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Stochastic homogenization on perforated domains II –
Application to nonlinear elasticity models

Martin Heida

Abstract

Based on a recent work that exposed the lack of uniformly bounded W 1,p → W 1,p exten-
sion operators on randomly perforated domains, we study stochastic homogenization of nonlin-
ear elasticity on such structures using instead the extension operators constructed in [11]. We
thereby introduce two-scale convergence methods on such random domains under the intrinsic
loss of regularity and prove some generally useful calculus theorems on the probability space Ω,
e.g. abstract Gauss theorems.

1 Introduction

Homogenization of elasticity problems has a long history with a first stochastic result provided in [5]
for pure bulk homognenization of linear elasticity. Further work in this direction have been published in
between and we refer to the recent work [11] for an overview.

In this work, we consider homogenization of p-elasticity with nonlinear bulk terms on perforated do-
mains and with nonlinear Robin conditions on the microscale. More precisely, let P(ω) ⊂ Rd be a
stationary random Lipschitz domain and let ε > 0 be the smallness parameter and assume w.o.l.g
P(ω) is almost surely connected and has locally Lipschitz boundary.

For a bounded domain Q ⊂ Rd, we consider Qε
P(ω) := Q ∩ εP(ω) and Γε(ω) := Q ∩ ε∂P(ω)

with outer normal νΓε(ω). For uε : Qε
P(ω)→ Rd we then consider

−div
(
a |∇suε|p−2∇uε

)
= g(uε) on Qε

P(ω) ,

u = 0 on ∂Q , (1)

|∇suε|p−2∇uε · νΓε(ω) = εf(uε) on Γε(ω) ,

where ∇su := 1
2

(
∇u+ (∇u)>

)
is the symmetrized gradient. The parameter a might be a random

variable but this is not relevant for our investigation and we assume a ≡ 1 for simplicity.

As well known, problem (1) can be recast into a variational problem, i.e. solutions of (1) are local
minimizers of the energy functional

Eε,ω(u) =

ˆ
Qε

P(ω)

(|∇su|p −G(u)) + ε

ˆ
Γε(ω)

F (u) ,

where F ′ = pf andG′ = pg. If F andG both are Hölder continuous functions, there exist minimizers
of Eε,ω for every ε > 0 in the space

W 1,p
0,∂Q(Qε

P(ω)) :=
{
u ∈W 1,p(Qε

P(ω)) : u|∂Q∩(εP(ω)) ≡ 0
}
,

DOI 10.20347/WIAS.PREPRINT.2865 Berlin 2021



M. Heida 2

where the bold symbol W indicates Rd-valued functions and normal symbols like W 1,p will indicate
R-valued functions, if used.

In periodic homogenization, a lot of effort has been made to prove the existence of an extension
operator, which have properties that - transfered to the case of stochastic homogenization - would
read as follows: there exists an extension operator Uε,ω : W 1,p

loc (εP̃(ω)) → W 1,p
loc (Rd) such that

suppUε,ωu ⊂ Bε(Q) for every u ∈W 1,p
0,∂Q(Qε

P(ω)) and for some constant C(ω) > 0 independent
from ε it holds

∀u ∈W 1,p
0,∂Q(Qε

P(ω)) : ‖∇s (Uε,ωu)‖Lp(Rd) ≤ C(ω) ‖∇su‖Lp(Qε
P(ω)) , suppUεu ⊂ Bε(Q) .

(2)

Together with the classical Poincaré and Korn inequality, (2) establishes

‖u‖Lp(Qε
P(ω)) ≤ C ‖∇sUε,ωu‖Lp(Rd) ≤ C(ω) ‖∇su‖Lp(Qε

P(ω)) , (3)

uniformly in ε and (conceptually this) will then allow to perform homogenization by Γ-convergence
in the space W 1,p(Q) with a limit functional Ehom(u) similar to the one established in Theorem 1.3
below.

However, in a recent work [11] the author has shown that (2) has to fail for general random geome-
tries. This is because random geometries can have arbitrary bad local Lipschitz regularity thereby
violating to be uniformly John regular. However, as can be seen from [4, 14] a uniform John property
is necessary in order for (2) to hold.

On the other hand, in the same paper it was shown there is still hope to find Uε : W 1,p
loc (εP̃(ω)) →

W 1,p
loc (Rd) satisfying the strong symmetric (r, p)-extension property, 1 ≤ r < p, as introduced in the

following definition.

Definition 1.1. A stationary random geometry has the weak (r, p)-extension property if there almost
surely exists C > 0 and an extension operator Uε : W 1,p

loc (εP̃(ω))→ W 1,p(Rd) such that for every
bounded domain Q ⊂ Rd and every u ∈ W 1,p(Bε(Q) ∩ εP(ω)) it holds

‖Uεu‖Lr(Q) + ‖ε∇Uεu‖Lr(Q) ≤ C
(
‖u‖Lp(Bε(Q)∩εP(ω)) + ‖ε∇u‖Lp(Bε(Q)∩εP(ω))

)
.

A stationary random geometry has the strong (symmetric) (r, p)-extension property if additionally
there almost surely exists β ∈ (0, 1), ε0 > 0 such that for all ε ∈ (0, ε0) and for every u ∈
W 1,p

0,∂Q(Q ∩ εP̃(ω)) the support of Uεu lies within Bεβ(Q) and it holds

‖Uεu‖Lr(Q) ≤ C ‖u‖Lp(Q∩εP̃(ω))

with (Uεu) |Rd\Bε(Q) ≡ 0 and either

‖∇Uεu‖Lr(Q) ≤ C ‖∇u‖Lp(Q∩εP̃(ω)) ,(
resp. ‖∇sUεu‖Lr(Q) ≤ C ‖∇su‖Lp(Q∩εP̃(ω))

)
.

We emphasize that [11] yields also the following concept for traces

Definition 1.2. A stationary random geometry has the (r, p)-trace property if for almost every ω there
exists Cω > 0 such that the trace operator T : W 1,p

0,∂Q(Qε
P(ω))→ Lr(Q ∩ εΓ(ω)) satisfies

ε ‖T u‖rLr(Q∩εΓ(ω)) ≤ Cω

(
‖u‖Lp(Qε

P(ω)) + ε ‖∇u‖Lp(Qε
P(ω))

) r
p

(4)

and E(C
p
p−r
ω ) <∞.
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Stochastic homogenization of elasticity 3

In [11] the above inequalities for weak and strong (r, p)-extensions as well as the trace property have
been verified in an unscaled form for a pipe model and a Boolean model.

It turns out there is a further property which has to be verified in order to guaranty regularity properties
of solutions and may - additionally - be important in some other applications beyond the scope of this
work. Using the notation [11] this property is the following:

∀i = 1, . . . , d : dist
(
ei, L

2
pot(P)

)
> 0 . (5)

We will close this introduction with our main theorem and some final explanation. For the underlying
notation of Vppot(P) we refer to Definition 2.6.

Theorem 1.3. Let F and G be Hölder continuous and bounded from below, let p > 1 and let P be a
stationary ergodic random connected open set. Then for every ε > 0 the functional Eε,ω has a unique
minimizer uε ∈ W 1,p

0,∂Q(Qε
P(ω)). If P has the symmetric (r, p) extension property, 1 < r ≤ p

and the (s, r) trace property 1 ≤ s ≤ r, then uε ⇀ |P|u weakly in Lr(Q) as ε → 0, where
u ∈W 1,r

0 (Q) is a minimizer of the functional

Ehom(u) := inf
υ∈Lp(Q;Vppot(P))

ˆ
Q

ˆ
P

a |∇su+ υs|p −
ˆ
Q

ˆ
P

G(u) +

ˆ
Q

ˆ
Γ

F (u)dµΓ,P

in the space u ∈ W 1,r
0 (Q). Furthermore, if (5) holds then u ∈ W 1,p

0 (Q) is a minimizer of Ehom in
this space.

Proof. This is a coarse reformulation of Theorem 3.14 below.

We first observe that the above limit functional is exactly what we would expect from the “classical”
results. However, it is not trivial: It is not clear at all that the apriori bound on the sequence of symmetric
gradients implies that 1. uε converges in any strong sense at all (which requires some kind of Korn and
Poincaré property) to a limit function ũ and 2. that the limit function u is a minimizer of the expected
limit functional, i.e. u = ũ, because on the way there we necessarily loose some order of integrability.
Furthermore, the Lp-regularity of∇u can be inferred from boundedness of Ehom only if (5) holds true.

2 Sobolev Spaces on the Probability Space (Ω,P)

Assumption 2.1. Let Ω be a precompact metric space with Borel sigma-algebra σ and a probability
measure P. Assume there is a family (τx)x∈Rd (called a dynamical system) of measurable bijective
mappings τx : Ω 7→ Ω satisfying (i)-(iii):

(i) τx ◦ τy = τx+y , τ0 = id (Group property)

(ii) P(τ−xB) = P(B) ∀x ∈ Rd, B ∈ F (Measure preserving)

(iii) A : Rd × Ω→ Ω (x, ω) 7→ τxω is continuous (Continuity of evaluation)

Definition 2.2. The dynamical system τ called is ergodic if P ((A ∪ τxA) \ (A ∩ τxA)) = 0 implies
P(A) ∈ {0, 1}. If X is a measurable space and f : Ω × Rd → X , then f is called (weakly)
stationary if f(ω, x) = f(τxω, 0) for (almost) every x.
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M. Heida 4

It has been shown in the recent work [10] that the assumption 2.1 is met by many coefficient fields that
relate to applications. Furthermore, it allows to use the common results in the literature, i.e. [6, 7, 17,
19, 18] and to draw some conclusions on functions spaces which we summarize in the following.

We find C(Ω) to be separable and dense in Lp(Ω;µ), 1 ≤ p < ∞, µ a Borel measure on Ω and
every such Lp(Ω;µ) hence is separable. For f : Ω → X , X a metric space, and ω ∈ Ω we define
the realization fω of f as

fω : Rd → X , x 7→ f(τxω) .

If f ∈ Lp(Ω) for 1 ≤ p ≤ ∞, then for almost every ω ∈ Ω and for every bounded domain Q it holds
fω ∈ Lp(Q) [19]. Given the canonical basis (ei)i=1,...,d of Rd, we define the operators

Dif(ω) = lim
t→0

f(τteiω)− f(ω)

t

and Dif is called i-th derivative of f having the property
ˆ

Ω

gDifdP = −
ˆ

Ω

fDigdP .

The joint domain of all Di equiped with the operator norm in Lp(Ω) is a Banach space

W 1,p(Ω) := {f ∈ Lp(Ω) | ∀i = 1, . . . , d : Dif ∈ Lp(Ω)} ,

‖f‖W 1,p(Ω) := ‖f‖Lp(Ω) +
d∑
i=1

‖Dif‖Lp(Ω) .

We finally denote Dωf := (D1f, . . . ,Ddf)T the gradient with respect to ω and by−divω the adjoint
of Dω. Sometimes we write∇ωf := Dωf to underline the gradient aspect. We further denote

C1(Ω) :=
{
f ∈ C(Ω) : Dωf ∈ C(Ω;Rd)

}
and note that C1(Ω) is dense in W 1,p(Ω) for 1 ≤ p <∞. We define

Vppot(Ω) = closureLp
{

Du | u ∈ W 1,p(Ω)
}
, (6)

and observe that for

Lppot,loc(R
d) :=

{
u ∈ Lploc(R

d;Rd) | ∀U bounded domain, ∃ϕ ∈ W 1,p(U) : u = ∇ϕ
}
,

we find the characterization

Vppot(Ω) =
{
u ∈ Lp(Ω;Rd)\Rd : uω ∈ Lppot,loc(R

d) for P− a.e. ω ∈ Ω
}
.

2.1 Random Sets, Random Measures and Palm Theory

A random set is a random variable with values in the space of Radon measures in Rd. More precisely,
ω 7→ µω is a random measure if for every bounded Borel set A ⊂ Rd or alternatively for every
f ∈ Cc(Rd) the following respective maps are measureable

ω 7→ µω(A) , or ω 7→
ˆ
f dµω .
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Stochastic homogenization of elasticity 5

If for every bounded A ⊂ Rd the distribution of µω(A) is invariant under translations of A we call µω
stationary. By Mecke’s theorem (see [15, 2]) the measure

µP(A) =

ˆ
Ω

ˆ
Rd
g(s)χA(τsω) dµω(s) dP(ω)

can be defined on Ω for every positive g ∈ L1(Rd) with compact support and is called Palm measure.
µP is independent from g and in case µω = L we find µP = P. The Campbell formula for B(Rd)×
B(Ω)-measurable non negative functions f reads

ˆ
Ω

ˆ
Rd
f(x, τxω) dµω(x) dP(ω) =

ˆ
Rd

ˆ
Ω

f(x, ω) dµP(ω) dx ,

and we say µω has finite intensity if µP(Ω) < +∞.

Theorem 2.3 (General Ergodic Theorem for the Lebesgue measure). Let (Ω,F ,P) be a probability
space, Q ⊂ Rd be a bounded open set with 0 ∈ Q, let (τx)x∈Rd be a dynamical system on Ω with
invariant σ-algebra I and let f ∈ Lp(Ω;µP) and ϕ ∈ Lq(Q), where 1 < p, q < ∞, 1

p
+ 1

q
= 1.

Then for P-almost all ω ∈ Ω it holds

n−d
ˆ
nQ

ϕ(
x

n
)f(τxω) dµω(x)→

ˆ
Γ

ˆ
Q

fϕ dx dµΓ,P . (7)

The relation between random closed sets and random measures as well as the importance for ho-
mogenization theory have been outlined in many places before [7, 8]and we will not go into detail on
this. For this work, the most important is the following:

If P(ω) is a random open set with boundary Γ(ω) := ∂P(Ω) then the measures

µω(A) := L(A ∩P(ω)) , µΓ(ω)(A) := Hd−1(A ∩ Γ(ω))

are random measures, where L is the Lebesgue measure andHd−1 is the d− 1 dimensional Haus-
dorff measure. The respective Palm measures will be denoted by µP and µΓ,P .

An important observation made in [7] is the following.

Lemma 2.4. There exists Γ ⊂ Ω and P ⊂ Ω with characteristic functions χΓ(ω) and χP(ω) such
that the following holds: For almost every ω it holds χP(ω)(x) = χP(τxω) in the sense of Lebesgue
and χΓ(ω)(x) = χΓ(τxω) in the Hausdorff sense. Furthermore, P(χΓ) = 0, µΓ,P(Ω\Γ) = 0 and
µΓ,P(Γ) = E

(
µΓ(ω)(0, 1)d

)
.

2.2 Traces and Extensions

Assumption 2.5. Under the Assumption 2.1 let P(ω) be a random open set with boundary Γ(ω) :=
∂P(ω) such that Γ(ω) is a random closed set. The corresponding prototypes P,Γ ⊂ Ω in the sense
of Section 2.1 have Palm measures χPP and µΓ,P respectively.

Definition 2.6. Under the Assumption 2.5 we introduce for 1 ≤ p ≤ ∞ the space

W 1,p(P) := closure‖ · ‖W1,p(P)

{
χPu : u ∈ C1(Ω)

}
‖u‖W 1,p(P) := ‖u‖Lp(P) + ‖Du‖Lp(P) .

DOI 10.20347/WIAS.PREPRINT.2865 Berlin 2021



M. Heida 6

Furthermore, we define for r ≤ p

W 1,r,p(Ω,P) :=
{
u ∈ W 1,r(Ω) : u|P ∈ Lp(P), Dωu ∈ Lp(P;Rd)

}
,

Vppot(P) := closureLp
{

Du | u ∈ W 1,p(P)
}
,

Vr,ppot(Ω,P) :=
{

Du ∈ Vrpot(Ω) | Du ∈ Vppot(P)
}
.

Similarly we define W 1,p(P) and W 1,r,p(Ω,P) as well as Vp
pot(P) and Vr,p

pot(Ω,P) for vector
valued functions. For υ ∈ Vr,p

pot(Ω,P)d we define υs := 1
2

(
υ + υ>

)
and

Vr,p
pot,s(Ω,P) :=

{
υs : υ ∈ Vr,p

pot(Ω,P)d
}

and similar Vp
pot,s(P).

We observe that C1(Ω) is dense in W 1,p(P) [10] and hence C1(Ω) is dense in W 1,r,p(Ω,P) be-
cause of W 1,r(Ω) ⊃ W 1,r,p(Ω,P) ⊃ W 1,p(Ω).

For u ∈ C1(Ω) we can define TΩ[u] := u|Γ and observe that (4) implies for every R > 1

‖(TΩ[u])ω‖Lr(εΓ(ω)∩B1(0)) ≤ C
(
‖uω‖Lp(εP(ω)∩B1+ε(0)) + ‖∇uω‖Lp(εP(ω)∩B1+ε(0))

)
,

which yields by the ergodic theorem

‖TΩ[u]‖Lr(Γ) ≤ C ‖u‖W 1,p(P)

and the operator TΩ can be extended to W 1,p(P) by density for every 1 ≤ p < ∞. We furthermore
find the following properties.

Theorem 2.7. Let Assumption 2.5 hold and let P(ω) have the weak (r, p)-extension property. Then
there exists a continuous linear operator UΩ : W 1,p(P)→ W 1,r(Ω) such that (UΩu)|P = u.

Theorem 2.8. Let Assumption 2.1 hold and let P(ω) have the strong (r, p)-extension property. Then
there exists a continuous linear operator UΩ : W 1,p(P) → W 1,r(Ω) such that (UΩu)|P = u and
such that

‖DωUΩu‖Lr(Ω) ≤ C ‖Dωu‖Lp(Ω) .

Furthermore, the operatorUΩ can be extended to a continuous operatorUΩ : Vppot(P)→ Vr,ppot(Ω,P).
More precisely we can identify Vppot(P) with

Ṽppot(P) = closureLr,p(Ω,P)

{
UΩDωu : u ∈ W 1,p(Ω)

}
, (8)

= closureLr,p(Ω,P)

{
UΩDωu : u ∈ W 1,r,p(Ω;P)

}
, (9)

‖ξ‖Lr,p(Ω,P) = ‖ξ‖Lr(Ω) + ‖ξ‖Lp(P) .

This means that for φ ∈ Vppot(P) and φ̃ ∈ Ṽppot(P) it holds φ̃|P = φ iff φ̃ = UΩφ.

If P(ω) has the strong symmetric (r, p)-extension property, then there exists a continuous linear
operator UΩ : W 1,p(P)→W 1,r(Ω) such that (UΩu)|P = u and such that

‖Ds
ωUΩu‖Lr(Ω) ≤ C ‖Ds

ωu‖Lp(Ω) ,

with Ds
ωu := 1

2

(
Dωu+ (Dωu)>

)
and (8) and (9) hold also in this case.

We will prove Theorems 2.7 and 2.8 in Section 3.1 using homogenization theory.
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Stochastic homogenization of elasticity 7

2.3 The Outer Normal Field of P

The following result has been proved in [10] for r = p. However, the argumentation remains valid in
the following setting.

Theorem 2.9. Let Assumption 2.5 hold and let Γ(ω) have the (r, p)-trace property for 1 < r < p.
Let τ be ergodic, let Γ(ω) be almost surely locally Lipschitz and let νΓ(ω) be the outer normal of
P(ω) on Γ(ω). Then there exists a measurable function νΓ : Γ → Sd−1 such that almost surely
νΓ(ω)(x) = νΓ(τxω). Furthermore, for f ∈ C1(Ω;Rd) and φ ∈ C1(Ω) it holds

ˆ
P

divω(fφ) dP =

ˆ
Γ

φf · νΓ dµΓ,P . (10)

If Γ satisfies the weak (1, p)-extension property, the equation (10) extends to φ ∈ W 1,1,p(Ω,P) and
f ∈ C1(Ω;Rd) or to f ∈ W 1,1,p(Ω,P)d and φ ∈ C1(Ω).

Definition 2.10. Let Γ(ω) have the (r, p)-Trace property for 1 < r < p and the weak (1, p)-extension
property. We say that f ∈ Lp(P;Rd) has the weak normal trace fν ∈ Lr(Γ) and weak divergence
divωf ∈ L1(P) if for all φ ∈ C1

b (Ω)
ˆ
P

(φdivωf + f · ∇ωφ) dP =

ˆ
Γ

φfν dµΓ,P .

Theorem 2.11. Let Assumption 2.5 hold and for some r ∈ (1, 2) let Γ have the (r, 2)-trace property
and the weak (r, 2)-extension property. Let Γ(ω) be almost surely locally Lipschitz and let νΓ(ω) be
the outer normal of P(ω) on Γ(ω). Then there exists uΩ ∈ W 1,r(Ω) ∩ W 1,2(P;Rd), such that
∇ωuΩ has a weak normal trace fν ∈ L1(Γ) and weak divergence uΩ, i.e.

∀φ ∈ C1
b (ω) :

ˆ
P

(φuΩ +∇uΩ · ∇ωφ) dP =

ˆ
Γ

φfν dµΓ,P .

The last theorem is less trivial than one might think. In particular, we lack a Poincaré-type inequality
on Ω, which is typically used to prove corresponding results in Rd. We shift the proof to Section 3.1.

3 Homogenization of Elasticity

In this section we provide the main homogenization result. We will use stochastic two-scale conver-
gence in a modified version [10] of the original approach by Zhikov and Piatnitsky [20].

For the rest of this work, we consider a stationary random measure ω → µω with Palm measure µP
and we define

µεω(A) := εdµω
(
ε−1A

)
. (11)

For the corresponding Lebesgue spaces we write Lp(Ω;µP) or Lp(Q;µεω), where Q ⊂ Rd is a
convex domain with C1-boundary. If µω = L, i.e. µP = P, or µω = χP(ω)L we omit the notion of µεω
and µP .

In our applications, either

dµω =


dL
χP(ω)dL
dµΓ(ω) := χΓ(ω)dHd−1

with Palm measure dµP =


dP
χPdP
dµΓ,P

.

DOI 10.20347/WIAS.PREPRINT.2865 Berlin 2021
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Moreover, in view of (11), we write

µεΓ(ω)(A) = εdµΓ(ω)

(
ε−1A

)
= εHd−1(A ∩ εΓ(ω))

In case of µω = χP(ω)L, we drop the notation µεω.

Definition 3.1. We say that ω ∈ Ω is typical if for every f ∈ C(Ω) and both random measures µω it
holds

n−d
ˆ
Bn(0)

f(τxω) dµω(x)→
ˆ

Γ

ˆ
B1(0)

fdx dµP .

According to [10] the set of typical ω has full measure.

Definition 3.2. Let ω be trypical and let uε ∈ Lp(Q;µεω) for all ε > 0. We say that (uε) converges

(weakly) in two scales to u ∈ Lp(Q;Lp(Ω;µP)) and write uε
2s
⇀ u if supε>0 ‖uε‖Lp(Q;µεω) < ∞

and if for every ψ ∈ C(Ω), ϕ ∈ C(Q) there holds with φω,ε(x) := ϕ(x)ψ(τx
ε
ω)

lim
ε→0

ˆ
Q

uε(x)φω,ε(x)dµεω(x) =

ˆ
Q

ˆ
Ω

u(x, ω̃)ϕ(x)ψ(ω̃) dµP(ω̃) dx .

Lemma 3.3 ([8] Lemma 4.4-1.). Let ω ∈ Ω be typical and uε ∈ Lp(Q;µεω) be a sequence of functions
such that ‖uε‖Lp(Q;µεω) ≤ C for some C > 0 independent of ε. Then there exists a subsequence of

(uε
′
)ε′→0 and u ∈ Lp(Q;Lp(Ω;µP)) such that uε

′ 2s
⇀ u and

‖u‖Lp(Q;Lp(Ω;µP )) ≤ lim inf
ε′→0

∥∥∥uε′∥∥∥
Lp(Q;µεω)

. (12)

Furthermore, we will need the following result on the lower estimate in homogenization of convex
functionals using two-scale convergence, which was obtained in [12].

Lemma 3.4. Let µω be a random measure. Let f : Q × Ω × RN → R be a convex functional
in Rd. For almost all ω ∈ ΩΦp the following holds: Let uε ∈ Lq(Q;µεω) be a sequence such that

‖uε‖Lq(Q;µεω) ≤ C for some 0 < C < ∞ and such that uε
2s
⇀ u ∈ Lq(Q × Ω;L ⊗ µP). Then, it

holds ˆ
Q

ˆ
Ω

f(x, ω̃, u(x, ω̃)) dµP(ω̃) dx ≤ lim inf
ε→0

ˆ
Q

f(x, τx
ε
ω, uε(x)) dµεω(x) .

The following result has been proven in various work under various assumptions, see e.g. [1] for the
periodic case and [20, 16, 8] in the stochastic case.

Theorem 3.5. For almost every typical ω ∈ Ω the following holds: If uε ∈ W 1,p(Q;Rd) for all ε and
if there exists 0 < Cu <∞ with

sup
ε>0
‖uε‖Lp(Q) + εγ ‖∇uε‖Lp(Q) < Cu

Then there exists u ∈ Lp(QLp(Ω;P)) such that uε
2s
⇀ u. Depending on the choice of γ, the following

holds:

1 If γ = 0, then u ∈ W 1,p(Q) with uε ⇀ u weakly in W 1,p(Q) and there exists υ1 ∈
Lp(Q;Vppot(Ω)) such that∇uε 2s

⇀ ∇xu+ υ1weakly in two scales.
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2 If γ ∈ (0, 1) then εγ∇uε 2s
⇀ υ1 for some υ1 ∈ Lp(Q;Vppot(Ω)).

3 If γ = 1 then u ∈ Lp(Q;W 1,p(Ω)) and ε∇uε 2s
⇀ Dωu.

4 If γ > 1 then εγ∇uε 2s
⇀ 0.

Important in the context of Γ-convergence is also the following recovery lemma, obtained in [13, Sec-
tion 2.3] for the L2-case. The general case can be proved similarly [9].

Lemma 3.6. Let υ ∈ Vppot(Ω), 1 < p < ∞ and let Q be a bounded convex domain. For almost
every ω there exists C > 0 such that the following holds: For every ε > 0 there exists a unique
V ω
ε ∈ W 1,p(Q) with ∇V ω

ε (x) = υ(τx
ε
ω),
´
Q
V ω
ε = 0 and ‖Vε‖W 1,p(Q) ≤ C‖υ‖Lppot(Ω) for all

ε > 0. Furthermore,

lim
ε→0
‖V ω

ε ‖Lp(Q) = 0 .

3.1 Homogenization on Domains with Holes

Lemma 3.7. Let P(ω) be a random open domain with the weak (r, p)-extension property on Q for
1 < r < p < ∞. Then for almost every ω ∈ Ω the following holds: If uε ∈ W 1,p(Bε(Q) ∩
Pε(ω);Rd) for all ε with

sup
ε

(
‖uε‖Lp(Bε(Q)∩Pε(ω)) + ε‖∇uε‖Lp(Bε(Q)∩Pε(ω))

)
< C

for C independent from ε > 0 then there exists a subsequence denoted by uε
′

and a function u ∈
Lp(Q;W 1,r(Ω)) ∩ Lp(Q;W 1,p(P)) such that

Uε′uε
′ 2s
⇀ u and ε′∇Uε′uε

′ 2s
⇀ ∇ωu (13)

as well as

uε
′ 2s
⇀ u and ε′∇uε′ 2s

⇀ χP∇ωu (14)

as ε′ → 0.

Proof. We find

sup
ε

(
‖Uεuε‖Lr(Q∩Pε(ω)) + ε‖∇Uεuε‖Lr(Q∩Pε(ω))

)
≤ C sup

ε

(
‖uε‖Lp(Bε (Q)∩Pε(ω)) + ε‖∇uε‖Lp(Bε (Q)∩Pε(ω))

)
(15)

Theorem 3.5 implies for some u ∈ Lr(Q;W 1,r(Ω)) that (13) and (14) hold. The Lp(Q;W 1,p(P))-
regularity of u follows from the bounds on uε

′
.

Proof of Theorem 2.7. W 1,p(P) is a closed subspace of Lp(P) × Lp(P)d, hence separable. If
(uk)k∈N is a countable dense subset of W 1,p(P), we find a set of full measure Ω̃ ⊂ Ω such that for

every k ∈ N and every ω ∈ Ω̃ the realizations uk,ω are well defined elements of W 1,p(P(ω)).
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Given such ω and k ∈ N, we define uε(x) := uk
(
τx
ε
ω
)

and by Lemma 3.7 we find

ũ ∈ Lp(Q;W 1,r(Ω)) ∩ Lp(Q×P) such that Uεuε
2s
⇀ ũk and ε∇Uεuε

2s
⇀ ∇ωũk and such that

‖ũk‖Lr(Q×Ω) + ‖∇ωũk‖Lr(Q×Ω) ≤ lim inf
ε→0

(
‖Uεuε‖Lr(Q) + ε ‖∇Uεuε‖Lr(Q)

)
≤ C lim inf

ε→0

(
‖uε‖Lp(Bε(Q)∩Pε(ω)) + ε ‖∇uε‖Lp(Bε(Q)∩Pε(ω))

)
= C

(
‖uk‖Lp(Q×Ω) + ‖∇ωuk‖Lp(Q×Ω)

)
.

Since the operator uk → ũk is linear and bounded, it can be extended to the whole of W 1,p(P).

Proof of Theorem 2.11. For every ε > 0 and f εν,ω(x) := fν
(
τx
ε
ω
)

there exists a unique uε that
solves

−ε2∆uε + uε = 0 on Bε(Q) ∩Pε(Ω) ,

−ε∇uε · νΓε(ω) = f εν,ω on Γε(ω) ∩Q ,

uε = 0 on ∂Q .

Deriving apriori estimates in the usual way, for some C > 0 independent from ε it holds

ε ‖∇uε‖L2(Bε(Q)∩Pε(Ω)) + ‖uε‖L2(Bε(Q)∩Pε(Ω)) ≤ C

and thus according to Lemma 3.7 we find u ∈ Lr(Q;W 1,r(Ω)) ∩ Lp(Q×P) such that

Uε′uε
′ 2s
⇀ u and ε′∇Uε′uε

′ 2s
⇀ ∇ωu

along a subsequence uε
′

which we again denote uε in the following. But then for φ ∈ C1(Ω) and
ψ ∈ C1

c (Q) it follows

ε

ˆ
Q∩Γε(ω)

fν,ωφ(τx
ε
ω)ψ(x) dHd−1(x) = −ε2

ˆ
Q∩Γε(ω)

φ(τx
ε
ω)ψ(x)∇uε(x) · νΓ(ω)(τx

ε
ω) dHd−1(x)

=

ˆ
Q∩Pε(ω)

ε∇uε ·
(
∇ωφ(τx

ε
ω)ψ(x) + εφ(τx

ε
ω)∇ψ(x)

)
dx+

ˆ
Q∩Pε(ω)

uεφ(τx
ε
ω)ψ(x) dx

→
ˆ
Q

ˆ
P

(∇ωu · ∇ωφψ + uφψ) .

Since the left hand side of the above calculation converges to
´
Q

´
Γ
fνφψ dµΓ,P and ψ was arbitrary,

we conclude.

Lemma 3.8. Let P(ω) be a random open domain with strong (r, p)-extension property for 1 < r <
p <∞. Then for almost every ω ∈ Ω the following holds:

1 If uε ∈ W 1,p
0,∂Q(Q∩Pε(ω);Rd) for all ε with supε ‖∇uε‖Lp(Q∩Pε(ω)) < C for C independent

from ε > 0 then there exists a subsequence denoted by uε
′

and functions u ∈ W 1,r
0 (Q;Rd)

and υ ∈ Lr(Q;Vrpot(Ω)) such that

uε
′ 2s
⇀ χPu and ∇uε′ 2s

⇀ χP∇u+ χPυ as ε→ 0 , (16)

Uε′uε
′ 2s
⇀ u and ∇Uε′uε

′ 2s
⇀ ∇u+ υ as ε→ 0 . (17)

Furthermore, Uε′uε
′
⇀ u weakly in W 1,r(Q)).
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2 If p ≥ 2 and the Assumptions of Theorem 2.11 are satisfied and Γε(ω) additionally has the
(s, p)-trace property for some s > 1 then

Tε′uε
′ 2s
⇀ u in Ls(Γε ∩Q;µεΓ(ω)) .

If, even further, Γε(ω) has the (s, r)-trace property with r from Part 1, then

lim
ε→0

∥∥∥Tε′uε′ − Tε′u∥∥∥
Ls(Γε′∩Q;µε

′
Γ(ω)

)
→ 0 . (18)

Remark 3.9. For the reader familiar to the field it may be astonishing, even unsatisfactory, that the limit
function u ∈ W 1,r

0 (Q;Rd) loses integrability compared to uε. However, let us stress once more that
the extension of W 1,p functions to W 1,p-functions really is an intrinsic property of the geometry which
in general is not satisfied uniformly on random domains. This regularity also cannot be recoverd from
the improved Lp-regularity of χP∇u+ χPυ. To understand this in more detail, take f ∈ Lq(Q;Rd),
1
q

+ 1
p

= 1 and observe

|P|
∣∣∣∣ˆ

Q

f · ∇u
∣∣∣∣ ≤ ∣∣∣∣limε→0

ˆ
Q∩Pε(ω)

f · ∇uε
∣∣∣∣+

∣∣∣∣ˆ
Q

ˆ
P

f · υ
∣∣∣∣ .

Now, the limit ε → 0 provides χP∇u + χPυ ∈ Lp(Q × P) but not χPυ ∈ Lp(Q × P). Hence,
we rely on

´
Q
f ·
´
P
υ = 0, a property that holds for P = Ω, and maybe in more generality, but we

currently lack a proof.

Proof. In what follows, convergences always hold along subsequences of uε, which we always relabel
by uε.

Proof of 1: Let 1
r

+ 1
q

= 1. Then Theorem 3.5 yields for some u ∈ W 1,r(Q;Rd) and v ∈
Lr(Q;Lrpot(Ω)) that (17) holds. Due to the decreasing support of Uεuε we find u ∈ W 1,r

0 (Q;Rd).
(16) follows from using χP as a testfunction.

Proof of 2: Now let p ≥ 2 and let the Assumptions of Theorem 2.11 be satisfied and let Γε(ω)
additionally have the (s, p)-trace property for some s > 1. If uΩ is the function from Theorem 2.11
for fν = 1 we observe for uεΩ(x) := uΩ

(
τx
ε
ω
)

for every ψ ∈ C∞c (Q) and φ ∈ C1(Ω) with

φε(x) := φ
(
τx
ε
ω
)

that

ˆ
Q∩Γε(ω)

uεψφε dµεΓ(ω) = ε

ˆ
Q∩Γε(ω)

uεψφεε∇ωu
ε
Ω · νΓε(ω) dHd−1

=

ˆ
Q∩Pε(ω)

(uεψφεuεΩ + ε∇uεΩ · (uεφεε∇ψ + ψφεε∇uε + ψuεε∇φε))

→
ˆ
Q

ˆ
P

(uψφuΩ + ψu∇ωuΩ · ∇ωφ)

=

ˆ
Q

ˆ
Γ

uψφ dµΓ,P .

In order to show (18) note that

‖Tεuε − Tεu‖Ls(Γε∩Q;µε
Γ(ω)

) ≤ ‖u
ε − u‖Lr(Bε(Q)∩Pε(ω)) + ε ‖∇ (uε − u)‖Lr(Bε(Q)∩Pε(ω)) .

Since the first term on the right hand side converges to zero and ‖∇ (uε − u)‖Lr(Bε(Q)∩Pε(ω)) is
bounded, the claim follows.
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Proof of Theorem 2.8. For u ∈ W 1,p(P) with uε(x) := u
(
τx
ε
ω
)

we find for almost every ω that Uε
satisfies

ε ‖∇Uεuε‖Lr(Q) ≤ C
(
ε ‖∇uε‖Lp(Q∩Pε(ω))

)
(19)

‖Uεuε‖Lr(Q) ≤ C ‖uε‖Lp(Q∩Pε(ω))

As ε→ 0, Lemma 3.7 yields uε
2s
⇀ ũ,∇Uεuε

2s
⇀ Dωũ, where ũ ∈ Lp(Q;W 1,r,p(Ω,P)). Moreover,

inequality (19) implies in the limit that

‖Dωũ‖Lr,ppot(Ω,P) ≤ C ‖Dωu‖Lppot(P) .

Hence we can set UΩDωu :=
´
Q

Dωũ. By density, this operator extends to Vppot(P).

3.2 Homogenization of p-Laplace Equations

Assumption 3.10. For the rest of this work, let the assumptions of Theorem 1.3 hold.

For

E : W 1,r(Q)× Lr(Q;Vppot(P))→ R

(u, υ) 7→
ˆ
Q

ˆ
P

a |∇su+ υs|p −
ˆ
Q

ˆ
P

G(u) +

ˆ
Q

ˆ
Γ

F (u)dµΓ,P

it holds
Ehom(u) := inf

υ∈Lp(Q;Vppot(P))
E(u, υ) .

We start with two observations. The first is a direct consequence of the lower bound on F and G.

Lemma 3.11. Let Assumption of Theorem 1.3 hold. Then there exists C > 0 such that for every
uε ∈W 1,p

0,∂Q(Qε
P(ω)) it holds

‖∇suε‖Lp(Qε
P(ω)) ≤ Eε,ω(uε) + C . (20)

Lemma 3.12. Let Assumption of Theorem 1.3 hold. Then almost surely every sequence of functions
uε ∈W 1,p

0,∂Q(Qε
P(ω)) with supε ‖∇suε‖Lp(Qε

P(ω)) <∞ and uε ⇀ u weakly in Lr(Q) satisfies

lim
ε→0

ˆ
Qε

P

G(uε) =

ˆ
Q

ˆ
P

G(u) dP dx , (21)

lim
ε→0

ˆ
Γε
F (uε)dµεΓ(ω) =

ˆ
Q

ˆ
Γ

F (u) dµΓ,P dx , (22)

with equality in case of Hölder continuity of F .

Proof. According to Lemma it holds u ∈ W 1,r
0 (Q) and Uεuε → u strongly in Lr(Q). In the first

case, F is Hölder and the (s, r)-trace property impliesˆ
Γε
|F (uε)− F (u)| dµεΓ(ω) ≤ C

ˆ
Γε
|uε − u|s dµεΓ(ω)

≤ C
(
‖uε − u‖Lr(Qε

P) + ε ‖∇Uεuε −∇u‖Lr(Q)

)
. (23)

The convergence (21) follows accordingly.
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Theorem 3.13. Let Assumption of Theorem 1.3 hold. Then, for almost every ω ∈ Ω we find Eε,ω
2sΓ−−→

E in the following sense

1 For uε ⇀ u weakly in Lr(Q), uε ∈ W 1,p
0,∂Q(Qε

P(ω)) with supε Eε,ω(uε) < ∞, there holds

u ∈ W 1,r
0 (Q) and there exists υ ∈ Lr(Q;Vrpot,s(Ω,P)) such that ∇uε 2s

⇀ χP · (∇u+ υ)
and

E(u, υ) ≤ lim inf
ε→0

Eε,ω(uε) . (24)

2 For each pair (u, υ) ∈ W 1,r
0 (Q) × Lr(Q;Vrpot(Ω)) with E(u, υ) < +∞ there exists a

sequence uε ∈ W 1,p
0,∂Q(Qε

P(ω)) such that Uεuε ⇀ u weakly in W 1,r(Q) and ∇uε 2s
⇀

χP · (∇u+ υ) weakly in two scales and

E(u, υ) = lim
ε→0
Eε,ω(uε) . (25)

Proof. 1. We find∣∣∣∣∣
ˆ
Qε

P

G(uε)

∣∣∣∣∣ ≤ C

ˆ
Qε

P

|uε|r ≤ C

ˆ
Q

|Uεuε|r ≤ C

(ˆ
Qε

P

|∇uε|p
) r

p

with a similar estimate for
´

Γε
F (uε)dµεΓ(ω) in case of Hölder continuous F and exploiting the lower

bound of F otherwise. Then because of (20)
ˆ
Qε

P(ω)

1

p
|∇suε|p ≤ Eε,ω(uε) + C

for C independent from ε. Hence the statement follows from Lemmas 3.8 and 3.12.

2. Step a: Let (uk)k∈N ⊂ C1(Ω) be a countable dense family in W 1,p(Ω) and (φj)j∈N ⊂ C∞c (Q)

be dense in W 1,p
0 (Q). Then the span of the functions φj∇ωuk is dense in Lr(Q;Vrpot(Ω)). Writing

S = spanφj∇ωuk we show statement 2. for (u, υ) ∈ (φj)j∈N×S. However, for such (u, υ) we find
V ∈ spanφjuk such that υ = ∇ωV and V ε(x) := V (x, τx

ε
ω) is well defined and measurable for

every ω. For simplicity of notation, we assume V = φjuk

In particular, we have for uε = u + εV ε that uε
2s
⇀ u and ∇uε = ∇u + ε∇φj uk

(
τx
ε
ω
)

+

φj∇ωuk
(
τx
ε
ω
)

and hence uε ⇀ u weakly inW 1,p(Q) and∇uε 2s
⇀ ∇u+φj∇ωuk. Using essential

boundedness of∇φj uk
(
τx
ε
ω
)
, the ergodic theorem now yields

lim
ε→0

ˆ
Qε

P(ω)

|∇suε|p = lim
ε→0

ˆ
Q

χP

(
τx
ε
ω
) ∣∣∇su+ φj∇s

ωuk
(
τx
ε
ω
)∣∣p

=

ˆ
Q

ˆ
P

|(∇su+ υs)|p .

We obtain
´
Qε(ω)

G(uε)→
´
Q

´
P
G(u) and

´
Γε
F (uε)dµεΓ(ω) →

´
Q

´
Γ
F (u) dµΓ,P dx from Lemma

3.12. This implies (25) for the above sequence uε.

Step b: We pick up an idea of [3], Proposition 6.2. For general (u, υ) ∈ W 1,r
0 (Q)× Lr(Q;Vrpot(Ω))

with E(u, υ) < +∞ let (un, υn) ∈ (φj)j∈N × S with

‖(u, υ)− (un, υn)‖W 1,r
0 (Q)×Lr(Q;Vrpot(Ω)) ≤

1

n
(26)
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and

|E(u, υ)− E(un, υn)| ≤ 1

n
. (27)

We achieve (27) in the following way: due to Hölder continuity, there exists C > 0 such that |F (u)|+
|G(u)| ≤ C(|u| + 1). For M > 0 we write uM := max {−M,min {u,M}} and set υM(x, ω) =
χ(−M,M)(u(x)) υ(x, ω), i.e. uM = M implies υ = 0. Then uM and υM are still in the same
respective spaces. Furthermore, as M → ∞ we find E(uM , υM) → E(u, υ) by the Lebesgue
dominated convergence theorem. Next, we approximate (uM , υM) in W 1,p(Q) × Vppot(P) by el-
ements (uM,δ, υM,δ) ∈ (φj)j∈N × S and again by the Lebesgue dominated convergence theo-
rem we get convergence E(uM,δ, υM,δ) → E(uM , υM). Successively choosing M and δ, we find
(un, υn) ∈ (φj)j∈N × S satisfying 26–27.

Starting from 26–27 we set ε0(ω) = 1 and for each (un, υn) ∈ (φj)j∈N × S we find by Steps a

and b for almost every ω some εn(ω) ≤ 1
2
εn−1(ω) such that for ε < εn(ω) and uεn,ω = un(x) +

εVn(x, τx
ε
ω) it holds ∣∣Eε,ω(uεn,ω)− E(un, υn)

∣∣ ≤ 1

n
.

The set Ω̃ ⊂ Ω such that all εn(ω) are well defined has measure 1. For such ω we choose uε = uεn,ω
if ε ∈ (εn+1, εn). Then

|Eε,ω(uε)− E(u, υ)| ≤ 2

n
for ε < εn .

which implies the claim.

Theorem 3.14. Let Assumption 3.10 hold. Then for almost every ω the following holds: For every
ε > 0 let uεmin ∈ W

1,p
0,∂Q(Qε(ω)) be a global minimizer of Eε,ω. Then

sup
ε>0
‖uεmin‖W 1,p

0,∂Q(Qε(ω)) + Eε,ω(uεmin) ≤ ∞

and for every subsequence such that Uεuεmin ⇀ u weakly in Lp(Q) and weakly in W 1,r(Q) with

υ ∈ Lr(Q;Vr,ppot(Ω,P)) such that ∇uεmin
2s
⇀ ∇u + υ it further holds u ∈ W 1,r

0 (Q) and (u, υ) is a

global minimizer of E in W 1,r
0 (Q)× Vppot(P). Finally, in case (5) holds, we find

(u, υ) ∈ W 1,p
0 (Q)× Vppot(P)

Proof. In what follows, we denote

Wr := W 1,r
0 (Q), Vr := Vrpot(Ω) ,

and note that every of the following countable steps works for almost every ω.

Step 1: Since Wp × Vp ⊂ Wr × Vr the functional E has a at least one local minimizer (uR, υR) on
every closed ball of sufficiently large radius R in Wr × Vr

BWr×Vr
R (0) :=

{
(u, υ) ∈ Wr × Vr : ‖u‖Wr

+ ‖υ‖Vr ≤ R
}
.

By Theorem 3.13.2 there exists a recovery sequence uε ∈ W 1,p
0,∂Q(Qε(ω)) such that Uεuε ⇀ uR

weakly in W 1,r(Q) and∇uε 2s
⇀ χP · (∇uR + υR) weakly in two scales and

E(uR, υR) = lim
ε→0
Eε,ω(uε) .
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Step 2: We conclude for the minimizers

lim inf
ε→0

‖uεmin‖W 1,p
0,∂Q(Qε(ω)) ≤ lim inf

ε→0
Eε,ω(uεmin) + C ≤ lim inf

ε→0
Eε,ω(uε) + C ≤ E(uR, υR) + C ,

which at the same time implies by Theorem 3.13.1 that Uεuε ⇀ u weakly in W 1,r(Q) and there

exists υ ∈ Lr(Q;Vrpot(Ω,P)) such that∇uε 2s
⇀ χP · (∇u+ υ) and with (12)

‖u‖Wr
+ ‖υ‖Vr ≤ C (E(uR, υR) + 1) ,

E(u, υ) ≤ E(uR, υR) , (28)

with C independent from (uR, υR). This implies that the theorem holds if there exists a global mini-
mizer of E
Since also ‖uε‖W 1,p

0,∂Q(Qε(ω)) ≤ E(uR, υR), we conclude

‖uR‖Wr
+ ‖υR‖Vr ≤ C (E(uR, υR) + 1) ,

Step 3: Similarly, if (uR∗ , υR∗) is a further minimizer on any ball BWr×Vr
R∗ (0) with E(uR∗ , υR∗) ≤

E(uR, υR) we can conclude

‖uR∗‖Wr
+ ‖υR∗‖Vr ≤ C (E(uR, υR) + 1)

from the argument of Step 2 and a suitable recovery sequence.

Step 4: Hence, repeating Step 1 among the local minimizers, there exists a global minimizer (ū, ῡ) ∈
BWr×Vr
C E(uR,υR)(0).
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