

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dicyclohexylbis(naphthalen-1-ylmethyl)phosphonium chloride chloroform disolvate

Saravanan Gowrisankar, Helfried Neumann, Anke Spannenberg and Matthias Beller*

Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany

Correspondence e-mail: matthias.beller@catalysis.de

Received 26 October 2012; accepted 12 November 2012

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.002 Å; R factor = 0.030; wR factor = 0.080; data-to-parameter ratio = 22.3.

In the title solvated phosphonium salt, $C_{34}H_{40}P^+ \cdot Cl^- \cdot 2CHCl_3$, the two cyclohexyl and two 1-naphthylmethyl groups at the P atom are in a distorted tetrahedral arrangement [105.26 (6)– 113.35 (6)°]. Both cyclohexyl rings adopt a chair conformation. The dihedral angle between the naphthyl ring systems is 74.08 (3)°.

Related literature

A multitude of phosphonium salts are known in the literature. For some examples of the type $[PR'_2R''_2]X(R' = Me, R'' = Ph, X = I)$, see: Staples *et al.* (1995); Dornhaus *et al.* (2005), (R' = Me, R'' = Ph, X = Br), see: Staples *et al.* (1995) and (R' = Me, R'' = fluoren-9-yl, X = I), see: Brady *et al.* (2000).

organic compounds

Experimental

Crystal data

```
C_{34}H_{40}P^+.Cl^-.2CHCl_3
M_r = 753.82
Triclinic, P\overline{1}
a = 12.3079 (2) Å
b = 12.7150 (2) Å
c = 14.0310 (3) Å
\alpha = 77.785 (1)^{\circ}
\beta = 64.242 (1)^{\circ}
```

Data collection

Bruker Kappa APEXII DUO diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2008) $T_{min} = 0.96, T_{max} = 1.00$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.080$ S = 1.038871 reflections $V = 1787.56 (6) Å^{3}$ Z = 2Mo K\alpha radiation $\mu = 0.63 \text{ mm}^{-1}$ T = 150 K $0.43 \times 0.30 \times 0.19 \text{ mm}$

 $\gamma = 64.738 \ (1)^{\circ}$

40097 measured reflections 8871 independent reflections 7562 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.025$

 $\begin{array}{l} 397 \text{ parameters} \\ \text{H-atom parameters constrained} \\ \Delta \rho_{max} = 0.53 \text{ e } \text{\AA}^{-3} \\ \Delta \rho_{min} = -0.44 \text{ e } \text{\AA}^{-3} \end{array}$

Data collection: *APEX2* (Bruker, 2011); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

We thank Dr W. Baumann, and Mrs S. Buchholz (both of LIKAT) for their support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2454).

References

- Brady, E. D., Hanusa, T. P., Pink, M. & Young, V. G. Jr (2000). *Inorg. Chem.* **39**, 6028-6037.
- Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dornhaus, F., Lerner, H.-W. & Bolte, M. (2005). Acta Cryst. E61, o1657–o1658. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Staples, R. J., Carlson, T., Wang, S. & Fackler, J. P. (1995). Acta Cryst. C51, 498– 500.

supporting information

Acta Cryst. (2012). E68, o3373 [doi:10.1107/S1600536812046661]

Dicyclohexylbis(naphthalen-1-ylmethyl)phosphonium chloride chloroform disolvate

Saravanan Gowrisankar, Helfried Neumann, Anke Spannenberg and Matthias Beller

S1. Comment

Phosphonium salts are used in a wide range of applications such as ionic liquids, as antimicrobial agents, and as surfactants. Recently, we were interested in the preparation of dicyclohexyl(1-naphthylmethyl)phosphine. During this preparation, dicyclohexylbis(1-naphthylmethyl)phosphonium chloride was formed in a rapid and highly selective manner. We have now observed a reaction of 1-(chloromethyl)naphthalene with Cy_2PH at 50 °C in acetone which produces the phosphonium salt in nearly quantitative yield. Interestingly, this phosphonium salt is unknown in the literature. Crystals suitable for X-ray crystal structure analysis could be obtained by crystallization from a chloroform/heptane mixture.

The asymmetric unit of the title compound contains besides one unit of the phosphonium chloride, two chloroform molecules (Fig. 1). The phosphorus atom carries two cyclohexyl and two 1-naphthylmethyl groups. Its tetrahedral environment is expressed by C–P–C angles of 105.26 (6) — 113.35 (6)° (Fig. 2). The dihedral angle between the naphthyl groups is 74.08 (3)°. Both cyclohexyl rings adopt the chair conformation.

S2. Experimental

1-(chloromethyl)naphthalene (4.50 mmol, 795 mg) and dicyclohexylphosphine (2.25 mmol, 500 mg) were dissolved in 4 ml of anhydrous acetone. The solution was stirred at 40 °C overnight. Afterwards acetone was removed *in vacuo*, the residue was dissolved in water and extracted with 50 ml of CHCl₃. After concentration, 1100 mg (95%) of the title compound were obtained. Colourless crystals suitable for X-ray analysis, were grown from a CHCl₃/heptane mixture at 8 °C for 4 days. ¹H NMR (CDCl₃, internal TMS): δ 8.39–8.36 (m, 1H), 7.83–7.72 (m, 2H), 7.69–7.64 (m, 1H), 7.61–7.53 (m, 1H), 7.49–7.41 (m, 1H), 7.40–7.32 (m, 1H), 4.85 (d, *J* = 15.0 Hz, 2H), 2.77–2.58 (m, 1H), 1.61–1.44 (m, 4H), 1.22–0.75 (m, 6H). ³¹P NMR (CDCl₃, internal TMS): 32.35. HRMS: calcd. for C₃₄H₄₀P+: 479.28621; found: 479.28541.

S3. Refinement

H atoms were placed in idealized positions with d(C-H) = 0.95 Å ($C_{aromatic}-H$), 1.00 Å ($C_{tertiary}-H$), 0.99 Å (CH_2) and refined using a riding model with $U_{iso}(H)$ fixed at 1.2 $U_{eq}(C)$.

Figure 1

Molecular structure of the title compound with 30% displacement ellipsoids. Hydrogen atoms are omitted for clarity. The asymmetric unit contains besides one molecule of the phosphonium chloride two chloroform solvent molecules.

Figure 2

Displacement ellipsoid plot (30%) of the cation $[C_{34}H_{40}P]^+$ with hydrogen atoms depicted as small arbitrary circles.

Dicyclohexylbis(naphthalen-1-ylmethyl)phosphonium chloride chloroform disolvate

Crystal data	
$C_{34}H_{40}P^+ \cdot CI^- \cdot 2CHCl_3$ $M_r = 753.82$ Triclinic, $P\overline{1}$ a = 12.3079 (2) Å b = 12.7150 (2) Å c = 14.0310 (3) Å a = 77.785 (1)° $\beta = 64.242$ (1)° $\gamma = 64.738$ (1)°	Z = 2 F(000) = 784 $D_x = 1.401 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathcal{A} Cell parameters from 9914 reflections $\theta = 2.4-28.8^{\circ}$ $\mu = 0.63 \text{ mm}^{-1}$ T = 150 K Prism, colourless
V = 1787.56 (6) Å ³	$0.43 \times 0.30 \times 0.19 \text{ mm}$
Data collection Bruker Kappa APEXII DUO diffractometer Radiation source: fine-focus sealed tube Curved graphite monochromator Detector resolution: 8.33 pixels mm ⁻¹ ω and φ scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2008) $T_{\min} = 0.96, T_{\max} = 1.00$	40097 measured reflections 8871 independent reflections 7562 reflections with $I > 2\sigma(I)$ $R_{int} = 0.025$ $\theta_{max} = 28.3^{\circ}, \theta_{min} = 1.6^{\circ}$ $h = -16 \rightarrow 16$ $k = -16 \rightarrow 16$ $l = -18 \rightarrow 18$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.030$	Hydrogen site location: inferred from
$wR(F^2) = 0.080$	neighbouring sites
S = 1.03	H-atom parameters constrained
8871 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0389P)^2 + 0.7399P]$
397 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.53 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.44 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.44144 (12)	0.61109 (11)	0.90253 (10)	0.0165 (2)
H1A	0.5159	0.5375	0.8745	0.020*
H1B	0.4173	0.6098	0.9798	0.020*
C2	0.32732 (12)	0.61845 (11)	0.88257 (10)	0.0167 (2)
C3	0.20342 (12)	0.68760 (12)	0.94598 (10)	0.0197 (2)
Н3	0.1905	0.7182	1.0079	0.024*
C4	0.09523 (13)	0.71393 (12)	0.92063 (11)	0.0230 (3)
H4	0.0107	0.7627	0.9648	0.028*
C5	0.11233 (13)	0.66932 (12)	0.83288 (11)	0.0225 (3)
Н5	0.0402	0.6910	0.8138	0.027*
C6	0.23635 (12)	0.59097 (11)	0.76938 (10)	0.0186 (2)
C7	0.25333 (14)	0.54077 (12)	0.68056 (11)	0.0236 (3)
H7	0.1804	0.5593	0.6634	0.028*
C8	0.37273 (14)	0.46629 (13)	0.61920 (11)	0.0260 (3)
H8	0.3829	0.4344	0.5590	0.031*
C9	0.48129 (14)	0.43644 (12)	0.64492 (11)	0.0250 (3)
Н9	0.5639	0.3830	0.6028	0.030*
C10	0.46889 (13)	0.48361 (11)	0.72995 (10)	0.0204 (2)
H10	0.5431	0.4629	0.7460	0.024*
C11	0.34605 (12)	0.56336 (11)	0.79468 (10)	0.0170 (2)
C12	0.36962 (12)	0.85580 (11)	0.92346 (10)	0.0202 (2)
H12A	0.2826	0.8574	0.9382	0.024*
H12B	0.3797	0.8409	0.9919	0.024*
C13	0.37027 (12)	0.97536 (11)	0.88234 (10)	0.0189 (2)
C14	0.46891 (13)	1.00426 (12)	0.87525 (11)	0.0237 (3)

H14	0.5370	0.9478	0.8953	0.028*
C15	0.47188 (15)	1.11567 (13)	0.83897 (12)	0.0299 (3)
H15	0.5414	1.1335	0.8347	0.036*
C16	0.37468 (15)	1.19780 (13)	0.80997 (12)	0.0297 (3)
H16	0.3778	1.2722	0.7843	0.036*
C17	0.26942 (14)	1.17314 (12)	0.81783 (10)	0.0242 (3)
C18	0.16649 (17)	1.25885 (13)	0.78941 (12)	0.0339 (4)
H18	0.1702	1.3329	0.7627	0.041*
C19	0.06345 (16)	1.23673 (14)	0.79980 (13)	0.0361 (4)
H19	-0.0040	1.2950	0.7800	0.043*
C20	0.05607 (15)	1.12812 (14)	0.83962 (13)	0.0320 (3)
H20	-0.0173	1.1137	0.8480	0.038*
C21	0.15393 (14)	1.04247 (12)	0.86660 (11)	0.0253 (3)
H21	0.1476	0.9692	0.8930	0.030*
C22	0.26485 (13)	1.06140 (11)	0.85580 (10)	0.0194 (2)
C23	0.65067 (12)	0.69625 (11)	0.84201 (10)	0.0163 (2)
H23	0.6741	0.7663	0.8160	0.020*
C24	0.64789 (13)	0.66496 (12)	0.95505 (10)	0.0214 (3)
H24A	0.5826	0.7314	1.0013	0.026*
H24B	0.6218	0.5974	0.9838	0.026*
C25	0.78219 (13)	0.63550(13)	0.95501 (11)	0.0239 (3)
H25A	0.8033	0.7061	0.9346	0.029*
H25B	0.7800	0.6102	1.0274	0.029*
C26	0.88789 (13)	0.53957 (12)	0.87858 (11)	0.0241 (3)
H26A	0.8724	0.4664	0.9036	0.029*
H26B	0.9739	0.5262	0.8771	0.029*
C27	0.88938 (12)	0.57150 (12)	0.76716(11)	0.0227 (3)
H27A	0.9569	0.5066	0.7197	0.027*
H27B	0.9118	0.6411	0.7398	0.027*
C28	0.75650 (12)	0.59640 (11)	0.76726 (10)	0.0203 (2)
H28A	0.7359	0.5256	0.7910	0.024*
H28B	0.7586	0.6182	0.6946	0.024*
C29	0.50206 (12)	0.75688 (11)	0.70404 (9)	0.0165 (2)
H29	0.5433	0.6776	0.6747	0.020*
C30	0.58989 (13)	0.82273 (12)	0.62941 (10)	0.0212 (3)
H30A	0.5469	0.9060	0.6468	0.025*
H30B	0.6741	0.7900	0.6379	0.025*
C31	0.61324 (13)	0.80974 (13)	0.51507 (10)	0.0246 (3)
H31A	0.6667	0.8541	0.4666	0.030*
H31B	0.6629	0.7268	0.4968	0.030*
C32	0.48614 (14)	0.85304 (13)	0.49863 (11)	0.0263 (3)
H32A	0.5059	0.8339	0.4266	0.032*
H32B	0.4445	0.9388	0.5038	0.032*
C33	0.39099 (13)	0.79931 (12)	0.57971 (10)	0.0226 (3)
H33A	0.4259	0.7153	0.5669	0.027*
H33B	0.3065	0.8366	0.5714	0.027*
C34	0.36958 (12)	0.81527 (11)	0.69249 (10)	0.0183 (2)
H34A	0.3083	0.7794	0.7442	0.022*

H34B	0.3314	0.8992	0.7068	0.022*
C35	0.89295 (14)	0.32618 (14)	0.56997 (11)	0.0283 (3)
H35	0.8467	0.3208	0.6485	0.034*
C36	0.14817 (15)	-0.01492 (14)	0.26931 (12)	0.0309 (3)
H36	0.1925	-0.1015	0.2645	0.037*
C11	0.71624 (3)	0.29319 (3)	0.82907 (2)	0.02431 (7)
C12	0.83623 (5)	0.47307 (4)	0.52736 (3)	0.04050 (10)
C13	1.06121 (4)	0.27508 (5)	0.53884 (4)	0.04713 (12)
Cl4	0.86009 (4)	0.24063 (4)	0.51101 (4)	0.04124 (10)
C15	0.19955 (5)	0.03165 (5)	0.34606 (4)	0.05000 (12)
C16	0.19249 (5)	0.04763 (4)	0.14031 (3)	0.04382 (11)
C17	-0.02108 (4)	0.02160 (5)	0.32916 (4)	0.04959 (12)
P1	0.49134 (3)	0.73346 (3)	0.84032 (2)	0.01467 (7)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0170 (6)	0.0159 (6)	0.0181 (5)	-0.0075 (5)	-0.0085 (5)	0.0031 (4)
C2	0.0170 (6)	0.0171 (6)	0.0173 (5)	-0.0088 (5)	-0.0077 (5)	0.0041 (4)
C3	0.0191 (6)	0.0231 (6)	0.0167 (6)	-0.0103 (5)	-0.0054 (5)	0.0008 (5)
C4	0.0157 (6)	0.0266 (7)	0.0226 (6)	-0.0076 (5)	-0.0039 (5)	-0.0024 (5)
C5	0.0169 (6)	0.0264 (7)	0.0259 (6)	-0.0091 (5)	-0.0099 (5)	0.0011 (5)
C6	0.0187 (6)	0.0200 (6)	0.0195 (6)	-0.0096 (5)	-0.0085 (5)	0.0021 (5)
C7	0.0254 (7)	0.0271 (7)	0.0238 (6)	-0.0131 (6)	-0.0122 (5)	0.0010 (5)
C8	0.0307 (7)	0.0274 (7)	0.0234 (6)	-0.0136 (6)	-0.0098 (6)	-0.0036 (5)
C9	0.0229 (7)	0.0222 (7)	0.0257 (7)	-0.0078 (5)	-0.0050 (5)	-0.0045 (5)
C10	0.0177 (6)	0.0184 (6)	0.0243 (6)	-0.0064 (5)	-0.0082 (5)	-0.0001 (5)
C11	0.0177 (6)	0.0166 (6)	0.0173 (5)	-0.0085 (5)	-0.0067 (5)	0.0029 (4)
C12	0.0170 (6)	0.0158 (6)	0.0205 (6)	-0.0033 (5)	-0.0038 (5)	-0.0011 (5)
C13	0.0186 (6)	0.0171 (6)	0.0163 (5)	-0.0047 (5)	-0.0036 (5)	-0.0032 (4)
C14	0.0200 (6)	0.0232 (7)	0.0257 (7)	-0.0055 (5)	-0.0068 (5)	-0.0069 (5)
C15	0.0263 (7)	0.0296 (8)	0.0324 (7)	-0.0149 (6)	-0.0006 (6)	-0.0127 (6)
C16	0.0350 (8)	0.0198 (7)	0.0262 (7)	-0.0133 (6)	-0.0006 (6)	-0.0037 (5)
C17	0.0292 (7)	0.0175 (6)	0.0164 (6)	-0.0045 (5)	-0.0037 (5)	-0.0034 (5)
C18	0.0422 (9)	0.0198 (7)	0.0242 (7)	-0.0002 (6)	-0.0111 (6)	0.0001 (5)
C19	0.0359 (8)	0.0308 (8)	0.0293 (7)	0.0071 (7)	-0.0182 (7)	-0.0083 (6)
C20	0.0255 (7)	0.0329 (8)	0.0351 (8)	0.0011 (6)	-0.0148 (6)	-0.0163 (6)
C21	0.0228 (7)	0.0210 (6)	0.0302 (7)	-0.0027 (5)	-0.0103 (6)	-0.0093 (5)
C22	0.0210 (6)	0.0166 (6)	0.0160 (5)	-0.0032 (5)	-0.0052 (5)	-0.0050 (4)
C23	0.0154 (5)	0.0160 (6)	0.0180 (6)	-0.0059 (5)	-0.0065 (5)	-0.0013 (4)
C24	0.0183 (6)	0.0269 (7)	0.0181 (6)	-0.0066 (5)	-0.0076 (5)	-0.0023 (5)
C25	0.0221 (6)	0.0284 (7)	0.0248 (6)	-0.0089 (6)	-0.0130 (5)	-0.0007 (5)
C26	0.0187 (6)	0.0226 (7)	0.0304 (7)	-0.0066 (5)	-0.0119 (5)	0.0024 (5)
C27	0.0155 (6)	0.0219 (6)	0.0257 (6)	-0.0049 (5)	-0.0049 (5)	-0.0025 (5)
C28	0.0175 (6)	0.0201 (6)	0.0215 (6)	-0.0051 (5)	-0.0062 (5)	-0.0053 (5)
C29	0.0178 (6)	0.0166 (6)	0.0153 (5)	-0.0070 (5)	-0.0070 (5)	0.0011 (4)
C30	0.0224 (6)	0.0229 (6)	0.0191 (6)	-0.0118 (5)	-0.0079 (5)	0.0043 (5)
C31	0.0232 (7)	0.0280 (7)	0.0180 (6)	-0.0099 (6)	-0.0050 (5)	0.0018 (5)

C32	0.0292 (7)	0.0310 (7)	0.0174 (6)	-0.0109 (6)	-0.0100 (5)	0.0024 (5)
C33	0.0235 (6)	0.0249 (7)	0.0210 (6)	-0.0077 (5)	-0.0116 (5)	-0.0006 (5)
C34	0.0181 (6)	0.0179 (6)	0.0182 (6)	-0.0062 (5)	-0.0078 (5)	0.0013 (5)
C35	0.0259 (7)	0.0374 (8)	0.0219 (6)	-0.0135 (6)	-0.0069 (6)	-0.0039 (6)
C36	0.0313 (8)	0.0293 (8)	0.0281 (7)	-0.0107 (6)	-0.0058 (6)	-0.0078 (6)
Cl1	0.02448 (16)	0.02486 (16)	0.01802 (14)	-0.00554 (13)	-0.00729 (12)	-0.00050 (11)
Cl2	0.0563 (3)	0.0318 (2)	0.0359 (2)	-0.01182 (18)	-0.02168 (19)	-0.00852 (16)
C13	0.0290 (2)	0.0641 (3)	0.0494 (3)	-0.0193 (2)	-0.01541 (18)	-0.0004 (2)
Cl4	0.0438 (2)	0.0338 (2)	0.0546 (3)	-0.01270 (18)	-0.0253 (2)	-0.00839 (18)
C15	0.0404 (2)	0.0713 (3)	0.0443 (2)	-0.0256 (2)	-0.00782 (19)	-0.0232 (2)
Cl6	0.0471 (2)	0.0364 (2)	0.0358 (2)	-0.01224 (19)	-0.01105 (18)	0.00287 (17)
Cl7	0.0329 (2)	0.0653 (3)	0.0516 (3)	-0.0232 (2)	-0.00251 (19)	-0.0249 (2)
P1	0.01423 (14)	0.01409 (14)	0.01540 (14)	-0.00529 (11)	-0.00604 (11)	0.00047 (11)

Geometric parameters (Å, °)

C1—C2	1.5095 (16)	C23—C24	1.5403 (17)
C1—P1	1.8262 (12)	C23—C28	1.5405 (17)
C1—H1A	0.9900	C23—P1	1.8204 (12)
C1—H1B	0.9900	C23—H23	1.0000
C2—C3	1.3775 (18)	C24—C25	1.5308 (18)
C2-C11	1.4301 (17)	C24—H24A	0.9900
C3—C4	1.4116 (18)	C24—H24B	0.9900
С3—Н3	0.9500	C25—C26	1.522 (2)
C4—C5	1.3603 (19)	C25—H25A	0.9900
C4—H4	0.9500	C25—H25B	0.9900
C5—C6	1.4185 (19)	C26—C27	1.5237 (19)
С5—Н5	0.9500	C26—H26A	0.9900
С6—С7	1.4144 (18)	C26—H26B	0.9900
C6—C11	1.4253 (17)	C27—C28	1.5269 (18)
С7—С8	1.362 (2)	C27—H27A	0.9900
С7—Н7	0.9500	C27—H27B	0.9900
С8—С9	1.410 (2)	C28—H28A	0.9900
С8—Н8	0.9500	C28—H28B	0.9900
C9—C10	1.3685 (19)	C29—C34	1.5433 (17)
С9—Н9	0.9500	C29—C30	1.5439 (17)
C10-C11	1.4236 (18)	C29—P1	1.8264 (12)
С10—Н10	0.9500	C29—H29	1.0000
C12—C13	1.5097 (17)	C30—C31	1.5344 (18)
C12—P1	1.8124 (13)	C30—H30A	0.9900
C12—H12A	0.9900	C30—H30B	0.9900
C12—H12B	0.9900	C31—C32	1.526 (2)
C13—C14	1.3708 (19)	C31—H31A	0.9900
C13—C22	1.4335 (18)	C31—H31B	0.9900
C14—C15	1.411 (2)	C32—C33	1.5260 (19)
C14—H14	0.9500	C32—H32A	0.9900
C15—C16	1.365 (2)	С32—Н32В	0.9900
C15—H15	0.9500	C33—C34	1.5305 (17)

C16—C17	1.413 (2)	С33—Н33А	0.9900
C16—H16	0.9500	С33—Н33В	0.9900
C17—C22	1.4239 (19)	C34—H34A	0.9900
C17—C18	1.424 (2)	C34—H34B	0.9900
C18—C19	1.355 (3)	C35—Cl4	1.7546 (15)
C18—H18	0.9500	C35—Cl3	1.7571 (15)
C19—C20	1.401 (2)	C35—Cl2	1.7636 (16)
С19—Н19	0.9500	С35—Н35	1.0000
C20—C21	1.372 (2)	C36—C17	1.7548 (16)
С20—Н20	0.9500	C36—C15	1.7582 (16)
C21—C22	1,4247 (19)	C36—C16	1.7632 (16)
C21—H21	0.9500	С36—Н36	1.0000
			1.0000
C2—C1—P1	111.98 (8)	C25—C24—H24B	109.5
C2—C1—H1A	109.2	C23—C24—H24B	109.5
P1—C1—H1A	109.2	H24A—C24—H24B	108.1
C2—C1—H1B	109.2	C26—C25—C24	111.50 (11)
P1—C1—H1B	109.2	С26—С25—Н25А	109.3
H1A—C1—H1B	107.9	С24—С25—Н25А	109.3
C3—C2—C11	119.73 (11)	C26—C25—H25B	109.3
C3—C2—C1	118.60 (11)	C24—C25—H25B	109.3
C11—C2—C1	121.46 (11)	H25A—C25—H25B	108.0
C2—C3—C4	121.25 (12)	C25—C26—C27	111.24 (11)
С2—С3—Н3	119.4	C25—C26—H26A	109.4
С4—С3—Н3	119.4	С27—С26—Н26А	109.4
C5—C4—C3	119.85 (12)	C25—C26—H26B	109.4
C5—C4—H4	120.1	С27—С26—Н26В	109.4
C3—C4—H4	120.1	H26A—C26—H26B	108.0
C4—C5—C6	120.96 (12)	C26—C27—C28	110.69 (11)
С4—С5—Н5	119.5	С26—С27—Н27А	109.5
С6—С5—Н5	119.5	С28—С27—Н27А	109.5
C7—C6—C5	121.09 (12)	С26—С27—Н27В	109.5
C7—C6—C11	119.40 (12)	С28—С27—Н27В	109.5
C5—C6—C11	119.51 (12)	H27A—C27—H27B	108.1
C8—C7—C6	120.98 (13)	C27—C28—C23	109.78 (10)
С8—С7—Н7	119.5	C27—C28—H28A	109.7
С6—С7—Н7	119.5	C23—C28—H28A	109.7
C7—C8—C9	120.05 (13)	C27—C28—H28B	109.7
С7—С8—Н8	120.0	C23—C28—H28B	109.7
С9—С8—Н8	120.0	H28A—C28—H28B	108.2
С10—С9—С8	120.68 (13)	C34—C29—C30	108.06 (10)
С10—С9—Н9	119.7	C34—C29—P1	114.87 (8)
С8—С9—Н9	119.7	C30—C29—P1	115.54 (9)
C9—C10—C11	120.77 (12)	С34—С29—Н29	105.8
C9—C10—H10	119.6	С30—С29—Н29	105.8
C11—C10—H10	119.6	Р1—С29—Н29	105.8
C10—C11—C6	118.10 (11)	C31—C30—C29	108.37 (11)
C10-C11-C2	123.55 (11)	C31—C30—H30A	110.0

C6—C11—C2	118.35 (11)	C29—C30—H30A	110.0
C13—C12—P1	117.85 (9)	C31—C30—H30B	110.0
C13—C12—H12A	107.8	C29—C30—H30B	110.0
P1-C12-H12A	107.8	H30A-C30-H30B	108.4
C_{13} C_{12} H_{12B}	107.8	$C_{32} - C_{31} - C_{30}$	112 35 (11)
P1-C12-H12B	107.8	C_{32} = C_{31} = H ₃₁ A	109.1
H12A - C12 - H12B	107.2	C_{30} C_{31} H_{31A}	109.1
C14-C13-C22	119 42 (12)	C_{32} C_{31} H_{31B}	109.1
C_{14} C_{13} C_{12}	119.42(12) 110.04(12)	C30 C31 H31B	109.1
C_{22} C_{13} C_{12}	119.94(12) 120.56(12)	$H_{31} = C_{31} = H_{31} B$	107.9
$C_{22} = C_{13} = C_{12}$	120.50(12) 121.60(13)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.9 112.32(11)
$C_{13} = C_{14} = C_{13}$	110.2	$C_{31} = C_{32} = C_{33}$	100 1
$C_{15} = C_{14} = 114$	119.2	$C_{31} = C_{32} = H_{32A}$	109.1
C16 C15 C14	119.2 110.87 (14)	$C_{33} - C_{32} - H_{32} R$	109.1
C16 - C15 - U15	119.07 (14)	C32 C32 H32B	109.1
C14 C15 H15	120.1		109.1
C14—C15—H15	120.1	H32A—C32—H32B	107.9
	120.65 (13)	$C_{32} = C_{33} = C_{34}$	110.81 (11)
C15—C16—H16	119.7	C32—C33—H33A	109.5
CI/-CI6-HI6	119.7	C34—C33—H33A	109.5
C16-C17-C22	119.77 (13)	С32—С33—Н33В	109.5
C16—C17—C18	121.05 (14)	С34—С33—Н33В	109.5
C22—C17—C18	119.17 (14)	H33A—C33—H33B	108.1
C19—C18—C17	121.25 (15)	C33—C34—C29	108.82 (10)
C19—C18—H18	119.4	C33—C34—H34A	109.9
C17—C18—H18	119.4	C29—C34—H34A	109.9
C18—C19—C20	120.16 (14)	C33—C34—H34B	109.9
C18—C19—H19	119.9	C29—C34—H34B	109.9
С20—С19—Н19	119.9	H34A—C34—H34B	108.3
C21—C20—C19	120.53 (15)	Cl4—C35—Cl3	110.35 (8)
С21—С20—Н20	119.7	Cl4—C35—Cl2	110.55 (8)
С19—С20—Н20	119.7	Cl3—C35—Cl2	109.80 (8)
C20—C21—C22	121.23 (14)	Cl4—C35—H35	108.7
C20—C21—H21	119.4	Cl3—C35—H35	108.7
C22—C21—H21	119.4	Cl2—C35—H35	108.7
C17—C22—C21	117.63 (12)	C17—C36—C15	110.33 (8)
C17—C22—C13	118.54 (12)	C17—C36—C16	110.53 (9)
C21—C22—C13	123.83 (12)	Cl5—C36—Cl6	110.16 (9)
C24—C23—C28	110.48 (10)	C17—C36—H36	108.6
C24—C23—P1	111.40 (8)	C15—C36—H36	108.6
C28—C23—P1	111.39 (8)	Cl6—C36—H36	108.6
С24—С23—Н23	107.8	C12—P1—C23	110.81 (6)
С28—С23—Н23	107.8	C12—P1—C1	105.26 (6)
P1—C23—H23	107.8	C23—P1—C1	107.20 (6)
C25—C24—C23	110.61 (10)	C12—P1—C29	113.35 (6)
C25—C24—H24A	109.5	C23—P1—C29	110.05 (6)
C23—C24—H24A	109.5	C1—P1—C29	109.88 (6)
P1—C1—C2—C3	-82.43 (12)	C20—C21—C22—C17	1.1 (2)
	· /		× /

			1 = 0 0 0 (1 2)
P1—C1—C2—C11	92.37 (12)	C20—C21—C22—C13	-179.82 (13)
C11—C2—C3—C4	-5.77 (19)	C14—C13—C22—C17	3.00 (18)
C1—C2—C3—C4	169.12 (12)	C12—C13—C22—C17	179.68 (11)
C2—C3—C4—C5	0.9 (2)	C14—C13—C22—C21	-176.03 (13)
C3—C4—C5—C6	3.7 (2)	C12—C13—C22—C21	0.64 (19)
C4—C5—C6—C7	177.41 (13)	C28—C23—C24—C25	56.37 (14)
C4—C5—C6—C11	-3.3 (2)	P1-C23-C24-C25	-179.26 (9)
C5—C6—C7—C8	179.46 (13)	C23—C24—C25—C26	-54.96 (15)
C11—C6—C7—C8	0.2 (2)	C24—C25—C26—C27	55.49 (15)
C6—C7—C8—C9	1.2 (2)	C25—C26—C27—C28	-57.30 (15)
C7—C8—C9—C10	-1.5 (2)	C26—C27—C28—C23	58.46 (14)
C8—C9—C10—C11	0.3 (2)	C24—C23—C28—C27	-58.14 (14)
C9—C10—C11—C6	1.03 (19)	P1-C23-C28-C27	177.48 (9)
C9—C10—C11—C2	-177.99 (12)	C34—C29—C30—C31	-62.81 (13)
C7—C6—C11—C10	-1.30 (18)	P1-C29-C30-C31	166.94 (9)
C5-C6-C11-C10	179.43 (12)	C29—C30—C31—C32	56.70 (15)
C7—C6—C11—C2	177.78 (12)	C30—C31—C32—C33	-51.85 (16)
C5—C6—C11—C2	-1.49 (18)	C31—C32—C33—C34	52.53 (16)
C3—C2—C11—C10	-175.03 (12)	C32—C33—C34—C29	-59.07 (14)
C1—C2—C11—C10	10.23 (18)	C30—C29—C34—C33	64.66 (13)
C3—C2—C11—C6	5.94 (17)	P1—C29—C34—C33	-164.72 (9)
C1—C2—C11—C6	-168.79 (11)	C13—C12—P1—C23	75.13 (11)
P1-C12-C13-C14	-70.57 (15)	C13—C12—P1—C1	-169.30 (10)
P1—C12—C13—C22	112.77 (12)	C13—C12—P1—C29	-49.18 (12)
C22—C13—C14—C15	-2.2 (2)	C24—C23—P1—C12	59.03 (10)
C12—C13—C14—C15	-178.90 (12)	C28—C23—P1—C12	-177.12 (9)
C13—C14—C15—C16	0.1 (2)	C24—C23—P1—C1	-55.33 (10)
C14—C15—C16—C17	1.2 (2)	C28—C23—P1—C1	68.52 (10)
C15—C16—C17—C22	-0.3 (2)	C24—C23—P1—C29	-174.80 (9)
C15—C16—C17—C18	178.96 (14)	C28—C23—P1—C29	-50.95 (10)
C16—C17—C18—C19	-178.01 (14)	C2—C1—P1—C12	75.77 (10)
C22—C17—C18—C19	1.3 (2)	C2-C1-P1-C23	-166.20(9)
C17—C18—C19—C20	0.3 (2)	C2-C1-P1-C29	-46.61 (10)
C18—C19—C20—C21	-1.2(2)	C34—C29—P1—C12	-42.18(11)
C19 - C20 - C21 - C22	0.5 (2)	C_{30} C_{29} P_{1} C_{12}	84.71 (10)
C16—C17—C22—C21	177.34 (12)	C34—C29—P1—C23	-166.90(9)
C18—C17—C22—C21	-1.99 (18)	C30—C29—P1—C23	-40.01 (11)
C_{16} C_{17} C_{22} C_{13}	-1.76(18)	C_{34} C_{29} P_{1} C_{1}	75.27 (10)
C18 - C17 - C22 - C13	178 92 (12)	C_{30} C_{29} P_{1} C_{1}	-157 84 (9)
			10/10/ (2)