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Utilizing anatomical information for signal detection in functional
magnetic resonance imaging

André Neumann, Norman Peitek, André Brechmann, Karsten Tabelow, Thorsten Dickhaus

Abstract

We are considering the statistical analysis of functional magnetic resonance imaging (fMRI)
data. As demonstrated in previous work, grouping voxels into regions (of interest) and carrying
out a multiple test for signal detection on the basis of these regions typically leads to a higher sen-
sitivity when compared with voxel-wise multiple testing approaches. In the case of a multi-subject
study, we propose to define the regions for each subject separately based on their individual brain
anatomy, represented, e.g., by so-called Aparc labels. The aggregation of the subject-specific
evidence for the presence of signals in the different regions is then performed by means of a
combination function for p-values. We apply the proposed methodology to real fMRI data and
demonstrate that our approach can perform comparably to a two-stage approach for which two
independent experiments are needed, one for defining the regions and one for actual signal de-
tection.

1 Introduction

Signal detection in high-dimensional data is a major topic of modern statistics. Typically, structural
information like, for instance, (the degree of) sparsity of the signal is necessary for its detectability
and/or (consistent) estimability; see, e. g., Figure 1 in Donoho and Jin 2004, van de Geer 2016,
Chapter 7 in Wainwright 2019, as well as references therein.

Especially in the context of functional magnetic resonance imaging (fMRI), another type of structural
information is localization. The primary units of fMRI measurement are volume units (voxels) of the
human brain. Localization means that scattered, spread out signals (in single voxels or very small
groups of voxels) are prone to be artifacts. Instead, topologically contiguous signals (forming larger
groups of voxels, called regions) are much more plausible (Forman et al. 1995; Lazar 2008). This
information rules out certain patterns of the signal structure a priori, and can hence be exploited to
increase the statistical power for signal detection; see, among many others, Schildknecht, Tabelow,
and Dickhaus 2016. There are different possibilities to define or find such regions: (i) One may refer
to an atlas of the brain, like the Brodmann atlas (Brodmann 1909) and aggregate data within the
regions given by this atlas. This has been the strategy of Schildknecht, Tabelow, and Dickhaus 2016.
(ii) One may find the regions (of interest) in a data-driven manner, e.g., by a cluster analysis. This has
been proposed, among others, by Jarmasz and Somorjai 2002. However, as emphasized for instance
by Benjamini and Heller 2007, it is important that this data-driven definition of regions is “based on
information outside the data that we set out to analyze”, meaning that the dataset used for defining
the regions should be (stochastically) independent of the dataset which is used for signal detection,
to avoid selection biases. (iii) One may choose a statistical methodology which ensures statistically
valid conclusions even for regions which are selected in a post-hoc manner after having seen the
actual study data. This can be achieved by simultaneous inference methods which guarantee that any
possible selection event is accounted for; see, e. g., Rosenblatt et al. 2018 and references therein.
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Study 1 (Siegmund et al. 2014) Study 2 (Siegmund et al. 2017)

Participant sessions 16 14
Trials 12 30

Conditions
Bottom-up program comprehension,
control (syntax), rest

Top-down program comprehension,
Bottom-up program comprehension,
control (syntax), rest

Scans 900 900

Table 1 – Overview of the two related fMRI studies of program comprehension.

1 public static void main() {
2 String text = "The quick brown fox jumps";
3 System.out.print(compute(text));
4 }
5
6 static int compute(String text) {
7 int result = 0;
8 boolean flag = false;
9

10 for (int i = text.length() - 1; i >= 0; i--) {
11 char c = text.charAt(i);
12
13 if ((c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')) {
14 flag = true;
15 result++;
16 } else {
17 if (flag)
18 break;
19 }
20 }
21
22 return result;
23 }

Listing 1 – Example code snippet in Java from Siegmund et al. 2014 that computes the length of the
last word in a string. The snippet uses non-meaningful identifiers to induce bottom-up comprehension.
Participants needed to figure out the output of this snippet “5”.

All of the three aforementioned strategies have their assets and their drawbacks: Strategy (i) is inex-
pensive and easy to implement, but the regions taken from the atlas may not be optimally aligned with
the specific task at hand, and differences in the individual brain anatomies of the study participants
may complicate its application. Strategy (ii) is costly (two independent experiments are needed), but
is supposed to yield a more accurate definition of the regions (of interest). Strategy (iii) avoids both
the (potentially suboptimal) a priori definition of regions and the need for an additional independent
experiment. However, the issue of multiple testing (see, e. g., Dickhaus 2014 and Dudoit and van der
Laan 2008) becomes much more severe if simultaneity over all possible selection events has to be
guaranteed, and the selection of the regions is not based on a clear-cut (statistical) criterion, but on
expert judgement of the study data. Therefore, it is hard to compare the results of Strategy (iii) with
those of Strategies (i) and (ii).

Strategy (ii) has been followed by in a recent series of papers, namely Siegmund et al. 2014 and
Siegmund et al. 2017 in which programmers comprehended program code. We provide an overview
in Table 1. The authors asked participants in the first study (Siegmund et al. 2014) to understand
short program code snippets, such as shown in Listing 1 (Siegmund et al. 2014). The program code
did not contain any useful identifier names, which induces bottom-up comprehension (Pennington
1987). Siegmund et al. contrasted the bottom-up comprehension task with a syntax task, in which
participants were presented with similar program code snippets, but only had to focus on syntax errors
(e.g., missing semicolon). This control condition was intended to reveal only brain activation that is
necessary for programmers to comprehend program code in-depth. As additional control condition,
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Usage of Aparc labels in fMRI data analysis 3

the experiment included phases of rest in between the comprehension and syntax conditions.

The second study (Siegmund et al. 2017) was a follow-up study that differentiated the program-
comprehension task into more nuanced conditions. The aim was to differentiate between bottom-up
comprehension and top-down comprehension (Brooks 1983) that was induced by varying the mean-
ingfulness of identifier names and by prior training to provide participants with necessary knowledge.
As in the previous study, the syntax task served as control condition. The analysis of the influence of
top-down and bottom-up program comprehension in this study built on the regions identified in the first
study, thus following Strategy (ii).

In the present work, we propose a new strategy and apply it to the data from Siegmund et al. 2017:
We first utilize structural information of the individual’s brain scans. Here we use an automatic par-
cellation of the brain into so-called Aparc labels, which assign the voxels of an individual to anatomic
regions. Details on this are provided in Section 3.2. This step of data analysis provides us with a sig-
nificance evaluation (in terms of a p-value) for the presence of signals in anatomically defined regions
for every study participant separately. Then, in a second step, we combine for each of these regions
the p-values of all voxels within that region from all study participants by means of an appropriate
combination function, and we evaluate the significance of the whole region by means of the resulting
combined p-value. As we will demonstrate by means of a concrete example from the field of program-
ming language comprehension, this new strategy can be similarly powerful as Strategy (ii) described
above, while avoiding the additional experiment used for region definition. In our case, this additional
experiment has been carried out by Siegmund et al. 2014 (and utilized in a previous data analysis),
but our present methodology will not have access to the data from that additional experiment.

The rest of the paper is structured as follows. In Section 2, we describe our proposed statistical
methodology. Section 3 is devoted to the detailed description of our re-analysis of the data by Sieg-
mund et al. 2017, and the results of this re-analysis are presented in Section 4. We conclude with a
discussion in Section 5.

2 Methods

In this section we describe our statistical model for fMRI data as well as the proposed data analysis
workflow for detecting brain regions which are significantly associated with a certain cognitive task.

Random-effects linear model for voxel-wise multiple tests

Let Yixt denote the observed data from a functional MRI experiment at voxel x and time t for the i-th
subject. Here, we adopt the common view (Lazar 2008) of a mass-univariate linear model for the data

Yixt = Xβix + εixt

with a design matrix X containing variables with the expected blood oxygenation level dependent
(BOLD) response related to the experimental stimuli or nuisance parameters like drifts of the MR
signal. The random variable εixt is the error term with assumed zero expectation and a spatio-temporal
correlation structure. Estimates β̂ix of the statistical parametric map (SPM) or their contrasts c>β̂ix and
estimates of their covariance matrices Σ̂ix (or the variances σ̂2

ix = c>Σ̂2
ixc) can then be obtained from

a pre-whitened version of the linear model above (Lazar 2008).

The SPM then forms a random t-field (Worsley 1994) with an inherent multiple comparison problem
due to the large number of local hypotheses. One common strategy is to define local p-values at each
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voxel x and for each subject i based on the local values of the random t-field and to control the family-
wise error rate (FWER) using accordingly adjusted thresholds (Worsley et al. 1996). However, this is
known to be a very conservative approach with respect to the detectability of significant brain signals
in the outlined framework. In contrast, approaches related to the control of the false discovery rate
(FDR) can handle the multiple comparison problem, e.g., by the procedure developed by Benjamini
and Hochberg 1995.

Parcellation of the human brain

Neuroanatomic research has found that the human brain can be parcellated into different sub-regions
based on structural similarities. One of the earliest atlases is the Brodmann atlas (Brodmann 1909)
which is based on the cytoarchitectural organization of the brain. The Brodmann Areas have been
schematically transferred to a template brain, the so-called Talairach-Atlas (Talairach and Tournoux
1988) which is commonly used in fMRI studies to report the location of significant grand average
activation, as used in (Siegmund et al. 2014; Siegmund et al. 2017). Here we chose the Harvard-
Oxford brain atlas (Makris et al. 2006; Desikan et al. 2006) that provides a parcellation based on gross
anatomical landmarks and delivers an Aparc label j for each voxel of each individual brain space.

Statistical inference

As outlined in the introduction, we re-used fMRI data from a program code comprehension task first
analyzed by Siegmund et al. 2017 and performed a new analysis comprising the four steps outlined
below. The experiment used two different levels of software program code comprehension stimuli,
henceforth denote as bottom-up and top-down comprehension, to infer on the related cognitive pro-
cesses. In our strategy, we combined the methods of Siegmund et al. 2017 (steps 1 and 2) and Schild-
knecht, Tabelow, and Dickhaus 2016 (step 3). Furthermore, we implemented our new methodological
contribution of combining the evidence for activation of a given brain region across the subjects (step
4). For the first two steps, we conducted, for each subject, a random-effects linear model analysis as
described above for deriving voxel-wise p-values.

Step 1: Program comprehension versus rest

In the first step, we contrasted (for each participant separately) the comprehension of program code
(Siegmund et al. 2017) to the rest condition. This identifies brain areas with a positive deflection of the
BOLD response. Furthermore, in order to account for the multiple comparison problem we performed
the Benjamini-Hochberg test (see Benjamini and Hochberg 1995) for FDR control. Only those voxels
which have been declared significant by this procedure were considered in step 2. This methodology
is justified by the fact that the FDR is an established screening criterion for high-dimensional multiple
test problems.

Step 2: Bottom-up comprehension versus control condition

In this step, we contrasted (again, for each participant separately) one type of program comprehension:
bottom-up comprehension. Bottom-up comprehension is induced when program code provides no
semantic cues and programmers need to comprehend each line separately and then integrate the
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information in a slow, tedious process. For the significant voxels from the first step, we applied in
a second step the same multiple test to the contrast bottom-up comprehension against the control
condition (syntax task) on the restricted set of voxels. As a result of this step, we get for each participant
i and for each considered voxel k a p-value p̃ik.

Step 3: Aparc p-values for every participant i

This step builds upon the methodology by Schildknecht, Tabelow, and Dickhaus 2016, and it delivers
for each participant i and for each Aparc label j a (confirmatory) significance evaluation with respect
to the contrast specified in step 2. Hence, the evidence from all voxels of participant i in the brain
region labeled by j is combined in this step of data analysis.

To this end, let κ be a tuning parameter with values in the interval [0,1] (i.e. in per cent) and let m j
be the number of voxels contained in the brain region labeled by Aparc label j. (To keep the notation
feasible, we implicitly assume here that for each participant i the same number m j of voxels belong to
the brain region labeled by j.) We consider the null hypothesis Hi j of no relevant differential activation
of the region labeled by j for participant i during the two tasks mentioned in step 2, together with its
two-sided alternative hypothesis Ki j. We call Hi j the Äparc null hypothesis"for the brain region labeled
by j for participant i. We formalize Hi j as a so-called partial conjunction hypothesis (see Schildknecht,
Tabelow, and Dickhaus 2016 and the references therein for a formal mathematical description), mean-
ing that we consider the differential activation in region j for participant i relevant, if it contains at least
u j := κ ·m j significant voxels. For testing Hi j, we calculate the Äparc p-value"pAPARC

i j , given by

pAPARC

i j := min
1≤`≤m j−u j+1

{
m j−u j +1

`
p̃i,(u j−1+`):m j

}
,

where the voxel-wise p-values p̃i,1:m j , . . . , p̃i,m j:m j for participant i in region j are ordered from small-
est to largest (see Benjamini and Heller 2008).

In order to achieve family-wise error rate (FWER) control, we have to choose the tuning parameter κ

smaller than or equal to 1/J, where J is the number of Aparc labels. Choosing κ = 1/J corresponds
to the so-called Bonferroni multiplicity correction. The choice of κ is discussed further in Appendix S1
of Schildknecht, Tabelow, and Dickhaus 2016.

Step 4: Combined Aparc hypothesis tests by Fisher’s method

In this final step, we combine for each Aparc label j the Aparc p-values calculated in step 3 over all
participants i = 1, . . . ,n.

In order to do this, we apply the so-called Fisher method to combine p-values. Namely, the Fisher test
statistic Tj for region j is given by

Tj :=−2
n

∑
i=1

log
(

pAPARC

i j
)
.

Under independence of the data with respect to the participants, Tj is asymptotically χ2
2n-distributed

(chi squared) with 2n degrees of freedom under the null. The latter independence assumption is
justified, because the participants have been included in the study independently from each other.

Finally, we can reject the (over all participants i combined) Aparc hypothesis H j (i.e., the respective
partial conjunction hypothesis, but now with respect to the population, not with respect to a single
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participant) if and only if Fisher’s test statistic Tj is larger than the (1−ακ)-quantile of the χ2
2n-

distribution with 2n degrees of freedom, where the tuning parameter κ has been introduced in step 3.
This parameter addresses the multiplicity of the test problem with respect to the J Aparc labels which
are simultaneously under consideration.

3 Data analysis

We re-use the data from Siegmund et al. 2017 and compare our results with those obtained by addi-
tionally utilizing Siegmund et al. 2014 as pre-study in the sense of Strategy (ii) outlined in the introduc-
tion.

3.1 Previous findings

In the two previous studies mentioned before, Siegmund et al. used similar analysis processes. They
used BrainVoyager™ QX 2.8.4.1 The anatomical scans were transformed into the Talairach brain to
account for differences in brain size (Talairach and Tournoux 1988). They preprocessed the functional
data of both studies with a standard pipeline of: 3-D motion correction, slice-scan-time correction, and
temporal filtering. In addition, they applied a spatial smoothing with a Gaussian filter (FWHM=4 mm).

In the first study (Siegmund et al. 2014), the random-effects GLM revealed five brain areas (BAs 6, 21,
40, 44, 47) with significant activation with the contrast Bottom-Up Comprehension > Control condition,
i.e. syntax task. In the second study, the same contrast revealed no significant areas anymore, likely
due to the reduced statistical power of five instead of twelve bottom-up comprehension tasks per
session. Thus, the authors ran a regions of interest analysis restricted to the identified activation
clusters of the first study on the data of the second study. This resulted in a significantly stronger
activation for Bottom-Up Comprehension versus Syntax in BAs 21, 40, and 44.

3.2 Data export and preparation for re-analysis

In Figure 1, we illustrate the overall process for the re-analysis of the data from Siegmund et al.
2017. For the purpose of our re-analysis, we exported the already preprocessed data from the second
study. We did not use the data of the first study as our method does not need prior definitions of
regions of interest. We used BrainVoyager to access the data from Siegmund et al. We exported the
statistical values (i.e., t-scores, p-values) of the obtained brain activation on a voxel basis for each
participant. The voxel resolution is the same BrainVoyager uses for its internal computation (i.e., on
a 1 mm interpolated resolution).

In addition, we used FreeSurfer to segment and parcellate the brain of each participant based on their
anatomical scan (Fischl et al. 2002; Fischl et al. 2004). We used the Destrieux’ cortical atlas to assign
Aparc labels on an individual participant basis (Destrieux et al. 2010). Next, we used Nipype (Gor-
golewski et al. 2011; Esteban et al. 2020) to convert Freesurfer labels to a BrainVoyager-readable
format.

Our last step annotated the exported functional data with the individual anatomical labels for each
participant. We removed all functional voxels for coordinates that had no assigned Aparc label, which

1Brain Innovation BV, Maastricht, The Netherlands, http://brainvoyager.com
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Step 1 Step 2 Step 3 Step 4

Yikt = Xβik + εikt

p̃ik pAPARC
ij Tj := − 2

n

∑
i=1

log (pAPARC
ij )

Code comprehension 
vs. rest Bottom-up vs. control condition

Yikt = Xβik + εikt

Segmentation and  
Aparc label assignment

Functional participant data

Anatomical participant data

Siegmund et al. (2017) This paper

i = 1, 2, …, n
i = 1, 2, …, n

Figure 1 – Illustration of processing of the experimental data. The box in Harvest Gold indicate analysis
steps that have already been performed in Siegmund et al. 2017. The box in Monte Carlo indicates the
processing steps proposed in this paper.

typically are voxels that are not considered as grey matter.

Data sharing

Siegmund et al. provide replication packages for their studies.2 The raw brain data, exported voxel-
based activation data with their Aparc labels, and our analysis scripts will be shared upon request.

4 Results

Figure 2 displays the six brain regions which have been declared as significant (at FWER level α =
5%) associated with the task at hand by our described methodology. They are in general agreement
with the results obtained by Siegmund et al. 2017 in which they utilized prior knowledge. We visualize
the confirmed network of brain activation from Siegmund et al. in Figure 3 and our identified network of
significantly activated Aparc labels in Figure 4. Figures 3 and 4 show overlapping results with regard
to the Brodmann area 21 that covers the middle and inferior temporal gyrus (separated by the inferior
temporal sulcus). However, we observed differences regarding smaller brain regions. We compare
Siegmund’s replication efforts to our results in Section 5.1.

Our method found three Aparc labels in the inferior and middle temporal gyrus in the left hemisphere.
Siegmund et al. found their largest and most robust activation cluster in BA21 of the left hemisphere,
which covers several gyri in the temporal lobe. These left temporal gyri are often associated with se-
mantic processing of natural language, which is typically left-lateralized for right-handed participants.

2https://www.infosun.fim.uni-passau.de/se/janet/fMRI/index.php, https:
//github.com/brains-on-code/paper-esec-fse-2017
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Family p-values pAPARC
ij

Ap
ar

c 
re

gi
on

s
j

rh_S_collat_transv_ant

rh_G_temporal_inf

lh_S_temporal_inf

lh_S_collat_transv_ant

lh_G_temporal_middle

lh_G_temporal_inf

Figure 2 – The six significant brain regions (at FWER level α = 5%). In each row, each point corresponds
to the Aparc p-value pAPARC

i j of one study participant i, where the index j refers to the area indicated by the
code at the beginning of the row.

In the context of programming, the activation is believed to be responsible for extracting the meaning of
individual identifiers and symbols during program comprehension. We found two further Aparc labels
bilaterally in the inferior temporal gyrus and the anterior collateral sulci, which are both in the temporal
lobe as well.

For each of these six regions indexed by j, we display all subject-specific Aparc p-values {pAPARC
i j : 1≤

i ≤ n}, where n is the number of study participants. For each j considered in Figure 2, it can clearly
be observed that not a single extreme outlier (one very small p-value corresponding to one individual
subject) is responsible for the statistical significance with respect to the combination test statistic Tj,
but that the combined information contributed by all n subjects supports our statistical conclusions.
Aparc p-values pAPARC

i j ≡ 1 can occur, if none of the voxels belonging to region j has been selected in
Steps 1 and 2 described before for a certain subject i. By construction of Tj, this essentially means
that the ëffective sample size"for such a region is reduced, while the number of degrees of freedom
for the null distribution of Tj remains unchanged.
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BA21

BA40BA44

Figure 3 – Network of left-
lateralized confirmed brain areas
(i.e., BAs 21, 40, 44) activated
during program comprehension
found in Siegmund et al. 2017.

ctx_lh_G_temporal_middle

ctx_lh_G_temporal_inf

ctx_lh_S_temporal_inf

ctx_rh_G_temporal_inf

ctx_rh_S_collat_transv_ant

ctx_lh_S_collat_transv_ant

Figure 4 – Results of our analysis with significantly activated
Aparc labels, particularly in the middle and inferior temporal lobe.

5 Discussion

5.1 Statistical sensitivity

This paper is introducing a new strategy to analyze fMRI data and is demonstrating its performance by
drawing a comparison to two studies by Siegmund et al. In their second study, they investigated a new
research question which was based on a design with reduced statistical power regarding the network
of brain areas activated during bottom-up program comprehension. Only by using prior knowledge of
the location of identified clusters from the first study and conducting a regions-of-interest analysis with
increased statistical power, they were able to exceed standard thresholds of statistical significance but
restricted to the subset of areas identified in the first study.

Research that similarly aims to detect small differences between cognitive processes with state-of-
the-art methods would need to increase statistical power, e.g. by conducting two studies: first, to
identify the network of brain areas involved in the overarching cognitive process, and second, to identify
differential effects within the activated brain areas.

The method of utilizing individual anatomically defined regions of interest presented in this paper is a
candidate for a more sensitive analysis as compared to relying on statistical testing of single voxels
only. We demonstrate that our method is able to find significantly activated brain areas without relying
on prior knowledge. Moreover, additional brain areas were identified which have been described in two
fMRI studies of programmers and interpreted as being involved in visuo-spatial processing. One study
investigated manipulating data structures, which shares similarities to spatial rotation (Huang et al.
2019) and one writing program code (Krueger et al. 2020). Since the study by Siegmund et al. 2014
was the first study on program comprehension they used a rather small FDR corrected significance
level (p < 0.01 as compared to the more common p < 0.05). Possibly this is one reason why the
two areas identified by the current approach were not identified there and as a consequence could
not emerge in Siegmund et al. 2017. Thus, our current approach seems valuable in cases where new
research questions are explored and little to no prior work is available and which thus would require
careful statistical hypothesis testing to initially minimize false positives.

However, inferior frontal gyrus (BA 44) and inferior parietal lobule (with BA 40), shown to be significant
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Figure 5 – Histogram of p values of ctx_lh_G_temporal_middle label that is evaluated as sig-
nificantly activated. The left plot is across all participants, while the right side shows the distribution across
individual participants. The majority of participants is contributing to the significance.

# Voxels Overlapping with BA21 in % # Voxels of Entire Aparc Label in % in BA21

Left-Cerebral-White-Matter 634 22% 210620 0,3%
ctx_lh_G_temporal_middle 617 22% 7515 8,2%
ctx_lh_S_temporal_sup 512 18% 9379 5,5%
ctx_lh_S_temporal_inf 85 3% 2499 3,4%
. . . . . . . . . . . . . . .

Table 2 – The region of interest in BA21 identified by Siegmund et al. 2014 consists of 2844 voxels. Only a
subset of these voxels is assigned to Aparc labels. However, the assigned Aparc label are larger and only
a smaller section overlaps with the activation cluster. Bolded Aparc labels are evaluated as significant.
Only Aparc labels with at least 75 overlapping voxels are included.

in Siegmund et al. 2017, were not significant with our method. Therefore, we further investigated this
difference exemplarily with the activation cluster in BA 40. In Figure 5, we display a histogram of p-
values for the (statistically significant) Aparc label in the middle temporal gyrus, in which a majority of
the participants contribute with small p-values. In contrast, in Figure 6, we display a histogram of p-
values for the inferior parietal lobule. Across the entire group, we also observe an accumulation of very
small p-values, but only three of eleven participants contribute to this. Unlike the regions-of-interest
analysis done by Siegmund et al., our method relying on combining Aparc p-values by Fisher’s method
does not reject hypotheses with such a p-value distribution.

By transforming the Aparc labels into the Talairach space, we observed that the voxels included in
activation cluster of BA 40 do not perfectly align with the Aparc label that should cover this brain area,
i.e. the inferior angular gyrus of the parietal lobe. Table 3 shows that the overlap to the activation
cluster in BA40 is less than 50% and that only around 5% of its voxels are assigned to an Aparc label
at all. In contrast, Table 2 shows that at least 75% of the voxels of the BA 21 cluster are aligned to
Aparc labels of which two are significant with our method. Thus, a small activation cluster within a
large anatomical region may get lost with our approach. We further discuss this potential drawback of
the used anatomical segmentation and possible remedies in Section 5.3.
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Figure 6 – Histogram of p values of ctx_lh_G_pariet_inf-Angular that is not evaluated as
significantly activated. The left plot is across all participants, while the right side shows the distribution
across individual participants. While there are many small p values, only a few participants contribute these
small values.

# Voxels Overlapping with BA40 in % # Voxels of Entire Aparc Label in % in BA40

ctx_lh_G_pariet_inf-Supramar 304 17,1% 6318 4,3%
ctx_lh_G_pariet_inf-Angular 290 16,3% 4975 5,1%
Left-Cerebral-White-Matter 157 8,9% 178875 0,1%
. . . . . . . . . . . . . . .

Table 3 – The region of interest in BA40 identified by Siegmund et al. 2014 consists of 1777 voxels. Only a
subset of these voxels is assigned to Aparc labels. However, the assigned Aparc label are larger and only
a smaller section overlaps with the activation cluster. No Aparc label is evaluated as significant. Only Aparc
labels with at least 75 overlapping voxels are included.

From the methodological point of view, our main contribution consists in a novel way how to combine
evidence: Instead of aggregating single voxel data over all participants by mapping them to a standard
brain template, we define subject-specific regions and combine the evidence on the level of these
regions by means of a combination function. This is a generic methodological approach which is not
restricted to the specific study setup of Siegmund et al., but can be applied to essentially any fMRI
study design, involving an arbitrary number of contrasts.

Furthermore, also the (final) combination step of our proposed approach is generic in the sense that
instead of the Fisher combination function any other (appropriate) combination function for p-values
may be used. Recently, there has been a renewed interest in p-value combination methods; see, e.
g., Wilson 2019 (with discussion), Vovk and Wang 2020, and Vovk and Wang 2021.

5.2 Comparison to related fMRI analysis methods

Under the multiple testing framework, testing of grouped null hypotheses with (potential) application
in fMRI is an active research topic. Heller et al. 2006 as well as Benjamini and Heller 2007 employed
clustering techniques to define regions of interest, and they incorporated the heterogeneous cluster
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sizes in a weighting scheme for the linear step-up test by Benjamini and Hochberg 1995. In the same
vein, Hu, Zhao, and Zhou 2010 as well as Zhao and Zhang 2014 made use of the different proportions
of true null hypotheses in each of the groups in their proposed weighting. A Bayesian variant of this idea
has been derived by Liu, Sarkar, and Zhao 2016. Hierarchical methods, which exclude groups without
strong evidence for the presence of signals in several stages of data analysis, have been worked out
by Yekutieli 2008, Benjamini and Bogomolov 2014, and Schildknecht, Tabelow, and Dickhaus 2016,
among others. However, these methods rely on combining the subject-specific data on the voxel level,
which is a standard technique as mentioned, for instance, in Section 5 of Lindquist 2008. Also on the
basis of (combined) voxel data, Shi and Guo 2016 proposed a hierarchical independent component
analysis for the comparison of brain functional networks. To the best of our knowledge, our proposed
method to define subject-specific regions by means of Aparc labels and to combine the resulting
subject-specific Aparc p-values by means of a combination function is a novel idea.

5.3 Outlook: from anatomical to functional aggregation

Our presented method avoids potential imprecision of using common brain templates. We used the
parcellation of the brain for each individual participant into Aparc labels before aggregation into the
group analysis. This procedure provides more labels than a traditional Brodmann atlas. Still, some of
the regions are very large and thus presumably contain several functional areas. There is ongoing
research to subdivide the brain based on cytoarchitectonic details, e.g. the Jülich-Brain (Amunts et
al. 2020). This will provide more detailed parcellation schemes in the future and that could easily be
integrated into our proposed method. Another refinement could be to use functionally defined brain
regions for our presented methodology. A study that implements functional localizers could identify
participant-specific functional maps of the brain for well defined standardized tasks (e.g. see Nieto-
Castañón and Fedorenko 2012). Then, in the analysis, our presented methodology can aggregate
across all participant-specific brains with less imprecision than traditional methods. We would like to
note that such functional localizers are currently restricted to research areas that include brain re-
gions with specific functional specialization (Saxe, Brett, and Kanwisher 2006, Friston et al. 2006).
The studies we presented in this paper are concerned with a rather complex cognitive task. Moreover,
understanding program code is highly individual since different programmers rely on different com-
prehension strategies based on their preferences, domain knowledge, and experience (e.g., “Using
a behavioral theory of program comprehension in software engineering”; Brooks 1983; Soloway and
Ehrlich 1984).
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