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HECKE DUALITY RELATIONS OF JACOBI FORMS

KATHRIN BRINGMANN AND BERNHARD HEIM

ABSTRACT. In this paper we introduce a new subspace of Jacobi forms of higher degree via certain
relations among Fourier coefficients. We prove that this space can also be characterized by duality
properties of certain distinguished embedded Hecke operators. We then show that this space is
Hecke invariant with respect to all good Hecke operators. As explicit examples we give Eisenstein
series. Conversely we show the existence of forms that are not contained in this space.

1. INTRODUCTION AND STATEMENT OF RESULTS

In this paper we prove the existence of a non-trivial Hecke invariant proper subspace of the space
of Jacobi forms on Hy x C? which satisfies Hecke duality relations.

Thirty years ago Saito und Kurokawa [11] conjectured the existence of a distinguished subspace of
M, ,f, the vector space of Siegel modular forms of degree 2 and weight k£ € N. From the degeneration
of the spinor L-function of Hecke eigenforms they conjectured that there exists a correspondence
to a space of elliptic modular forms. At the same time, Maass studied the Fourier coefficients of
Eisenstein series of degree 2 and discovered interesting relations among them. He introduced the
Spezialschar [12, 13, 14], which is a subspace of Siegel modular forms of degree 2 that is defined
via certain relations among Fourier coefficients. A Siegel modular form F € M? is in the Maass
Spezialschar if for all positive definite half-integral 2 x 2 matrices T' the Fourier coefficients A(T)
of F' satisfy the relation

bl nm r
(1.1) A(lmrom)) = Y a7t ([ 50]).
d|(n,rym)

n r/2
r/2 m
the fact that A(T) only depends on the discriminant of T and the greatest common divisor of its
entries. Explicit examples for elements in the Spezialschar are given by Eisenstein series. Moreover
the Maass Spezialschar is Hecke invariant and provides an example of forms that do not satisfy an
analogue of the Ramanujan-Petersson conjecture in higher dimensions [19].

At the end of the last century Duke and Imamoglu generalized the Saito-Kurokawa conjecture
to higher degree. Let M;' be the space of Siegel modular forms of weight k and degree n € N.
Duke and Imamoglu conjectured that if n + k = 0 (mod 2), then there exists a Hecke invariant
isomorphism between the space of the elliptic forms of weight 2k and a subspace of M gﬁn Note
that M ,?_’tn has even degree. In 2001 this conjecture was proven by Ikeda [8] and subsequently
Kohnen and Kojima [10] gave a linearization of this lift. Recently the second author characterized
these lift via Hecke operators [7].

It would be interesting to construct lifts and formulas also in the case of Siegel modular forms
of odd degree. Here we make a first step towards this goal and investigate Jacobi forms of degree
2 since these arise for example as Fourier Jacobi coefficients of Siegel modular forms of degree 3.
Let @ € J,?,m (the vector space of Jacobi forms of weight k, degree 2, and index m) with Fourier

where we identify T = ( ) with the quadratic form [n,r,m|. Relation (1.1) is equivalent to

!The main part of this research was carried out at the Mathematisches Forschungsinstitut Oberwolfach during the
Research in Pairs programme from June 3 to June 16, 2007
Date: February 5, 2008.
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ni12
coefficients C'(N, R). We use the parametrization N = ( oy e ) and R = (r1,72), and define the
2

invariants:

T T2 ni2 1
(1.2) D;:= —4-det (73111 2) ,  Dg:= —4.det (”ﬁf 2) ,  D:=—4-det ( 2 2) :
7 ™ 2 ™ 2 ™

It will turn out that C'(N, R) only depends upon D1, D9, D, and 1 and r9 modulo 2m. Therefore
the following is well-defined:

(1.3) Cry,ry (D1, D2, D) := C(N, R),

where r; and ry are defined modulo 2m. Moreover if m is either 1 or a prime, then C(N, R) only
depends upon D1, Do, and D. In this case we set

(1.4) C(Dy,D9,D) := C(N, R).

Next define the space Ej ,, of “distinguished” Jacobi forms.

Definition (Hecke duality relation). Let ® € J,%,m with Fourier coefficients Cy, ,(D1, Do, D) with
Dy,Dy,D,r1,79 € Z. Let p be a prime with (p,2m) = 1. Then ® is an element of E,(gjzn if the
following relation is satisfied:

(x0:(#) = X02(#)) Crara (D1, D2, D) =
(1.5) P> (Cry prs (D1, D2p®, Dp) — Cpry 1, (D1p”, Do, Dp))

Dy D D D
k—1 2 1
+p (Crl,prg (Dl’p_Z’;) _Cﬁ'l‘l,rz (p_2’D21;>) -

Here pp =1 (mod 2m) and x. := (%) Furthermore we define

(1.6) Bim = [ E.-
p prime
(p,2m)=1

Since we show that this relation is equivalent to a property involving Hecke Jacobi operators, we
refer to it as Hecke duality relation. For m = 1 it is known by work of Ibukiyama [9] that the space
J/?,1 is isomorphic to a space of Siegel modular forms of degree 2 and half-integral weight. In this
case he conjectured the existence of a certain distinguished subspace which seems to be different
from the space considered here. It would be interesting to determine the connection between those.

Theorem 1.1. Assume that ® € J,?,m and that p is a prime with (p,2m) = 1. Then the following
two conditions are equivalent:

(1) The function ® is an element of E,(czjzn
(2) We have @| (T (p)" — T/ (p)*) = 0.
Here T (p)" and T7 (p)* are two canonical Hecke Jacobi operators obtained by embedding the clas-
sical Hecke Jacobi operator T (p) in two different ways (see Section 3.2).

The spaces E,(cp 2n are invariant with respect to all “good” Hecke operators.

Theorem 1.2. Assume that p and q are distinct primes with (pq,2m) = 1. Let 7{;’2 be the local
Hecke Jacobi algebra of degree 2 and define H'? = ®(p,2mq):17-[;,”2. If m is either 1 or a prime,

then E,(cqgn is invariant with respect to H’2.

Next we prove that Jacobi Eisenstein series E,;]fn (see Section 6) are contained in Ey ,,. As a
by-product we show a new decomposition of Eisenstein series.
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Theorem 1.3. Assume that m is square-free. Then we have for all primes p
J,

(L.7) B2 (17 0) - T/ (0)*) =0.

If m is arbitrary, then (1.7) is also true if (p,m) = 1.

To show that Ey ,,, is not in general equal to the whole space of Jacobi forms, we give in the last
section explicit examples which do not satisfy the Hecke duality relations. In particular if & > 10
is even, then we have Ey; G J,il.

2. BASIC FACTS ABOUT AUTOMORPHIC FORMS

In this section we recall some basic facts about automorphic forms with respect to the symplectic
and to the Jacobi group. Throughout we let R be a commutative ring. The symplectic group
Spn(R) acts on the Siegel upper half-space H,, by

goT = (AT + B)(CT + D)}
If g= (A 5) € Spu(R), k € Ny, and @ is a complex-valued function on H,, then define
Flyg(T) := (det J(g, 7)) * F(g o T),

where J(g,T) := (CT + D). We let M’ be the vector space of Siegel modular forms of weight &
and degree n with respect to the Siegel modular group Iy, := Sp, (Z), i.e., the space of holomorphic
functions F' : Hi, — C that satisfy F'|,g = F for all g € I';, and that have a Fourier expansion

_ Z A(S) eQm’tr(ST),
S

where S runs through the set of half-integral semi-definite matrices.
We next consider Jacobi forms. The Heisenberg group of degree n

H,(R) :={(\p,k) |\, n € R" and k € R}
has the group law
(A1, 11, 61) + (A2, pio, k2) = (A1 + Ag, i1 + po, 51 + kg + Apph — ) -

Define the Jacobi group G (R) := Sp,(R) x H,(R). This group can be viewed as a subgroup of
Spn+1(R) via the embedding ™ : G;) (R) — Spn41(R), where vy = (g.h) = ((& ), (\, 1, 5)) maps
to

!

A 0 B u
~_|A 1 p &
T=1lc o D X
0 0 0 1
Here X\, 4/ are uniquely determined. Moreover we have ¥ = g- h. The group G (R) acts on H via
Yo (T,Z) = (90T, (Z +XT +p)J g, 7)) .

We define the cocycle Jj ,, by
ka(( ) T Z) Jk,m(gaho(TaZ)) 'Jk,m(ha (T,Z)),
where
Tem(9,(T,2)) = det(J(g,T) e(mtxr ((J (g, T)C) [2")),
e (hy (T, Z)) == e(—mtr (TN +2XZ" + k + pAt)) .
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Here A[B] := B'AB for matrices of suitable sizes and e(z) := ¢?™® for z € C. For all 79,72 €
G](R), the cocyle Ji ,, has the property

Jk,m (717% (Ta Z)) = Jk,m (’717 Y20 (Ta Z)) Jk,m (727 (T7 Z)) .
Define the Petersson slash operator | s, for complex-valued functions F on H and v € G (R) by
q)|k,m7(7', Z) = Jk_,rln (’77 (Ta Z)) ® (7 © (T, Z)) -

For positive integers k, m, and n we let J,?,m be the space of Jacobi forms of degree n, weight k,

and index m, i.e., the space of complex-valued functions ® on H that satisfy ®| kmY = @ for
v € T := GJ(Z) and that have a Fourier expansion of the form
d (7-’ Z) _ Z C(N, R) e?m’(tr(NT)—FRZt).
N,R
Here the sum runs over all N and R such that (% }g ) is a half-integral semi-definite matrix of size
n + 1. Examples of Jacobi forms are given by Fourier Jacobi coeflicients of Siegel modular forms.
If we write for n > 1 an element of Hl, as (T Zt) with wy € H, then F' € M}’ has a Fourier Jacobi

Z wo
expansion of the form

T 7Y _ v
P(7 &)= ek e

where ®F ¢ J,?T_nl. We drop the index n = 1 to simplify notation. For ® € Jim We define

3 (; uZ);) = (T,2Z) e(muwyp),
which has the property
(2.1) Bljmy = e(—mwo) 7.
We next embed Sp, x Sp, into Sps, by
A1 0 By 0
St X St > Spom (g;gi)x(g;g;)e(%?%?)
> 2

and identify this image with Sp,, X Sp,,. Further we embed G; x G} into Gg,, via

(()\1’/11,"61),91) x ((A2, p2, k2) , g2) = (A1, A2), (p1, p2), (K1 + K2), 91 X g2))) -

In the following we use the symbols v" and 3+ to indicate the embeddings of y x I and I x 7.

3. HECKE THEORY AND THE LIFTING OPERATOR
3.1. The symplectic Hecke algebra. Let us first consider the symplectic Hecke algebra H"
of the Hecke pair (I'n, Spn(Q)) [1, 16] which decomposes as H" = ®,H,. Here the local Hecke

algebra Hj is generated by (Ti(n) (p)) (o<i<n) where
<i<n

tZ—"Z(n)(p) ::p_lrndia‘g 1""71,p,""p;p2,""p2’p"',p Fn'
? ?
We need an explicit left coset decomposition of the generators of the Hecke operators for n = 1
and n = 2. Since Tn(n)(p) = I5,, we can omit the case i = n.



HECKE DUALITY RELATIONS OF JACOBI FORMS 5

If n = 1 we can choose as a I'-left coset decomposition of pTo(l)(p):

(3.1) TN+ T No(a)+ Y T Ns(b),
a b

where a runs through (Z/pZ)*, b through (Z/p?Z), and where N; := (

Ny(b) = (§ 2 )-
If n = 2 the generators of the Hecke algebra are given by:

1 0 0 O 1 0 0 O
2 _ 1 0 O 2 _ 0O p 0 O 2
T(g )(p):p 1F2 0 O p2 0 F27 Tl()(p):p 1F2 0 0 p2 O F27 TZ( )(p)_FQ
00 0 p? 00 0 p

Representatives can be choosen of the form p~! (4 B) € Sp,(Q), with D = (%), A = p*(D*)~,

and D' B = B! D (see [1]). Then D runs through all I'-left cosets of T'\ (U?Zl I"DjI‘) with

1 0 1 0 1 0
Dy =1, D2=<0 p), D3 = ply, D4=<O pg), D5=P<O p)’ De = p*Is.

Each of the double cosets related to Di, D3, and Dg decompose into one left coset. ;From the
decomposition of I'\I'D4I" in (3.1) and the identity pDs = Ds, it is sufficient to consider

(3.2) r((l) g)r:r(g ?)Jr 3 r((l) Z)

a (mod p)

Next we calculate the corresponding representatives M € Spo(Q). If a representative D €
Mat(2,Z) is fixed, then B € Mat(2,Z) runs through a set of representatives modulo D, i.e., B
satisfies D' B = B! D and the congruence relation ~. Here B; ~ By if and only if (B; — B2)D ! €
Mat(2,7Z). Using the algorithm given in [18] we obtain the following representatives:

1 y =z -1 sz
pO 91 r oz p() (1) ; g\
— P % p M. = v
Ml(xay,z) 0 0 D 0 2(8’$)' 0 0 P 0
m 2
0 0 0 p z,y,2 (mod p?) 0 00t Sz((n?:dpp))
(PO 0 0 pt 0 & 0
_lop 0 0 10 »0 O
My:=10 0 p1 o0 Mia)=| 6 o p o
—1 -1
00 0 p 00 0 27/ ;(mod p2)
100 0 p 000
10 p 0 O |1 0 3
Ms := 001 0 Mﬁ(aab) = 0 0 p*l %
\0 0 0 p 0 0 0 1/ a@modp
b (mod p)x*
1 00 ¢ p 0 0 0
a | ¢ b —a 1L g z
= P p P — p P P
M7(0,,b, C) : 0 0 1 % Mg(a,.’L') . 0 0 pfl %
0 0 0 1/ abec(modp) 0 0 0 p a,z (mod p2)

aZ0 (mod p)
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0 f—) z
1 z &k
My(a,z,2,K) = p p P My =14
0 1 a
0 0 p/ az(modp)
& (mod p?)
p 0 0 0 1 0 £ =ef
—a 1 0 O _a 1 2z K
M = _ M = p p P p
11(0/) 0 0 P 1 % 12((1,.’17,,2,%) 0 0 1 a mod )
a,z (mod p
0 0 0 1 a (mod p) 0 0 0 p & (mod p?)
z (mod p)*

3.2. Hecke Jacobi operators. In the setting of Jacobi forms complications arise since the Jacobi
group is not reductive. It is well known that the related Hecke Jacobi algebra in not commutative
and does not decompose into local Hecke algebras. For our purpose it will be sufficient to consider
double cosets attached to the symplectic part of the Jacobi group G} (Q) which includes the Hecke
operators introduced in [4, 15].

For | € N we define X() := I/ (},% ) I'/. We have X(I113) = X(l1)-X(l2) for all positive coprime
integers I; and ly. Let H’ be the Hecke Jacobi algebra generated by {X(I)|! € N} over Q and ’Hg
the local Hecke Jacobi algebra generated by {X(p")|n € Ny} over Q. Then we have H’ = ®,,'Hg .
In the following we identify the Hecke Jacobi algebra and the related Hecke Jacobi operators.

For ® € Jy , define the Hecke operator T (£) as

1
(33) BTI(l) = 5t Y > e (H000).
MeMat(2,2Z) (A p)EZ2/LZL?
det(M)=¢?
ged(M)=0

Then T/ (p) is related to X(p) by X(p) = p>~*T7(p). Using (2.1), we can rewrite (3.3) as

(
R 1 /a0b0 100 p
k—4
om0 5 (G5 (35))

_(ab A\p)EZ2 /07,2
M=(b)eMar(2z) MWEL/

det(M)=¢2
ged(M)=0O
For ® € J?, we introduce the operators 77 (I)" and 77 (I)+:
sasaaey (30800 s
_ 010000
o’ (1) = e(=m wo) 3 Y9 11667000 A01pu0 0
= S\e\gssgte ) (aestea ) )
m=(9b)emat(2,z) AWELY/LL? 000001 000845 %
det(M)=¢2
ged(M)=0O
100000 10000 O
e(—m wo) . 1 [{0a00b0 01000 u
3T/ () = Z Z &l [ > 001000 0A10p 0
: 7R k{7 | gooroo 00010 o
c 1 —
M=(2 Z)eMat(2.Z)()"“)EZ2/ZZ2 006001 s 1
det(M)=¢2
ged(M)=0

For S € Sp,(Q) and ® € Ji.m» we define the Hecke Jacobi operators T (S):

OIT(S) = Z ®|kgh,

g€T\['n STy heEM(l
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where [ is the smallest integer such that IS € Mat(2n,Z) and M (l) is the set of all M (X, u) with
A\, € Z™/1Z™. We note that 77 (1 9) and 77 (0 l/p) generate ;. Let further #H;? be the Hecke

Jacobi algebra generated by (7(S;));, where

1/p 0 00 1/p
(34) Sl = 14, SQ = 8 lép 28 ) S3 = §
ni2
Throughout, we let ® € J,?m with Fourier coefficients C(N, R) and write N = (:E n; ) and
! =

0 0 0p
R = (r1,r9). jFrom the transformation law of ® one can conclude:

[Nl ]
oo O
oo O

4. PROOF OF THEOREM 1.1

Lemma 4.1. The Fourier coefficients C(N, R) only depend upon D1, Dy, D, and the values of r
and ro modulo 2m. In particular if m is either 1 or a prime, then they only depend on D1, Do,
and D.

Two remarks.
1) The invariants D1, Do, and D are natural since in the case that m is 1 or a prime, Lemma 4.1
is equivalent to the fact that the coefficient C(N, R) only depends on (4N — R!- R).
2) For fixed D1, Dy, r; and 72 there exist only finitely many Fourier coefficients C'(N, R).

Using Lemma 4.1, we can rewrite the Fourier expansion of ® using the following theta decom-
position

(4.1) ®(T,2) = Z Oryrs (T, 2) Gri,ra (7),

r1,r2  (mod 2m)

where
27rz< A T+ A +5 A1A2 u—|—/\1z1—|—)\2z2)
®T1,7‘2(T’ Z) = Z € )
A1, \2€Z
Ai=r;  (mod 2m)
( D
2mi( — 17'——{——u
g?‘l,’rz(T) = Z Crl T2 DlaDQ’D) ( am m )
D15D25D

Throughout we write 7 = ( ¢ ) and Z = (21, 22). We note that the involved theta series are linear
independent (see Section 3 of [20]).

Proof of Theorem 1.1. We start with the I'-left coset decomposition of T’ <(1) 15)2) T stated in (3.1).
We first consider N; and define

N )
®y = Z q)|lc,m <?1’ (%M))
Ap (mod p)

One computes that

®(T,Z) = Z Z C(N, R) 21 ((n11p? +r1Ap+mA?) 7+ (n12ptraA)ut (pri+2md)z1+raza+naa()
Ap (mod p) N,R

We make the change of variables

! 2 2 ! I ! I ., !
Ny = PN FPATL +ATM,  ng i=pRig + Are, Mgy t=nge, Ty i=pri+ 2 m, ry:i=ro.
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Since (p,2m) = 1 the condition n11,n12,n22,71,72 € Z is equivalent to r{ = 2Am (mod p), D} =0

(mod p?), and D' = 0 (mod p). Then we obtain the new invariants D} = p?D;, D, = Do, D' = pD,
1 2

rl = pri, and vl = ro. This yields independent of A and

D! D!
Cﬁﬂ"z(DlaDQaD) Cprl,r2 (pl D2a D ) .

Therefore we obtain

D D .
(T, Z) = prt! Z Z Cpri,ra (p—;,DQ, ;) 2mi(tr(NT)+RZ")

A (modp) r1,r2,m11,m12,M22€Z
r1=2Am (mod p)

:pk+1 Z 7"1,72 (T,2) Z Corira ( ) Qa%) 62M(_&T 424__“).

r1,r2  (mod 2m) D1,D,Ds

We next consider Ny(a), and define

DY @\k,m(Njf“),(A,u)y-

Ap (mod p)
a (mod p)*

One can prove that
21rzan11

Dy (T,Z2) = Z Z C(N,R)e 271'1'((n11—|—)\r1+)\2m)7+(n12+)\r2)u+(r1—|—2)\m)z1+r2z2+n22§)'

Mg (mod p)
a (mod p)*

We consider ®5 which arises from ®, by completing the sum over a into a sum over a modulo
p. The new sum over g vanishes unless p|ni; in which case it equals p. We make the change of
variables

! 2 ! ! ! !
ny = N1+ AL+ A'M,  nqg i=ni2+ Ara,  Ngy t=mnoe, T1:=711+ 2 m, 1y :=ro.

The new invariants are D] = Dy,Dy = Dy, D' = D,r{ = ri, and ry = ro. The condition
r1,T2,N11,N12, N2 € Z is equivalent to rl,r2,n11,n12,n'22 € Z. Moreover the congruence ni; = 0
(mod p) is equivalent to the congruence

(4.2) 4m? (A — %TII)Q =D] (mod p).
The number of solutions A of the congruence (4.2) equals 1 + xp, (p). Hence
C7"1,7“2(D1a D,,D) = Cr’l,r’z (Dia DIQa D,)
and
* 9 27ri(—4D—n1LT—mC—2mu)
(I)Z(Taz) =p Z ®T1,T2(T’Z) Z XD1(p)CT1,T2 (D1,Dz, D) e :
r1,72  (mod 2m) D1,D,Dsy

We next consider N3(b), and set

e 5 (B0

Ap (mod p)
b (mod p?)
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One can show that ®3 equals

) )" C(N,R) o2 (Bt +gt) i (S 270 m) 7o (PR A Juk (+23m) a1+ ozt naac)
? .

Au  (mod p) N,R

b (mod p?)

The sum over b vanishes unless p%|n{1 in which case it equals p?. Moreover the sum over u vanishes
unless p|ry in which case it equals p. We make the change of variables

ni2 T
Ny = p_2 + 7 + X2m, nly 1= 7 + Are, Mgy i=mge, T = ; +2\m, T =ro.
The restrictions p%|ni1,p|r1, and ro,n12,n99 € Z are equivalent to nfq,nl, nhy, 7, rh € Z. 1
particular 7} runs through Z for each . We obtain the invariants D}, = 2L D) = D,, D' = 2,
1 1= 2 P
r{ =pri1, and rh = ro. Thus
CTl,M(DlaD?aD) Cpr T (p D Dé,le) .

This yields

@3(7’, Z) :p4_k Z ®T1 T2 T Z Z Cpn,m p DlaDZapD) 27”(*4m am ¢ 2m )

r1,r2 (mod 2m) D1,D,Ds

In a similar manner we treat ®| ., (77 (p))i. Now the claim of the theorem follows by comparing
Fourier coefficients and by using the linear independence of the theta series ©;, ;,. O

5. PROOF OF THEOREM 1.2

Throughout we let ® € IE(q) We show that for all S; as defined in (3.4) we have ®|Ty/ (S;) € E(q)
We actually show that each package of representatives M; which correspond to one of the S; already
preserves the Hecke duality. As a by-product we explicitly determine this action on the Fourier
coefficients of ®.

We first consider the action of the Heisenberg group on @|i g with g € I'p\I'sST'9. For this we
define M :=3") | (mod p) M (A, 1), where A := (A1, Ag), p := (p1, pi2), and where

1 000 0 m
0 1.0 0 0 p
M Al oprope O
M=% 0 01 0 -x
0 0 0 0 1 =X\
0O 0 0 0 o 1
T 7t
Then M (A, u) o (Z wo) equals
T U AT+ dou+ 21
U ¢ A+ Aol + 29
MT+dou+ 21 A+ Xl + 22 A27+ 201 dou + 2121 + 2h222 + A2C + wo
0 0 M1
+ 0 0 M2

B p2 Aipr + Agpuo
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It will turn out that ¢>|k,mg has a Fourier expansion with ni1,mn12,n9 € Z and ri,72 € %Z. The
sum over g vanishes unless p|ri, 7o in which case it equals p?. We make the change of variables
n'n =n11 + AN+ )\%m, n'12 =19 + Aoy + Ao + 2)\1)\27%,
n'22 = Ng9 + AaT9 + )\%m, 7"1 =11 4+ 2A1m, 7"'2 = 1r19 4+ 2A9m,

which doesn’t change the associated invariants.
We next consider the action of the matrices M; (1 <7 < 12). We start with
M, = Zw,y,z (mod p?) M1 (z,y,2). Then

Tou oz ¥ oz
T 7 p? pz P p? P2
—lx £ =z z  z
Ml(x’yaz) © (Z ’11)0) - pZ P2 P + pz P2 0
%1 %2 wo 0 0 O

The sum over z,y, and z vanishes unless p2|n11, n12, and ngo in which case it equals p®. We make

the change of variables nj; := 24, nj, == T, no, == "8, 1} == 7, and rj := 72. Observe that

nl1,nly, and nhy € Z and 1,7 € %Z. We obtain the invariants D} = %, D), = %, D' = 1% which
yields

C(D15D27D) =C (p2D117p2D127p2D,) .

i From the above considerations we see that applying the Heisenberg part reduces the summa-
tion to 71 and 7o € Z, multiplies the sum by p?, and leaves the invariants unchanged. Thus
Q| M1 M(T,Z) equals

2 2
. D D o ] T3 T172

_ omi(=P1,_ D2, D, Zm( T+g=(+ u+r1Z1+r2z2)
plo 2k E C (pQDl,pQDQ,pQD) e ( Im Im m )6 im 4m 2m

D1,D,Ds
T1,72

7

where here in the following we have as before Dy = 7‘% —A4dnyym, Dy = 7‘% — 4ngom, and
D = riry — 2n2,. Let
A(D1,D,,D) := C (p*D1,p* D2, p*D) .

We show that this function satisfies (1.5) using that ® satisfies (1.5) and that xp, (q¢) = Xxp2p, (¢)-
This yields that (xp,(q) — xp,(q)) A (D1, D2, D) equals

(XD1p2(q) — XDop2(q)) C (p2D1,p2D2,p2D)
= ¢"* (C (p°D1,p°¢* D2,p*qD) — C (¢°p*D1,p’ Do, p’qD))
2 2 2 2
+ qkil (C <p2D1’ P ?2’12) -C (p ?1 ap2D25 Q))
? ' q q q
=¢"* (A(D1,4’Ds,qD) — A(¢°D1, Dy, D))

Dy D D D
+qk_1 (A (Dla _227 _) —A (_21aD27 _))
q° q q q

as claimed. The matrices My, M3, My, and M5 are treated in a similar way. We next consider
Mg =3 4 (mod p) Me(a,b). We have

b (mod p)*
T 7t p°T 2—ap7' + pu pz1 0 (2 0
Mg(a,b) o (Z w0> =|—apr+pu a’t-2au+( —azt+z |+ |0 5 O
pz1 —az1 + 22 wo 0 00
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Since we will see later that M;; preserves (1.5) we may complete the sum over b into a sum over all
b modulo p which we denote by Mg. The sum over b vanishes unless p|ngg in which case it equals
p. We make the change of variables

P2 2 I 1oL ro._ 1.
Ny :==p N1t — apni2 + a“nag, Nig 1= PpNig — 20,’)’7,22, Nogg 1= MN922, T1:=pPri—ary, 7To:=To.

We compute the invariants
]‘ ! ! 2y / ]' ! / ]‘ ! ! !
Dlzp(Dl—l-QaD +a DQ), Dy = Dy, DZE(D +aD2), lep?(rl—{—arg), 9 =Ty

Applying the Heisenberg transformation preserves those invariants. We denote the new variables
with tildes. We have the following equivalent conditions:

plnee & plnk S g — AT+ NMm=0 (modp) < 4m? )\—%7722552 (mod p).
22 2

Then ®| ., M M(T, Z) equals

1 1
p4+k E E C (P(Dl+2GD+G/2D2)7D271_)(D+0’D2)>
D,,D,D2 A2,a  (mod p)
r1,72

4m? ()\2 —2mry ) ’=D, (mod p)

2 2 2 2
Qﬂ-i(_D_n}LT_&C_%u) e2ﬂi(%7+%c+%u+rlzl+72zg> ezm' (Z_rlnﬂrz_%“ riry u+r1z1—|—7‘222)
We let

1
— (D1 + 2aD + a*Dy), Do,

- Lo +a02))

(5.1)  A(D1,Ds,D) := Z C ( .

Aa  (mod p)
4m?(A=2mr2) =D (mod p)

and show that this function satisfies (1.5). First observe that in the sum over ¢ in (5.1) we may
choose as a set of representatives elements that are divisible by ¢. Using this we have

xp,(q) = XL (D1+2aD+a?Ds) (9)-
P

This yields that (xp, () — xp,(q)) A(D1, D2, D) equals

1 1
(x01(9) — x0,(9)) > C (P(Dl +2aD + a*Dy), Dy, 1—)(D + aD2)>
Aa  (mod p)

4m2(/\—%rz)ZED2 (mod p)

= Z (XLz(Dl +2aD+a2Ds) (@) = xD» (Q)>
Aa  (mod p) g
4m? (A—%m)zEDz (mod p)
gla

1 1
C (E(D1 + 2aD + a®Dy), Dy, E(D + aD2)> :
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Using (1.5) gives that this equals

" > C (

1
— (D1 + 2aD + aDs), q° Dy, %(D + aD2)>

Aa  (mod p) p
4m?2 (Af%r2)2ED2 (mod p)
qla
2
—qF > C (q—Q(D1 +2aD + a®Dy), Dy, (D + aD2)>
Aa  (mod p) p p
4m2()\fmr2)25D2 (mod p)
qla
+ ¢t > c i(D1 +2aD + a’D»), &, i(D + aDy)
p? 7 pq
Aa  (mod p)
4m? ()\—mrz)ZEDz (mod p)
gla
- qk_1 Z C <%(D1 + 2aD + a2D2), D2, i(1) + aD2)> .
Aa  (mod p) pq Pq
4m?2 ()\—%7’2)2ED2 (mod p)
gla

We rewrite the occuring summands on the right hand side. Since (p,q) = 1, we may change in the
first sum a into aq and in the second a into ag and A into Ag. The other summands are treated

similarly. This gives that (XDl((I) - XDQ(CI)) A (D1, Dy, D) equals

Dy, D D D
quk (A (D15D2q27Dq) —A(D1q2,D2,DQ)) +qk71 (A (Dla q_;a E) -A (_;aDQaE)>

q
as claimed.
We next deal with the action of M7 := ) . (mod p) M7(a, b, c). We have
a (mod p)*
u— &7 z 0 (4 0
T Zt a a? (f la c bpgca
Mi(a,be)ol, )= |u=57 pr-2putl m-gu |+ (g FE 0
Z1 zZ9 — %Zl wo 0 0 0

The sum over b vanishes unless nys = 0 (mod p). Moreover the sum over ¢ vanishes unless
nie — ‘”;% =0 (mod p). We make the change of variables

LA— 0’2 [ 2& |- [ a |
N1 = N11 — ;nu + Z?TLQQ, N9 = N12 — 1—)7122, N9y 1= N22, r =r — I—)’I‘Q, Ty = T2.

Then )
2
D\ =D\ +=2D'+%D) D,=Dj D=D+=Dj
p p p
We again denote the variables after the Heisenberg transformation with tildes. As before we see
that the condition nge = 0 (mod p) is equivalent to
(5.2) 4m? (Ay — 2miy)’ = Dy (mod p).

Similarly we have the equivalence
anog

a
nig — =0 (modp) & npy+ 1_)”/22 =0 (mod p),
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which is equivalent to
~ ~ ~ a ~
(53) n12 — A9T1 — A1T9 + 2A1 am + jl_) (n22 — AoTo + )\%m) =0 (mod p).

This yields that ®|x ,, M7 M(T,Z) equals

D r3 nr2,
p2 Z Z’ C Dl i 2aD n a D2 D2,D CLDQ 627rz(74—1777< 2mu) 627m( Lotz <+

Di1,D,D2  A1,\2  (mod p)
71,72 a (mod p)*
!
where in Z the sum runs over those A1, Ay and a that satisfy (5.2) and (5.3). Now we can argue

as before. The case of Mg is proven similarly.
We next consider the action of Mg := >4, (mod p) Mo(a, T, 2, k). We compute

z (mod p)*
% (mod p?)
__atr u T 2
T zZt m’T u  a’r pZajL_ P ¢ azlzl 22 é K P az 0
(o] = _— = —_— — = - —_ =1 La = v Be
M9(a>-7f'a$>"5) Z wy D +p p) ) +p2 » + P + » P2 p? 0
@ w1’y 2 wo 0o 0" o

Since it turns out that Miy preserves (1.5) we may complete the sum over z into a sum over all z
modulo p. The sum over z, z, and x vanishes unless p|ni1,n12 and p2|n22 in which case it equals
p*. We make the change of variables
2
aniy @ ;M2 ;. Moo " a r._ T2
— N2, Mg i=— — p 5N22, Mg = —5, T =T1— T2, Tyi=—
p p? p p

TLIH =ni1—
and obtain

Dy = D} +2aD' +a’D}, Dy =p’D,, D =p(D' +aD}).
This yields

Ol m MM (T, Z)p* ™ Y Y C(D1+2aD + a’Da,p’ Do, p(D + aDy))
D,,D,D> a(mod p)*
71,72

Qwi(—&r—&(—iu) 27TZ( T+42 C+32 u+r1z1+r2z2)
e .
Now we can argue as before. The matrices M1y, M1, and M15 can be considered similarly.

6. PROOF OF THEOREM 1.3

As explicit examples of Jacobi forms of degree 2 which are elements of Ej ,,, we define Jacobi
Eisenstein series of Siegel type

EJM(T,Z) = Y. Jh(n.(T, 2)).

yeTI NS

Here T, is the stabilizer group of the function Jk The series B}’ ’m is absolutely convergent
for £ > n + 2 and defines a non-trivial Jacobi form Since related functions occur in work of
Arakawa [2], we choose for the readers convenience to use his parametrization of the Jacobi group
in terms of matrices to simplify consulting this paper for related calculations. We note that the
Eisenstein series viewed as functions are the same. Only formally the sets of representatives of
cosets defining the Eisenstein series have a different parametrization which can be related to each
other by conjugation.
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We have that '], = {7 eTJIN=0,g¢ Foo} , where ' is the subgroup of I';, with C = 0. It
follows from the definition of the Eisenstein series that

B z)= Y S 7k ((00,0),0),(7,2)).

AEZ™ geT oo \Ty,

In the following we restrict to n = 2 and analyze the decomposition of I's;\I'2 with respect to
I' x I'. Work of Garrett [5] implies that

o0
Dy =Teo(l'xT) U Uroohgrxr,

d=1
1000
where h, := (8 L1990 ). A straightforward calculation gives that I'ns\I's can be written as the
d001
union of (Fso\T') X (Teo\T') and U2, kf) (T(d)\T) x T), where T'(d) := (4" 9)T' (¢ % ) NT. Since
I, x (97') is an element of I, x T, we can replace h; by

100 0
b= by (B (050) = (830°1).
d10
)

We denote the subseries corresponding to (I'oo\I') X (T'eo\I') and |32, 2y ((D(d)\I') x T) by Er

and FErj, respectively. One computes that

E(T,Z)= Y Jopm((X0,0)9 x1),(T,%)).

\EZ?
9,h€l s \T

The conjugation law of the Heisenberg group implies that
hy' ((2,9),(0,0),0)hq = (2,0,0) x (0, ~y,0).
This yields
E(T,2) = Zkam ha - (m X 72),(T, Z)),

d=1 71,72
where 71 € ((Z,0,0), (I'(d)\I') x I5) and 72 € ((0,Z,0),I, x I'). We treat the subseries E; and
Err separately.

6.1. The subseries Ej.

Proposition 6.1. The series Er(T,Z) satisfies (1.5) for all primes p with (p,2m) = 1. If m is
square-free, then this is true for all primes p.

Proof. The cocyle relation of Jj ,, yields
(6.1)

E(T.2)= > ihxT(T2) = Y Bl ((70(T.2) ) ik (55T, 2)

TAENZATY FeErL\r’
where (T, Z)* := (1,21) € H/. Without loss of generality we may assume that 77 (p) = 3 y I n;,
where p is a prime and 7; € G’(Q). Using (6.1) gives that (E/|T7(p)") (T, Z) equals

Z ZE’k],m((’Y n; o (T, Z))*) T m (’y 77] (T, Z)) y (n},(T,Z))

FETLA\TY j

=3 Y Bla(ne(31.2) ) Ik (0 (5o (1.2) ) Jin (55(7.2).

J FeTL\rY
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This yields
BTN (T2 = Y (Bl ®) (e (T.2)") 7.4 (3(T.2)).
I ’ k,m Y ’ k,m
yerd\rJ

By formula (13) in [4] it follows that for (p,m) = 1 the Jacobi Eisenstein series of degree 1 and
index m is a Hecke Jacobi eigenform. If m is square-free it follows from formula (51) in the table
on page 224 of [6] that this also true if p|m. Thus the claim of the proposition follows. O

6.2. The subseries Fr;. In this section we prove an explicit formula for F7; as an infinite sum
of certain functions P,;], m (T, Z) of Poincaré type. For this purpose define the function

2
'(pk,m(T, Z) = (T + 2u + C)k e (M)

T+2u+ ¢
which is related to the Jacobi Eisenstein series. A direct calculation leads to
(62) Jk,m(hda (T7 Z)) = Ilpk,m(Md o (T7 Z))

Here M := (0 1) x Ir. Next define the unique involution # : G/ (R) — G”(R) on the generators
of the Jacobi group by (X,0,0)% := (=X,0,0), (0, 1, 5)% := (0, p, ), (© g)# := (2 ?%) that satisfies

(y172)* = 72 '71 for all A\, 4, 5 € R and 71,72 € G’ (R). This involution preserves double cosets in
the Hecke Jacobi algebra. A straightforward but lengthy calculation gives.

Lemma 6.2. For v € G’ (R) we have
_ _ '
bV = Vol 77
We next define for D € Sp;(Q) the holomorphic function
Pl (T,2),D)i= 3 (4hh')(T.2),
~eZ(TI)\TY DT

where Z(T”) is the center of I'/. This series is absolutely and locally uniformly convergent. Its
restriction to ]I-]IJ x H’ yields the Poincaré series given in [2]. Moreover there exist a unique d € N
with D = ( 0 d-1 ) Lemma, 6.2 and the invariance of double cosets with respect to the involution
# gives that

PL.(T.2),D)= > (dephr?) (T, 2).

veZ(DI)\1Y DT
Moreover for U € SLy(Z), we define P,‘C],m (T,2) = Pk{m ((T,Z),U) . Then we have

(6.3) (FLmlX(@") (T, 2) = Pl (T, 2), D).

Lemma 6.3. Assume that m is square-free. Then we have

(6.4) (Blmx@") (T22), (8 2)) = (BLalX®*) ((T,2), (4 2)).
If m is arbitary (6.4) is also satisfied if (I,d) =1 or (Id,m) = 1.

Proof. The conditions that m is square-free and that (I,d) = 1 or (Id,m) = 1 otherwise, imply
that on J ;,;, we have

X(1) X(d) = X(d) X(1).
Finally we apply formula (6.3) to get the lemma. O
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Proposition 6.4. We have

o

(6.5) B (T.2) = > (PluX@') (T, 2) d *

d=1
Proof. Denote by E¢, the subseries of Ejr corresponding to d € N. Then we have by (6.2)
BT, 2) =) tpm Ma (1 X 72) © (T, 2)) Ty (11 X 72, (T, Z)) .

Y1572

Here 7, € ((Z, 0,0), T(d)\T x 12) and 7, € ((0, 7,0), I x r). Using Lemma 6.2, a straightforward,
but lengthy calculation gives

EH (T, 2) =d* Z Q/’km ((72 0d! )’YI)TO (T, Z)) Jk:}n ((W’# (gdgl)%)Ta(Ta Z)) .

V1,72
To complete the proof it remains to analyze the set

(6.6) {fy;'é (g d91 ) 71‘ v2 = ((0,,0)g) , 1 = ((A,0,0)h) with g € ', h € T(d)\l" and A\, u € Z}.

#
First we note that ((O Z,0) I‘) =T1(0,7Z,0). Hence the set in (6.6) is equal to
I (0,Z,0) (¢ °,)(Z,0,0) I'(d)\I', which equals
I (0,Z,0) (Z,0,0) (& ,2,) (dZ\Z,0,0)T(d)\T,
smce (4 ! 9) (X',0,0) (0 1) = (dX,0,0). Here X' runs modulo d. Hence the set (6.6) is equal to
Z(TH\T J (d 1) TY. Thus
67 BY(T.Z)=d* > Vo (110 (T2 2)) Tk (71,7, 2)).

'yEZ(I‘J)\I‘J(Od )FJ

0d?!

which leads to the proof of the proposition. O

7. EISENSTEIN SERIES OF KLINGEN TYPE
In this final section we show that for even k > 4, the space E;, is a proper subspace of J,?,m. Let

P c J,?iips, the space of Jacobi cusp forms, a non-trivial Hecke-Jacobi eigenform for all 77 (1) with

(I,m) = 1. Denote by E,If}n (®,(T,Z)) the Jacobi Klingen Eisenstein series of degree 2 associated
to ®. Then E,Icflm (®) is a non-trivial element of Jl?,m'

Proposition 7.1. We have
Eff (®) & B
Proof. We prove the existence of at least one prime p with (p, m)=1, such that
Bt () Ik (T7 (0) = T7(9)*) # 0
This is in particular satisfied if its restriction to H” x H has this property. This function equals

(7.1) (T’ (p) ®id — id@ T’ (p)) (B, (@)

HY XY )
In [3] Arakawa and the second author have shown that

Efn (®) |l xw = B, ®®+®Q B, +G,
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where G € Sym?J:"P. Denoting by A and Ae the eigenvalues of E,{, m and @ with respect to the

k,m

Hecke Jacobi operator T (p) gives that (7.1) equals
A= 2e) B, ®®+ (Ao — Ap) @@ B, + G,

where G’ € Sym2J,:1;ip. There exists at least one prime p such that Ag is different from Ag, since
these eigenvalues correspond to Eisenstein series and cusp forms of weight 2k — 2 (see [17]). O
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