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Abstract

The spin Hall effect (SHE), which converts a charge current into a transverse spin current, has long
been believed to be a phenomenon induced by spin—orbit coupling. Here, we identify an alternative
mechanism to realize the intrinsic SHE through a noncollinear magnetic structure that breaks the spin
rotation symmetry. No spin—orbit coupling is needed even when the scalar spin chirality vanishes,
different from the case of the topological Hall effect and topological SHE reported previously. In
known noncollinear antiferromagnetic compounds Mn;X (X = Ga, Ge, and Sn), for example, we
indeed obtain large spin Hall conductivities based on ab initio calculations.

1. Introduction

The spin Hall effect (SHE) [1] is one of the most important ways to create and detect spin currents in the field of
spintronics, which aims to realize low-power-consumption and high-speed devices [2]. It converts electric
currents into transverse spin currents and vice versa. The SHE in materials is generally believed to rely on spin—
orbit coupling (SOC) [1, 3-5]. In typical SHE devices, the generated spin current is injected into a ferromagnet
(FM) and consequently switches its magnetization via the spin-transfer torque [6, 7] or drives an efficient motion
of magnetic domain walls [8, 9].

The SHE is conceptually similar to the well established anomalous Hall effect (AHE). In recent decades, the
understanding of the intrinsic AHE [10] and intrinsic SHE [11, 12] was significantly advanced based on the
concept of the Berry phase [13], which originates directly from the electronic band structure. Although the AHE
requires the existence of SOC in a FM, it also appears in a non-coplanar magnetic lattice without SOC, where an
electron acquires a Berry phase by hopping through sites with a non-coplanar magnetic structure (nonzero
scalar spin chirality) [ 14, 15], later referred as the topological Hall effect (THE) [16]. Thus, in experiment the
THE-induced Hall signal is considered as a signature of the skyrmion phase with chiral spin texture [17, 18].
Provoked by the THE, recent numerical simulations of the spin scattering by a single skyrmion indicated the
presence of a finite SHE even without SOC [19-21], which is termed as a topological SHE. Thus, the topological
SHE has been presumed to stem from the Berry phase due to the nonzero spin chirality of the skyrmion.
However, the origin of the spin current is illusive in the topological SHE, for it is hard to separate it from the
spin-polarized charge current of the THE. Here, we pose new questions one step further. Is the skyrmion-like
spin texture (nonzero scalar spin chirality) always necessary to generate a SHE without SOC? What is the generic
condition for a SHE without SOC?

In this article, we propose a mechanism to realize the SHE with the noncollinear magnetic structure but
without SOC. The crucial role of SOC is to break the spin rotational symmetry (SRS) in SHE. Alternatively, it is
known that common noncollinear magnetic textures can also violate the SRS, thus resulting in the SHE.
Different from the THE and topological SHE in symmetry, such an SHE appears universally for the noncollinear
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magnetic lattice, regardless of the scalar spin chirality. For example, it can even emerge in a coplanar magnetic
structure where the scalar spin chirality is zero. Here, we first prove the principle from the symmetry analysisin a
simple lattice model. Then, we demonstrate the existence of a strong SHE in several known materials Mn;X

(X = Ga, Ge, and Sn) [22, 23] by ab initio calculations without including SOC.

2. Results

2.1. Double-exchange model and symmetry analysis

The existence of the SHE and AHE in metals is determined by symmetry (in insulators apart from symmetry also
the topology of the electronic structure is important). The symmetry of magnetic systems is normally described
in terms of magnetic space groups, which contain, apart from the spatial symmetry operations, also the time-
reversal symmetry operation. In absence of SOC (or other terms in the Hamiltonian that couple the magnetic
moments to the lattice such as the shape anisotropy), however, the symmetry of the magnetic systems is higher
than that contained in the magnetic space groups since the spins can be rotated independently of the lattice. This
can be illustrated by considering the following minimal Hamiltonian

H=t) CiLCja —I> (0 - m)apciciss (D
(ipe iap

known as the double-exchange model (s—d model) [24—26] which describes itinerant s electrons interacting with
local d magnetic moments. We assume that magnetic moments are only contributed by the spin degrees of
freedom. Here, a and G stand for spin up and spin down, respectively. The first term is the nearest neighbor
hopping term with (ij) denoting the nearest neighbor lattice sites. In the second term, J is the Hund’s coupling
strength between the conduction electron and the on-site spin moment, o is the vector of Pauli matrices, and n;
is the spin magnetic moment on-site i. The magnetic texture is defined by the pattern of n;. In such a
Hamiltonian, spin rotation only rotates the magnetic moments n;. The corresponding symmetry groups are thus
formed by combining the magnetic space groups with spin rotations [27, 28]. Such symmetry groups are referred
to as spin-space groups. They apply generally for non-interacting Hamiltonians in absence of SOC.

We focus here only on the intrinsic contribution to the AHE and SHE, however, the other (extrinsic)
contributions have the same symmetry and thus the symmetry discussion in the following is general. The
intrinsic AHE and intrinsic SHE are well characterized via the Berry curvature formalism [1, 5, 10, 13]. The
anomalous Hall conductivity (AHC) 0,5 can be evaluated by the integral of the Berry curvature €2}, 5(k) over the
Brillouin zone (BZ) for all the occupied bands, where 7 is the band index. It should be noted that this method can
also be applied to the THE, although it is commonly interpreted using the real space spin texture. Here, 0,3
correspondstoa3 x 3 matrix and indicates a transverse Hall current j,, generated by a longitudinal electric field
E, which satisfies ], = 0,3E3. Within alinear response, Berry curvature can be expressed as

</(/}nk| oal/(/}mk> <wmk| 9d|1/}nk>
- ol Bl sl Bl
m=n (Eu(k) — En(k))

where nand m are band indices, and 1,k and E, i denote the Bloch wave functions and eigenvalues, respectively,

—
Qap(k) = 2142

)

and ¥ is the velocity operator. Replacing the velocity operator with the spin current operator J,| = 3 {V> 8415

where $., is the spin operator, we obtain the spin Berry curvature and corresponding spin Hall conductivity
(SHC)

e d’k
o= 0 LK),
K ngz (27r)3f”( 0 ®)

(el T 1) (i) Dl 0ic)

Q) (k) = 2i/4? . 3)
e ,%;n (Enk - Emk)2
The SHC (UZ 5 B, = x,¥,z)isathird-order tensor (3 X 3 x 3)andrepresents the spin current ]S?’a
generated by an electric field Evia J,, = o, ;Eg, where ], isa spin current flowing along the a-direction with

the spin-polarization along the y-direction, and f,,(k) is the temperature dependent Fermi—Dirac distribution.
We know that AHE vanishes while SHE remains if the time-reversal symmetry (operator T) exists in the
system. In equation (2), T reverses the velocities 7, 3 and brings an additional ‘-’ sign by the complex conjugate.

— —
Thus, 0,3 = 0 owingto Q, ,g(k ) = —€, og(—k). In contrast, In equation (3), T generates one more ‘—’ sign

~ - . . .
by reversing the spinin J7. Then, g ; can be nonzero since €2 , ;(k ) is even in k-space. In a magnetic system
without SOC, T'is broken, but a combination of T'and a spin rotation (operator S) can still be a symmetry. For
example, a coplanar magnetic system shows a TS symmetry, in which Srotates all spins by 180° around the axis
perpendicular to the plane. Since S does not act on #, 3, TS causes vanishing o, 5just as T alone. In a general non-
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Figure 1. Symmetry conditions for the existence (v/) or absence (x) of AHE and SHE in collinear FM, collinear AFM, coplanar, and
non-coplanar magnetic lattices with and without SOC. Note that the SHE is allowed by symmetry when the magnetic ordering is
coplanar (but noncollinear) even without SOC (see text).

coplanar magnetic lattice, the TS symmetry is naturally broken, because one cannot find a common axis about
which all spins can be rotated 180° at the same time, and thus the AHE can exist without SOC.
The situation is different for the SHE since J in equation (3) contains an additional spin operator. As a

N
consequence, (assuming that S is a rotation around the z axis) TS forces Qz/ 23(k ) tobe odd where spin $ or §, is

reversed by TS, but Q7 5(?) to be even where §, is unchanged by TS. Then, one can obtain zero ng but
nonzero 0. In a collinear magnetic lattice there exists more than one spin rotation S such that TS isa symmetry
of the system and thus all of the ¢} ; components have to vanish. Therefore, we can argue that SHE can exist
without SOC in general noncollinear magnetic lattices, regardless of FM, AEM, or the scalar spin chirality
(coplanar or non-coplanar). In contrast, the AHC is zero for a coplanar magnetic lattice (zero scalar spin
chirality), since TS acts as T'alone in equation (2).

When SOC is included, SHE is allowed by symmetry in any crystal [29], while the AHE on the other hand can
be present in magnetic systems that are not symmetric under time reversal combined with a translation or
inversion (for example, a conventional collinear AFM). We summarize the necessary conditions for the
existence of AHE and SHE in systems with and without SOC in figure 1.

To demonstrate that the SHE can indeed be nonzero without SOC, we consider the s—d Hamiltonian (1)
projected on a kagome lattice with the so-called ¢ = 0 magnetic order, shown in figure 2(a). Such a coplanar
AFM order is well studied in theory [ 14, 30] and appears in many realistic materials even at room temperature,
for example Mn3;X (X = Ir, Ga, Ge, and Sn) [22, 23, 31-34] as we discuss in the following. For comparison, the
SOC effect is also considered by adding to H in equation (1)

Hy, =it; Y vi(0 - mij)ascicip, 4)
{iyas

where v;;is the antisymmetric Levi-Civita symbol and 7;; are a set of coplanar vectors anticlockwise perpendicular
to the lattice vector Rj;, as defined in [30] and £, is the SOC strength.

We first analyze the symmetry of the SHC tensor for the g = 0 magnetic order. Note that we use the
Cartesian coordinate systems defined in figure 2. As discussed above, the existence of the TS symmetry leaves
only oy, 5 terms in the absence of SOC. Further, the combined symmetry TM,, in which M, is the mirror
reflection along x and flips §, and 7, in equation (3), leads to o, = 07, = 0. We further obtain only two
nonzero SHC tensor element 0, = — 07, by considering the three-fold rotation around z. The magnetic order
shown in figure 2(b) will also be relevant for the discussion in the following. This magnetic configuration differs
from the g = 0 case only by a two-fold spin rotation around the y-axis and thus, without SOC its symmetry is
exactly the same as that of the g = 0 case.

Setting the Hund coupling constant ] = 1.7t and SOC strength £, = 0, we calculate the spin Berry curvature
via equation (3). As expected, we find nonzero SHC 0%, fully in agreement with the symmetry considerations.
Figures 3(a) and (b) show the band structures with t, = 0 and ¢, = 0.2¢, respectively. One can see that SOC
modifies slightly the band structure by gaping some band crossing points such as the BZ corners (K'). Without
SOC, we already observe nonzero 0%, while adding SOC reduces o7, slightly at the Fermi energy that s set
between the firstand second bands at about —2.7 eV. We plot corresponding spin Berry curvature (2, in the
hexagonal BZ In figures 3(d) and (e). Large €25, appears in the BZ without SOC, leading to net o75,,. The SOC
simply brings an extra contribution to o7, at the band anti-crossing region around the K point.

2.2. Realistic materials
After proving the principle, we now identify materials that show strong SHE with negligible contribution from
SOC. We naturally consider Mn;X (X = Ga, Ge, Sn, and Ir) compounds, since they exhibit non:w collinear
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Figure 2. Noncollinear order in kagome lattice and the magnetic structure of Mn;Ir and Mn;X (X = Ga, Ge, and Sn). (a) Theg = 0
order in the kagome lattice, with magnetic moments located as 2D Mn plane in Mnj;lr, (b) two-fold spin rotation around y-axis of
configuration (a), corresponding to Mn planes in Mn;X (X = Ga, Ge, Sn), (c) the face-centered cubic crystal structure of Mn;Ir, (d)
the hexagonal crystal structure of Mn;X (X = Ga, Ge, and Sn).

AFM order at room temperature (the AFM Néel temperature is over 365 K). Our recent ab initio calculations
showed a sizable intrinsic SHE by including SOC [34]. Here, we further point out that SHE still presents without
SOC and SOC actually plays a negligible effect for SHE in these materials.

The primitive unit cell of Mn3Ga, Mn;Ge and Mn;Sn (space group P63 /mmc, No. 194) includes two Mn;X
planes that are stacked along the c-axis according to a ‘~AB—AB-" sequence. Inside each plane, Mn atoms form a
kagome-type lattice with Ga, Ge, or Sn lying at the center of the hexagon formed by Mn. Both the ab initio
calculation [31] and neutron diffraction measurements [35-37] show that the Mn magnetic moments exhibit
noncollinear AFM order, where the neighboring moments are aligned at an angle of 120°, as in figure 2(b). Large
AHE in room temperature has recently been reported in Mn;Ge and Mn;Sn [22, 23]. These materials also
exhibit other exotic phenomena including the Weyl semimetal phase [38], magneto-optical Kerr effect [39],
anomalous Nernst effect [40], and topological defects [41]. Distinct from hexagonal Mn;X compounds, the
Mnjlr (space group Pm3m, No. 221) crystallizes in a face-centered cubic structure with Mn atoms in the [111]
planes forming a kagome lattice with the ¢ = 0 magnetic order.

The symmetry of the SHE without SOC in these materials can be understood using a similar approach as we
used for the 2D kagome lattice. The hexagonal Ga, Ge, and Sn materials can be viewed as stacking versions of the
kagome lattice and thus we find that the symmetry of SHE is the same as the 2D kagome lattice, i.e. only
0%, = —0, isnonzero. However, we find that SHE must vanish in Mn;Ir without SOC, which is imposed by the
higher symmetry of the cubic magnetic lattice. For completeness, we list the tensor matrices without and with
SOC for all these compounds in the supplementary material available online at stacks.iop.org/njp/20/073028/
mmedia.
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Figure 3. Electronic band structures ¢ = 0 order in kagome lattice, (a) without and with SOC. (b) Energy-dependent SHC aiy. (©)
Spin Berry curvature wa distribution of first BZ at Fermi energy —2.7 eV (horizontal line) without SOC and (d) with SOC.

Since the SHC tensor shape imposed by the symmetry has been systematically investigated for these
materials in [34], we only discuss one of the largest SHC tensor elements 0%, based on the ab initio calculations
[42] of the SHC. For comparison, we show the SHC without and together with SOC in figure 4. In the absence of
SOC, Ga, Ge, and Sn compounds indeed exhibit nonzero SHC o3, = —613, 115, and 90(/ /e)(Q cm)~,
respectively, at the Fermi energy. One can see that SOC induces very few changes in the band structure and
thereafter modifies the SHC weakly, especially at the Fermi energy for Ga, Ge, and Sn compounds. It is intuitive
to observe comparable %, values for Ge and Sn compounds, despite the fact that Sn exhibits much larger SOC
than Ge. These facts further verifies that the noncollinear magnetic structure, rather than SOC, is dominant for
the SHE. The Ga compound shows an opposite sign in SHC compared to the Ge/Sn compound, since Ga has
one valence electron fewer than Ge/Sn and the Fermi energy is lower in Mn;Ga than in Mn;Ge/Mn;Sn.

3. Discussion

Understanding the role SOC plays in the SHE is important for the fundamental understanding of the SHE, but
also for practical reasons. It can help with the search for materials with large SHE since in non-magnetic or
collinear magnetic materials, SOC is necessary for SHE and thus the presence of heavy elements is generally
required for large SHE. The SHE without SOC proposed in this work suggests a new strategy to design SHE
materials without necessarily involving heavy elements. In noncollinear systems, the Rashba effect can also
appear without SOC [43]. The spin texture in the band structure may depend sensitively on the real space spin
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Figure 4. Energy-dependent SHC tensor elements of o5, with and without SOC for (a) Mn;Ga, (b) Mn;Ge, (c) Mn;Sn, and (d) Mn;lr.
The Fermi energy is indicated by the dashed horizontal line.

texture. For example, we found that band structure spin texture is different between the Kagome lattice and the
triangular lattice.

We propose the general, necessary symmetry-breaking requirements (figure 1) for SHE without SOC. It is
worth noting that SHE can become zero without SOC in some noncollinear magnetic lattice where additional
symmetries forces the SHE to vanish. For example, we have shown that in Mn;Ir the SHE vanishes in absence of
SOC even though it has a noncollinear magnetic structure. This is a consequence of its high-symmetrical cubic
structure. Similar situation could happen for AHE without SOC in a non-coplanar magnetic lattice, such as the
AFM skyrmion system [21].

In conclusion, we have shown that the SHE can be realized by a non-chiral coplanar magnetic structure
without involving the SOC. The noncollinearity of the magnetic lattice can break the spin rotation symmetry
and consequently allow the existence of SHE. By ab initio calculations, we further predicted that such an SHE
without SOC can be observed in noncollinear AFM compounds Mn;X (X = Ga, Ge, and Sn). From our
symmetry considerations, an extrinsic SHE can appear when breaking the SRS. Thus, we expect the extrinsic
effect to also exist in our systems. Its amplitude will depend on the details of the scattering, and cannot be
estimated without microscopic calculations, though in general for SHE the intrinsic contribution tends to be the
dominant contribution. By providing a general theoretical, symmetry based understanding of the SHE, our
work motivates a comprehensive search for SHE materials among noncollinear magnetic systems, that not
necessarily involve heavy elements. In addition, the close relation between the SHE and the magnetic order
suggests that the SHE may be used vice versa, as a probe to establish and symmetry restrict the ground state
magnetic structures of long-range ordered antiferromagnets.

Regarding the strong correlated system, we would discuss the spin liquid material as an example. RuCl; has a
rich magnetic phase diagram, with a complex zig-zag type AFM long-range order at low temperatures, and even
aquantum spin liquid phase in applied magnetic field. According to our work, non-magnetic and collinearly
ordered phases have vanishing SHE without SOC. For the quantum spin liquid phase, it remains unclear
whether SHE appears without SOC. If yes, SHE would be a promising probe to the spin liquid phase. We will
study this very interesting question in the future.
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4. Method

To calculate the SHE in these compounds we obtain the DFT Bloch wave functions from Vienna ab initio
Simulation Package (VASP) [42] within the generalized gradient approximation [44]. By projecting the Bloch
wave functions onto maximally localized Wannier functions [45], we get a tight-binding Hamiltonian which we
use for efficient evaluation of the SHC. For the integrals of equation (3), the BZ was sampled by k-grids from

50 x 50 x 50t0200 x 200 x 200. Satisfactory convergence was achieved for a k-grid of size

150 x 150 x 150 for all three compounds. Increasing the grid size to 200 x 200 x 200 only varied the SHC by
no more than 5%. The results of the calculations agree well with the symmetry analysis.
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