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&

Operator Ordering Procedures
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PL 31342 Kraków, Poland

Abstract

Ordering of operators is purely combinatorial task involving a number
of commutators shuffling components of operator expression to desired
form. Here we show how it can be illustrated by simple urn models in
which normal ordering procedure is equivalent to enumeration of urn
histories.
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1 Introduction

Operator algebras constitute mathematical framework within which many
modern theories are built. Probably the most spectacular one is Quantum
Mechanics with operator formalism at the very heart of the theory [1, 2]. The
most unexpected, yet unavoidable, characteristic that makes it so strange
and successful at the same time is non-commutativity. It has been real-
ized very early since the advent of the theory non-commutativity has many
important consequences [3], such as Bose-Einstein condensation, supercon-
ductivity, photon correlations, etc. At the same time, the new quality caused
by the fact that the order of operators is relevant stimulated development
of novel methods capable of tracing the order of components in operator
expressions.

A common realization of operator algebra in quantum theory is the occu-
pation number representation in which the fundamental role is played by the
annihilation a and creation a† operators acting in the infinite dimensional
Hilbert space spanned by vectors |n〉 labeling some characteristic of a system
N |n〉 = n|n〉. Operators a and a† are interpreted as the operations shift-
ing these characteristic by one, which is embodied in the algebraic relations
[a, N ] = a and [a†, N ] = −a†. Conventionally, they are required to satisfy
the canonical Heisenberg-Weyl commutation relation

[a, a†] = 1 , (1)

being the hallmark of non-commutativity in Quantum Theory. This causes
ambiguities in the representation of an operator as an expression in a and a†,
e.g. aa† = a†a + 1, and one needs to standardize the notation by fixing the
preferred order of operators. An important practical example of operator
ordering is the normally ordered form in which all annihilation operators
stand to the right of the creation operators. Shuffling operators into this
form comes down to a number of commutations of type Eq. (1) which, in
general, is a highly nontrivial problem of genuine combinatorial origin [4, 5].

Here we construct an elementary urn model illustrating the normal order-
ing procedure for operators satisfying Eq. (1). It’s convenience comes from
intuitive concept of enumeration of urn histories providing a simple picture
of this, after all, abstract mathematical construction. We also develop an
elegant resolution to the problem based on generating functions methodol-
ogy [6]. The primary interest of this paper is attached to intriguing analogy
between combinatorial urn models used in description of various discrete
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phenomena [7, 8] and ordering procedures forced by operator formalism of
quantum physics.

2 Urn model

2.1 Urns and processes

We consider here urns U containing balls which are strictly distinguishable
between each other, e.g. numbered with different integers. For short, Un

denotes urn with n balls. One can modify contents of the urn by elementary
operations of removing a ball out or adding one into the urn, see Fig. 1.
We assume here that these operations are done one-by-one, i.e. only one
ball is taken out or put in at a time, and denote them by D and X re-
spectively. A basic process is just the composition of the elementary ones,
e.g. X 2D3X 4D ≡ XXDDDXXXXD represents composite process mean-
ing: “take a ball out, put four balls in, take three balls out, and then put
two balls in”. Each process may be realized in many ways since there are
different choices of the balls in the urn. Note also that the order in which
elementary operations are made is crucial for the number of possible histories
that may occur – there is one more possibility for DX than for XD – being
a sign of non-commutativity in the model.

We shall further need to capture indeterminacy of the process itself. In
other words, we assume that each time it is chosen at random from a given
repertoire denoted by H. To account for different probabilities with which
basic processes may occur we allow for their copies in H. The numbers hk

counting copies of the same basic process Hk in H describe their relative
probabilities, shortly denoted as H =

∑
k hkHk. For example, in process

H = 2X 3D + 5XDX probability that occurs X 3D or XDX is as 2 : 5.

2.2 Urn histories

Clearly, applying process H to urn U (possibly many times) one ends with
outcome which has some history behind, i.e. the record of events which
happened in a series of steps. We shall be interested in enumerating all
possible histories with given input and output, i.e.

G
(n)
l→k :=

{
number of histories

in n steps from urn Ul to Uk

}
. (2)
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Figure 1: Urn containing 5 balls and elementary operations of removal D
and addition X of a ball. There are 5 possibilities to take a ball out, and
only 1 to put a ball in.

Enumeration of histories is a nontrivial task, especially if one needs to do it
for general n. An elegant and efficient way of sorting and tackling information
about sequences is attained through their generating functions. Hence, for
each n we define the multivatiate generating functions

G(n)(x, y) =
∑
k,l

G
(n)
l→k xk yl

l!
, (3)

and the exponential generating function

G(x, y, z) =
∑

n

G(n)(x, y)
zn

n!
. (4)

In practice one often faces the problem of explicit calculation or at least
studying properties of these objects. A typical issue addressed in this context
concerns finding distribution of probabilities P

(n)
l→k of ending with urn Uk if

started from Ul as the results of n iterations of a given process H, defined by

P
(n)
l→k =

G
(n)
l→k∑

k G
(n)
l→k

. (5)

4



Probability generating function is then simply expressed trough G(x, y, z) as

∑
k,l

P
(n)
l→k xk yl

l!
=

[zn]G(x, y, z)

[zn]G(1, y, z)
(6)

=
∂n

z G(x, y, z)|z=0

∂n
z G(1, y, z)|z=0

, (7)

and all statistical properties, such as moments, asymptotic, etc., can be con-
veniently studied with the methods of generating functions [6].

In Section 3 we shall provide a simple scheme of calculating generating
functions of Eqs. (3) and (4) deriving from the operator ordering methodol-
ogy.

2.3 Operator representation

This simple urn model can be conveniently described in terms of polynomials
and differential operators. Let us represent an urn Un containing n balls by
monomial xn, and elementary operations X and D by multiplication X and
derivative D operators respectively, i.e.

Un ←→ xn,

D ←→ D,

X ←→ X.

Observe that acting with thus obtained representation of a basic process on
xn we get monomial corresponding to the resulting urn multiplied by the
number enumerating all possible histories in which the process could have
occurred, e.g. X2D3X3D xn = n(n + 2)(n + 1)n xn+1. Following up this
remark one finds out that correspondence

H ←→ H(X, D)

holds true for any process H. Accordingly, applying operator H(X, D) to xn

we get polynomial indicating possible results with coefficients enumerating
all histories in which the process could have occurred, e.g. for H = 2X 3D+
5XDDX , one gets H(X, D) xn ≡ (X3D + 5 XDDX) xn = 2n xn+2 + 5(n +
1)n xn.
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These observations are a simple consequence of intentional choice of the
representation of urns by monomials and basic processes by multiplication
and derivation operators respectively, dictated by the relations

D xn = n xn−1,

X xn = xn+1, (8)

and reflecting the facts that

• there are n ways of removing a ball from urn containing n distinguish-
able balls,

• a ball can be added to any urn only in one way.

This gives surprisingly simple combinatorial insight into the commutator

[D, X] = 1. (9)

Thus established correspondence translating model of urn processes into
the language of polynomials and differential operators will establish equiva-
lence with operator ordering procedures. We will find it useful in enumerating
urn histories in Section 3.3.

3 Normal ordering procedure

3.1 Normal order

Motivation for operator ordering procedures has strong grounds in quantum
physics where reshuffling of operator expressions to desired form introduces
both calculational and interpretative advantages. A typical example is the
occupation number representation where the annihilation a and creation a†

operators, satisfying the relation of Eq. (1), are best handled if all annihila-
tors stand to the right of creators. For a gentle introduction to the normal
ordering methods as well as physical motivation see [5].

For the purpose at hand we observe that algebra of Eq. (1) may be realized
in the space of polynomials (formal power series) as follows

a† ←→ X
a ←→ D

(10)
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where X and D ≡ ∂x are the multiplication and derivative operators defined
in Eq. (8). We note that choice of this representation is not accidental as we
are interested in combinatorics underpinning the Heisenberg-Weyl commu-
tation relation of Eqs. (1) or (9).

Accordingly, we standardize the notation of any operator H given as
expression in operators X and D to its normally ordered form in which
all multiplication operators X stand to the left of derivative operators D.
Clearly, each H can be unambiguously put in this form, i.e.

H(X, D) =
∑
k,l≥0

hkl XkDl. (11)

By the normal ordering of an operator we mean procedure of moving all the
derivatives D to the right using commutation relation of Eq. (9). Below we
shall be interested in normal ordering of powers and exponential of a given
operator.

3.2 Formal resolution

Suppose we are given operator H(X, D) and look for the normally ordered
form of its n-th power, i.e.

(H(X, D))n =
∑
k,l≥0

h
(n)
kl XkDl. (12)

(If H(X, D) is as in Eq. (11) one has h
(0)
kl = δk0δ0l and h

(1)
kl = hkl.)

The normally ordered form of operator in Eq.(12) can be conveniently en-
coded into polynomial

Bn(x, y) =
∑
k,l≥0

h
(n)
kl xkyl, (13)

Observe that it satisfies the identity

Bn(x, y) = e−xyH(X, D)nexy. (14)

Now we are ready to derive the recurrence for the polynomials Bn(x, y). By
Eq. (14) we have

Bn+1(x, y) = e−xyH(X, D)exyBn(x, y),
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and using property Dlexy = exy(D + y)l, we arrive at the recurrence

Bn+1(x, y) = H(X, D + y) Bn(x, y). (15)

The exponential generating function of polynomials Bn(x, y) is defined by

B(x, y, λ) =
∞∑

n=0

Bn(x, y)
λn

n!
. (16)

Note that, similarly to Eq. (14), one has

B(x, y, λ) = e−xyeλH(X,D)exy. (17)

Differentiating B(x, y, λ) with respect to λ yields

∂λ B(x, y, λ) =

∞∑
n=0

Bn+1(x, y)
λn

n!

=
∞∑

n=0

H(X, D + y) Bn(x, y)
λn

n!
,

which gives the following partial differential equation

∂λ B(x, y, λ) = H(X, D + y) B(x, y, λ), (18)

with initial condition B(x, y, 0) = 1.
In this way we have obtained formal resolution to the problem. Observe

that the right hand sides of equations

(H(X, D))n = Bn(X, D), (19)

eλH(X,D) = B(X, D, λ) (20)

are in the normally ordered form. We note that in many cases Eq. (18) can
be solved providing explicit analytic formulas.

3.3 Enumeration of urn histories

Here we will show utility of ordering methods in calculating generating func-
tion of urn histories of Eqs. (3) and (4). Recall from Section 2.3 that for a
given process H we have

Hnxl =
∑

k

G
(n)
l→k xk, (21)
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which if multiplied by yl/l! and summed over l yields generating functions of
urn histories

G(n)(x, y) = Hn exy (22)

and

G(x, y, z) = ezH exy. (23)

For efficient use of Eqs. (22) and (23) one needs to know the action of oper-
ators (H(X, D))n and ezH(X,D) on functions (in this particular case on exy).
It becomes trivial when the normally ordered form of operator is known.
Hence, from Eqs. (19) and (20) we have

G(n)(x, y) = Bn(x, y) exy (24)

and

G(x, y, z) = B(x, y, z) exy (25)

proving that calculation of both functions G(x, y, z) and B(x, y, z) is equiva-
lent. In this way we have shown the one-to-one correspondence between the
problems of enumeration of urn histories of iterated process H and normal
ordering of powers of the associated operator H(X, D). From one side or-
dering methods provide efficient tools capable of tracing of urn histories, and
vice versa – the urn model illustrates the procedure itself.

For illustration consider urn process H = XD + gX + gD. It corre-
sponds to the Hamiltonian H = a†a + g (a† + a) describing oscillator driven
by external force – a simple model of a system coupled to the environment.
Particularly interesting is the picture of dynamics generated by H in terms
of urn histories. It translates into the process H in which at each step one
ball can be either inspected, added or removed with relative probabilities 1,
g and g respectively. Inspecting XD means just drawing a ball, looking at
and then putting it back into the urn – hence in no way affecting number of
the balls in the urn – representing free (undisturbed) evolution of a system.
The remaining two terms introduce disturbance into the scheme by random
addition X or removal D of a ball, interpreted as the effect of external fac-
tor. Consequently, number of balls in the urn may change and urn histories
proliferate as conveniently described by generating function of Eq. (4)

G(x, y, z) = e(x+g)(y+g)(ez−1)e−g2zexy, (26)

obtained from Eqs. (18) and (25). Statistical properties of the model are
straightforward application of combinatorial analysis [6].
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4 Outlook

We have pointed out that abstract Heisenberg-Weyl commutation relation
have purely combinatorial underpinning. It allowed for construction of ele-
mentary urn model illustrating the operator normal ordering procedure which
was proved equivalent to enumeration of urn histories. In this way, these
both seemingly unrelated procedures gain new perspective and may draw on
methods taken one from another. From one side combinatorial enumeration
of histories is facilitated if the normally ordered form of involved operators is
known. On the other hand abstract mathematical construction of operator
ordering gains straightforward interpretation as enumeration of histories in
simple combinatorial models. The latter particularly interesting in descrip-
tion of quantum systems, and pointing at efficiency of combinatorial methods
based on generating functions approach.

Anticipating further analogies we observe that multi-mode systems can
be modeled by urns containing balls of different type, e.g. each mode having
different colour. Mixing terms in the Hamiltonian, introducing entanglement
into quantum system, may be then interpreted as processes swapping between
different types of balls in the urn. We expect that at least some of strange
quantum phenomena can be made more intuitive if looked from this simple
combinatorial perspective.
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