapping
Ψsel : X → Y such that Ψsel(x) ∈ Ψ (x) for all x ∈ X .

Given the notation of Theorem 6, we note that the ful-
filment of the condition Ψ −1(C) ∈ A for all closed subsets
C ⊂ Y implies assumption (ii). Indeed, letU ⊂ Y be an arbi-
trary open set U ⊂ Y . By Uc, we denote the complement of
U in Y . Rewriting U gives

U = {y ∈ Y : dist(y,Uc) > 0}
= {y ∈ Y : ∃n ∈ N : dist(y,Uc) ≥ 1

n

}

=
∞⋃
n=1

{
y ∈ Y : dist(y,Uc) ≥ 1

n

} =
∞⋃
n=1

Cn,

with Cn := {y ∈ Y : dist(y,Uc) ≥ 1
n } = (dist( · ,Uc))−1

([ 1n ,+∞)) as a closed set for every n ∈ N. Then, we obtain

Ψ −1(U ) = {x ∈ X : Ψ (x) ∩U �= ∅}
= {x ∈ X : ∃n ∈ N : Ψ (x) ∩ Cn �= ∅}

=
∞⋃
n=1

Ψ −1(Cn).

Since Ψ −1(Cn) ∈ A by assumption, we have Ψ −1(U ) ∈ A.
Based on this observation, we are now able to prove the

existence of measurable selections for the operators Smin and
Sstat.

Corollary 7 Let S ∈ {Smin,Sstat}. Then there exist Borel
functions usel : L2(Ω) → H1(Ω) and zsel : L2(Ω) → K
such that (usel(g), zsel(g)) ∈ S(g) for all g ∈ L2(Ω).

Proof Set Ψ ∈ {Smin,Sstat}, X = L2(Ω), A = B(L2(Ω))

be the Borel algebra and Y = H1(Ω)×K . Since H1(Ω;R2)

is a separable Hilbert space, it is a Polish space. As closed
subsets of Polish spaces are Polish as well (see [40, Propo-
sition A.1] or use [1, Corollary 3.5]) also Y ⊂ H1(Ω)2 is
a Polish space and hence the assumptions of Theorem 6 are
fulfilled. 	


3.2 Measurable Selections for Mumford–Shah

Similar to the previous subsection, it is possible to derive
an analogous result for the Mumford–Shah problem (MS).
Hence, we focus on the denoising case, i.e., L = idL2(Ω).
Due to the analytical difficulties concerning the edge set as
a geometric quantity, we have drawn our attention to the
Ambrosio–Tortorelli model. In the following, we temporar-
ily return to the original Mumford–Shah model. In fact, it

is possible to derive a result similar to the one above for
the processed image only. For this sake, we first discuss a
reformulation of the Mumford–Shah problem (MS) based
on special functions of bounded variations.

For this purpose, we recall that the space of functions
of bounded variation BV (Ω) is defined as the set of L1-
functions with bounded total variation. The latter quantity is
given by

|Du|(Ω) := sup

{∫
Ω

u div p dx : p ∈ C1
0(Ω;Rd),

|p(x)|∞ ≤ 1 for all x ∈ Ω} .

Accordingly, we have BV (Ω) = {u ∈ L1(Ω) : |Du|(Ω) <

+∞}. Equipped with the norm ‖u‖BV = ‖u‖L1(Ω) +
|Du|(Ω) the space BV (Ω) is a Banach space. The distri-
butional derivative Du of u ∈ BV (Ω) is a Radon measure
which can be decomposed according to

Du = ∇u · λd + (u+ − u−)νSuHd−1 Su + Cu .

Here, the first term is the part of Du that is absolutely contin-
uous with respect to the Lebesguemeasure with∇u denoting
its density. The terms u+, u− are the so-called upper, respec-
tively, lower limits of u and Su := {x ∈ Ω : u+(x) > u−(x)}
represents the jump set. The second term denotes the part of
the measure that is absolutely continuous with respect to the
Hausdorff measure restricted to Su , which we denote here as
Hd−1 Su . The remaining part is singular with respect to
both the Lebesgue and Hausdorff measure and is referred to
as the Cantor part of Du. For the definition of approximate
limits as well as further details the reader is referred to [2,
Section 10], [21, Section 5] as well as to the monograph [6].

The space of special functions of bounded variation is
then defined as

SBV (Ω) := {u ∈ BV (Ω) : Cu = 0},

which is the subspace of BV -functionswith vanishingCantor
part.

Using the above notation, it is possible to provide the
following equivalent reformulation of the Mumford–Shah
problem, originally proposed by [20], as a problem with the
processed image contained in the SBV -space, i.e.,

minimize MSgSBV (u) over u ∈ SBV (Ω) with (MS-SBV)

MSgSBV (u) := 1

2

∫
Ω

|∇u|2dx + αHd−1(Su) + β

2
‖u − g‖2L2(Ω)

.

We note that a solution must fulfil u ∈ L2(Ω) and ∇u ∈
L2(Ω;Rd) for the valueof the functional to befinite.Observe
further that this formulation has the advantage that the edge
set does not enter as an explicit variable, but it is rather

123



1102 Journal of Mathematical Imaging and Vision (2021) 63:1095–1117

encoded in the function u through a jump. On the other hand,
a potential drawback of this approach is given by the fact that
now u is contained in a space that is neither reflexive nor sep-
arable. For details on the equivalence of the two formulations
as well as the existence proof for g ∈ L∞(Ω) the reader is
referred to [20] or to [6, Section 7].

For (MS-SBV), we are now able to derive an analogous
versionofTheorem5,whenweconsider the solutionoperator
as a mapping from L∞(Ω) to L2(Ω). Let us briefly discuss
the requirement on g. In fact, from a practical view point
an image signal is the product of a technical measurement
process producing data in a fixed and finite range. Therefore
the image signal will typically be essentially bounded. From
the mathematical viewpoint, we seek to apply a result by
Ambrosio addressing SBV functions as well as Theorem 6.
In order to do so, we need bounded sequences in L∞(Ω) and
a separable solution space L2(Ω) ⊃ SBV (Ω).

Theorem 8 Let T : L∞(Ω) ⇒ L2(Ω) be the solution map-
ping of the Mumford–Shah problem (MS-SBV), i.e.,

T (g) := argmin
{
MSgSBV (u) : u ∈ SBV (Ω)

}
.

Then the following properties hold:

(i) T has nonempty and compact values.
(ii) For all closed sets C ⊂ L2(Ω), it holds that T−1(C) ⊂

L2(Ω) is closed.

Before we provide the proof, we also state that there exists
a measurable selection of minimizers, i.e., a Borel function
usel : L∞(Ω) → L2(Ω) with usel(g) ∈ T (g) for all g ∈
L∞(Ω).

Proof Let g ∈ L∞(Ω).
Step 1 (The set T (g) ⊂ L2(Ω) is compact). We know that

the Mumford–Shah problem has a solution (cf. [9, Example
5.2]). Hence T (g) �= ∅. Let (un)n∈N ⊂ T (g) ⊂ SBV (Ω)

be a sequence of solutions. By the same truncation argument
as in [9], we obtain ‖un‖L∞(Ω) ≤ ‖g‖L∞(Ω) for all n ∈ N.
Thus, (un)n∈N is uniformly bounded and by using

m := min
v∈SBV (Ω)

MSgSBV (v) = MSgSBV (un)

≥ 1

2

∫
Ω

|∇un|2dx + αHd−1(Sun ),

we obtain that the conditions of the compactness result
of Ambrosio [8] are fulfilled. Hence, there exist a sub-
sequence (unk )k∈N as well as u ∈ SBV (Ω) ∩ L∞(Ω)

such that unk → u almost everywhere and the gradients
∇unk⇀∇u converge weakly in L2(Ω;Rd). Due to the L∞-
boundedness, we obtain unk → u in L2(Ω) by dominated
convergence. Moreover, we get by the lower semi-continuity

of the norm and the second part of Ambrosio’s compactness
result that

m ≤ MSgSBV (u) ≤ lim inf
n→∞ MSgSBV (un) = m

and eventually u ∈ T (g). This proves the compactness of
T (g) in L2(Ω).

Step 2 (T−1(C) ⊂ L∞(Ω) is closed for all closed sub-
sets C ⊂ L2(Ω)). Let C ⊂ L2(Ω) be closed. We choose
an arbitrary sequence (gn)n∈N ⊂ T−1(C) convergent in
L∞(Ω) towards g ∈ L∞(Ω). Then for all n ∈ N there exists
un ∈ T (gn) that minimizes the corresponding Mumford–
Shah functional. It thus holds thatMSgnSBV (un) ≤ MSgnSBV (v)

for all v ∈ SBV (Ω). By plugging in v = 0 and using the
uniform boundedness of gn in L∞, we recognize that the
conditions of Ambrosio’s compactness result are fulfilled,
and therefore a subsequence (unk )k∈N as well as a limit u
exist. By the above arguments, we see unk → u in L2(Ω)

and by the closedness assumption also u ∈ C . Together with
the convergence of (gnk )k∈N, we find analogously to Step 1
that

MSgSBV (u) ≤ lim inf
n→∞ MS

gnk
SBV (unk )

≤ lim inf
n→∞ MS

gnk
SBV (v) = MSgSBV (v)

for all v ∈ SBV (Ω). Thus, u ∈ T (g) ∩ C , and there-
fore T−1(C) is a closed subset of L∞(Ω). We obtain the
existence of a measurable selection again by the theorem of
Kuratowski–Ryll-Nardzewski. 	


While the above result provides some theoretical insights
into the behavior of the computed image, it does not yield a
way of how to treat the jump sets, respectively, the edge sets.
We therefore return to the Ambrosio–Tortorelli approxima-
tion.

So far we have discussed measurable selections of oper-
ators on function space with respect to their topologies
and induced Borel algebras. We consider now an abstract
probability space (�,F ,P) together with a random vari-
able g : � → L2(Ω) being measurable with respect to �

equippedwith the σ -algebraF and L2(Ω) equippedwith the
Borel algebra B(L2(Ω)). If we consider now a measurable
selection g �→ (usel(g), zsel(g)) of minimizers (stationary
points), then the composition ξ �→ (usel(g(ξ)), zsel(g(ξ))) is
a random variable ofminimizers (stationary points).We refer
to the respective components simply as ξ �→ (u(ξ), z(ξ)).

3.3 CharacterizingMeasurable Selections for
Ambrosio–Tortorelli

After establishing the existence of measurable selections,
the next step is to derive a variational characterization, i.e.,
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we seek to interpret selections of stationary points as solu-
tions of a stochastic partial differential equation (SPDE) and,
respectively, selections of minimizers as minimizer of an
optimization problem. For this purpose, we need to intro-
duce elements of Bochner space theory.

Firstwe equip the (abstract)measurable space (�,F)with
a probabilitymeasureP. The resultingmeasure space induces
a Lebesgue integral for R-valued random variables denoted
by

E[ · ] :=
∫

�

( · ) dP,

provided the argument is Lebesgue integrable. For a measur-
able set M ∈ F , we define the characteristic function as

1M (ξ) :=
{
1 if ξ ∈ M,

0 else,

and remark that E [1M ] = P[M] holds. Let now V be a
separable Banach space and p ∈ [1,+∞]. The space of
Bochner p-integrable functions is denoted by

L p(�,F ,P; V ) = {v : � → V : v is measurable with

‖v‖V ∈ L p(�,F ,P)}.

Since we do not change (�,F), we also denote the above
space by L p

P
(V ). Equipped with the norm ‖v‖L p

P
(V ) :=

E[‖v‖p
V ] 1

p it is even a Banach space, and in the case of p = 2
and V being a Hilbert space, it is a Hilbert space, as well.
For all v ∈ L p

P
(V ) the Bochner integral

E[v] :=
∫

�

v dP

exists and is referred to as the expectation. Since theLebesgue
integral is just a special case of theBochner integralwithV =
R, there is no risk of confusion. For an overview on Bochner
spaces, the interested reader is referred to, e.g., [28, Section
1]. For V = H1(Ω), we also write HP := L2

P
(H1(Ω)) as

well as

XP := {v ∈ HP : ∃C ∈ (0,∞) : |v| ≤ C holds λd ⊗ P-a.e.},

where we write λd ⊗ P for the product measure on Ω × �,
equipped with its product σ -algebra B(Ω) ⊗ F . The spaces
are equipped with the norms

‖ · ‖2HP
:= E

[
||| · |||2

]
, and

‖ · ‖2XP
:= E

[
‖ · ‖2H1(Ω)

]
+ ‖ · ‖2L∞(Ω×�,λd⊗P)

respectively. In any case, for our random edge indicator
z ∈ XP we obtain 0 ≤ z ≤ 1 holding λd ⊗ P-almost every-
where, and in combination with the a priori estimate (3b)
the boundedness in XP and L∞

P
(H1(Ω)). If we, moreover,

assume that g ∈ L p
P
(L2(Ω)), then also u ∈ L p

P
(H1(Ω)).

From now on let g ∈ L2
P
(L2(Ω)).

Our first target is the SPDE-characterization. For this pur-
pose, we proceed regarding the notation as with the image g
and denote by (u, z) a random variable of stationary points.
Choosing arbitrary ϕ ∈ HP and ψ ∈ XP, we prove the
measurability of ξ �→ ag(ξ)(u(ξ), z(ξ);ϕ(ξ)) as well as
ξ �→ b(u(ξ), z(ξ);ψ(ξ)). The proof is only carried out for
the latter one as the proof for the former is analogous.

Indeed, for c ∈ R we consider the preimage of (−∞, c]
under b, which is

B := {(u′, z′, ψ ′) ∈ H1(Ω) × K × BL∞
R (0) : b(u′, z′; ψ ′) ≤ c},

where R > 0 and BL∞
R (0) := {ψ̃ ∈ X : ‖ψ̃‖L∞ ≤ R}.

We seek to show the closedness of B in H1(Ω;R3). Let
(u′

n, z
′
n, ψ

′
n) → (u′, z′, ψ ′) converge in H1(Ω;R3). By

dominated convergence, there exists a subsequence (not
relabeled) such that z′n and ψ ′

n converge pointwise almost
everywhere. It also holds that

∣∣∣∣
∫

Ω

|∇u′
n|2z′nψ ′

ndx −
∫

Ω

|∇u′|2z′ψ ′dx
∣∣∣∣

=
∣∣∣∣
∫

Ω

(
|∇u′

n|2 − |∇u′|2
)
z′nψ ′

ndx

−
∫

Ω

|∇u′|2(z′ψ ′ − z′nψ ′
n)dx

∣∣∣∣
≤ R‖∇u′

n − ∇u′‖L2(Ω) · ‖∇u′
n + ∇u′‖L2(Ω)

+
∣∣∣∣
∫

Ω

|∇u′|2(z′ψ ′ − z′nψ ′
n)dx

∣∣∣∣ .

By the strong convergence of∇u′
n the first part tends to zero,

and by the pointwise convergence of z′nψ ′
n and |∇u′|2|z′nψ ′

n−
z′ψ ′| ≤ 2R|∇u′|2 the second part approaches zero by dom-
inated convergence, as well. Hence we obtain

b(u′, z′;ψ ′) = lim
n→∞ b(u′

n, z
′
n;ψ ′

n) ≤ c,

yielding (u′, z′, ψ ′) ∈ B. By the H1-measurability of u, z
and ψ , we get with R := ‖ψ‖XP

that

{ξ ∈ � : b(u(ξ), z(ξ), ψ(ξ)) ≤ c}
= {ξ ∈ � : (u(ξ), z(ξ), ψ(ξ)) ∈ B} ∈ F

holds for all c ∈ R. This implies the measurability of
ξ �→ b(u(ξ), z(ξ);ψ(ξ)). Analogously, we obtain the mea-
surability of ag(·)(u( · ), z( · );ϕ( · )).
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Using the Cauchy–Schwarz inequality, we obtain for
u, ϕ ∈ HP and z, ψ ∈ XP

E
[∣∣ag(u, z;ϕ)

∣∣] ,E [|b(u, z;ψ)|] < ∞.

Hence, everymeasurable selection of stationary points fulfils
the SPDE-system (in weak form)

E
[
ag(u, z;ϕ)

] = 0 for all ϕ ∈ HP, (6a)

E [b(u, z;ψ)] = 0 for all ψ ∈ XP. (6b)

Consequently, every measurable selection of stationary
points is also a solution of the SPDE (6). The converse holds
true as well. Let ϕ∗ ∈ H1(Ω) and ψ∗ ∈ X arbitrary. Then
we define the following events

A� := {ξ ∈ � : ag(ξ)(u(ξ), z(ξ);ϕ∗) ≥ 0},
B� := {ξ ∈ � : b(u(ξ), z(ξ), ψ∗) ≥ 0}.

Plugging ϕ = ϕ∗1A� − ϕ∗1Ac
�
and ψ = ψ∗1B� − ψ∗1Bc

�

into (6), we obtain

0 = E
[
ag(u, z; ϕ)

]

= E

[
ag(u, z;ϕ∗)1A�

− ag(u, z;ϕ∗)1Ac
�

]
= E

[|ag(u, z;ϕ∗)|]

and analogously 0 = E
[|b(u, z;ψ∗)|], from which we

deduce a(u, z;ϕ∗) = 0 P-a.s. as well as b(u, z;ψ∗) = 0
P-a.s. for all ϕ∗ ∈ H1(Ω) and ψ ∈ X . From this, we see the
equivalence of the realization-wise interpretation of (2) and
the SPDE-system (6).

After the characterization of stationary points, we want to
characterizemeasurable selections ofminimizers in amanner
similar to the interchange of minimization and integration in
[37, Chapter 14, Section F]. For this purpose, we define the
constraint set

KP := {v ∈ HP : 0 ≤ v ≤ 1 holds λd ⊗ P-almost everywhere}

and formulate the following minimization problem

minimize E
[
AT g

ε (u, z)
]
over (u, z) ∈ HP × KP. (7)

Using the samearguments as for the deterministicAmbrosio–
Tortorelli problem, we obtain the following result.

Theorem 9 The problem (7) admits a solution, and one can
relax the constraint z ∈ KP to z ∈ XP, i.e.,

min
(u,z)∈HP×XP

E
[
AT g

ε (u, z)
] = min

(u,z)∈HP×KP

E
[
AT g

ε (u, z)
]
.

Moreover, the functional E[AT g
ε (·, ·)] : HP × XP → R

is Fréchet differentiable, and for every minimizer (u, z) ∈
HP × XP the stationarity system (6) is satisfied.

Let (u∗, z∗) be a measurable selection of minimiz-
ers and (ū, z̄) a minimizer of (7). From this, we obtain
AT g

ε (u∗, z∗) ≤ AT g
ε (ū, z̄) P-a.s. Taking the expectation

yields E[AT g
ε (u∗, z∗)] ≤ E[AT g

ε (ū, z̄)]. Since (ū, z̄) min-
imizes (7), it holds that E[AT g

ε (ū, z̄)] ≤ E[AT g
ε (u∗, z∗)].

Hence (u∗, z∗) is a solution of (7) and it follows by
the above scenariowise inequality that AT g

ε (u∗, z∗) =
AT g

ε (ū, z̄) P-a.s. The solution of the minimization problem
for the space of Banach space valued random variables is
therefore identical to the solution in the sense of P-almost
every scenario. We summarize our findings on the character-
ization of measurable selections in the following theorem.

Theorem 10 Let g ∈ L2
P
(L2(Ω)). A random variable

(u, z) ∈ HP × KP is a solution of (7) if and only if it is
a P-a.s. measurable selection of minimizers, and it solves (6)
if and only if it is a P-a.s. measurable selection of stationary
points.

The purpose of this section is to give a mathematical
meaning to random processed image and edges. The approx-
imation of the Mumford–Shah problem yields the existence
of random variables that solve the nondeterministic problem
scenario-wise. In this sense, a measurable selection of mini-
mizers serves the purpose of a random reconstruction and a
random edge. Our numerical treatment of noise propagation
in the following section is based on this observation.

4 Numerical Methods

As we are concerned with computing the influence of the
signal’s randomness on the edge, our problem class falls into
the realm of forward problems in the terminology of uncer-
tainty quantification (UQ). For the sake of accessibility, we
briefly summarize some of the main challenges also when
designing numerical solution schemes.

1. The solution may be non-unique.
2. Due to the lack of convexity of the solution sets, we

are unable to use the Michael selection theorem (cf. [13,
Theorem 6.6.3]) to establish the existence of continuous
selections.

These facts challenge the use of many popular methods in
UQ. Indeed:

3. TheWiener Chaos expansion is significantly troubled by
the local constraint 0 ≤ z ≤ 1. The global orthonormal
expansion is not compatible to the pointwise inequality
constraints. For a computational approach in this direc-
tion we refer to [36].
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4. Stochastic collocation is essentially an interpolation
method and necessarily needs point evaluations and con-
tinuous dependence on the parameter.

The above techniques seek to approximate the entire random
variable by discrete objects. A different approach is based on
the definition of a quantity of interest and its approximation
using the techniques of statistics and numerics. In this paper,
we employMonte Carlo-based techniques, which rely on the
strong law of large numbers in a Hilbert space setting. The
latter one is stated here for the sake of convenience. For a
proof see, e.g., [19].

Theorem 11 Let H be a separable Hilbert space and
(Zn)n∈N a sequence of pairwise independent, identically dis-
tributed (iid.) random variables in L1

P
(H) with E[Zn] = m

for all n ∈ N. Then

m̂n := 1

n

n∑
i=1

Zi → m converges P-a.s.,

i.e., P
[
limn→∞ ‖m̂n − m‖H = 0

] = 1 holds true. If, addi-
tionally, (Zn)n∈N is a family in L2

P
(H), then m̂n → m in

L2
P
(H), as well.

4.1 Generalized Confidence Intervals

In our context, one important quantity of interest is concerned
with the identification of regions, where it is more likely to
encounter an edge. In this sense, we would like to obtain
a notion of confidence intervals for the edge indicator. To
achieve this, we first provide a pointwise generalization of
cumulative distributional functions (cdfs) in the following
definition.

Definition 12 Let Z be an L2(Ω)-valued random variable.
The function F : L2(Ω) → L∞(Ω) is defined pointwise
almost everywhere by

F(τ )(x) := P[Z(x) ≤ τ(x)]

for τ ∈ L2(Ω) and is called the generalized cumulative dis-
tribution function (gcdf) of Z .

Note that the above pointwise definition is justified by the
Fubini theorem on integration on product spaces. Using this,
we choose a level of significance s ∈ (0, 1) and define for z
– interpreted as a random variable in L2

P
(L2(Ω)) only – the

pointwise quantile τs for (almost all) x ∈ Ω by

τs(x) := inf{t ≥ 0 : P[z(x) ≤ t] ≥ s}.

This defines a one-sided confidence interval (the lower bound
is zero), and two questions immediately arise: (i) Why is this

objectmeasurable, and (ii) howcan this object be estimated in
practice?Both questions are answered by using the following
method.

Algorithm 2: Bisection method
Data: generalized cdf F , level of significance s ∈ (0, 1)
Result: pointwise quantile τs

1 Set t�0 = 0 and tu0 = 1 as t�0 , t
u
0 ∈ L2(Ω);

2 for n = 0, 1, 2, . . . do
Calculate the mid point:

3 tmid
n = 1

2 (t�n + tun );
Update the upper/ lower bound:

4 t�n+1 = 1{F(tmid
n )≥s}t�n + 1{F(tmid

n )<s}tmid
n ;

5 tun+1 = 1{F(tmid
n )<s}tun + 1{F(tmid

n )≥s}tmid
n ;

6 end

By definition, the above sequences are nondecreasing,
respectively, nonincreasing, and almost everywhere, it holds
that t�n ≤ t�n+1 (tun ≥ tun+1) and, moreover, F(t�n ) < s ≤
F(tun ) for all n ∈ N. By the monotonicity, we also obtain
the inequality 0 ≤ t�n < tun ≤ 1 and hence the convergence
t�n ↗ t∗ and tun ↘ t∗ pointwise almost everywhere onΩ . Due
to themeasurability of t�n , t

u
n , we obtain by the pointwise con-

vergence, that the limits are measurable as well. Moreover,
by construction we get |t�n+1 − tun+1| ≤ 1

2 |t�n − tun | and induc-
tively |t�n − tun | ≤ 2−n almost everywhere. Therefore we get
t∗ = t∗.

In addition, t∗ is the pointwise quantile of interest, which
is equivalent to stating that for all t̃ ≤ t∗ with λd(A) > 0
with A := {x ∈ Ω : t̃(x) < t∗(x)} also P[z < t̃] < s
holds a.e. on A. Indeed, by the choice of t̃ there exists for all
x ∈ A a number n = n(x) ∈ N with t̃(x) < t�n (x). Hence,
by defining An := {x ∈ Ω : t̃ < t�n } we see that An ⊂ An+1

and A = ⋃∞
n=1 An . By the construction of (t�n )n∈N it holds

that P[z < t̃] ≤ P[z ≤ t�n ] < s almost everywhere on An .
We then see the required inequality P[z < t̃] < s almost
everywhere on A and have thus shown t∗ = τs .

The result of this discussion is summarized in the follow-
ing proposition.

Proposition 13 Let Z be an L2(Ω)-valued random variable
and let a level of significance s ∈ (0, 1) be given. Then, the
pointwise quantile

τs(x) := inf{t ≥ 0 : P[z(x) ≤ t] ≥ s}

is a measurable function.

In practice, the exact gcdf is unknown and hence an
approximation is needed. For this sake, we define the empiri-
cal quantiles in full analogy to the classical case ofR-valued
random variables.
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Definition 14 Let Z be an L2(Ω)-valued random variable.
Consider an iid. family of samples (Zi )i∈N with distribution
PZ . The empirical gcdf is defined as the mapping

τ �→ Fn(τ ) := 1

n

n∑
i=1

1{Zi≤τ }
(∈ L∞(Ω) for every realization

)
.

For proving convergence of (Fn)n∈N as introduced inDefi-
nition 14,we recall the statistical theory forR-valued random
variables and refer the reader to [41] for proofs and additional
information.

Lemma 15 Let (Fn)n∈N be a sequence of cdfs of associated
R-valued random variables and let F be the cdf of an R-
valued random variable. We assume Fn(t) → F(t) for all
t ∈ R. Let s ∈ (0, 1) such that the quantile function F−1 is
continuous in s. Then we have F−1

n (s) → F−1(s).

Proof See [41, Lemma 21.2 in a stronger form]. 	

Based on the preceding lemma, we now prove a conver-

gence result for the s-quantiles of the empirical gcdfs.

Theorem 16 Let Z be anR-valued random variable with cdf
F : R → [0, 1] and (Zi )i∈N be an iid. family of samples with
distribution PZ . For n ∈ N we denote by Fn the empirical
cdf. For a level of significance s ∈ (0, 1), chosen such that
the quantile function F−1 is continuous in s, the empirical
quantiles F−1

n (s) → F−1(s) converge with probability 1. If,
moreover, 0 ≤ Z ≤ 1 holds P-a.s., then in addition we get
F−1
n (s) → F−1(s) in L p(�,F ,P) for all p ∈ [1,∞).

Proof Using the strong lawof largenumbers,weget Fn(t) →
E[Fn(t)] = F(t) P-a.s for all t ∈ R. By Lemma 15, we
know that for every realization of Fn the corresponding
quantiles converge and therefore F−1

n (s) → F−1(s) with
probability 1. If we assume 0 ≤ Z ≤ 1, we get immediately
0 ≤ F−1

n (s), F−1(s) ≤ 1. By dominated convergence, we
see that for all p ∈ [1,∞) alsoE[|F−1

n (s)− F−1(s)|p] → 0
converges. 	


After the above preparations, we can formulate a function
space valued version of the previous theorem. For this, we
need to extend the continuity assumption for the quantile in
Lemma 15 on the level of significance to our situation. Note
further that the gcdf induces for almost all x ∈ R a cdf of
an R-valued random variable reading as R � t �→ P[z(x) ≤
t] = F(t)(x). Hence one can interpret the quantile function
in a pointwise fashion as a function s �→ (F( · )(x))−1 (s)
for almost all x ∈ Ω . This observation leads to the following
assumption.

Assumption 17 Let s ∈ (0, 1) be fixed such that

N := {x ∈ Ω : s �→ (F( · )(x))−1 (s) is not continuous in s}

has Lebesgue measure zero.

Utilizing Theorem 16 in a pointwise fashion, we obtain
the following result.

Theorem 18 Let z ∈ KP and (zi )i∈N be iid. samplings
according to the distribution Pz . Moreover, fix the level of
significance s ∈ (0, 1) fulfilling Assumption 17 with respect
to the gcdf of z. Then the sequence of pointwise empirical
s-quantiles τs,n converges to the s-quantile τs for almost
all points with probability 1 and in L p(Ω × �) for all
p ∈ [1,∞), i.e.

‖τs,n − τs‖L p(Ω×�) → 0.

Proof Since for almost all x ∈ Ω the function t �→ P[z(x) ≤
t] = F(t)(x) is a cdf, we can apply Theorem 16 pointwise
and obtain the convergence of F−1

n (s) → F−1(s) pointwise
λd ⊗ P-almost everywhere. Due to the pointwise restriction
of z, we know almost surely that τs,n ∈ [0, 1] a.e. onΩ . Since
|τs,n − τs | ≤ 1 holds λd ⊗ P-a.e. we derive by dominated
convergence

‖τs,n − τs‖p
L p(Ω×�) =

∫
Ω

E
[|τs,n − τs |p

]
dx → 0,

which ends the proof. 	

In this subsection, we have encountered the pointwise

quantile as quantity of interest for the investigation of ran-
dom edges. The associated convergence analysis yields a
foundation for a sample-based approximation method for the
gcdf and the pointwise quantile. The bisection method from
the beginning of this section can then be used to efficiently
approximate the empirical quantile for a given sample size.

4.2 Variance Reduction by Control Variates

In contrast to the previous section, where we focus on quan-
tiles, we discuss here the expected value as a quantity of
interest. Therefore we consider the random edge indicator
as an object in L2

P
(L2(Ω)) and aim at employing the Monte

Carlo method here as well. Since the convergence order is
always 1

2 , the convergence speed is merely depending on the
variance. Associated acceleration methods aim at the formu-
lation of a new random variable with the same expectation as
the original one, but a smaller variance. Several suchmethods
do existmainly infinite dimensions (cf. [34] for an overview).
We pursue an approach based on control variates. For con-
venience we first review the one-dimensional case aiming at
an infinite-dimensional generalization.

Let Z ∈ L2(�,F ,P) be an R-valued random variable.
Our aim is to estimate E [Z ]. Suppose, we have another ran-
dom variable Y , called the control variate, together with its
(exact) expected value. Then we sample from the variable

Zρ = Z + ρ (Y − E [Y ])
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for a yet to be chosen ρ ∈ R. Obviously, it holds that
E
[
Zρ

] = E [Z ] and the variance of Zρ is minimal with
respect to the weighting parameter ρ for the choice

ρ = −Cov (Z ,Y )

Var (Y )

where Cov (Z ,Y ) := E [(Z − E [Z ]) · (Y − E [Y ])] and
Var (Y ) :=
E
[
(Y − E [Y ])2

]
. Theminimal variance for Zρ thenbecomes

Var
(
Zρ

) = Var (Z) − Cov (Z ,Y )2

Var (Y )
,

and, when Cov (Z ,Y ) �= 0, a variance reduction is achieved
(when compared to Z ). Of course, this concept can be
extended to m control variates (Y ( j))mj=1 by defining

Zρ = Z +
m∑
j=1

ρ j

(
Y ( j) − E

[
Y ( j)

])
.

The optimal ρ = (ρ1, . . . , ρm)� then reads

ρ = −C+
Y cZ ,

where CY = (
Cov

(
Y (i),Y ( j)

))
i, j=1...,m ∈ R

m×m denotes

the covariancematrix ofY and the quantity cZ = (Cov
(
Z , Y ( j)

)
) j=1,...m ∈ R

m denotes the covariance vector of the control
variates and the desired target. For a matrix A ∈ R

m×m we
denote itsMoore–Penrose-inverse by A+. In the sameway as
in the previous section, we extend the above methodology in
a pointwise fashion and introduce for this aim the following
notation.

For U , V ∈ L2
P
(L2(Ω)) we define the pointwise covari-

ance as

C [U , V ] = E [(U − E [U ])(V − E [V ])] ∈ L1(Ω),

where E is the expectation defined via the Bochner integral.
Further we define the pointwise variance as

V [U ] := C [U ,U ] = E

[
(U − E [U ])2

]

in contrast to the variance of U , which reads

Var (U ) = E

[
‖U − E [U ] ‖2L2(Ω)

]
=
∫

Ω

V [U ] dx .

For a randomvariable Z ∈ L2
P
(L2(Ω)), a family (Y ( j)) j=1,...,m ⊂

L2
P
(L2(Ω)) of control variates, and a measurable function

ρ : Ω → R
m we consider the random variable

Zρ = Z +
m∑
j=1

ρ j (Y
( j) − E

[
Y ( j)

]
).

Thepointwiseminimization ofV
[
Zρ

]
with respect toρ gives

us theminimizer of Var
(
Zρ

)
due to the Fubini theorem. Next

we prove its measurability.

Lemma 19 The mapping induced by the Moore-Penrose
inverse ( · )+ : R

m×m → R
m×m with A �→ A+ is mea-

surable.

Proof By Theorem 3.4 in [7], it holds that

A+ = lim
δ↘0

(A�A + δ2 Im)−1A�.

Let GLm(R) denote the set of invertible matrices. Since the
mapping ( · )−1 : GLm(R) → GLm(R) is continuous, the
functions fk : Rm×m → R

m×m defined by

A �→ fk(A) =
(
A�A + 1

k
Im

)−1

A�

are continuous and thus measurable. Due to the pointwise
convergence A+ = limk→∞ fk(A) also the mapping (·)+ is
measurable. 	


Hence we have proven the following result.

Proposition 20 The mapping ρ : Ω → R
m, defined by ρ =

−C+
Y cZ , is (Borel) measurable.

Proof Since the composition as well as the multiplication of
measurable functions are measurable as well, we obtain the
measurability of ρ using the preceding Lemma. 	


5 Numerical Examples

Our numerical methods are next applied to a selection of
real world images. In this respect, the given image data are
a (discrete) pixel matrix (G jk)

m
j,k=1 of size m ×m with val-

ues between 0 (black) and 255 (white). In order to utilize
our continuous framework, we interpret this pixel mask as
a function in L∞(Ω) with Ω := (0,m)2. This is done by
decomposing Ω (up to null sets) into open squares of size 1
and rewriting

g0 =
m∑

j,k=1

G jk1Q jk ,

with Q jk := (0, 1)2+ ( j −1,m−k). Concerning the under-
lying degradation models, we focus on two cases: (i) white
noise and (ii) randomized motion blur.
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5.1 White Noise Model

In this setting, we assume L := idL2(Ω) and that the pixel
values are corrupted by a family of independent, normally
distributed random variables, whose standard deviation is
σ > 0 for all pixels. Then the random variable reads as

ξ =
m∑

j,k=1

σ · ξ jk1Q jk ,

where ξ jk ∼ N (0, 1) are iid. with standard normal distribu-
tion. In our experiments,we setσ = 40. This is in fact a rather
large standard deviation compared to situations in practice.
Hence, since the Mumford–Shah model has been designed
in a way that it suppresses the influence of noise, a more
aggressive noise model helps the visualization of results in
subsequent experiments.

5.2 Motion Blur Model

In addition to the noise model above, we now also consider
the motion blur operator L̂� ∈ L(L2(Ω)) with horizontal
movement defined by

L̂�g0(x) := 1

2

∫ 1

−1
g0(x + t�v)dt with � ∼ U(0, �̄),

and v = (1, 0)� the direction of motion. The parameter �

controls the velocity of the motion, respectively, the strength
of the blurring effect. Since the integration domain exceeds
Ω , we extend the argument g0 by zero outside its domain.
In our model, we assume the parameter � ∼ U(0, �̄) to be
a uniformly distributed random variable, where we choose
�̄ = m

4 to be one fourth of the image size. In view of our
underlying degradation framework, we decompose the above
object into

g = L̂�g0 = Lg0 + ξ,

with L ∈ L(L2(Ω)) the linear operator such that Lg0 =
E
[
L̂�g0

]
holds for all g0 ∈ L2(Ω) and ξ := L̂�g0 − Lg0 as

centered random variable. The expected value is the subject
of the following auxiliary result.

Lemma 21 Let L̂�g(x) := 1
2

∫ 1
−1 g(x + t�v)dt as above and

� ∼ U(0, �̄) be a uniformly distributed random variable with
parameter �̄ > 0. Then the operator L has the form

Lg(x) = E
[
L̂�g

]
(x) =1

2

∫ 1

−1
g(x + t �̄v)(− log |t |)dt

for x ∈ Ω.

0-1 1

1 �

t
t

interval (|t|, 1)

Fig. 1 Depiction of the set of integration M with a vertical slice at t

Proof It is easily seen that for each g ∈ C∞
0 (Ω) the mapping

� �→ L̂�g is (Lipschitz-)continuous. Using ‖L̂�‖L(L2(Ω)) ≤
1 for all � ∈ R (shown similary to the proof of ‖L‖L(L2(Ω)) ≤
1 below) and the density of C∞

0 (Ω) in L2(Ω) we obtain by
the Banach–Steinhaus theorem the continuity of � �→ L̂�g
for all g ∈ L2(Ω) and hence the measurability of the above
random variable.

For the calculation of the expected value, choose again g ∈
C∞
0 (Rd) arbitrarily. Then we obtain by direct computation

E
[
L̂�g

]
(x) = 1

�̄

∫ �̄

0

1

2

∫ 1

−1
g(x + t�v)dtd�

= 1

2

∫ 1

0

∫ 1

−1
g(x + t� · �̄v)dtd�

= 1

2

∫ 1

0

1

�

∫ �

−�

g(x + t · �̄v)dtd�

= 1

2

∫
M

1

�
g(x + t · �̄v)d2(t, �)

=: (∗).

The set of integrationM is depicted in Fig. 1. Nowwe change
the order of integration by slicing the set vertically instead of
horizontally. A slice at t ∈ (−1, 1) reads then as the interval
(|t |, 1). Hence, we proceed and obtain

(∗) = 1

2

∫ 1

−1

∫ 1

|t |
1

�
g(x + t · �̄v)d�dt

= 1

2

∫ 1

−1
g(x + t · �̄v)

∫ 1

|t |
1

�
d�dt

= 1

2

∫ 1

−1
g(x + t · �̄v)(− log |t |)dt .

Finally, we obtain the boundedness of L by

‖Lg‖2L2(Ω)
≤
∫
Rd

|Lg|2(x)dx

= 1

4

∫
Rd

∫ 1

−1

∫ 1

−1
g(x + t · �̄v)g(x + s · �̄v)(− log |t |)

(− log |s|)dtdsdx

= 1

4

∫ 1

−1

∫ 1

−1

(∫
Rd

g(x + t · �̄v)g(x + s · �̄v)dx

)
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(− log |t |)(− log |s|)dsdt

≤ 1

4
‖g‖2L2(Ω)

(∫ 1

−1
(− log |t |)dt

)2
= ‖g‖2L2(Ω)

,

fromwhich we deduce the relation for L2(Ω) by using again
the density of C∞

0 (Ω) in L2(Ω). 	


5.3 Experimental Setup

As set of test images we take the image of the cameraman as
well as anMRI scan of a human head in side view (see Fig. 2).
We apply both instances of our degradation method to both
test images, respectively. A selection of samples is depicted
in Fig. 3. Since both of our methods are sample based, we
need to generate a critical point of the Ambrosio–Tortorelli
functional for each sample. This task can be parallelized.

Fig. 2 Left: image of the
camera man, Right: MRI of the
human head

Fig. 3 Instances of samples.
Top: cameraman. Bottom: MRI.
Left: white noise. Right: motion
blur
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Of course we are unable to solve the minimization problem
exactly and hence employ the finite element method (FEM)
proposed in [14] in combination with the splitting method
for the corresponding discretization. In order to obtain an FE
mesh, we divide each of the abovementioned pixel squares
into two triangles by inserting alternately a diagonal; see Fig.
4. Since the FEMapproximation needs resources not depend-
ing on the image (like parts of the local stiffness matrices),
we are able to share them among the minimization processes
in order to reduce computational overhead. Our implemen-
tation is done in MATLAB. For the numerical solution of the
PDEs, we use the software package AFEM [4].

In the white noise case, we use the parameters α =
75, β = 1, ε = 10−2 and η = ε1.1, and in the motion blur
case, we change to the parameters α = 50, β = 10 for the
cameraman and α = 20, β = 10 for the MRI. Since in the
latter case the noise component ξ is depending on the original
image, a change of parameters is justified.

Moreover, we emphasize that depending on the form of
the operator L it can be difficult to obtain the mass matrix
with entries (Lφi , Lφ j )L2(Ω) exactly, where φi are nodal
basis functions.Hencewe areworkingwith the interpolations
IT Lφi instead, where IT : C(Ω̄) → C(Ω̄) denotes the
nodal interpolation operator defined by

(IT y) (x) :=
(n+1)(m+1)∑

i=1

y(xi )φi ,

with (xi )i=1,...,(n+1)(m+1) being the coordinates of the nodes.

5.4 Pointwise Quantiles

Firstly we consider the pointwise quantiles in order to detect
areas, where an edge is likely to be found. As level of signif-
icance, we take s = 0.9 for the noise model cases. For the
motion blur case, we take s = 0.5—obtaining the median—
and s = 0.1 to better study the behavior of the quantiles. The
visual results are depicted in Fig. 5.

Fig. 4 Depiction of the used triangulation in the upper left corner of
the domain Ω = (0,m) × (0, n)

We note that the quantiles of experiments for the white
noise case do not differ significantly from the edge indicators
of the original images. In fact, on samples of edge indicators
one can see little dark spots generated by the algorithm. Since
they are not very distinct and their position is random, the
quantile does not react sensitive to them. A more sensitive
reaction can be seen for the expected values in the following
section.

In the motion blur model, the reconstruction behavior has
an influence. Since our blurring operator and the actually
applied L̂� differ, the reconstruction part tries to transport
intensity where it would normally not belong to. This behav-
ior leads to high oscillations (especially for small �) as well
as doubling effects (especially for big �) in the corresponding
reconstructed image. This results in the horizontal motion of
strongly indicated edges aswell as weak, blurred edges. Only
very small parts of the edges—mainly horizontal ones—
remain at the same position.

In order to further clarify this effect, we resort to an addi-
tional synthetic test image similar to the one from [27] for
the parameters α = 20, β = 10 and evaluate the quantiles
using only 200 samples for a descending series of levels of
significance. The results can be found in Fig. 6.

One observes that for high levels of significance (s = 0.9
and s = 0.75) the only clearly recognizable edges are the
horizontal ones (upper and lower edge of the bar, the lower
edge of the triangle and at the upper and lower poles of the
circle). When reducing s, the moving edges gain importance,
which results in gray areas around the places corresponding
to the circle and the triangle. As it can be seen in the result
for s = 0.3, the presence of distinct edges next to each other
leads—due to the motion blur—to an overlap. This results in
the detection of an edge at a position where for the original
image no edge occurs at all. For low levels of significance
s = 0.2 and s = 0.1, the edges corresponding to the origi-
nal image are duplicated in horizontal direction around their
original positions. In the last image, this results in a broad
band of edges.

Coming now back to our images considered in Fig. 5,
we can build on the above observations to get an improved
understanding of the mechanisms leading to these results.
As we have seen, edges in different directions occur in the
quantile for very different values of s. Thus, we use here two
levels s = 0.5 and s = 0.1 to get a better understanding.
Again, we observe for the first value only gray areas as well
as prolonged horizontal edges (e.g., the shoulder of the cam-
eraman and the top of the head in the MRI example). For the
lower value of s = 0.1, we observe doubled edges around
the ones for the original images. In the cameraman image on
the left and right boundary, gray horizontal ‘oscillations’ can
be observed. This effect occurs since the image function has
been extended by 0 outside of Ω . Since the background is
originally gray, we generate here an edge (in contrast to the
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Fig. 5 Numerical results for the quantiles. Top row: white noise model with s = 0.9, Middle row: motion blur model with s = 0.5, bottom: motion
blur model with s = 0.1 Left: cameraman, Right: MRI

MRI image, where the background was already black in the
first place). This also leads to some oscillatory effects on the
left side due to “collisions” of the boundary and the man. We
note that since our synthetic test image is an extreme exam-
ple we do not have here such large bands of edges, but we
still find duplications of edges.

5.5 ExpectedValues

In this section, we utilize the control variates technique to
obtain the expected values of the edge indicators. Besides
the mean values themselves, we also want to access the vari-
ance reduction effect. In our experiments, we use a total of
3 (respectively, 4) control variates (y j ) for the noise-only
model (respectively, motion blur model). Their choice is
heuristic and specified in Table 1. For the noise case, we
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Fig. 6 Numerical results of the pointwise quantiles applied to the synthetic test image in the upper left corner. Results for the levels of significance
(from top to bottom, from left to right; starting in the upper right corner) s = 0.9, 0.75, 0.5, 0.4, 0.3, 0.2 und 0.1
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Table 1 Overview of the applied control variates

Noise model Motion blur model

y1 := |�(k1�g)| y1 := |�(k1�v1)|
y2 := exp(−0.005 · y1) y2 := |�(k1�v2)|
y3 := g y3 := exp(−0.005 · y1)

y4 := exp(−0.005 · y2)

choose a different edge detection approach using filter-based
methods which is way cheaper than the Mumford–Shah
or Ambrosio–Tortorelli-based methods, respectively. There-
fore, we use the so-calledMarr–Hildreth filter, which reads

�(kσ �g)(x) = �

(∫
R2

kσ ( · − y)g(y)dy

)
(x)

=
∫
R2

(�kσ )(x − y)g(y)dy,

where kσ := exp(− 1
2σ |x |2) denotes theGaussian kernel. The

idea is to apply a smoothing step to reduce on the one hand the
possible influence of noise and, on the other hand, to increase
the regularity from an image signal in L2(R2) to a smoothed
signal in C∞(R2). The application of the Laplacian seeks to
find sources and valleys in the gradient map, which resort to
rapid changes in the gradient. Due to its structure, the Marr–
Hildreth filter is also called Laplacian of Gaussian in the
literature. For more details on this, the interested reader is
referred to [18, section 2.6.2] and the references therein.

As control variates, we then choose its absolute value as
well as the exponential of its weighted negative. Especially,
the latter has a chance to behave at least locally similar to the
edge indicator obtained by our model. Additionally, we use
the original image to get the noise applied to the image itself.

Formotionblur, a direct applicationof the above technique
would be inappropriate. Due to the presence of the operator
L , we first apply a reconstruction step to the image based on
the following consideration:Having the edge indicator given,
onewould just need to solve the linear equation (2a) to obtain
the restored image. Since the real edge indicator is not given
and expensive to calculate, we perform the reconstruction
with respect to the two extreme cases, z = 1 corresponding
to the a priori assumption of no edge occurring in the image at
all, and z = 0 corresponding to the case of edges appearing
everywhere in the image. Based on this, we consider the
functions v1, v2 ∈ H1(Ω) as solutions of the PDEs

− η�v1 + βL∗Lv1 = βL∗g in Ω,
∂v1

∂ν
= 0 on ∂Ω,

− (1 + η)�v2 + βL∗Lv2 = βL∗g in Ω,
∂v2

∂ν
= 0 on ∂Ω,

where L∗ is the adjoint of L and ν denotes the outward unit
normal to ∂Ω . In this sense, we obtain two reconstructions of
the imagewith respect to two different parameter choices. As
for the noise model case, we apply again the Marr–Hildreth
filter to v1, v2 and use the absolute values as well as an expo-
nential of its weighted negative.

To study the variance reduction effect, we compare the
variances of the edge indicator zwith the ones of themodified
variable zcv . Since our approach is based on the point-
wise application of control variates, we moreover investigate
where the variance has been reduced. For this sake, we plot
the difference of the pointwise variancesV [z]−V [zcv]. We
remark here that mathematically the difference can never
be negative, but since our multiplier and our variances are
just estimations, it can happen that scattered negative values
do occur. Hence the plots have been truncated at zero from
below to give a clearer view. Note that in Fig. 7 the colormap
is inverted for better visibility.

An overall number of 1000 samples has been gener-
ated, where 100 of them have been used to approximate
the multipliers for the control variates. Consequently, for
the estimation of mean, variance and difference of pointwise
variances the other 900 were used.

For the noise case, we see in Fig. 8 that the background
is considerably darker in comparison to the quantiles. This
behavior is caused by the isotropic distribution of little dark
spots generated by the noise. Besides that, there is again a
strong similarity to the edge indicator of the original image.
Moreover, a noticeable variance reduction can be observed.
By considering the plots of the difference of the pointwise
variances, we see a bigger improvement in regions, where
many edges are close to each other.

For the motion blur model, we see horizontal edges pulled
longer. By closer inspection, one finds several edges par-
allel and near to the original ones, such that they form a
weak blurred band. This is caused by the motion of edges in
horizontal direction described in the previous section. A sig-
nificantly higher variance reduction effect can be observed in
Table 2, which is not surprising as theMumford–Shahmodel
has been designed to reduce the effect of noise. Regarding
the difference of the pointwise variances, we find the high-
est reductions in close proximity to the edges of the original
image.

6 Conclusion

In this paper, we studied the influence of errors in images
on edges resulting from an image segmentation procedure.
Due to the inherent difficulty of performing uncertainty
quantification for a geometric quantity, we transitioned to
the Ambrosio–Tortorelli problem to profit from the accessi-
ble vector space structure. Despite the lack of convexity or

123



1114 Journal of Mathematical Imaging and Vision (2021) 63:1095–1117

Fig. 7 Differences of variance operators V [z] − V [zcv] Top: white noise model, bottom: motion blur model. Left: cameraman, right: MRI

unique solutions, we were able to establish a rigorous the-
oretical foundation for selections of solutions. To perform
a quantitative treatment, we proposed numerical methods
addressing quantiles and the expected values and applied
them to practically meaningful images and instances of the
considered degradation model.

Since uncertainty quantification of geometric objects is a
relatively new and scarcely investigated topic, we offer here
a possible access point for researchers dealing with prob-
lems having a similar geometric structure. From the practical
viewpoint, our results might be of importance to obtain a
qualitative understanding of the uncertainty associated with
(reconstructed) edges in certain medical or machine vision
applications.

Our investigationopens several new researchperspectives.
On the one hand, onemay incorporate more general degrada-
tion operators in the Mumford–Shah formulation. This leads
to analytical difficulties for the existence of solutions as well
as numerical challenges.

On the numerical level: due to the anisotropic nature of
the error indicator as well as the phase field approach the use
of adaptive mesh refinement is of interest. Further, with the
large amount of data generated from images, the use of com-

pression techniques like low rank approximations might be
attractive. However, in both cases the interplay of uncertain-
ties might lead to difficulties and needs careful treatment.

7 AWord of Caution at the End

As an addendum, we want to emphasize that the white noise
model considered in this work cannot be interpreted as a pix-
elwise projection of a random variable with values in L2(Ω).
In the following we will make use of techniques from prob-
ability theory, which can for example be found in [29]. In
contrast to before let Ω = (0, 1)2 and define for n ∈ N a
uniform grid Qn = (Qn

jk)
n
j,k=1

such that the area of a square

around every pixel is 1
n2
. Precisely speaking, we are going

to show that there exists no random variable ξ∗ ∈ L2
P
such

that the white noise with respect to this grid ξQ has the same
distribution as �Qξ∗, where the operator �Q ∈ L(L2(Ω))

is the piecewise projection onto the pixel grid defined by

�Qg :=
n∑

j,k=1

1

|Q jk |
∫
Q jk

gdx · 1Q jk .
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Fig. 8 Numerical results for the expected values. Top: white noise model, bottom: motion blur model. Left: cameraman, right: MRI

Having λ2(Qn
jk) = 1

n2
, we introduce the orthonormal system

(enjk)
n
j,k=1 with e

n
jk := n1Qn

jk
and rewrite the projection�Qn

as

�Qn g =
n∑

j,k=1

(enjk, g)L2(Ω) · enjk .

The white noise reads as

ξn = ξQn = n
n∑

j,k=1

ξ jk1Qn
jk

=
n∑

j,k=1

ξ jke
n
jk,

with (ξ jk)
n
j,k=1 a family of independent, identically dis-

tributed random variables with standard normal distribution.
It is straightforward to show that �Qnξ2n = ξn holds for all
n. For proving the non-existence of ξ∗ as described above,we
assume the contrary. Using the fact that diam(Qn

jk) =
√
2
n

goes to zero for n → ∞ one can show by the density of
smooth functions in L2(Ω) combined with a version of the
Banach–Steinhaus theorem (cf. [42,Korollar IV 2.5]) that the
operators �Qn converge pointwise to the identity on L2(Ω).

Hence �Qnξ
∗ → ξ∗ converges λ2 ⊗ P-a.e. In partic-

ular this yields that ξn—having the same distribution as

Table 2 Variance reduction effects

Image Degradation type Var (z) Var (zcv) Ratio

Cameraman Noise 305.808 185.297 1.650

MRI Noise 285.167 171.889 1.659

Cameraman Motion blur 1580.497 616.192 2.565

MRI Motion blur 1739.972 601.837 2.891

�Qnξ
∗—must converge in distribution to ξ∗ meaning that

the corresponding probability distributions μn are weakly
convergent in the sense of measures. This implies especially
the pointwise convergence of the respective characteristic
functions, reading for an arbitrary v ∈ L2(Ω) as

ϕn(v) :=
∫
L2(Ω)

exp(iC(w, v)L2(Ω))dμn(w)

= E
[
exp
(
iC(ξn, v)L2(Ω)

)]
,

towards the characteristic function of ξ∗. The computation
of ϕn yields
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ϕn(v) : = E
[
exp
(
iC(ξn, v)L2(Ω)

)]

= E

⎡
⎣exp

⎛
⎝iC

n∑
j,k=1

ξ jk(e
n
jk, v)L2(Ω)

⎞
⎠
⎤
⎦

= E

⎡
⎣ n∏

j,k=1

exp
(
iCξ jk(e

n
jk, v)L2(Ω)

)⎤⎦

=
n∏

j,k=1

E

[
exp
(
iCξ jk(e

n
jk, v)L2(Ω)

)]

=
n∏

j,k=1

exp

(
−1

2
(enjk, v)2L2(Ω)

)

= exp

⎛
⎝−1

2

n∑
j,k=1

(enjk, v)2L2(Ω)

⎞
⎠

= exp

(
−1

2
‖�Qnv‖2L2(Ω)

)
.

As we have seen above, the linear operators �Qn converge
pointwise to the identity, such that we deduce the conver-
gence

ϕn(v) → exp

(
−1

2
‖v‖2L2(Ω)

)
for all v ∈ L2(Ω).

Since we have assumed that the μn converge weakly, this
implies that the characteristic function of the distribution of
ξ∗ must be exp

(− 1
2‖v‖2H

)
. But according to [31, Proposi-

tion 1.2.11], there exists no probability measure with this
particular characteristic function. This yields the anticipated
contradiction.

Hencewe deduce that the termwhite noise is only justified
with respect to a given pixel grid.
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