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Spinodal decomposition and collapse of a polyelectrolyte gel
Giulia L. Celora, Matthew G. Hennessy, Andreas Münch, Sarah L. Waters,

Barbara Wagner

Abstract

The collapse of a polyelectrolyte gel in a (monovalent) salt solution is analysed using a new
model that includes interfacial gradient energy to account for phase separation in the gel, finite
elasticity and multicomponent transport. We carry out a linear stability analysis to determine the
stable and unstable spatially homogeneous equilibrium states and how they phase separate into
localized regions that eventually coarsen to a new stable state. We then investigate the problem
of a collapsing gel as a response to increasing the salt concentration in the bath. A phase space
analysis reveals that the collapse is obtained by a front moving through the gel that eventually
ends in a new stable equilibrium. For some parameter ranges, these two routes to gel shrinking
occur together.

1 Introduction

Ever since the seminal papers by Tanaka et al. [29] and Dusek [10] research on swelling and collapse
of polyelectrolyte gels has been very intensive, both theoretically and experimentally [7, 6, 22, 23, 16].
The interest is on one hand grounded in the intriguing and subtle properties of such a system, combin-
ing elements of electrochemistry and condensed matter physics, on the other hand in its innumerable
technological applications, where a better understanding of polyelectrolyte gels serves as a basis for
developing smart, responsive materials and sensors [2, 5, 14, 28], for example. In particular, research
in this field is driven by applications in medicine [14, 19], e.g. for drug delivery, tissue engineering, but
also as a means of gaining fundamental insight into diverse phenomena in biology, where polyelec-
trolyte gels are used as a model system for many types of biological tissues [20, 24]. Polyelectrolytes
also serve as a model for bio-macromolecules such as DNA, RNA [11, 32, 26].

In its simplest form a polyelectrolyte gel is a network of covalently cross-linked polyelectrolyte macro-
molecules, that is, of chains carrying fixed charges of the same sign, solved in a solute. If placed in
a salt solution, the gel will approach a new equilibrium state attributed to osmotic effects and thereby
swell or shrink. This process depends in a subtle way on the concentration and valency of the salt
in the solvent, the pH value, the (nonlinear) elasticity of the gel, the concentration of fixed charges
and the number of ionizable groups of the polyelectrolyte macromolecule, apart from the other exter-
nal fields such a temperature or an applied electric field. It is typically described via a volume phase
transition using thermodynamical equilibrium descriptions with jump conditions at interfaces between
the co-existing phases [8, 15, 31] or variational methods. Unlike volume phase transitions in neutral
hydrogels [13, 1, 9], subtle changes can have dramatic effects and moreover can result in discontin-
uous phase transitions connected with super-collapse [18, 17] and, in more recent studies, re-entrant
swelling [27].

A deeper understanding of these phenomena, in particular when comparing to experiments, can be
obtained if stability and the transient dynamics between equilibrium states can be resolved in order to
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shed light on pattern forming processes leading to collapse [21, 33]. We use non-equilibrium thermo-
dynamics to systematically derive a phase-field-type model of a polyelectrolyte gel that accounts for
the free energy of the internal interfaces which form upon phase separation, as well as finite elasticity,
multi-component transport via a Stefan-Maxwell together with a thermodynamically consistent model
for the salt solution [4]. The main goal of this study is to systematically investigate the stability and
the transient dynamics of this system by identifying the dominant parameters and time scales and
analysing the respective asymptotic regimes, via stability analysis, phase space analysis and numeri-
cal simulations for the one-dimensional setting.

In section 2 we formulate the problem for the case of a one-dimensional constrained gel in contact with
a bath of a salt solution and determine the dimensionless parameters that characterise the model. The
distinctive ones for a poly-electrolyte as opposed to a neutral hydrogel are the ratio, β, of the Debye-
length to the size of the gel; its ratio β/ω to the width of the interface between the swollen and the
shrunk phase of the gel; and the ratio of the salt concentration in the bath and of the fixed charges
on the polymer network, γ = c0/αf . The electro-neutral limit corresponds to small β and we will
typically also assume β/ω � 1. The dilute limit, on the other hand, arises when γ is small, and as
a consequence the concentration of positive mobile ions relative to the concentration of positive fixed
charges in the gel, for example, is small.

In section 3 we carry out a stability analysis for the one-dimensional gel that maps out the stable and
unstable homogeneous for the full model and also for various asymptotic limits of the aforementioned
parameters. We also show numerically that in the unstable case, the nonlinear solutions form localized
phase-separated regions with high and low concentration of the solvent, which eventually coarsen into
the new stable gel state. Interestingly, in the low solvent regions there is a high ion (φ−) concentration
at each center of the dry patch, as a consequence of maintaining electro-neutrality.

In section 4 we numerically investigate the collapse of the gel by instantly switching the concentration
of the ions in the bath, which leads to the change in concentration of the positive ions (φ+) in the gel,
which leads to the formation of a depletion front that propagates into the gel as the gel collapses into
a new stable dry state. We systematically describe and characterize the states and the depletion front
during collapse. In particular, we reveal via a phase-space analysis that the depletion front selects the
homogeneous states in front and behind of it and these are always linearly stable.

Depending on the value of φ+, the switching of the ion concentration is accompanied by a spinodal
decomposition of the initial homogeneous state followed by coarsening of the localized concentration
landscape, until eventually these regions are consumed by the intruding depletion front leaving behind
a new stable homogeneous dry state. In section 5, we draw our conclusions and give an outlook on
further research directions.

Figure 1: Schematic of the 1D setup
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2 Formulation

Starting from the model derived in [4], we here consider the specific case of a polyelectrolyte gel
swelling in a solution containing a monovalent salt. Consequently, we only need to consider two ionic
species with charge z+ = 1 and z− = −1. Under this condition, the dynamics of the system in an
Eulerian coordinate system is governed by the following set of equations:

∂tcs +∇ · (csvn) = −∇ · js, (1a)

∂tc± +∇ · (c±vn) = ∇ ·
[
D±c±
kBT

∇µ± −
D±c±
D0
±cs

js

]
, (1b)

∇ · T = 0, (1c)

−ε∇2Φ = e (zfcf + z+c+ + z−c−) , (1d)

The first equation is for the conservation of solvent, followed by the conservation of the two mobile
species in conjunction with a linear law for the the diffusive fluxes of these species in terms of the
gradient of the chemical potentials. The constitutive laws in this model are chosen to be thermody-
namically consistent following the approach by Gurtin [12]. The third equation is simply conservation
of momentum in the quasi-static approximation. Finally, we have the law of electrostatics giving the
electrical potential generated by the mobile charges as well as the charges fixed to the polyelectrolyte
chains, in the presence of a homogeneous dielectric medium. Moreover, to complete the model, we
need further constitutive laws, starting with a linear law for the diffusive flux of the solvent,

js = −csK

(
∇µs +

∑
i=+,−

ciDi
csD0

i

∇µi

)
, (2a)

and expressions for the three chemical potentials

µs = pvs + µ0
s − γ∇2cs + kBT

[
ln(csvs) + 1 +

χ(1− csvs)
J

−
∑
m

cmvs

]
, (2b)

µ± = pv± + µ0
± + z±eΦ + kBT

[
ln(v±c±) + 1−

∑
m=s,+,−

v±cm −
χcsv±
J

]
. (2c)

For the stresses in the elastic network, we have four contributions

T = −pI + Tkort + TMax +
G (B− I)

J
. (2d)

The first and last are the isotropic stress induced by the pressure and the elastic response of a neo-
Hookean polymer network, respectivel, while the other two represent the Korteweg stress generated
at internal interfaces (i.e., gradients of the solvent concentration)

TKort = γ

[(
|∇cs|2

2
+ cs∇2cs

)
I−∇cs ⊗∇cs

]
, (2e)

and the Maxwell stresses due to the presence of electric charges,

TMax = ε

[
∇Φ⊗∇Φ− 1

2
|∇Φ|2I

]
. (2f)
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The variable J represents the volume expansion of the gel compared to the dry reference state,
where J = 1. In the general situation, it can be expressed in terms of the inverse volume fraction of
the network, or, if written in terms of the solvent and ion species,

J = (1− vscs − v+c+ − v−c−)−1 . (3)

The notation is as follows: The Eulerian coordinates are x = (x, y, z), t is time, cs, c+ and c−, and cf
are the concentration (number of molecules per volume) of the solvent, positive and negative mobile
ionic species, and of the fixed charges, respectively, while µs, µ+ and µ− denote the chemical poten-
tials associated with each of these species, vs, v+ and v− are the respective volumes per molecule,
and js, j+, j− are the corresponding fluxes. The potential of the electric field is denoted by Φ. Also,
the tensor B = FFT is the left Cauchy-Green tensor, and F = ∂x/∂X the deformation strain tensor
with determinant J , whereX are the Lagrangian coordinates. Moreover, vn = ∂X/∂t is the veloc-
ity of the polymer network. Our reference system pertains to the dry state of the gel. The parameters
are ε for the absolute permittivity of the gel (which is assumed to be constant), Ds and D± are the
diffusion coefficients of the solvent and the mobile ions in the gel, and D0

± are the diffusivities of the
ionic species in the pure solvent. The coefficient γ plays the role of the surface energy. The param-
eters µ0

S , µ0
± denote the chemical potential of the non-interacting solvent and ionic species. Young’s

modulus for the gel network is given by G, and χ is the Flory-Huggins parameter characterising the
solvent-network interaction.

As commonly assumed in the study of ionic solution, we here consider the specific case of equal
molecular volume for all of the mobile species considered v = vs = v+ = v−. We here assume
that the friction between the different ion species and of ions with the gel is negligible compared to
the dissipation due to the relative motion between the ions and the solvent. Thus we can simplify the
model assuming D± = D0

±. Given this, the parameter K reduces to the permeability coefficient for
the flow of the pure solvent in a poro-elastic material, for which we have the law

K =
Dsφθn
kBT

, (4)

where φn = (1− vscs − v+c+ − v−c−) is the volume fraction of the polymer network and the ex-
ponent θ = −1.5 has been estimated from experimental observations of hydrogels (see e.g. [9] and
references therein), and Ds is . . ..

Moreover, we assume that the number of sites of the fixed charges per unit volume is Cf , so that in
the current state, the number density is

cf = Cfφn. (5)

Constrained Swelling

In this work, we focus on the dynamics of a constrained gel which undergoes uni-axial deformation
due to the uptake or release of a solution. In this condition the deformation tensor F is of the form:

F =

1 0 0
0 1 0
0 0 J(z, t)

 . (6)
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Before moving on with our analysis, we non-dimensionalise the system (1)-(3) and assume all of the
model variables to depend only on z and t:

µ∗m =
µm − µ0

m + T0v

kBT
, φm = vcm, φf = vcf , Φ∗ =

Φe

kBT
, (7)

T∗ =
T

G
, z∗ =

z

L
, t∗ =

t

τ
, Q∗ =

Qv

e
, (8)

p∗ =
p+ T0

G
, j∗m =

vL

Ds
jm, τ =

L2

Ds
(9)

where L is the characteristic size of the gel, and m = s,+,−. By integrating the one-dimensional
version of the stress balance (1c) in the vertical direction, we obtain that the Tzz-component of the
stress tensor is spatially homogeneous but may be time dependent, Tzz = T0(t). Dropping the star
notation, the non-dimensional problem formulation reads:

∂tφs + ∂z(φsvn) = −∂zjs, (10a)

∂tφ± + ∂z(φ±vn) = −∂zj±, (10b)

− β2∂zzΦ = z+φ+ + z−φ− + αfφn (10c)

p =
ω2

G

[
φs∂zzφs −

(∂zφs)
2

2

]
+
β2

2G
(∂zΦ)2 +

(1− φ2
n)

φn
(10d)

where

js = −φsφθn

(
∂zµs +

∑
i=+,−

φi
φs
∂zµi

)
, (11a)

j± = −D±φ±∂zµ± +
φ±
φs
js, (11b)

µs = pG − ω2∂zzφs + lnφs + [χ(1− φs) + 1]φn, (11c)

µ± = pG + z±Φ + ln(φ±) + [1− χφs]φn, (11d)

vn = −js − j+ − j−, (11e)

φn = 1− φs − φ+ − φ−. (11f)

For the boundary conditions, we assume that the gel is bounded by a substrate or wall at z = 0 and
is in contact with a bath at z = h(t). At z = 0, we therefore impose no-flux boundary conditions
for all species and assume a neutral wall, so that we have a special case of the conditions used in
surface-directed phase separation [25]. Hence

js = 0, j+ = 0, (12a)

∂zφs = 0. (12b)

We put the gel in contact with a bath that contains a salt solution at concentration c0 far away from the
interface, that is, the number of each of the mobile ion species per volume. At the interface with the
bath, z = h(t), we have to impose the following boundary conditions resulting from the Debye layer
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analysis in [3]. These are

∂zφs = 0, (13a)

ω2 (1− φs)∂zzφs = G 1− φ2
n

φn
+ (χ(1− φs) + 1)φn + ln

φs
1− 2c0

, (13b)

φ+ = c0 exp [−Φ− Gp− (1− χφs)φn] , (13c)

Φ = sinh−1

[
αfφn
2c0

exp (Gp+ φn (1− χφs))
]
. (13d)

Finally we have a simple ODE describing the growth of the domain:

dh

dt
= − (js + 2j+)z=h(t) (13e)

The nondimensional equations shows that the system is characterised by three characteristic length
scales L and

Ld =

√
εkBTv

e2
and Lint =

√
γ0

vkBT
, (14)

that define the order of magnitude of the non-dimensional parameters

β =
Ld
L

and ω =
Lint
L

(15)

and are used to study the different asymptotic limits of the system. Further non-dimensional material
parameters are

G =
vG

kBT
, D∗± =

D±
Ds

, and αf = zfvCf . (16)

Depending on the application, different limits can be studied. For example, for the problem in [30] value
for the known parameter kB = 1.38×10−23, T = 293K , e = 1.6×10−19C and v = 3×10−29m3

and satisfy the following relation:

Ld ∼ O(10−6)� L, Ld � Lint ⇒ β � ω (17)

In passing, we extract some useful scaling information from these boundary conditions, to set a scale
for φ+ when the salt concentration is very low, so that c0 � αf � 1. Then the dominant terms in
the argument of sinh−1 is the prefactor, so that Φ = O(αf/c0) � 1. The Φ contribution will then
dominate the argument of exp in (13c), so that we conclude

φ+ ∼ c2
0/αf . (18)

For the analysis it is convenient to use the expression for the pressure (10d) and rewrite the chemical
potentials in the following form:

µs = Fs(φs, φ+, φ−) +
β2

2
(∂zΦ)2 + (φs − 1)ω2∂zzφs − ω2 (∂zφs)

2

2
, (19a)

µ± = F±(φs, φ+, φ−) +
β2

2
(∂zΦ)2 + z±Φ + ω2φs∂zzφs − ω2 (∂zφs)

2

2
, (19b)

where the functions F+, F− and Fs are defined as follows:

Fs = G (1− φ2
n)

φn
+ lnφs + [χ(1− φs) + 1]φn, (19c)

F± = G (1− φ2
n)

φn
+ lnφ± + [1− χφs]φn. (19d)
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3 Stability analysis of the homogeneous states

Let us consider a perturbation around an originally homogeneous steady state (φs, φ±,Φ) = (φ̄s, φ̄±, Φ̄),
of the system (10)-(19)which, as shown in our previous works needs to satisfy the electro-neutrality
condition [4]:

z+φ̄+ + z−φ̄− + αf φ̄n = 0, αf = vCf . (20)

Assuming periodic boundary condition, we have the following ansatz for the form of the normal modes:

(a) (b) (c)

Figure 2: Analysis of the dependency of the equilibrium on the ions concentration in the bath c0. In (a) we compute the equilibrium manifold in the phase
diagram (c0, χ, φs). We here consider parameter as in Table 1 with c0, used as a control parameter, is allowed to vary between [2×10−6, 2×10−2].
The curve are section of the manifold taken for specific values of the χ parameter. We can see that as χ increase the system undergoes a bifurcation,
switching for a single highly swollen state, to a transient bi-stable regime. Finally for sufficiently high χ, the collapsed state is the only steady state of the
system. In (b)-(c) we further analyse the bistable regime. In (b) we show the equilibrium curve (c0, φs(c0)), while in (b) the curve (φ+(c0), φs(c0))
to compare it with the region of linear instability (highlighted in blue). As we can see the model present a “Pitchfork bifurcation”. At low c0 the only steady
state is characterised by low concentration of solvent, i.e. collapsed state; as we increase the concentration an additional disconnected branch appears,
which is characterised by two highly swollen steady state, a stable and an unstable one (as shown in (c) the middle equilibrium lies in the linearly unstable
region predicted in this section). As shown in Figure (b) for the simulation in Section, we start on the stable upper branch of the equilibrium curve at low
c0. By increasing the c0 we are able to drive the system to a collapsed state on the lower branch.

φs = φ̄s + δφ∗se
ikz+λt, φ± = φ̄± + δφ∗±e

ikz+λt, Φ = Φ̄ + δΦ∗eikz+λt

js = −ikδj∗seikz+λt, j± = −ikδj∗±eikz+λt.
(21)

where ∗ denotes perturbation functions and δ the amplitude of the perturbation. By substituting into
the model and considering only the linear term in the equation, we obtain:

λφ∗s + k2
[(

1− φ̄s
)
j∗s − φ̄sj∗+ − φ̄sj∗−

]
= 0, (22a)

λφ∗+ + k2
[(

1− φ̄+

)
j∗+ − φ̄+j

∗
− − φ̄+j

∗
s

]
= 0, (22b)

λφ∗− + k2
[(

1− φ̄−
)
j∗− − φ̄−j∗+ − φ̄−j∗s

]
= 0, (22c)

β2k2Φ∗ = (z+ − αf )φ∗+ + (z− − αf )φ∗− − αfφ∗s, (22d)

j∗s = φ̄θn

[∑
`

∑
m

φ̄m
∂Fm
∂φ`

φ∗` + k2ω2φ̄sφ̄nφ
∗
s − αf φ̄nΦ∗

]
, (22e)

j∗+ −
φ̄+

φ̄s
j∗s = D+φ̄+

[∑
`

∂F+

∂φ`
φ∗` + z+Φ∗ − ω2k2φ̄sφ

∗
s

]
, (22f)

j∗− −
φ̄−

φ̄s
j∗s = D−φ̄−

[∑
`

∂F−
∂φ`

φ∗` + z−Φ ∗ −ω2k2φ̄sφ
∗
s

]
, (22g)
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where we have kept only the linear terms in the perturbations. Let us consider the case of a mono-
valent salt, i.e. z+ = 1 and z− = −1, with ions of equivalent diffusivity D+ = D− = D. Imposing
that the above linear system has non trivial solution, i.e. its determinant is zero, we obtain a third order
equation in λ of the form:

−β2k2λ3 +
k2λ2

φ̄s
a2 +

Dk4λ

φ̄s
a1 +D2k6φ̄−φ̄+φ̄

θ+1
n a0 = 0, (23)

where the coefficients a2, a1 and a0 are functions of the steady state variables as well as the modes
wavelength k and β. However, note that these are generally non-zero for β → 0. Given the complexity
of the model, it is difficult to tackle (23) for this reason we consider some limiting cases, which reflect
condition usually encountered in actual gels.

3.1 The electro-neutral limit β � 1

Let us consider the limiting case of an electro-neutral gel, which emerges from the case β → 0 [3].
Given that the limit admit a regular expansion, we can straightforwardly compute the leading order
approximation of (22) setting β = 0. If we only consider the case αf > 0, then it is convenient to
express the solution in terms of φ+, and use Eqn. (22d) to eliminate φ− so as to reduce the prob-
lem dimension. Further using a linear combination of Equations (22a)-(22c) we obtain the following
condition on j∗+ and j∗−:

j∗− = −z+

z−
j∗+. (24)

Substituting the definition of the fluxes (22g)-(22f), we also obtain an explicit algebraic equation for Φ∗:

Φ∗ = − 1

z−

[∑
i=s,+

∂F−
∂φi

φ∗i − k2ω2φ̄sφ
∗
s +

z+j
∗
+

D−z−φ̄−
+

j∗s

D−φ̄s

]
. (25)

Using all of the above, we can thus reduce the original system (22) to the following system of four
equations:

λφ∗s + k2

[(
1− φ̄s

)
j∗s +

z+ − z−
z−

φ̄sj
∗
+

]
= 0, (26a)

λφ∗+ + k2

[(
1 +

z+ − z−
z−

φ̄+

)
j∗+ − φ̄+j

∗
s

]
= 0, (26b)(

1−
αf φ̄

θ+1
n

z−D−φ̄s

)
j∗s −

αf φ̄nz+φ̄
θ
n

z2
−D−φ̄−

j∗+ = (26c)

φ̄θn

[∑
i=s,+

(
φ̄sasi + φ̄+a+i

)
φ∗i + k2ω2φ̄s

(
1− φ̄s − φ̄+ +

z+

z−
φ̄+

)
φ∗s

]
(

1 +
D+z

2
+φ̄+

D−z2
−φ̄−

)
j∗+
φ̄+

φ̄s

(
1− D+z+

D−z−

)
j∗s = (26d)

D+φ̄+

[∑
i=s,+

a+iφ
∗
i − k2ω2φ̄s

(
1− z+

z−

)
φ∗s

]
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where we have introduced

asi =
∂Fs
∂φi

(φ̄) +
∂Fs
∂φ−

(φ̄)
∂φ̄−

∂φ̄i
, (27a)

a+i =
∂
(
F+ − z+

z−
F−

)
∂φi

(φ̄) +
∂
(
F+ − z+

z−
F−

)
∂φ−

(φ̄)
∂φ̄−

∂φ̄i
. (27b)

As for the full model, let us simplify the model considering the case of a monovalent salt, i.e. z+ = 1
and z− = −1, with equal diffusivity of the ions, i.e. D+ = D− so that the system reduces to:

λφ∗s + k2
[(

1− φ̄s
)
j∗s − 2φ̄sj

∗
+

]
= 0, (28a)

λφ∗+ + k2
[(

1− 2φ̄+

)
j∗+ − φ̄+j

∗
s

]
= 0, (28b)(

1 +
αf φ̄

θ+1
n

Dφ̄s

)
j∗s −

αf φ̄
θ+1
n

Dφ̄−
j∗+ = φ̄θn

[(
φ̄sas+ + φ̄+a++

)
φ∗+(

ω2k2φ̄s (1 + αf ) φ̄n + φ̄sass + φ̄+a+s

)
φ∗s
] (28c)

(
1 +

φ̄+

φ̄−

)
j∗+ −

2φ̄+

φ̄s
j∗s = Dφ̄+

[(
a+s − 2ω2k2φ̄s

)
φ∗s + a++φ

∗
+

]
. (28d)

In this case the explicit forms of the coefficients aij :

ass =
Gφ̄−2

n (φ̄2
n + 1)− 1 + χ(φ̄s − 1)

1 + αf
+ φ̄−1

s − χφ̄n, (29a)

as+ = 2
Gφ̄−2

n (φ̄2
n + 1)− 1 + χ(φ̄s − 1)

1 + αf
, (29b)

a+s =
2

1 + αf

(
Gφ̄−2

n (φ̄2
n + 1) + χφ̄s − 1−

αf

2
(
φ̄+ + αf φ̄n

))− 2χφ̄n, (29c)

a++ =
4

1 + αf

(
Gφ̄−2

n (φ̄2
n + 1) + χφ̄s − 1 +

1− αf
4
(
φ̄+ + αf φ̄n

))+ φ̄−1
+ . (29d)

Imposing the system to have non trivial solution, we obtain a quadratic equation that defined the modes
λ. Using the general form:

α1λ
2 + α2k

2λ+ k4α3 = 0, (30)

DOI 10.20347/WIAS.PREPRINT.2731 Berlin 2020



G. L. Celora, M. G. Hennessy, A. Münch, B. Wagner, S. L. Waters 10

where the coefficients are defined as:

α1 =
φ̄sD

(
2φ̄+ + αf φ̄n

)
+ α2

fφ
θ+2
n

Dφ̄s(φ̄+ + αf φ̄n)
, (31)

α3 = Dφ̄θ+1
n φ̄+φ̄s (1 + αf )

[
k2ω2

(
a++

(
1− φ̄s

)
+ 2as+φ̄s

)
+

(a++ass − as+a+s)]
(32)

α2 = ω2k2φ̄sφ̄
θ+1
n

(
2φ̄+φ̄n

(
1 + α2

f

)
+ φ̄2

nαf (1 + αf )
2

φ̄+ + αf φ̄n
+ 4
Dφ̄sφ̄+

φ̄θ+1
n

)

+assφ̄
θ
nφ̄s

(
−4φ̄+ +

(1− φ̄s)(2φ̄+ + αf φ̄n)

φ̄+ + αf φ̄n

)

+as+φ̄
θ+1
n φ̄+

2φ̄+ + αf + αf (1 + αf ) φ̄n

φ̄+ + αf φ̄n
+ 2a+sφ̄+

[
φ̄θ+1
n − φ̄sD

]
+a++φ̄+

[
D
(
1− 2φ̄+

)
+
φ̄θ+1
n

φ̄s

(
2φ̄+ + αf

)]
(33)

Consequently we have that the system is stable if and only if:

α2 > 0, α1α3 > 0. (34)

Note that α2 = α2(k) is a quadratic function of k with minimum at k = 0. Consequently the homo-
geneous steady state is stable whenever α2(0) > 0. Since also the coefficient α1 is always positive,
the second condition reduces to α3(k) > 0:

ω2k2φ̄s
(
a++

(
1− φ̄s

)
+ 2as+φ̄s

)
+ (a++ass − as+a+s) φ̄s > 0, (35)

for any k. Again (35) is a quadratic function in k (with vertex at k = 0), so that the system is stable if
the curvature is positive and its minimum at k = 0 is positive. The stability region is thus defined by
the following set of inequalities:

a++

(
1− φ̄s

)
+ 2as+φ̄s > 0 (36a)

a++ass − as+a+s > 0 (36b)

assφ̄
θ+1
n φ̄s

2φ̄+ + αf φ̄n (1 + αf )

φ̄+ + αf φ̄n

+as+φ̄
θ+1
n φ̄+

2φ̄+ + αf + αf (1 + αf ) φ̄n

φ̄+ + αf φ̄n
+ 2a+sφ̄+

[
φ̄θ+1
n − φ̄sD

]
+a++φ̄+

[
D
(
1− 2φ̄+

)
+
φ̄θ+1
n

φ̄s

(
2φ̄+ + αf

)]
> 0

(36c)

There are several degrees of freedom in the model. We here set the values of the parameters G,
αf , D and θ as for the numerical simulations presented in the next section (see Table 1). We further
consider φ̄+ as a control parameter and investigate for different value of the latter the change in the
stability region in the plane (φ̄s, χ). For the set of parameter here considered we have that the stability
region is bounded by the curve:

S(φs, φ+, χ) = a11a22 − a12a21 = 0. (37)
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The latter is illustrated in Figure 3. As (a) remains positive, the term related to the interface en-
ergy in (35) helps with the stabilization of the system. In particular we have that there exist a value
k∗(ω; φ̄s, χ) which is an upper bound for the unstable nodes. As ω → 0 we have that the k∗ → ∞
so that all modes are unstable. In order for such instabilities to develop, the characteristic length of
the gel needs to be greater than λ∗ = 2π/k∗ which in an increasing function of ω and λ∗ → 0 for
ω → 0.

(a) αf = 0 (b) αf = 0.04 (c) αf = 0.1

Figure 3: Effect of φ̄+ on the stability of the electro-neutral model. As expected for small value of the parameter there are small changes to the stability
region of the system. However, we see that higher concentration of fixed charged, αf , tend to stabilise the system moving the unstable region up. This
will be further investigate in what follow. On the other hand, when φ̄+ is of the same order as φ̄s we have a non-negligible shift of the stability region
toward the left, which seems to be independent of the value αf . The other parameters, i.e. G,D and θ are taken from Table 1.

3.1.1 The dilute sublimit φ+ � 1 for β � ω � 1

Let us further simplify the model considering the dilute limit, i.e. ξ = φ̄+ << φ̄s. Unlike for the
electro-neutral limit, we now have a singular perturbation, due to the contribution of a++ O(ξ−1). For
this reason, we present a more detailed derivation of this limit. Not also that we allow φ̄− (and thus the
fix charges) to be non-dilute, so to capture also the case of a collapse gel with higher concentration
of fixed charges. Consequently we have that at the volume fractions for the network and the negative
ions can be written as:

φ̄n =
1− φ̄s
1 + αf

− 2ξ

1 + αf
= φ̄(0)

n −
2ξ

1 + αf
, (38)

φ̄− = αf φ̄
(0)
n +

1− αf
1 + αf

ξ. (39)

To start with, we look at the form of the functions aij under this assumption. We can infer

ass ∼ G
(φ̄

(0)
n )2 + 1

φ̄
(0)
n

(
1− φ̄s

) − 1

1 + αf
− 2χφ̄(0)

n + φ̄−1
s +O(ξ), (40a)

as+ ∼ 2G
(φ̄

(0)
n )2 + 1

φ̄
(0)
n

(
1− φ̄s

) − 2

1 + αf
− 2χφ̄(0)

n +O(ξ) (40b)

a+s ∼ 2G
(φ̄

(0)
n )2 + 1

φ̄
(0)
n

(
1− φ̄s

) +
2χ(2φ̄s − 1)

1 + αf
− 2

1 + αf
−

1

1− φ̄s
+O(ξ), (40c)

a++ =
1

ξ
+ 4G

(φ̄
(0)
n )2 + 1

φ̄
(0)
n

(
1− φ̄s

) 4
(
χφ̄s − 1

)
1 + αf

+
(1− αf )
αf (1− φ̄s)

+O(ξ). (40d)
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Let us now denote with a(n)
ij the component of the coefficient which is of order O(ξn). Then the first

order approximation of the modes λ(0) is defined by the quadratic equation:

α
(0)
1 (λ(0))2 + α

(0)
2 k2λ(0) + k4α

(0)
3 = 0, (41)

with coefficients

α
(0)
1 = 1 +

αf (φ̄
(0)
n )θ+1

Dφ̄s
, (42a)

α
(0)
2 = ω2k2φ̄s(φ̄

(0)
n )θ+2(1 + αf )

2 + a(0)
ss (φ̄(0)

n )θφ̄s(1− φ̄s) + ξa
(−1)
++

[
D +

αf (φ̄
(0)
n )θ+1

φ̄s

]
(42b)

α
(0)
3 = D(φ̄(0)

n )θ+1φ̄sξ (1 + αf )
[
k2ω2a

(−1)
++

(
1− φ̄s

)
+ a

(−1)
++ a(0)

ss

]
. (42c)

It is now apparent that the terms in ω2 are positive and thus enhance the stability of the system and
the homogenous state is unstable if the condition S = φ̄sa

(0)
ss < 0 is fulfilled:

S = 1−
φ̄s
[
1 + 2χ(1− φ̄s)

]
1 + αf

+
Gφ̄s

1 + αf

[
1 +

(
1 + αf

1− φ̄s

)2
]
. (43)

Note here, that for αf = O(ξ) = rξ, with r > 0 the stability analysis still holds with a factor

a
(−1)
++ ∼

2 + rφ̄
(0)
n

1 + rφ̄
(0)
n

1

ξ
, (44)

which leads to the same condition for a(0)
ss , whose leading order term is the same as in the previous

section given αf = 0. Also note, that when setting αf = 0 we retrieve the exact same condition as
for phase separation in hydrogels [13]. It is now apparent that the presence of fixed charges enhance
the stability of the system. As shown in Figure 4, the region of instability shrinks.

(a) G = 0.0002 (b) G = 0.01

Figure 4: Effect of the fixed charges on the stability region of an homogenous steady state. The latter is unstable in the region above the curve, we thus
conclude that the presence of fixed charges tends to stabilize the system at least at leading order in the dilute case.
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αf D+ D− χ G ω θ c−0 c+
0

1 0.04 5 5 0.78 0.0002 0.025 0 5× 10−6 0.0001
2 0.04 5 5 0.78 0.0002 0.025 0 5× 10−6 0.01

Table 1: Values of the parameter used in the simulation. The last two columns represent the salt concentration in the bath before the start of the simulation
at t = 0 and the latter the value to which it is raised to after that. This drives the deswelling of the gel for t > 0.

Nonlinear evolution of an unstable homogeneous gel

In this section, we investigate how the instability develops from a slightly perturbed homogeneous gel
and evolves beyond the region of validity of the linear stability analysis. For this purpose, we solve the
system (10), (11), (12) and (13) numerically, first mapping z to a fixed domain via Z = z/h(t), then
discretising the result using a finite difference method on a staggered-grid. The fluxes are evaluated on
the edges while volume fractions and chemical potentials on the cell midpoints. For the time-evolution
we have used a semi-implicit method that treats linear term implicitly while approximate non-linear
term explicitly [13].

For the initial conditions, we let the system equilibrate with the bath for a combination of parameters for
which a simple change in χ will take us into the unstable regime. In this case, we start with χ = 0.78,
with the other parameters given in the caption of Fig. 5. The equilibrium is then given by the red line in
the rightmost panel of the figure. The equilibrium state φ̄ = (φ̄s, φ̄+, φ̄−) is implicitly defined by the
following system of three algebraic equation:

F eq(χ, c0, φ̄) =

Fs(φ̄s, φ̄+, φ̄−;χ,G)− ln(1− 2c0)
F+(φ̄s, φ̄+, φ̄−;χ,G)− ln(c0)
F−(φ̄s, φ̄+, φ̄−;χ,G)− ln(c0)

 = 0, (45)

where we impose the continuity of the chemical potential in the gel and the bath. Considering the elas-
ticity of the gel G to be fixed, we investigate how the equilibrium curve depends on the concentration
of ions in the bath c0 and the enthalpy parameter χ, which is related to the temperature at which the
experiment is conducted. As shown in Figure 2a, for small G, the system undergoes a bifurcation. As
we change the control parameter χ and c0, we can move from a regime with three equilibrium states
φ̄(χ, c0) to a single one. As illustrate in Figure 2b, modulating the concentration of oxygen in the bath,
we will able to induce the development of depletion front that connects an highly swollen state (at
t = 0) to a collapsed one. As previously discussed in [4], by increasing the shear modulus G (as for
Figure 5), we have no remarkable change in the behaviour of the system (i.e. there is a unique steady
state).

Then, we increase χ to χ = 1.2, which is in the unstable regime as depicted in Fig. 5. To provide
some noise, we let a small amount of liquid drain from the gel before we remove the gel from the bath
and impose a no-flux boundary condition at z = h(t). Instantly, rapidly growing perturbations set in
that rapidly fill the entire length of the gel and then begin to coarsen or collide, resulting in fewer and
broader spikes. Over time, the evolution slows down until the pattern is almost stationary. However,
we expect that in principle coarsening continues until only two regions remain, one in the dry state at
about φ = 0.3 and the other just below 1. These two end state values are stable as indicated in the
rightmost panel in the figure.
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Figure 5: Evolution of the solvent fraction φs for the electro-neutral limit. The gel is initially at equilibrium with the bath c0 = 5 × 10−3. The initial
condition is a noisy state around the homogeneous equilibrium for χ = 0.78 (see phase plane). Simulation are run for G = 0.001, χ = 1.2,
ω = 0.01, αf = 0.04 andD+ = D− = 5. As shown in the phase plane, by increasing χ we move into the region of the plane where the system is
unstable, so that the perturbations grow giving rise to a sequence of spikes, which slowly merge. The red curve indicates the equilibrium curve in the 3D
space. The yellow plane identifies φ+ = φ+(0) which is equal to the equilibrium fraction of positive charge for χ = 0.78. At time t = 0+ by changing
χ we move into the unstable region which drives the formation of the spikes. The point P and Q represent the peak and the trough of the spikes, that
we can see lie in the stable region of the phase plane.

4 Collapse of a gel

The intriguing property of a polyelectrolyte gel in a salt solution is that not only swelling but the collapse
of a gel is very sensitively dependent on small variations of the salt (c0) concentration. We now study
numerical results from the first set (set 1) of parameters in Table 1. As before, we discretise the system
of equation using a finite difference method on a staggered-grid. This time however, given the different
boundary condition, fluxes are evaluated on the cell midpoints while volume fractions and chemical
potentials on the cell edges. Again the we have used a semi-implicit method that treats linear term
implicitly while approximate non-linear term explicitly [13]. Note however that in this case also the
boundary conditions (13) are non linear. Since we are interested in accurately capturing the interplay
between the bath and the gel, we use fixed point iterations. More details can be found in Appendix. For
the initial condition, the gel is equilibrated with a bath with a small salt concentration c−0 . At t = 0, it is
then placed into a solution with a higher salt concentration c+

0 . On an order one time scale, the mobile
ion concentrations, adjust through to their new values. This is shown in Fig. 6 for c+

0 . Within less than
one time unit, the concentration builds up at the boundary and penetrates into the gel. At t = 12, the
process has almost concluded and in fact, early signs of a new wave manifest themselves at the free
interface, which becomes more pronounced at t = 301. Together with the mobile ion concentration,
the chemical potentials µ± move from their initial value ln(c−0 ) to approximately ln(c+

0 ). This difference
in chemical potential drives the process of ion diffusion. Since the flux of ions isD± times the gradient
of the chemical potential (with a domain of size 8), we obtain that O(1) changes of φ± occur on an
O(1) time scale, consistent with the observation in the numerical simulations.

After the mobile ion concentration has adjusted, a slower process takes place, whereby solvent is
removed from the gel through the aforementioned wave, or depletion front. The front is clearly seen in
the concentration profiles for the solvent φs as well as for the mobile ion species φ± and the electrical
potentials. The position of the front is shown for three different times in Fig. 7. In the last column, the
wave has reached the substrate and the gel has collapsed and its composition settles into a new state.
The main contribution to the solvent transport comes from gradients of µs, which here is small, only
on the order of 10−4, and a diffusion constant that has been scaled to 1. Hence the appropriate time
scale for the depletion front movement is 104. This value of µs is set by Fs, and is connected with G,
which is small and this therefore determines the slow collapse.
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The evolution of the gel can be summarised in Fig. 1(b) and (c), which depicts the state of the gel at
a fixed position Z = 0.4. In the beginning, the gel has a high concentration of solvent and a low one
in the φ+. It quickly changes to a new state with higher salt content. Both of these states are stable
and show no sign of spinodal decomposition. Instead, a depletion front moves through, first raising the
solvent concentration slightly to the value at time point C and then decreasing it to D, with a similar
salt but a much lower solvent concentration. All of these states lie in the linearly stable parameter
regime.

0 0.2 0.4 0.6 0.8 1
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0.5

1

1.5

2

2.5
10-6

0 0.5 1 1.5 2 2.5
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0.95

Figure 6: Results for the parameter set 1, from left to right: (a) evolution of the ion fraction φ+(Z, t) in the gel at order one times; (b) evolution of the
solution in the (φs, φ+) plane: the instability region as predicted by the stability analysis for the electro-neutral limit is highlighted in blue; (c) evolution
of the solvent fraction φs at location Z = 0.4 over time.

4.1 Phase-plane analysis

Assume ∂tφs, ∂tφ±, ∂t(φsv2
n), j2

s , ∂t(φ±v2
n), j2

± � 1. Then we can conclude from (11a), (11b) that
µs, µ+ µ− are constant (independent of z), so that we have

µs = Gp− ω2∂zzφs + lnφs + [χ(1− φs) + 1]φn (46a)

µ± = Gp± Φ + ln(φ±) + (1− χφs)φn (46b)

−β2∂zzΦ = φ+ − φ− + αfφn (46c)

p =
ω2

G

[
φs∂zzφs −

1

2
(∂zφs)

2

]
+
β2

2G
(∂zΦ)2 +

1− φ2
n

φn
, (46d)

φn + φs + φ− + φ+ = 1. (46e)

Here we have specialised to the case z+ = 1 and z− = −1.

We will only consider the case β � ω � 1. After first rescaling the system by z = ωz̃, and then
dropping the tilde, we obtain, to leading order in β/ω,

µs = Gp− 2∂zzφs + lnφs + [χ(1− φs) + 1]φn, (47a)

µ± = Gp± Φ + ln(φ±) + (1− χφs)φn, (47b)

0 = φ+ − φ− + αfφn, (47c)

p =
1

G

[
φs∂zzφs −

1

2
(∂zφs)

2

]
+
β2

2G
(∂zΦ)2 +

1− φ2
n

φn
, (47d)

φn + φs + φ− + φ+ = 1. (47e)
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Figure 7: Gel composition and state variables at different times for parameter set 1.

This can be condensed to the form

∂zφ = q (48a)

∂zq =
1

1− φ
[B(φ, n)− µs]−

1

2(1− φ)
q2 (48b)

µs =
φ− 1

φ

[
µ+ + µ−

2
− A(φ, n)

]
+B(φ, n)− 1

2φ
q2, (48c)

with

A(φ, n) =
1

2
ln

[
1

4

(
n2 − α2

f (1− φ− n)2
)]

+ (1− χφ)(1− φ− n)

+ G 1− (1− φ− n)2

1− φ− n
, (48d)

B(φ, n) = ln(φ) + (χ(1− φ) + 1)(1− φ− n) + G 1− (1− φ− n)2

1− φ− n
, (48e)

where φ ≡ φs and n ≡ φ+ +φ−, and where we have also introduced the auxiliary variable q. Instead
of n, it is often useful to formulate the system using φ+ as the dependent variable, which can be easily
done by using the electro-neutrality condition (47c) and (47e), so that

n =
αf

1 + αf
(1− φ) +

2

1 + αf
φ+. (49)
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Equilibria (flat states) are found from (48) via

A(φ, n) =
µ+ + µ−

2
, B(φ, n) = µs. (50)

The limit of dilute salt concentrations

We wish to obtain solutions connecting two different equilibria emerging from (50), and we will first
do so for the case of sufficiently small salt concentrations. We note that from the electro-neutrality
condition (47c), it is clear that φ− and αfφn have to balance, suggesting that φ− and n scale like
αf . From the observation we made in (18), we have that φ+ should scale like (c+

0 )2/αf . Thus
(1/2) ln(φ+φ−) ∼ ln(c+

0 ). This is a large term (for small c0) which has to be balanced with another
term in A if the first equation of (50) is to be satisfied. The only candidate for this is (µ+ + µ−)/2,
which therefore has to have O(ln(c+

0 )), This is consistent with the numerical results e.g. in Fig. ??,
where we see that µ± = −9.21 ≈ ln(c+

0 ).

These estimates suggest introducing the new variables

n = αf ñ, φ− = αf φ̃−, φ+ = ((c+
0 )2/αf )φ̃+, µ± = ln(c0) + µ̃±, (51)

hence

ñ =
1

1 + αf

(
1− φ+ 2γ2φ̃+

)
. (52)

Here, we have introduced another dimensionless parameter

γ =
c+

0

αf
. (53)

We note that it can be seen from the numerical data that µ̃± is small; on the order of 10−4 ln(γαf ).

For the values in Table 1, we have that γ � 1; hence we first consider the leading order problem in
this limit. We obtain

∂zφ = q (54a)

∂zq =
1

1− φ
[B0(φ)− µs]−

1

2(1− φ)
q2 (54b)

µ̃s =
1− φ
φ

[
A0(φ, φ̃+)− µ̃+ + µ̃−

2

]
+B0(φ)− 1

2φ
q2, (54c)

with

A0(φ, φ̃+) =
1

2
ln

[(
1− φ
1 + αf

)
φ̃+

]
+ (1− χφ)

(
1− φ
1 + αf

)
+ G (1 + αf )

2 − (1− φ)2

(1 + αf )(1− φ)
, (54d)

B0(φ) = ln(φ) + (χ(1− φ) + 1)

(
1− φ
1 + αf

)
+ G (1 + αf )

2 − (1− φ)2

(1 + αf )(1− φ)
. (54e)

The two ODEs (54a) and (54b) decouple from the algebraic constraint (54c). Combining these into a
second order equation and obtaining an integrating factor f = 1/

√
1− φ results in

(∂zφ)2

2(1− φ)
=

∫ φ

φ1

B0(η)− µs
(1− η)2

dη. (55)
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Figure 8: Comparison of the asymptotic approximation for the phase plane solution (54), (56), (57) (shown with dashed red lines) for (a) φ = φs and
(b) φ+ together with φ− and (c) µ = µs with the numerical results from Fig. ?? (solid black lines), using the parameter set 1 in Table 1. A single shift
along the z-axis was applied to all phase plane profiles so that φs matches the numerical solution at φ = 0.8. In (b), each of the symbols φ+ and φ−
is displayed on the axis with the corresponding values.

Letting z → +∞ gives the condition∫ φ2

φ1

B0(φ)− µs
(1− φ)2

dφ = 0, (56)

which, together with
B0(φ1)− µs = 0, B0(φ2)− µs = 0, (57)

results in a nonlinear system of equations for φ1, φ2 and µs. Solving the equation with the parameters
for α and χ and g corresponding to Fig. ?? (i.e. parameter set 1 in Table 1) gives

µs = 0.903× 10−4, φ1 = 0.883, φ2 = 0.710. (58)

Once φ is determined, φ+ and φ− can be recovered from (54c) and from

φ− =
αf

1 + αf
(1− φ)− 1− αf

1 + αf
φ+, (59)

provided (µ̃+ + µ̃−)/2 is known from the numerical simulations. For φ̃+,1 and φ̃+,2, i.e. the values at
the left and right flat state of the depletion front, we obtain

φ̃+,1 = 8.25, φ̃+,2 = 2.79. (60)

In Fig. 8(a) and (b), we compare the profiles for φ, φ+ and φ− obtained in this way. For the latter
two, we need to specify (µ̃+ + µ̃−)/2, which is not selected by the asymptotic result at this level of
approximation. The results shown in the figure were obtained by setting (µ̃+ + µ̃−)/2 to zero, while
the numerical simulations suggest a value with absolute value of about 2 × 10−4. Using this value
instead did not visibly change the results on the scale of the graphs. A comparison of the constant
asymptotic value µ = µs from (58) with the result from the numerical simulation is also shown, in
Fig. 8(c). There is very good agreement of the constant asymptotic value with the flat part of the graph
from the simulations.

The general case

Returning to the full problem (48), we linearise around the equilibria to determine the number of modes
consistent with the boundary conditions at z → ±∞ and carry out a degree of freedom count. We
make the ansatz

φ = φ̄+ δφ1esz, q = δq1esz, n = n̄+ δn1esz, (61)
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Figure 9: (a) The figure shows graphs of 100µ, φ1, φ2, φ̃+,1 and φ+,2, listed in order from bottom to top. The diamonds at c0 = 0 represent the
values obtained from the asymptotic solution as given by (58) and (60). We remark that µ is positive for c0 ≤ 5.45 × 10−3, and negative for larger

values of c0. (b) This log-log plot has graphs for |µ − µ(0)|, φ1 − φ(0)1 , φ2 − φ(0)2 , φ̃1,+ − φ̃(0)1,+, |φ̃2,+ − φ̃(0)2,+|, where the superscript (0)
indicates the asymptotic values from (58) and (60). The short top line represents a quadratic function, and is included to guide the eye.

with δ � 1 and some constant s, and where (φ̄, n̄) represents any pair of equilibrium that satisfy
(50). Inserting this, we obtain from first order in δ the condition[

Bφ(φ̄, n̄)− (1− φ̄)s2 Bn(φ̄, n̄)
(1− φ̄)Aφ(φ̄, n̄) + φ̄Bφ(φ̄, n̄) (1− φ̄)An(φ̄, n̄) + φ̄Bn(φ̄, n̄)

] [
φ1

n1

]
= 0 (62)

on s and φ1, n1. Here, the subscripts φ and n denote derivatives with respect to these variables.
Setting the determinant of the coefficient matrix to zero gives

s2 =
AnBφ − AφBn

(1− φ̄)An + φ̄Bn

. (63)

In the limit γ → 0, the derivatives An, Aφ and Bφ areO(1) but Bn → 0, hence, s2 ∼ Bφ/(1− φ̄).
Also we recover the value µs and the two values φ1 and φ2 obtained from (56), (57). These are only
two of the equilibria, but in fact the two which have Bφ > 0. Hence, for small γ, we have s2 > 0
and there is exactly one decaying and one growing mode on either side, z → −∞ and z → +∞.
The decaying mode in each of these limits contributes one degree of freedom, µs and µ+ + µ−
another one each. The ODE systems is second order and hence removes two degrees of freedom,
and the translational invariance of any solution towards shifts along the z-axis another one. Hence
one degree of freedom remains, and this is consistent with our previous observation that there is one
free parameter left, namely, µ+ +µ−. For larger values of γ, the sign of (63) could change, leading to
purely imaginary s. This would manifest itself in the form spiral in phase space near the equilibrium,
and hence a decaying spatial oscillation in the solution, but this was not observed for the depletion
solutions documented in this article. Hence all of these are characterised by s2 > 0 and follow the
degree of freedom count just explained.

The general case of (48) was solved by shooting, using slightly perturbed values for the left state and
integrating the resulting initial value problem for a system of differential algebraic equations (DAEs),
rewritten in terms of φ and φ+ as the dependent variables using Matlab’s ode15i routine. Except where
otherwise stated, we set µ− + µ+ = 0. For analytical solution, the trajectory would connect to the
right equilibrium only for the correct values of µs, so we have to iterate over these. At or close to
such µs, the trajectory connects to right flat state but the numerical solution always eventually departs
and either hits zero in a singularity or moves back and forth between the two flat states. The different
behaviour coincides with µs either being larger or lower than the correct value and hence it was used
for a bisection iteration. The resulting solution defines µs and the associated values for the left and
right state φ1 and φ2 for φ and similarly for the equilibrium values of the other variables φ+ and φ−.

DOI 10.20347/WIAS.PREPRINT.2731 Berlin 2020



G. L. Celora, M. G. Hennessy, A. Münch, B. Wagner, S. L. Waters 20

0 0.5 1
-2

-1

0

1

10-4

0 0.5 1
-14.12

-14.1

-14.08

-14.06

-14.04

0 0.5 1
-4.38

-4.36

-4.34

-4.32

-4.3

0 0.5 1
0.65

0.7

0.75

0.8

0.85

0 0.5 1
0.5

1

1.5

2

10-6

0 0.5 1
4

6

8

10

12
10-3

Figure 10: Spatial distribution of the variables at different times. We start with the results from the simulations for parameter set 1 in Figure 7 at time
t = 15075. This provides the initial conditions for the results shown here. The gel is taken out of the bath and isolated so that the solvent is trapped in
the gel. The system relaxes towards a non-homogeneous steady state where the depletion front - now a stationary phase boundary - divides the highly
and poorly swollen region of the gel. The red line is the prediction from the phase space analysis.

The results are shown in Fig. 9. The plots in (a) show graphs of the values for 100µ and for the values
of the two equilibrium states for φ and φ+ as a function of the salt concentration c0. For c0 → 0, the
solution converges to the values given by the leading order asymptotic solution given by (56) and (57).
Moreover, near to c0 = 0, the behaviour is quadratic, as can be seen from the log-log plot in Fig. 9 (b),
consistent with neglecting and O(γ2) term in (54). However, for c0 above about 1 × 10−3, the value
for φ̃+,2 departs from this behaviour and in fact passes through a maximum as it reverses its trend.

For a closer comparison of the simulation with solutions from the system of DAEs, we consider a
situation where the influx of salt and solvent is stopped by removing the gel from the bath, after the
depletion front has moved deep into the gel. As a result, the variables settle into a stationary state.
The evolution and the final states are shown in Fig. 10, for the set 1 in Table 1. The fluxes become zero
and the chemical potentials µS , µ+ and µ− become spatially homogeneous. The profiles for φ = φS ,
φ+ and φ− become exact stationary fronts, as in particular the dry gel portion takes on a single value
(rather than showing a small gradient between the bath and the depletion front). Comparing these
results with the solutions from the DAE are almost perfect, which are shown in Fig. 10 as thin red
lines. Also, the results for µs = 2.45× 10−2 agree to within less than 1% of this value. To solve (48),
we need to specify a value for µ+ +µ− (or more specifically, for the difference µ̃+ + µ̃− from ln(c0)).
This turned out to be too large to simply it to zero, we instead read it off from the numerical solution,
which gave us a nearly constant value µ̃+ + µ̃− = 11.2× 10−2.

4.2 Spinodal decomposition of a collapsing gel

In this section we show that spinodal decomposition and the formation of a depletion front are indepen-
dent phenomena which can also occur at the same time. An example of this is shown in Fig. 11, which
are numerical simulation results for set 2 in Table 1. The only difference between set 1 and set 2 is the
concentration c+ in the bath. The higher concentration for the second set lies in the unstable param-
eter regime, see Fig. 11, so that, as soon as the mobile ions have diffused into the gel, the instability
sets in. This gives rise to a series of spike depletions (“upside down” spikes), which coarsen/collide
first rapidly and then very slowly. On a longer time scale, a depletion front develops and moves into
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Figure 11: Gel composition and state variables at different time points for parameter set 3.
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the gel, slowly consuming the array of holes. A comparison with depletion fronts obtained from the full
model via phase space analysis shows that while there is some agreement, the slope is slightly too
shallow and the lower limit of the front does not capture the right state of the front very well. In fact, the
comparison with the side walls of a typical front is much better. A possible explanation of the higher
discrepancy in the former case is that the holes evolve more slowly than the incoming wave.
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Figure 12: Comparison of the phase plane solution for φ = φS , φ+ (shown with dashed red lines and symbols) and φ− with the numerical results at
time T = 501 in Fig. 11, using set 2 from Table 1.

5 Conclusions

In this study we have focussed on the stability of homogeneous states and the transient dynamics
between equilibria for a new model for a polyelectrolyte gel in a bath of salt solution. The model
accounts for the free energy of the internal interfaces that form upon phase separation of the gel,
deliniating regions where the gel network is collapsed.

We discuss the stability of the system for different regimes that are characterized by the ratio of param-
eters β/ω, the Debye-length to the width of the interface between the swollen and collapsed phase
of the gel, and γ = c0/αf , the ratio of the salt concentration in the bath and of the fixed charges on
the polymer network, for the electro-neutral limit β/ω � 1, and the dilute limit γ � 1, in the one-
dimensional setting. We use numerical simulations to show that the unstable homogeneous solutions
spinodally decomposed forming localized collapsed dry regions with high concentrations of φ− ions,
that eventually coarsen into a new stable equilibrium. We found that typically spinodal decomposition
begins at the free interface with the salt solution, where the collapse of the gel is shown to arise from
a depletion front that forms via phase separation and travels into the gel. Our phase-plane analysis
shows that the depletion front selects the homogeneous states in front and behind of it and these
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Figure 13: (a) Evolution of the solvent fraction φs at the position Z = 0.4 for set 2; (b) evolution of the solution in the (φs, φ+) plane; the instability
region as predicted by the stability analysis for the electro-neutral limit is highlighted in blue. (c) Map of the unstable parameter regimes for the set 1.

DOI 10.20347/WIAS.PREPRINT.2731 Berlin 2020



Collapse of a gel 23

are always linearly stable. Also in the spinodal unstable case, the emerging localized dry regions are
merged with depletion front that propagates through the gel. Evene though our analysis is currently
only one-dimensional, it should be interesting to observe these patterns in an experiment. Depending
on parameter settings, the periodic high concentration of φ− in the dry and high concentration of φ+

in swollen regions could be observed as a transient, coarsening pattern.

Further extensions of our model that accounts for concentration-dependent permittivity may allow to
capture further collapse phenomena, observed for weakly-charged polyelectrolyte gels, will be carried
our in upcoming work, as well as in higher dimensional formulations.

A The dilute sublimit φ+ � 1 for moderate to large β/ω
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Figure 14: Effect of the size of the Debye Layer on the stability of the system. In the electro-neutral limit (a) we recover the result from Figure 4 where
the fixed charges tend to stabilise the system. However, as we β becomes greater than ω the role of the fixed charges changes and drives the formation
of instabilities in a ’collapsed’ regime, where φ̄s < φ̄n.

We now investigate another limit of the system, which corresponds to the dilute case applied to the
full model without imposing the electro-neutral limit. In such condition, the leading order components
for the equilibrium states is:

φ̄−(φ̄s) =
αf (1− φ̄s)

1 + αf
, φ̄n(φ̄s) =

1− φ̄s
1 + αf

. (64)

As in the previous case we need to recall that ∂F+/∂φ+ is of orderO(ξ−1) so that we can not simply
substitute ξ = 0 in the system (22) to obtain the leading term. The resulting equation for the growing
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rate λ is still a third order equation as (23), which is however more trackable:

β2k2λ3 + k2Dλ2α
(0)
2 + k4Dλα(0)

1 +D2φ̄−φ̄
θ+1
n φ̄sk

6α
(0)
0 = 0, (65)

In order to have only negative eigenvalues, all of the coefficient must be positive for any value of k.
The latter are of the following form:

α
(0)
2 (k) = k4ω2β2

(
φ̄sφ̄−D + φ̄θ+2

n

)
+ k2β2

[
D + φ̄θ+1

n

(
a(0)
ss φ̄s + φ̄−a

(0)
s−

)
+φ̄−

(
φ̄θ+1
n −Dφ̄s

)
a

(0)
−s + φ̄−

(
D(1− φ̄−) +

φ̄θ+1
n φ̄−

φ̄s

)
a

(0)
−−

]

+Dφ̄− +
α2
f φ̄

θ+2
n

φ̄s
,

(66a)

α
(0)
1 (k) = k4β2ω2φ̄s

[
Dφ̄−φ̄s + φ̄θ+2

n + φ̄θ+1
n φ̄−

(
(1− φ̄s)a(0)

−− + φ̄sa
(0)
s−

)]
+k2β2

[
φ̄θ+1
n

(
φ̄sa

(0)
ss + φ̄−a

(0)
s−

)
+ φ̄sφ̄−

(
a

(0)
−−a

(0)
ss − a

(0)
−sa

(0)
s−

)
+φ̄−

(
φ̄θ+1
n −Dφ̄s

)
a

(0)
−s + φ̄−

(
D(1− φ̄−) +

φ̄θ+1
n φ̄−

φ̄s

)
a

(0)
−−

]
+k2ω2(1 + αf )

2φ̄−φ̄sφ̄
θ+2
n + φ̄−φ̄

θ+1
n φ̄s

[
(1 + αf )a

(0)
ss − αfa

(0)
s−

]
+Dφ̄− +

α2
f φ̄

θ+2
n

φ̄s

(66b)

α
(0)
0 = β2ω2k4

(
a

(0)
−−
(
1− φ̄s

)
+ a

(0)
s−φ̄s

)
+ k2

[
β2
(
a

(0)
−−a

(0)
ss − a

(0)
−sa

(0)
s−

)
+ω2φ̄n (1 + αf )

2]+
[
(1 + αf )a

(0)
ss − αfa

(0)
s−

]
,

(66c)

where the coefficient a(0)
ij are defined as

a(0)
ss =

∂Fs
∂φs

(φ̄φ)(0) = G
(
1 + (φ̄(0)

n )−2
)

+
1

φ̄s
− 1− χ(1− φ̄s)− χφ̄n, (67a)

a
(0)
s− =

∂Fs
∂φ−

(φ̄φ)(0) = G
(
1 + (φ̄(0)

n )−2
)
− 1− χ(1− φ̄s), (67b)

a
(0)
−s =

∂F−
∂φs

(φ̄φ)(0) = G
(
1 + (φ̄(0)

n )−2
)
− 1 + χφ̄s − χφ̄n, (67c)

a
(0)
−− =

∂F−
∂φ−

(φ̄φ)(0) = G
(
1 + (φ̄(0)

n )−2
)
− 1 + χφ̄s +

1

φ̄−
. (67d)

Note however that, unlike for the electro-neutral case the coefficients a0(k) and a1(k) are fourth order
polynomials and can therefore allow for the presence of multiple minima. Let us rewrite them as

α
(0)
i (k) = `

(2)
i k4 + `

(1)
i k2 + `

(0)
i , (68)

then the minimum value of the function given by:

minα
(0)
i (k) = `

(0)
i −

(`
(1)
i )2

4`
(2)
i

H

(
−`

(1)
i

`
(2)
i

)
> 0. (69)
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For the set of parameter considered, we have that the stability region is delimited by the curve
minα0(k) > 0, so that we can define S is of the form

S = min a0(k). (70)

Note that in the limit of β → 0, we recover the results for the electro-neutral model. Again, the stability
of the system is not affected by the value of the diffusion coefficientD, so that we focus on investigating
how the other parameters αf , ω and β affect the results.

We note that as β becomes larger than ω the role of the fixed charges changes. In the electro-neutral
limit the latter facilitate the stability of the system. As shown in Figure 14, the curve S is translated
upwards as the αf grows. Once we move towards a regime in which ω ∼ β, as in Figure 14(b), the
effect of the fixed charges is reduced with the shrinking of the stability region being less significant. As
β dominates ω, we see the curve S moving towards the left thus favouring the formation of instabilities
in poorly swollen gels (φ̄s < φ̄n) while increasing the stability of highly swollen states.

B Numerical methods

For the numerical implementation the following formulation of the system it is convenient to resize the
moving domain onto a fixed one using the following change of variables:

Z =
z

h(t)
,

dh

dt
= vn|h(t) . (71)

The problem can be further simplified eliminating the electric potential. This can be retrieved by solving
the following decoupled ODE:

∂ZΦ =
∂F−
∂φs

∂Zφs +
∂F−
∂φ+

∂Zφ+ +
ω2φs
h2

∂ZZZφs +
j+h

D−φ−
− jsh

D−φs
, (72a)

Φ = sinh−1

[
αfφn
2c0

exp (Gp+ φn (1− χcs))
]
, Z = 1. (72b)

Consequently, we solve at each time point ti for only four dependent variable y = (φs, φ+, js, j+).
As mentioned in the main text, for the governing equation, we use a staggered grid and a semi-implicit
method for the space and time discretisation respectively. For the governing equations the non-linear
term are treated explicitly, so as to linearise the system. For the boundary conditions, which reduce to:

js = j+ = 0, Z = 0, (73a)

∂Zφs = 0, Z = {0, 1} , (73b)

∂ZZφs =
h2(t)

ω2 (1− φs)

[
G 1− φ2

n

φn
+ (χ(1− φs) + 1)φn + ln

φs
1− 2c0

]
, Z = 1, (73c)

φ+ = c0 exp [−Φ− Gp− (1− χφs)φn] , Z = 1. (73d)

The no-flux boundary conditions are strongly imposed, while the Neumann condition of φs is approx-
imated using ghost point. Less trivial instead is the treatment of the non-linear terms in (73c)-(73d),
which relies on fixed point iteration. Consider we are solving for the time t = ti+1 and we have the
solution yi at the previous time point ti = ti+1 − dt. Then we denote by yi+1

j the j-th iteration of the
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fixed point method. We therefore treat the left-hand side of (73c)-(73d) implicitly, while we evaluate the
right-hand side at the attempt solution yi+1

j . We can therefore discretise the problem, which reduces
to the solving the linear system:

A(yi)yi+1
j+1 = b(yi,yij), (74)

where the dependency of the vector b on yi comes from the governing equation, while the depen-
dency on yij from the boundary condition. We therefore iterate over j until the difference between two
iteration is less than the tolerance ‖yij+1 − yij‖ < toll. If the number of step required to match the
tolerance is above a set limit Nmax then the time step dt is decreased. We also add an extra check
on the solution to make sure that the volume fraction φs, φ+ and φn (which can be evaluated from the
other two) have values between 0 and 1. If this is not the case, the time step dt is decreased.
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extra ionization. Macromolecules, 29(2):681–685, 1996.

[19] H. J. Kwon, Y. Osada, and J. P. Gong. Polyelectrolyte gels-fundamentals and applications. Poly-
mer Journal, 38(12):1211–1219, nov 2006.

[20] M. P. Lutolf and J. A. Hubbell. Synthetic biomaterials as instructive extracellular microenviron-
ments for morphogenesis in tissue engineering, jan 2005.

[21] E. S. Matsuo and T. Tanaka. Patterns in shrinking gels. Nature, 358(6386):482–485, 1992.

[22] J. L. Mccoy and M. Muthukumar. Dynamic light scattering studies of ionic and nonionic polymer
gels with continuous and discontinuous volume transitions. Journal of Polymer Science Part B:
Polymer Physics, 48(21):2193–2206, 2010.

[23] M. Mussel and F. Horkay. Experimental Evidence for Universal Behavior of Ion-Induced Vol-
ume Phase Transition in Sodium Polyacrylate Gels. The Journal of Physical Chemistry Letters,
10(24):7831–7835, 2019.

[24] C. Ning, Z. Zhou, G. Tan, Y. Zhu, and C. Mao. Electroactive polymers for tissue regeneration:
Developments and perspectives, jun 2018.

[25] S. Puri and K. Binder. Surface-directed phase separation with off-critical composition: Analytical
and numerical results. Physical Review E, 66(6):061602, 2002.

[26] D. Roshal, O. Konevtsova, A. Losdorfer Bozic, and et al. ph-induced morphological changes of
proteinaceous viral shells. Scientific Reports, 9:5341, 2019.

[27] C. E. Sing, J. W. Zwanikken, and M. Olvera de la Cruz. Effect of ionâĂŞion correlations on
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