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Stability of deep neural networks via discrete rough paths
Christian Bayer, Peter K. Friz, Nikolas Tapia

Abstract

Using rough path techniques, we provide a priori estimates for the output of Deep Residual
Neural Networks. In particular we derive stability bounds in terms of the total p-variation of trained
weights for any p ≥ 1.
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C. Bayer, P. K. Friz, N. Tapia 2

1 Introduction

Since their introduction in 2016 [13], Residual Neural Net-
works (ResNets) have gained a vast amount of popularity as
a preferred network architecture for Machine Learning appli-
cations. The general principle is that they allow for deeper
networks since they model only the change in the output for
each layer. This is achieved by introducing “skip connections”
which – at some steps – adjust the output of a layer by adding
an earlier layer’s output (see Figure 1). The authors argue
that this helps precondition the optimization solvers so that
increasing the network depth does not result in severe nu-
merical instabilities and performance degradation, as is ob-
served in plain Neural Networks. In particular, this approach
allows them to successfully train a Deep Neural Network with
hundreds of layers.
In a plain Neural Network, the input vector wi+1 of the (i +
1)-th hidden layer is given by an application of the weights
and the activation function to the input of the previous hidden
layer. In symbols

wi+1 = σ (Wiwi )
where σ : Òdi+1 → Òdi+1 and Wi is a di+1 × di matrix. In
the ResNet approach, this is modified so that the output to
the next hidden layer is given as the sum of the input to the
previous layer, plus the previous operations; that is,

wi+1 = wi + σ (Wiwi ). (1)

Here, it is assumed that the width of all layers is constant, but
the approach can easily be adapted to the more familiar set-
ting of varying widths by applying an appropriate projection to
right-hand side of the last equation.
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Figure 1: Example ResNet architec-
ture, taken from [13].

Remark 1.1. We simplify notation by leaving out the bias term in the update rule (1). The usual update
rule

wi+1 = σ (Wiwi + µi )
can be reproduced in the form (1) above by adding a column of consisting of ones to wi and an
appropriate restriction on Wi to map that column to another column of ones – in the appropriate
dimension.

Remark 1.2. In this work, we assume that the architecture follows the update (1) at each layer. In the
engineering practice, usually a few layers are skipped over. i.e. the true update may look as follows:

w̃i = σ (W̃iwi ), wi+1 = wi + σ (Wi w̃i ),

skipping over one layer in the process.

It has been pointed out by several authors [5, 10, 11] that the update in eq. (1) can be seen as a step
of the Euler scheme for a controlled ODE of the form

¤w(t ) = σ (W (t )w(t )), w(0) = w0. (2)
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Stability of deep neural networks via discrete rough paths 3

Therefore, knowledge of stability and convergence of numerical schemes for such systems can be
used to derive corresponding results for ResNets, specially since one expects that the behavior of the
output layer of the network under consideration will follow closely that of the continuous-time solution
of eq. (2) for very deep architectures.

Instead of using continuous techniques, our approach consists of analyzing the evolution of the se-
quence (x0, . . . , xN ), where N is the depth of the network, obtained by iteration of eq. (1) directly at
the discrete level. This is achieved by carefully estimating p-variation norms of this sequence using
analytic techniques borrowed from rough paths theory and the algebraic framework developed in [4].
In particular, we show that for a regular enough activation function and any p ≥ 1, there is an explicit
constant Cp > 0 such that

|xN − x0 | ≤ inf
p∈[1,∞)

(
C
p−1
p ‖σ ‖p

C [p ]+1b

|||×|||p
p ;[0,N ] ∨ ‖σ ‖C [p ]+1b

|||×|||p ;[0,N ]

)
.

Here, [p] denotes the integer part of p . The symbol× denotes the discrete signature lift of the weight
sequenceW and |||·|||p is an appropriately defined norm on the spaces of lifts (Corollary 4.14). This
inequality holds uniformly over input data. In practice, the weight matrices are randomly initialized with
random i.i.d. values so typically the trained weights are also random. Our estimates hold pathwise, in
the sense that the depend only on a single initialization of the weight matrices.

This result is a first step towards the understanding of finer properties of (1), and can be used as a
stepping stone in order to prove results about worst-case behavior, i.e. controlling the size of |wN−w̃N |
in terms of |w0 − w̃0 |.
To see how our resulting a priori estimate compares to what the smooth theory would imply, we ran
a simple numerical experiment, using a pre-trained ResNet 152 of [13] obtained from https://
github.com/BVLC/caffe/wiki/Model-Zoo (Figure 2b).

(a) Evolution of a single feature through a trained
ResNet

(b) Bound in eq. (16) for different values of p ∈ [1, 3]
vs. the difference |xN − x0 |

2 Elements of rough analysis

We begin with a brief overview of classical results present in the rough analysis literature. We remark
that many of these results are usually stated in terms of continuous-time variables which introduces
certain additional difficulties. In our case, no such difficulties arise so the statements and proofs of
analogous results become simpler.
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2.1 Discrete controls

We recall that in the setting of [15] a control function (or simply a control) is a function ω : [0,∞) ×
[0,∞) → [0,∞) which is super-additive, in the sense that ω (s,u) + ω (u, t ) ≤ ω (s, t ) for all
s < u < t . In the continuous-time setting, the main motivation for introducing control functions is to
measure the size of the increments of a function in a more flexible way than what the natural control
ω (s, t ) = |t − s | allows.

Definition 2.1 ([3]). A (discrete) control is a triangular array of non-negative numbers (ωk ,l : k < l )
such that ωk ,k = 0 and

ωk ,l + ωl ,m ≤ ωk ,m
for all k < l < m

Remark 2.2. Observe that for a control ω the maps l ↦→ ωk ,l and k ↦→ ωk ,l are non-decreasing and
non-increasing, respectively. Indeed, if 0 ≤ k < l < m ≤ N then

ωk ,l ≤ ωk ,l + ωl ,m ≤ ωk ,m

and
ωk ,m ≥ ωk ,l + ωl ,m ≥ ωl ,m .

Now we collect some results on how to produce new controls out of any given control.

Lemma 2.3. Let w be a control and ϕ : [0,∞) → [0,∞) an increasing convex function such that
ϕ (0) = 0. Then w̃k ,l B ϕ (ωk ,l ) is also a control.

Proof. Since ϕ is convex and ϕ (0) = 0 we have that

ϕ (λ (x + y )) ≤ λϕ (x + y )

for any λ ∈ [0, 1]. Choosing λ = x
x+y we obtain

ϕ (x ) ≤ x

x + y
ϕ (x + y ).

Similarly, ϕ (y ) ≤ y
x+yϕ (x + y ) so that

ϕ (x ) +ϕ (y ) ≤ ϕ (x + y ),

i.e. ϕ is super-additive.

Therefore, if 0 ≤ k < l < m ≤ N ,

w̃k ,l + w̃l ,m = ϕ (ωk ,l ) +ϕ (ωl ,m)
≤ ϕ (ωk ,l + ωl ,m)
≤ ϕ (ωl ,m) = ω̃l ,m

where the last inequality follows from the monotonicity of ϕ. �

Remark 2.4. In particular, this implies that if ω is a control, then ωα is also a control, for any α > 1.

DOI 10.20347/WIAS.PREPRINT.2732 Berlin 2020
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Lemma 2.5. Let ω, ω̃ be two controls. If α , β > 0 are such that α + β ≥ 1, then ω̂k ,l B ωα
k ,l
ω̃
β
k ,l

is
also a control.

Proof. Let θ B α + β . By Lemma 2.3, it is enough to show that

zk ,l B ω
α
θ
k ,l
w̃
β
θ
k ,l

is a control, since then ŵk ,l = z θk ,l will also be a control. Since α
θ +

β
θ = 1, Hölder’s inequality implies

that

zk ,l + z l ,m ≤ (ωk ,l + ωl ,m)
α
θ (w̃k ,l + w̃l ,m)

β
θ

≤ ω
α
θ
k ,m
w̃
β
θ
k ,m

and the proof is finished. �

2.2 p-variation

In the following we will deal with time series, which are finite sequences of vectors w = (w0,w1, . . . ,wN ) ∈
(Òd )N . We will use the convention of indexing time steps with lower indices and components with up-
per indices, so for example wik ∈ Ò refers to the i -th component of the k -th entry in the time series
w.

We will also need to deal with general triangular arrays, which are collections of vectors of the form
(Ξk ,l : 0 ≤ k < l ≤ N ). For any time series we define a triangular array (wk ,l ) by setting wk ,l B
wl − wk .

Definition 2.6. Given p > 0, we define the p-variation with respect to a fixed choice of norm | · | on
Òd , by

‖w‖p ;[k ,l ] B
©« max
s∈Sk ,l

#s∑
j=0

|ws j+1 − ws j |p
ª®¬
1/p

where the maximum is taken over the set Sk ,l of all increasing subsequences

s = (s0 = k , s1, . . . , sm, sm+1 = l )

of {k , k +1, . . . , l − 1, l } and we have set #s = m for such a sequence. For a triangular array Ξ one
can also define its p-variation as

‖Ξ‖p ;[k ,l ] B
©« sup
s∈Sk ,l

#s∑
j=0

|Ξs j ,s j+1 |p
ª®¬
1/p

.

We observe that in the case where Ξk ,l = wl − wk both definitions coincide.

Since the trivial sequence (k , l ) ∈ Sk ,l we obtain immediately the bound

|Ξk ,l | ≤ ‖Ξ‖p ;[k ,l ] (3)

for any p > 0. In the particular case where Ξk ,l = wl − wk we also obtain

‖w‖∞ B sup
k=0,...,N

|wk | ≤ |w0 | + ‖w‖p ;[0,N ] .
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Proposition 2.7. Let Ξ be a triangular array and p ≥ 0. Then ωk ,l B ‖Ξ‖pp ;[k ,l ] is a control.

Proof. Indeed, if s ′ ∈ Sk ,l and s ′′ ∈ Sl ,m then s = (s ′, s ′′) ∈ Sk ,m and so

#s ′∑
j=0

|Ξs j ,s j+1 |p +
#s ′′∑
j ′=0

|Ξs ′
j ′,s
′
j ′+1
|p ≤ ‖Ξ‖p

p ;k ,m

and super-additivity follows from taking the supremum over Sk ,l and Sl ,m . �

Remark 2.8. Since the set Sk ,l is finite, the p-variation norm of Ξ is finite for any p > 0 and triangular
array Ξ. This should be contrasted with the usual setting for rough paths, where one deals with paths
in continuous time; in that setting, the p-variation norm can become infinite and this introduces a
number of analytical problems which are not present in the present context.

Remark 2.9. The p-variation defines a quasi-norm for 0 < p < 1 (i.e. the triangle inequality fails),
and a semi-norm for p ≥ 1 on time series, since all constant sequences have vanishing p-variation.
For p ≥ 1, it becomes a norm on triangular arrays.

Lemma 2.10. Let 0 ≤ p < q < ∞. Then ‖Ξ‖q ;[k ,l ] ≤ ‖Ξ‖p ;[k ,l ]

Proof. Observe that, since q
p > 1, the inequality

#s∑
j=0

|Ξs j ,s j+1 |q ≤
©«

#s∑
j=0

|Ξs j ,s j+1 |p
ª®¬
q/p

holds for any s ∈ Sk ,l . �

Given a triangular array Ξ, we define another collection (δΞk ,l ,m : 0 ≤ k < l < m) by

δΞk ,l ,m B Ξk ,m − Ξk ,l − Ξl ,m .

In the special case where Ξk ,l = wl − wk we see that δΞk ,l ,m = 0. The operator δ satisfies the
following product rule: if w is a time series and Ξ is a triangular array, consider the triangular array
Zk ,l B wkΞk ,l . Then

δZk ,l ,m = wk δΞk ,l ,m − wk ,l Ξl ,m . (4)

Finally we collect here some standard results for further reference.

Lemma 2.11. Let Ξ be a triangular array and p ≥ 0. Suppose there is a controlw such that

|Ξk ,l | ≤ Cω1/pk ,l

for all 0 ≤ k < l ≤ N and some constant C > 0. Then,

‖Ξ‖p ;[k ,l ] ≤ Cω1/pk ,l

for all 0 ≤ k < l ≤ N .

DOI 10.20347/WIAS.PREPRINT.2732 Berlin 2020
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Proof. By hypothesis the inequality
|Ξk ,l |p ≤ C pωk ,l

holds for all 0 ≤ k < l ≤ N . By superadditivity ofw , if s ∈ Sk ,l then also

#s∑
j=0

|Ξs j ,s j+1 |p ≤ C pωk ,l .

The desired bound follows upon taking the maximum over s ∈ Sk ,l . �

Lemma 2.12. Assume that p ≥ 1 and

|Ξk ,l | ≤ Cω1/pk ,l
for all 0 ≤ k < l such that ωk ,l ≤ 1. Then

‖Ξ‖p ;[k ,l ] ≤ C (ω1/pk ,l ∨ ωk ,l )

for all 0 ≤ k < l .

2.3 The Sewing Lemma

At the core of the theory of rough integration lies the Sewing Lemma [7, 8]. Therefore, it is tightly
connected with the solution theory of differential equations driven by rough signals. Since our main
aim is to perform a precise analysis of the behaviour of discrete equations driven by irregular time-
series, it is no doubt that its discrete analogue will play a prominent rôle here as well.

We begin by showing some preliminary results.

Lemma 2.13. Suppose s ∈ Sk ,l of length #s = m. For any given control w , there exists an integer
j ∗ with 1 ≤ j ∗ ≤ m such that

ωs j ∗−1,s j ∗+1 ≤
2

m
ωk ,l .

Proof. Suppose, on the contrary, that for any 1 ≤ j ≤ m we have that

ωs j−1,s j+1 >
2

m
ωk ,l .

Then this would imply that

2ωk ,l <
m∑
j=1

ωs j−1,s j+1 ≤ 2ωk ,l

by super-additivity, which is a contradiction. �

Proposition 2.14 (Discrete sewing). Let (Ξk ,l ) be a triangular array, and suppose that there exist two
controlsw and w̃ such that

|δΞk ,l ,m | ≤ ωαk ,l ω̃
β
l ,m

for some α , β > 0 with α + β > 1. Then������ l−1∑
j=k

Ξj ,j+1 − Ξk ,l

������ ≤ 2(α+β )ζ (α + β )ωαk ,l w̃ β
k ,l

where ζ denotes Riemann’s zeta function.

DOI 10.20347/WIAS.PREPRINT.2732 Berlin 2020
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Proof. By Remark 2.2 we deduce that |δΞk ,l ,m | ≤ ωαk ,mω̃
β
k ,m

, and Lemma 2.5 implies that ω̂ B

ω
α
θ ω̃

β
θ is a control.

Now we apply a Young-style argument to estimate the above difference. First we observe that if l −k =
1 then the bound is trivial since the left-hand side vanishes. Therefore we assume that l − k ≥ 2. By
Lemma 2.13 we can find an index k < j ∗ < l such that

ω̂j ∗−1,j ∗+1 ≤
2

(l − k − 1) ω̂k ,l .

Hence, if we denote by s B (k , k + 1, . . . , j ∗ − 1, j ∗ + 1, . . . , l ) we have������ l−1∑
j=k

Ξj ,j+1 −
∑
s

Ξs j ,s j+1

������ = |δΞj ∗−1,j ∗,j ∗+1 | ≤
(

2

l − k − 1

)θ
ω̂θk ,l .

Then we can apply Lemma 2.13 again to the sequence s to obtain a “coarser” sequence s ′, containing
one less point, and such that�����∑

s

Ξs j ,s j+1 −
∑
s ′
Ξs ′

j
,s ′
j+1

����� ≤ (
2

l − k − 2

)θ
ω̂θk ,l .

Continuing in this way we obtain a sequence of coarsenings of the full sequence until we get to
s∗ = (k , l ), and by using the triangular inequality we then deduce the estimate������ l−1∑

j=k

Ξj ,j+1 − Ξk ,l

������ ≤ 2θ l−k−1∑
r=1

1

r θ
ω̂θk ,l

from where the conclusion follows since θ = α + β > 1. �

We will also need the following generalization of the Sewing Lemma, whose proof is straightforward.

Proposition 2.15 (Generalized discrete sewing). Suppose that Ξ is a triangular array as before. Sup-
pose that there are controls ωr and ω̃r , and exponents αr , βr > 0 such that αr + βr > 1 for all
r = 1, . . . , n . If

|δΞk ,l ,m | ≤
n∑
r=1

ωαr
r ;k ,l ω̃

βr
r ;l ,m

then ������ l−1∑
j=k

Ξj ,j+1 − Ξk ,l

������ ≤ 2θ̂ζ (θ̂) n∑
r=1

ωαr
r ;k ,l ω̃

βr
r ;k ,l

where θ̂ B min
r=1,...,n

{αr + βr }.

3 The iterated-sums signature

3.1 Quasi-shuffle Hopf algebra

Consider an at most countably infinite set A, hereafter called the alphabet, and whose elements we
shall call letters. Given k ≥ 1, a word of length k over A is a sequence u = (u1, . . . ,uk ) ∈ Ak ; for

DOI 10.20347/WIAS.PREPRINT.2732 Berlin 2020



Stability of deep neural networks via discrete rough paths 9

convenience we use the notation u = u1 · · ·uk and we denote its length by ` (w ) B k . Note that the
order of the letters is crucial, so the words a1a2 and a2a1 are distinct if a1 , a2. There is a single
word of length 0, called the empty word, and denoted by e . Moreover, we make the convention that
A0 B {e}. The collection of all words over A is denoted by

A
∗ B

∞⋃
k=0

A
k .

There is a monoid structure onA∗ obtained by concatenation of words. Given two words u = u1 · · ·uk ∈
Ak and v = v1 · · ·v` ∈ A` , their concatenation is the word

uv = u1 · · ·ukv1 · · ·v` ∈ Ak+` .

By definition ew = we = w so that the empty word acts as the neutral element for this composition.

The following construction, which already appeared in [4], is a particular case of the general quasi-
shuffle product introduced in [14]. Consider a finite set A = {1, . . . , d} of d distinct symbols. We
complete A to a commutative semigroup A, whose internal law we denote by square brackets; there-
fore, we obtain a map [··] : A × A ↦→ A such that

[a1 [a2a3]] = [[a1a2]a3], [a1a2] = [a2a1]

for all a1, a2, a3 ∈ A. In view of the first identity, we denote the common result of this operation just
by [a1a2a3]. Therefore, any element a ∈ A is of the form a = [i1 · · · ik ] for some i1, . . . , ik ∈ S .
Observe that a wordw ∈ A∗ has a lenght ` (w ) as before, but now also a weight |w | which counts the
total number of symbols from S forming it. For example, the wordw = [13] [23] has length ` (w ) = 2
but weight |w | = 4.

Now, we let H be the real vector space spanned by A∗. A generic element of H is a finite linear
combination of words from A∗ with real coefficients.

Example 3.1. If A = {1, 2, 3}, a generic element of H might look like

√
2[1] + 3

2
[112] + π2 [1] [23] .

We consider the quasi-shuffle product? : H × H → H recursively byw ? e = e ?w = e and

v a ?wb B (v ?wb)a + (v a ?w )b + (v ?w ) [ab]

for v ,w ∈ A∗ and a, b ∈ A. This definition is bilinearly extended to H ⊗ H . An example:

[12] ? [3] = (e ? [3]) [12] + ( [12] ? e) [3] + (e ? e) [123]
= [3] [12] + [12] [3] + [123] .

We observe in particular that the total weight | [12] | + | [3] | = 3 is preserverd but the total length
is not, in the sense that all the terms in the right-hand side have the same weight but not the same
lenght. In general, it can be proven that if Hn is the real vector space spanned by words of weight
exactly n , then the inclusion Hn ?Hm ⊂ Hn+m holds [14]. Since the decomposition

H =
∞⊕
n=0

Hn

DOI 10.20347/WIAS.PREPRINT.2732 Berlin 2020
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is clearly true, (H ,?, e) becomes a graded connected algebra, known as the quasi-shuffle algebra
over S .

The space H can be endowed with another operation, known as the deconcatenation coproduct
∆ : H → H ⊗ H , and defined for u = u1 · · ·un by

∆(w ) B w ⊗ e + e ⊗ w +
n−1∑
j=1

u1 · · ·u j ⊗ u j+1 · · ·un .

This definition is linearly extended to all of H . It can be shown that the compatibility condition ∆(v ?
w ) = ∆(v ) ?∆(w ) is satisfied, thus turning the triple (H ,?,∆) into a Hopf algebra.

The space of linear mapsψ : H → Ò can be turned into an algebra by dualizing the coproduct. More
precisely, given two such maps ϕ,ψ , we define

(ϕ ∗ψ) (x ) = (ϕ ⊗ ψ) ◦ ∆(x ), x ∈ H .

For a single word u = u1 · · ·un this yields

(ϕ ∗ψ) (w ) = ϕ (w )ψ (e) +ϕ (e)ψ (w ) +
n−1∑
j=1

ϕ (ω1 · · ·ωj )ψ (ωj+1 · · ·ωn). (5)

It is a general result that the set G of linear maps such that ψ (v ?w ) = ψ (v )ψ (w ) forms a group
under the convolution product; that is, if ϕ,ψ ∈ G then ϕ ∗ ψ ∈ G , and for all ψ ∈ G there exists
ψ−1 ∈ G such that ψ ∗ ψ−1 = ψ−1 ∗ ψ = ε. Here, ε ∈ G is the multiplicative linear map such
ε (e) = 1 and zero otherwise. The map ε is called the counit of H and acts as the neutral element
for the group law in G . Elements of G are referred to as characters over H (or simply as characters)
if the underlying Hopf algebra is clear from context.

We now extend a given time series w by computing additional “features”, which we will now describe.
These features provide a succint description of the behaviour of w, in the spirit of T. Lyons’ iterated-
integrals signature. In [4] it is shown that these features capture all time-warping invariants of w. In the
remainder of the paper we will see that they are also well suited for giving an analytical description of
the behaviour of ResNets, and more generally, of numerical schemes for approximation solutions to
ODEs driven by rough signals.

Recall from the previous section that H is defined to be the real-linear span of the set of words A∗ over
the free commutative semigroup A generated by A = {1, . . . , d}. Given two indices 0 ≤ k < l ≤ N
we define a linear map ×k ,l : H → Ò in three steps:

1 Define the extended increments w[i1···in]
k ,l

of w by simply multiplying out the individual increments
in the corresponding directions, that is, for each n-tuple (i1, . . . , in) ∈ An ,

w[i1···in]
k ,l

B wi1
k ,l
· · ·win

k ,l
.

2 Each wordw = ω1 · · ·ωn ∈ A∗ is mapped to an iterated sum,

×ω
k ,l B

∑
· · ·

∑
k≤j1<···<jn<l

wω1
j1,j1+1

· · ·wωn
jn ,jn+1

.

By definition, the empty word is mapped always to 1.
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3 Finally, the mapw ↦→ ×ω
k ,l

is linearly extended to H .

Definition 3.2. The collection × B (×k ,l : 0 ≤ k < l ≤ N ) is the iterated-sums signature of the
time series w.

Example 3.3. Before moving forward, we present some examples.

×[i1] [i2]
k ,l

=
l−1∑
j=k

(wi1
j
− wi1

k
) (wi2

j+1 − wi2
j
)

×[i1 i2]
k ,l

=
l−1∑
j=k

(wi1
j+1 − wi1

j
) (wi2

j+1 − wi2
j
).

We remark from this example that the following relation

×[i1]
k ,l
×[i2]
k ,l

= wi1
k ,l

wi2
k ,l

=
l−1∑
j1=k

(wi1
j1+1
− wi1

j1
)
l−1∑
j2=k

(wi2
j2+1
− wi2

j2
)

=
∑

k≤j1<j2<l
wi1
j1,j1+1

wi2
j2,j2+1

+
∑

k≤j2<j1<l
wi1
j1,j1+1

wi2
j2,j2+1

+
l−1∑
j=k

wi1
j ,j+1w

i2
j ,j+1

= ×[i1] [i2]
k ,l

+×[i2] [i1]
k ,l

+×[i1 i2]
k ,l

= ×[i1]?[i2]
k ,l

.

From this we can observe two things: the entries in the iterated-sums signature are not linearly inde-
pendent from each other, and the quasi-shuffle product defined in Section 3.1 completely describes
the combinatorial properties of the relations between them. The map × enjoys several other combi-
natorial properties which are nicely described by the quasi-shuffle Hopf algebra, which we now recall
from [4].

Theorem 3.4. The iterated-sums signature satisfies:

1 the quasi-shuffle identities: for any v ,w ∈ H ,

×v
k ,l×

ω
k ,l = ×

v?w
k ,l .

This means that ×k ,l ∈ G for all k < l .

2 Chen’s identity: for any k < l < m we have ×k ,l ∗×l ,m = ×k ,m .

3 Recursive computation: for any u = u1 · · ·un we have

×u
k ,l =

l−1∑
j=k

×u1···un−1
k ,j

wun
j ,j+1.

Remark 3.5. From Chen’s identity it can be deduced that×k ,l = ×
−1
0,k ∗×0,l . Therefore, the iterated-

sums signature is characterized by the sequence k ↦→ ×0,k . This identity can also be exploited during
numerical computations to reduce the amount of work required to compute ×k ,l for 0 < k < l < N .
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Indeed, one only really ever needs to compute iterated sums while calculating the value of×u
0,k for all

words u up to a certain weight, and all 0 ≤ k ≤ N . Once these values are stored, the inverse ×−1k ,l
can be computed by using the antipode1, i.e. (×−1)u

k ,l
= ×α (u)

k ,l
which only needs to compute linear

combinations of the already stored quantities; these can also be stored. Finally, the value of ×u
k ,l

can

easily be recovered from Chen’s identity, since by eq. (5),×k ,l = ×
−1
0,k ∗×0,l is also given as a linear

combination of already stored quantities.

The number of features contained in the iterated-sums signature, that is, the dimension of the linear
span Hn B 〈u ∈ A∗ : |u | = n〉 or, equivalently, the number of words u ∈ A∗ with |u | = n is known
[4, Remark 2.3]. The first few are

dimH1 = d , dimH2 =
d (3d + 1)

2
, dimH3 =

d (13d 2 + 9d + 2)
6

, . . .

We choose norms | · |n on each of the finite-dimensional spaces Hn , subject to some compatibility
conditions, and define the vector ×(n) = (×u : |u | = n). Finaly, we set

|||×|||p ;[k ,l ] B max
n=1,...,[p]

‖×(n) ‖1/n
p/n ;[k ,l ]

where the p-variation of×(n) is computed with respect to the chosen norm on Hn . The trivial inequal-
ity

‖×u ‖p/n ;[k ,l ] ≤ |||×|||np ;[k ,l ]

can easily be seen to hold for all words u ∈ Hn .

4 Controlled difference equations

In this section we consider equations of the form

xk+1 = xk +
d∑
i=1

fi (xk ) (wik+1 − wik ), x0 = ξ ∈ Òm (6)

for some vector fields f1, . . . , fd on Òm , and where k ranges between 0 and some fixed time horizon
N ∈ Î. Our main aim is to obtain some control over the size of the end-point value xN of the solution.

In view of the previous sections, and in particular of the bound in eq. (3), we will try to obtain good
estimates for the p-variation norm ‖x‖p ;[0,N ] . Of course, such estimates will require some assump-
tions on the vector fields. It turns out that we will not only be able to control the “large scale” behavior
of x, but we will also obtain a cascade of estimates of some remainder terms, reminiscent of a Taylor
expansion.

The techniques needed to obtain those bounds will depend crucially on p ∈ [1,∞). At first, we
distinguish two basic regimes: p ∈ [1, 2) and p ∈ [2,∞). By analogy with the rough paths literature,
we call the former the Young regime, and the latter the rough regime – even though there is strictly no
notion of roughness in our setting. The rough regime can be further subdivided into the cases where

1This is a standard result in the theory of Hopf algebras. In the quasi-shuffle setting, α : H → H admits an explicit
expression in terms of compositions [14, 4]
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p ∈ [n, n + 1), which we call the level n rough regime. The terminology will make itself clear later
down the road.

A central tool for constructing solutions to ODEs driven by rough paths are the so-called controlled
paths, introduced by Gubinelli [8]. See also [12]. In a nutshell, the notion of “controlledness” contains
all the necessary analytical estimates needed for the definition of a rough integral which then is used
to give sense to solutions of Rough Differential Equations. In the present setting no such definition is
needed since there are no divergences appearing from considering eq. (6). Nonetheless, we can still
derive similar bounds. Note however that in our case the estimates are proven rather than assumed.

Given a vector field f : Òm → Òm of class Cnb , i.e. it and all its derivatives up to order n are bounded,
we define

‖f ‖Cnb B max
k=1,...,n

‖D k f ‖∞.

If F = (f1, . . . , fd ) is a collection of vector fields on Òn of class Cnb (or, equivalently, a map in
Cnb (Òn ,Òdn)), we define

‖F ‖Cnb B max
i=1,...,d

‖fi ‖Cnb .

4.1 The Young regime

In this regime, we can easily obtain good bounds with minimal assumptions on the fi . These bounds
have already been shown by Davie [3], but it will be an enlightening exercise to go through the proof
in full details, since it will lay the foundations for our approach in the rough regime. Also, our methods
are slightly different and already in this case they highlight the importance of the rôle played by the
Sewing Lemma (Propositions 2.14 and 2.15).

Before beginning we define the remainder

Rk ,l B xk ,l −
d∑
i=1

fi (xk )wik ,l (7)

so that

xk ,l =
d∑
i=1

fi (xk )wik ,l + Rk ,l .

Theorem 4.1. Let 1 ≤ p < 2, and suppose that F = (f1, . . . , fd ) is a collection of vector fields in
Òn , of class C1b . The bound

‖x‖p ;[k ,l ] ≤
(
2pC

p−1
p ‖F ‖pC1b

‖w‖p
p ;[k ,l ] ∨ 2‖F ‖C1b ‖w‖p ;[k ,l ]

)
holds, with

Cp B 22/pζ (2/p).

Proof. Consider the triangular array Ξk ,l B
∑
i fi (xk )wik ,l . By eq. (4) we immediately see that

δΞk ,l ,m = −
∑
i

(fi (xl ) − fi (xk ))wil ,m,

DOI 10.20347/WIAS.PREPRINT.2732 Berlin 2020



C. Bayer, P. K. Friz, N. Tapia 14

so that the usual Lipschitz bound implies

|δΞk ,l ,m | ≤ ‖F ‖C1b ‖x‖p ;[k ,l ] ‖w‖p ;[k ,l ],

and the hypothesis of Proposition 2.14 is satisfied since 2/p > 1. Thus, we obtain������ l−1∑
j=k

Ξj ,j+1 − Ξk ,l

������ ≤ Cp ‖F ‖C1b ‖x‖p ;[k ,l ] ‖w‖p ;[k ,l ] .

with Cp B 22/pζ (2/p). Now, we observe that by eq. (6),

l−1∑
j=k

Ξj ,j+1 = xk ,l

thus obtaining
|Rk ,l | ≤ Cp ‖F ‖C1b ‖x‖p ;[k ,l ] ‖w‖p ;[k ,l ] . (8)

By Lemma 2.11, the same bound holds if we replace |Rk ,l | on the left-hand side by ‖R ‖p/2;[k ,l ] .

Using the relation between the remainder R and the increments of x we get

|xk ,l | ≤ Cp ‖F ‖C1b ‖x‖p ;[k ,l ] ‖w‖p ;[k ,l ] + ‖F ‖C1b ‖w‖p ;[k ,l ]

for all 0 ≤ l < k ≤ N . We deduce that

‖x‖p
p ;[k ,l ] ≤ 2

p−1Cp ‖F ‖pC1b
‖x‖p

p ;[k ,l ] ‖w‖
p
p ;[k ,l ] + 2

p−1‖F ‖pC1b
‖w‖p

p ;[k ,l ] .

If we now consider a pair k < l such that ω̄1/p
k ,l
B 2Cp ‖F ‖C1b ‖w‖p ;[k ,l ] ≤ 1, we obtain

‖x‖p
p ;[k ,l ] ≤ 2

p ‖F ‖pC1 ‖w‖
p
p ;[k ,l ] = C

−p
p ω̄k ,l

for all such (k , l ). In particular
|xk ,l | ≤ 2‖F ‖C1bC

−1
p ω̄

1/p
k ,l
.

From Lemma 2.12 we then get

‖x‖p ;[k ,l ] ≤ C−1p
(
ω̄k ,l ∨ ω̄1/pk ,l

)
= C−1p

(
2p ‖F ‖pC1b

C
p
p ‖w‖

p
p ;[k ,l ] ∨ 2‖F ‖C1bCp ‖w‖

p
p ;[k ,l ]

)
from where the result follows. �

4.2 The rough regime

Before continuing we review the combinatorial setting for describing the composition of vector fields.
We fix a collection f1, . . . , fd of vector fields on Òn . It turns out that a convenient framework for
describing the kind of expansions we are looking for, is that of pre-Lie algebras.

Let T denote the set of non-planar rooted trees labeled by an at most countable index set I . By a
slight abuse of notation, we denote by the same symbol the linear span of this set, i.e. the vector space
formed by linear combinations of decorated trees. By forest we mean a disjoint union of trees, and we
denote by F the set of all forests. There is a unique empty forests which we denote by ∅.

Given a label in I , we define an operator B+i : F → T such that the image B+i (τ1 · · · τn) is obtained
by grafting each of the trees τ1, . . . , τn onto a new root labeled by i .
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Example 4.2.

B+i

(
1 2

3

4 5
)
=

i

1 2 3

4 5

.

Given two trees τ,σ ∈ T , τ x σ denotes the linear combination of trees obtained by grafting the
root of σ onto every vertex of τ .

Example 4.3.

3

4
x

1

2
=

3

4

1

2

+
3

4 1

2

We note that the operator B+i defined above corresponds to the special case where τ is a tree con-
taining a single node.

It can be shown that the grafting operation satisfies the (right) pre-Lie relation

(τ x σ) x γ − τ x (σ x γ) = (τ x γ) x σ − τ x (γ x σ),

i.e. the associator ax(τ,σ, γ) B (τ x σ) x γ − τ x (σ x γ) is symmetric in σ, γ. In fact, the
pair T ,x is the free pre-Lie algebra on #I generators [2].

The linear span of forests, also denoted by F , can be thought of as the free polynomial algebra over
T ; that is, a forests can be uniquely identified with a commuting polynomial with variables indexed by
T . In order to keep the notation simple, we identified these variables with their indices. In this sense,
single forests correspond to monomials of trees. In particular, we use the standard product notation
σ = σ1 · · ·σk ∈ F
The grafting operator can be upgraded to an operatorx : T ×F → F given by grafting every forests
on the right onto every vertex of the tree on the left. As a special case, we also define τ x ∅ B τ for
every τ ∈ T .

Example 4.4. Continuing with the above example,

3

4
x

1

2
5 =

3

4

1

2

5
+

3

4

1

2

5
+

3

4 1

2

5 +
3

4

5

1

2

The extended grafting is such that T becomes what is known as a symmetric brace algebra [17]. In
particular, the following formula holds.

Proposition 4.5. Let τ1, . . . , τn ∈ T , σ = σ1 · · ·σk ∈ F and i ∈ I . Then

B+i (τ1 · · · τn) x σ =
∑

I1,...,In+1

B+i ((τ1x σJ1) · · · (τn x σJn )σJn+1).

where the sum is over all ways of decomposing the set {1, . . . , k } into n + 1 disjoint subset (some
may be empty), and σ∅ = ∅,σJ = σj1 · · ·σjr for {j1, . . . , jr } ⊂ {1, . . . , k }.

Vector fields also satisfy the pre-Lie relation under composition as differential operators. Recall that
any smooth vector field f on Òn can be identified with a first-order differential operator acting on C1
functions by

(f B g ) (x ) B Dg (x )f (x ).
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Then, if f , g , h are vector fields of class C1,

(f B g ) B h − f B (g B h) = D [Df (x )g (x )]h (x ) − Df (x )Dg (x )h
= D 2f (x ) (g (x ), h (x ))

which is clearly symmetric in g , h. This justifies the following definition.

Definition 4.6. Let fi : i ∈ I be vector fields inÒn . We recursively define the elementary vector fields
fτ for τ ∈ T recursively by f i = fi and

fB+
i
(τ1···τn ) (x) = D

nfi (x) (fτ1 (x), . . . , fτn (x)).

This definition is extended to linearly to F in such a way that fτ1···τn ≡ 0 if n ≥ 1.2 We also set f∅ = id.

This definition is consistent because of the universality property of (T ,x). As a direct consequence
of Proposition 4.5 we obtain

Lemma 4.7. Let τ1, . . . , τn ∈ T , σ = σ1 · · ·σk ∈ F and i ∈ I . Then

fB+
i
(τ1···τn )xσ (x) =

n+k∑
r=n

1

(r − n)!
∑
ρ,γ

D r fi (x) (fτ1xρ1, . . . , fτ1xρn , fγ1, . . . , fγr−n ).

where the sum is over all forests ρ1, . . . , ρn , γ1, . . . , γr−n ∈ F such that σ = ρ1 · · · ρn · γ1 · · · γr−n .

Proof. By Proposition 4.5, the formula

fB+
i
(τ1...,τn )xσ (x) =

∑
I1,...,In+1

fB+
i
((τ1xσJ1 )···(τnxσJn )σJn+1 ) (x)

holds. We split this sum according to the size of Jn+1 ⊂ {1, . . . , k } to obtain, in accordance with
Definition 4.6,

fB+
i
(τ1...,τn )xσ (x) =

k∑
r=0

∑
I1,...,In

1

r !
D n+r fi (fτ1xσJ1 , . . . , fτnxσJn , fσ ′1, · · · , fσ ′r )

where σJn+1 = σ′1 · · ·σ
′
r and the combinatorial factor appears because of the symmetry of this ex-

pression with respect to σJn+1 . The result follows from this formula by substituting indices in the first
summation and identifying ρk = σJk , γk = σ

′
k . �

For notational simplicity, instead of eq. (6), we address the slightly more general problem

xk+1 = xk +
[p]∑
s=1

d∑
i1,...,is=1

f[i1···is ] (xk ) (w
i1
k+1 − wi1

k
) · · · (wis

k+1 − wis
k
) (9)

= xk +
[p]∑
s=1

f[i1···is ] (xk )×
[i1···is ]
k ,k+1

This includes eq. (6) as the special case where we set f[i1···is ] ≡ 0 for s > 1. Equation (9) is a discrete
analogue of a truncated version of Marcus’ canonical extension [16].

2Maps with this property are sometimes called infinitesimal characters in the literature.
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Remark 4.8. Formally speaking, the formalism we have introduced also serves to handle the case
where the right-hand side of eq. (9) is replaced by an infinite series containing all possible contractions.
To avoid any analytical complication that might arise from such considerations we refrain from doing
so, but we note that at least the combinatorial formulas carry over without any difficulties.

We particularize the sets T and F of decorated trees and forests to decorations from the extended
alphabet A. Concretely, this means that any contraction of the form a = [i1 · · · ik ] ∈ A can appear
attached to a node.

We also consider the contracting arborification ac : F → H [1, 6]. It is recursively defined by

ac (B+i (τ1 · · · τk )) = (ac (τ1) ? · · ·? ac (τk )) [i] .

This formula defines the image of ac over T . Since F is the free polynomial algebra over trees, this
definition admits a unique extension to F , which is given by

ac (τ1 · · · τn) = ac (τ1) ? · · ·? ac (τn).

Example 4.9.

ac ( 1 2) = [1] [2] + [2] [1] + [12],
ac

(
3

1 2
)
= (ac ( 1) ? ac ( 2)) [3] = [1] [2] [3] + [2] [1] [3] + [12] [3] .

Finally, we introduce a grading on forests which is compatible with the weight of words in H . For
τ = a, a ∈ A we set |τ | B |a |. Inductively, we define |B+a (τ1 · · · τn) | B |τ1 · · · τn | + |a | and
|τ1 · · · τn | B |τ1 | + · · · + |τn |.
Concretely, the grading on F counts the total weight in A of the decorations appearing in the forest.
Note that this differs with the usual grading introduced on F by the number of nodes. As a simple
example, the tree [23] has degree two instead of just one. By analogy with the definition for words,
for every integer n ≥ 0 we let Fn be the set of forests with weight exactly equal to n , and F(n) is the
union of the Fk for k ≤ n . We also define F 0(n) B F(n) \ {∅}.
We use the contracting arborification map to transform eq. (9) into its arborified version. First, we
define a transformed path ×

τ
k ,l B ×ac (τ)

k ,l
, for all forests τ ∈ Fd .

Example 4.10. For all a, b, c ∈ A we have

×
a

k ,l = ×
a
k ,l , × a

b c

k ,l
= ×[b] [c] [a]

k ,l
+×[c] [b] [a]

k ,l
+×[bc] [a]

k ,l
.

By its very definition, the aborified map × satisfies the product rule

×
τ
k ,l×

σ
k ,l = ×

τσ
k ,l

for all forests τ,σ ∈ Fd . Moreover, it satisfies Chen’s relation

δ×
τ
k ,l ,m = ×

τ
k ,m −×

τ
k ,l −×

τ
l ,m =

∑
(τ)
×
τ1
k ,l×

τ2
l ,m .

for all τ ∈ T . Here, the terms in the sum are obtained from τ by performing admissible cuts, and
we use the convention where τ2 is the connected component containing the root. See e.g. [9, 12] for
further details. In particular, this sum can be rewritten as∑

ρ∈T ,σ∈F
c (σ, ρ; τ)×σ

k ,l×
ρ
l ,m (10)
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where the coefficient c (σ, ρ; τ) is the coefficient of τ in the linear combination ρ x σ .

We are now ready to prove a formal Taylor-like expansion for the large scale increments of the solution
x of eq. (9). Given p ≥ 2, we [p] ∈ Î denote its integer part, i.e. the unique integer such that
[p] ≤ p ≤ [p] + 1. With this notation, the controlled difference equation becomes

xk+1 = xk +
∑

a∈A:|a |≤[p]
f a (xk )×

a

k ,k+1.

Theorem 4.11. For any p ≥ 1, the inequality

‖x‖p ;[k ,l ] ≤
(
C
p−1
p ‖F ‖p

C [p ]+1b

|||×|||p
p ;[k ,l ] ∨ ‖F ‖C [p ]+1b

|||×|||p ;[k ,l ]

)
holds, with

Cp B 2( [p]+1)/pζ

(
[p] + 1
p

)
.

We prove Theorem 4.11 in various stages, but first we observe that since eq. (9) is bilnear in f and×
we can –and do– assume that ‖F ‖C [p ]+1b

≤ 1. The first step is to consider the “germ”

Ξk ,l B
∑
F 0( [p ])

1

Σ(τ) fτ (xk )×
τ
k ,l (11)

where we recall that Σ(τ) is the internal symmetry factor of the tree τ [1].

For a given tree τ ∈ T we define the remainder term

R
τ

k ,l B fτ (xl ) −
∑

|σ |≤[p]−|τ |

1

Σ(σ) fτxσ (xk )×
σ
k ,l , (12)

It will also be necessary to allow for a more general version of this remainder, parametrized by an
integer 0 ≤ s ≤ [p] − |τ |, defined as

R
τ,s

k ,l B fτ (xl ) −
∑
|σ |≤s

1

Σ(σ) fτxσ (xk )×
σ
k ,l , (13)

The general idea is that such remainder should have be measured in the p
s+1 -variation norm.

One last remark: from now on we continue working with × instead of ×. This causes no harm since
by definition ∑

τ∈T
fτ (xk )×

τ
k ,l =

∑
u∈A

f
a
†
c (u) (xk )×

u
k ,l ,

so any estimate we prove using the sum on the right immediately implies that the same bound holds

when we put the sum on the right in its place. In the same vein, we define ×
(n)
B (×τ

: |τ | = n)
and

|||×|||p ;[k ,l ] B max
n=1,...,[p]

‖×(n) ‖1/n
p/n ;[k ,l ],

and remark that since ac (Hn) ⊂ Tn for all n ≥ 0, the bounds

|||×|||p ;[k ,l ] . |||×|||p ;[k ,l ] . |||×|||p ;[k ,l ]

hold uniformly on k , l for all p ≥ 1.
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Proposition 4.12. The bound������xk ,l − ∑
0< |τ |≤[p]

1

Σ(τ) fτ (xk )×
τ
k ,l

������ ≤ Cp ∑
0< |τ |≤[p]

‖R τ ‖p/([p]+1−|τ |);[k ,l ] |||×||| |τ |p ;[k ,l ]

holds for all 0 ≤ k < l ≤ N , where Cp B 2( [p]+1)/pζ
(
[p]+1
p

)
.

Proof. By eq. (4)

δΞk ,l ,m = −
∑

0< |τ |≤[p]

1

Σ(τ)
©«(fτ (x) − fτ (xk ))×τ

l ,m −
∑
(τ)
fτ (xk )×

τ1
k ,l×

τ2
l ,m

ª®¬
Thanks to eq. (10), we rewrite it as∑

σ∈F ,ρ∈T

∑
0< |τ |≤[p]

c (σ, ρ; τ)fτ (xk )×
σ
k ,l×

ρ
l ,m =

∑
|ρ |≤[p]

∑
σ∈F

fτxσ (xk )×
σ
k ,l×

ρ

since, by definition

ρ x σ =
∑
τ∈T

c (σ, ρ; τ)τ .

Therefore, since the internal symmetry factor is multiplicative,

δΞk ,l ,m = −
∑

0< |τ |≤[p]

1

Σ(τ)
©«fτ (xl ) −

∑
|σ |≤[p]−|τ |

1

Σ(σ) fτxσ×
σ
k ,l

ª®¬×τ
l ,m .

In particular,

|δΞk ,l ,m | ≤
∑

0< |τ |≤[p]

1

Σ(τ) |R
τ
k ,l | |×

τ
l ,m | ≤

∑
0< |τ |≤[p]

1

Σ(τ)ω
( [p]+1−|τ |)/p
u ;k ,l ω̂

|τ |/p
τ ;l ,m

with ωτ ;k ,l B ‖R τ ‖p/([p]+1−|τ |)p/([p]+1−|τ |);[k ,l ] and ω̂τ ;k ,l = ‖×
τ ‖p/|τ |
p/|τ |;[k ,l ] .

Since
[p] + 1 − |τ |

p
+
|τ |
p
=
[p] + 1
p

> 1,

the Sewing Lemma (Proposition 2.15) implies the desired bound. �

We now introduce the error terms

E (s)
k ,l
B xl −

∑
|τ |≤s

1

Σ(τ) fτ (xk )×
τ
k ,l

for s = 0, . . . , [p]. We remark that since the elementary vector fields vanish on forests, the error term
consists of a sum only over trees.
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Lemma 4.13. Let τ ∈ T with |τ | ≤ [p] and n nodes, and 0 ≤ s ≤ [p] − |τ | There is a control

w (τ) , depending polynomially on the error terms E (s+n−r ), r = n + 1, . . . , n + s , |||×|||p and R
ρ,s ′

for
|ρ | < |τ | and some s ′ < s , such thatR τ,sk ,l p/(s+1)

p/(s+1);[k ,l ]
. ‖x‖p

p ;[k ,l ] + |||×|||
p
p ;[k ,l ] + ω

(τ,s)
k ,l

Moreover, the dependence on E (s+n−r ) is a polynomial of degree r − n and a sum of homogeneous

polynomials of degree 0, . . . , n on the R
τ,s ′

.

Proof. We proceed by induction on the number of nodes in τ , the case when τ = ∅ corresponds to
Proposition 4.12, since R∅

k ,l
= E ( [p])

k ,l
= xk ,l − Ξk ,l . We also note that in general n ≤ |τ |.

Suppose τ = B+a (τ1 · · · τn) for some trees τ1, . . . , τn ∈ T and some a ∈ A. On the one hand, by
performing a Taylor expansion up to order s we see that

fτ (xl ) = D nfa (xl ) : (fτ1, . . . , fτn )

=
n+s∑
r=n

1

(r − n)!D
r fa (xk ) (fτ1 (xl ), . . . , fτn (xl ), xk ,l , . . . xk ,l ) + Bk ,l (14)

where the remainder term satisfies

|Bk ,l | ≤
|xk ,l |s+1
(s + 1)! ≤ ‖x‖

s+1
p ;[k ,l ] .

On the other hand, thanks to Lemma 4.7 we see that∑
|σ |≤s

fτxσ (xk )×
σ
k ,l =

n+s∑
r=n

1

(r − n)!
∑
ρ,γ

D r fa (xk ) : (fτ1xρ1, . . . , fτnxρn , fγ1, . . . , fγn−r )×
ργ
k ,l (15)

where now the inner sum is over forests ρ1, . . . , ρn , γ1, . . . , γn−r such that the sum of their weights is
less than or equal to s , and |γj | > 0.

For a fixed n ≤ r ≤ n + s , we replace in eq. (14) the identities

fτj (xl ) =
∑
|ρ |≤s ′

j

fτjxρ×
ρ
k ,l + R

τj ,s
′
j

k ,l

and
xk ,l =

∑
0< |γ |≤s+n−r

fγ (xk )×
γ
k ,l + E

(s+n−r )
k ,l

.

where 0 ≤ s ′j ≤ [p] − |τj | will be chosen later. In the end, we see that the corresponding term in
eq. (14) equals ∑

ρ ′,γ ′
D r fa (xk ) : (fτ1xρ ′1, . . . , fτnxρ ′n , fγ ′1, . . . , fγ ′r−n )×

ρ ′γ ′

k ,l + Rτk ,l

where Rτ
k ,l

is the sum of all the terms that contain at least one factor from the set{
R
τ1,s

′
1

k ,l
, . . . , R

τn ,s
′
n

k ,l
, E (s+n−r )

k ,l

}
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and E (s+n−r )
k ,l

can appear between zero and r − n times. Also, |ρ′j | ≤ s j and 0 < |γ′j | ≤ s + n − r . In
order to have enough terms to cancel out eq. (15) we need that

∑
s ′j ≥ s − (r −n) and so we choose

0 ≤ s ′j ≡ [
s+n−r
n ] < s . Given this condition, we can be sure that the difference between eqs. (14)

and (15) will be of the form
R τk ,l = R

τ,s
k ,l
+ Xτk ,l + Bk ,l

where nowXτ contains all the terms like those in eq. (15) with s < |ρ |+ |γ | ≤ (s +n − r ) (r −n +1).
This term is bounded by

|Xτk ,l | ≤
(s+n−r−1) (r−n)∑

j=1

|||×|||s+j
p ;[k ,l ] . |||×|||

s+1
p ;[k ,l ]

by the smallness assumption on |||×|||p ;[k ,l ] .

Finally, we analyse the remainder term Rτ,s more closely. A generic term looks, modulo a combinato-
rial factor, like∑
ρ,γ

D r fa (xk ) :

{
R
τi1 ,s

′
r

k ,l
, . . . , R

τij ,s
′
r

k ,l
, fτ`1xρ`1 , . . . , fτ`n−jxρ`n−j ,

(
E (s+n−r )
k ,l

) t
, fγ1, . . . , fγr−n−t

}
×
σγ
k ,l

for some r ∈ {n, . . . , n + s}, and integers j , t ≥ 0 such that j ≤ n and t ≤ r − n , and the sum is
over forests ρ` j , γj . Its absolute value is therefore bounded by

n−r∑
t=0

n∑
k=1

ˆ̀∑
`=r−n−t

‖E (s+n−r ) ‖tp/(s+n−r+1);[k ,l ] |||×|||
`
p ;[k ,l ]Sk

(
‖R τ1,s

′
r ‖p/(s ′r+1), . . . , ‖R

τn ,s
′
r ‖p/(s ′r+1)

)
.

where
Sk (x1, . . . , xn) B

∑
1≤j1<...<jk ≤n

xj1 · · · xjk

is the elementary symmetric polynomial of degree k , and

ˆ̀B (n − k ) ( [ s+n−rn ] + 1) + (r − n − t ) (s + n − r )

.

Finally we note that for each term the sum of exponents is

t (s + n − r + 1) + ` + k s ′r + k
p

≥ t (s + n − r + 1) + (r − n − t ) + [(s + n − r )/n]
p

≥ s + 1
p

�

Proof of Theorem 4.11. First, we claim that for all r = 1, . . . , [p], there exists a control w (r ) such
that

‖E ( [p]−r ) ‖p/([p]−r+1)
p/([p]−r+1);[k ,l ] . w

(r )
k ,l

+
∑

r< |τ |≤[p]
‖R τ ‖p/([p]−r+1)

p/([p]−|τ |+1);[k ,l ] |||×|||
p ( |τ |−r )/([p]−r+1)
p ;[k ,l ] .

Moreover,w (r ) can be chonsen to have the form

ω
(r )
k ,l

=
r∑
j=1

‖x‖j p
p ;[k ,l ] + ŵ

(r )
k ,l
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with ŵ (r ) depending polynomially on E ( [p]−r−j ), j = 1, . . . , [p] − r and |||×|||p
p ;[k ,l ] . Indeed, if r = 1,

we have
|E ( [p]−1)
k ,l

| ≤ |xk ,l − Ξk ,l | + |||×||| [p]p ;[k ,l ] .

Therefore, by Proposition 4.12 we obtain

|E ( [p]−1)
k ,l

|p/[p] . 2p/[p]−1C p/[p]p

∑
0< |τ |≤[p]

‖R τ ‖p/[p]
p/([p]−|τ |+1);[k ,l ] |||×|||

p |τ |/[p]
p ;[k ,l ] + 2p/[p]−1 |||×|||p

p ;[k ,l ] .

Consider the term with |τ | = 1. By the Lemma 4.13, the bound

‖R τ ‖p/[p]
p/[p];[k ,l ] ≤ ‖E

( [p]−1) ‖p/[p]
p/[p];[k ,l ] +w

(1)
k ,l

+ ‖x‖p
p ;[k ,l ]

holds for all trees with |τ | = 1, and some control w (1)
k ,l

depending polynomialy on E ( [p]−r )
k ,l

for r =
2, . . . , [p].
Choosing k < l such that 2Cp |||×|||p ;[k ,l ] ≤ 1 we obtain

‖E ( [p]−1) ‖p/[p]
p/[p];[k ,l ] .

1

2
‖E ( [p]−1) ‖p/[p]

p/[p];[k ,l ]+
1

2

∑
1< |τ |≤[p]

‖R τ ‖p/[p]
p/([p]−|τ |+1);[k ,l ] |||×|||

p ( |τ |−1)/[p]
p ;[k ,l ] +ω (1)

k ,l

and the claim is proven in the base case.

Now, assume it is true for all integers from 1 up to r − 1. Then, since

E ( [p]−r )
k ,l

= E ( [p]−r+1)
k ,l

+
∑

|τ |=[p]−r+1
fτ (xk )×

τ
k ,l

we obtain
|E ( [p]−r )
k ,l

|p/([p]−r+1) . ‖E ( [p]−r+1) ‖p/([p]−r+1)
p/([p]−r+2);[k ,l ] + |||×|||

p
p ;[k ,l ] .

By the induction hypothsis,

‖E ( [p]−r+1) ‖p/([p]−r+2)
p/([p]−r+2);[k ,l ] . w

(r−1)
k ,l

+
∑

r−1< |τ |≤[p]
‖R τ ‖p/([p]−r+2)

p/([p]−|τ |+1);[k ,l ] |||×|||
p ( |τ |−r+1)/([p]−r+2)
p ;[k ,l ] .

Raising both sides to the power of [p]−r+2[p]−r+1 > 1, we get

|E ( [p]−r )
k ,l

|p/([p]−r+1) .
(
w
(r−1)
k ,l

) [p ]−r+2
[p ]−r+1

+
∑

r−1< |τ |≤[p]
‖R τ ‖p/([p]−r+1)

p/([p]−|τ |+1);[k ,l ] |||×|||
p ( |τ |−r+1)/([p]−r+1)
p ;[k ,l ] .

Isolate from the right-hand side the term with |τ | = r . According to Lemma 4.13, for all such trees
remainder satisfies

‖R τ ‖p/([p]−r+1)
p/([p]−r+1);[k ,l ] . ‖E

( [p]−r ) ‖p/([p]−r+1)
p/([p]−r+1);[k ,l ] + ‖x‖

p
p ;[k ,l ] + w̃

(r )
k ,l
.

Again by Lemma 4.13, the dependence ofw (r−1) on E ( [p]−r ) is such that(
w
(r−1)
k ,l

) [p ]−r+2
[p ]−r+1

.
r∑
j=2

‖E ( [p]−r ) ‖j p/([p]−r+1)
p/([p]−r+1) + ŵ

(r−1)
k ,l
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so that

‖E ( [p]−r ) ‖p/([p]−r+1)
p/([p]−r+1);[k ,l ] .

1

2
‖E ( [p]−r ) ‖p/([p]−r+1)

p/([p]−r+1);[k ,l ] +
1

2

r∑
j=2

‖E ( [p]−r ) ‖j p/([p]−r+1)
p/([p]−r+1) + ω

(r )
k ,l

This polynomial inequality is of the form

Qn (λ) B λn + λn−1 + · · · + λ2 − λ + c ≥ 0

for some small constant c > 0. Note that Qn (0) = c > 0 and Qn (2c) = −c + o(c) < 0 if c is
sufficiently small. 3 Therefore, given that c is small enough, the smallest possitive root ofQn is smaller
than 2c. More precisely, we need that

(2c − 2ncn)
(1 − 2c) <

1

2
.

So the claim is proven.

At the end of the induction we have that

‖x‖p
p ;[k ,l ] . ω

( [p])
k ,l

and the inductive argument shows that in fact

‖x‖p
p ;[k ,l ] .

1

2

[p]∑
j=1

‖x‖j p
p ;[k ,l ] + |||×|||

p
p ;[k ,l ] .

We again arrive at a polynomial inequation of the previous form, so the same argument gives

‖x‖p
p ;[k ,l ] . 2

pC
p
p |||×|||

p
p ;[k ,l ] .

The conclusion is obtained by an application of Lemma 2.12 and scaling back ‖F ‖C [p ]+1 . �

Corollary 4.14. Let (xk : 0, . . . ,N ) be the complete evolution of the input features x0 through a
trained ResNet with weights w and activation functions σ ; that is, the values of xk , k = 1, . . . ,N are
obtained from eq. (6). For p ≥ 1, suppose that σ ∈ C [p]+1b and consider the discrete signature lift ×
of w. The inequality

‖x‖p ;[k ,l ] ≤
(
C
p−1
p ‖σ ‖p

C [p ]+1b

|||×|||p
p ;[k ,l ] ∨ ‖σ ‖C [p ]+1b

|||×|||p ;[k ,l ]

)
holds uniformly over all 0 ≤ k < l ≤ N , with Cp B 2( [p]+1)/pζ

(
[p]+1
p

)
. In particular

|xN − x0 | ≤ inf
p∈[1,∞)

(
C
p−1
p ‖σ ‖p

C [p ]+1b

|||×|||p
p ;[k ,l ] ∨ ‖σ ‖C [p ]+1b

|||×|||p ;[k ,l ]

)
. (16)

Proof. Let d be the width of the network. Apply Theorem 4.11 with fi = σ for all i = 1, . . . , d
and f[i1···in] ≡ 0 for all n > 0. This proves the first inequality. The second result is obtained from
Equation (3). �

3In fact, by Decarte’s rule of signs, the polynomial Qn has either 0 or 2 positive roots, for any n ≥ 2.

DOI 10.20347/WIAS.PREPRINT.2732 Berlin 2020



C. Bayer, P. K. Friz, N. Tapia 24

5 Conclusion and outlook

We have shown how to control the total p-variation of the evolution of features through a Deep ResNet
by the p-variation of the weights (trained or not). When compared to the classical p = 1 setting,
the improvement was seen to be significant and exhibits a structural feature of deep neural networks,
whose importance, to the best of our knowledge, has not yet been sufficiently appreciated: weights are
indeed rough, so that a proper stability analysis much benefits from our discrete rough-path approach.

Work in progress deals with a variation of these estimates to prove stability under retraining. Con-
cretely, we expect a bound of the form

|xN − x̃N | ≤ inf
p∈[1,∞)

{
Kp

(
|x0 − x̃0 | + |||× − ×̃|||p

)
eKp

(
|||×|||pp−var+|||×̃|||

p
p

) }
, (17)

for some explicitly computable constant Kp > 0, depending only on p and ‖σ ‖,uniformly in the
network depth N . Here is some numerical evidence suggesting that considering p ≥ 1, i.e. going
beyond the Lipschitz theory can provide an advantage.

Figure 3: Bound on eq. (17) for different values of p ∈ [1, 2] vs. the output value of two different
values of a single feature.
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