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Abstract

The aim of the presented report is to demonstrate how the sampling tech-

niques can be used to characterize the quality of self pulsations in a multi-

section semiconductor laser and the synchronization of self pulsations with an

optical or electrical periodically modulated signal. The developed tools are

described and some examples are given.

1 Introduction

It was demonstrated theoretically as well as experimentally that three section semi-

conductor lasers with two distributed feedback (DFB) sections and an integrated

phase tuning section in between can exhibit high frequency self pulsations (SP).

Let us consider �rst a laser with only one highly pumped DFB section. Here, an-

other DFB section is pumped low just to keep carriers at transparency and serves as

a dispersive re�ector. Such a laser is able to demonstrate SP at 5-20 GHz frequency.

These SP were attributed to dispersive self Q-switching (DQS) type [1, 2]. SP of

that type occur mainly due to an instability of the maximum gain mode. Recent in-

vestigations have also shown an important in�uence of the supporting neighbouring

mode [3]. It is worth to mention that a similar laser can also exhibit self pulsations

of Petermann-Tager type at 20-40 GHz frequency [4]. The frequency of such SP is

determined by the distance between neighbouring cavity modes.

Recently, even higher frequency SP were demonstrated in a laser with both highly

pumped DFB sections [5]. Each of these DFB sections supports its own mode, and

the mode spacing determines the frequency of SP. At the same time, these modes

are common modes of the entire compound cavity, therefore they can be mutually

coupled and are able to produce a stable SP. The modeling has shown the existence of

well modulated SP with extremely high frequency (up to 1 THz). Experimentally,

SP with 80 GHz frequency have been also demonstrated. It seems that only the

speed limitation of the laboratory equipment have not allowed to measure higher

frequencies.

For applications it is necessary that a high frequency SP can be synchronized with

an external modulated signal. As it can be seen in experiments, not every self

pulsating laser performs a good locking. Therefore, a proper modeling is required to

understand the mechanisms of locking of high frequency SP to modulated external

signals.

1



In the present report we consider a traveling wave (TW) model, which is based on

a hyperbolic system of partial di�erential equations for the counter-propagating opti-

cal �elds, the polarization equations approximating gain dispersion with a Lorentzian

function and the carrier rate equations [6].

To solve and to investigate the model equations the software tool LDSL (Longitu-

dinal Dynamics in Semiconductor Laser) is used. This software was developed to

simulate and to analyse nonlinear longitudinal dynamics of the optical �elds and

carriers in multi-section semiconductor lasers. LDSL-tool is suited to investigate

and to design lasers which exhibit various nonlinear e�ects such as self pulsations,

hysteresis, mode switching [2, 5, 6], excitability [7], chaos, synchronisation of self

pulsations to an external signal frequency [5]. More information about this software

soon will be available in [8].

The main aim of this report is to demonstrate how the developed software allows

to compute and to analyze the quality of SP. We will discuss the arising problems

when identifying a precise frequency and a jitter of the SP in a free running laser.

Another problem is an identi�cation of the exact conditions where the SP lock to

an external signal.

The paper is organized as follows: In the second section of this report we introduce

the TW model and show di�erent possibilities to modulate an injected current or

an optical injection. In the third section we discuss possible criteria to characterize

the quality of SP. Some di�erent diagrams and measures for the jitter of SP are

introduced. The fourth section is devoted to synchronization of SP. We discuss

some laser parameters in�uencing the quality of SP. At the end of the report some

conclusions are drawn.

2 Model of semiconductor DFB laser

2.1 Traveling wave model

The TW model is a system of partial di�erential equations describing the dynamics

of the optical �elds  = ( +;  �)T , the polarization functions p = (p+; p�)T and the

carrier densities n = (n1; : : : ; nm)
T averaged over each section. S1; : : : ; Sm denote m

di�erent laser sections. The TW model is given by the following equations:
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Here, in order to model a modulated electrical or optical injection we use time

dependent functions I(t) or a(t), which enter the carrier rate equations for the

corresponding section or the boundary conditions, respectively.

2.2 Modeling of modulated external signal

We represent the time dependent functions I(t) and a(t) describing modulation of

the current or the external injected signal in the following manner:

I(t) = I0 + b1(t); a(t) =
q
a0 + a1(t)e

i�t ) ja(t)j2 = a0 + a1(t): (2)

In general, the functions I(t) and ja(t)j2 (which gives modulation of incoming signal

power) can be described in the same way. We have introduced a few di�erent

possibilities to model electrical and optical modulated signals. These signals can be

described by the following input parameters used in the program LDSL:

//******************************************************************************

// Parameters of current injection modulation in the sections.

// These, corresponding to modtype=0 (no modulation) play no role. Other types:

// 1 - "sin" shaped modulation around mean injection value;

// 2 - "sin" shaped modulation from injection level;

// 3 - "step" shaped modulation around mean injection value;

// 4 - "step" shaped modulation from injection level;

// 5 - Gaussian shaped modulation around mean injection value;

// 6 - Gaussian shaped modulation from injection level;

// 7 - just short (two step) input at "modon" time moment;

// 8 - "trapesoidal" (lin. change, constant, lin. recover) variation of current.

se[se_Id;sc] = [ 90,0.1,5.4]*1e-3; // injection current (A)

se[se_modtype;sc] = [ 0, 0, 0]; // type of current modulation

se[se_modon;sc] = [0.2, 0, 0]*1e-9; // time of switching on (s)

se[se_modampl;sc] = [ 45, 0, 0]*1e-3; // (+-) modulation amplitude (A)

se[se_modduty;sc] = [0.2, 0, 0]; // dutycycle of modulation (periods)

se[se_modfreq;sc] = [ 2, 0, 0]*1e9; // frequency of current modulation (Hz)

se[se_modrand;sc] = [ 0, 0, 0]; // random (1) or not (0) modulation

//******************************************************************************

// Parameters of forward input optical field via facets.

// Types of modulation the same as for current modulation. Parameter "meanpow"

// here plays role of constant (background) current injection level.

re[re_iftype;rf] = [ 5, 0, 0, 0]; // type of injected frw. opt. signal

re[re_ifon;rf] = [0.2, 0, 0, 0]*1e-9;// time, when modulation switched on(s)

re[re_ifmeanpow;rf]= [ 2, 0, 0, 0]*1e-3;// mean (background) power of signal(W)

re[re_ifmodpow;rf] = [ -2, 0, 0, 0]*1e-3;// (+-) ampl. of power modulation (W)

re[re_ifduty;rf] = [0.2, 0, 0, 0]; // dutycycle of modulated power(period)

re[re_ifpfrq;rf] = [ 10, 0, 0, 0]*1e9; // amplitude's modulation frequency(Hz)

re[re_ifofrq;rf] = [ -8, 0, 0, 0]*1e-9;// wavelength (lam-lam0) of input (m)

re[re_ifrand;rf] = [ 1, 0, 0, 0]; // random(1) or not(0) signal

//******************************************************************************

time_modulation_on = 1; // start modulation at time given above(0) or time above

// + time moment, from which we continue computations(1)

//******************************************************************************
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Figure 1: Optical spectrum of the self

pulsating (33 GHz) output in a 3 section

laser with 2 active DFB sections. Up-

per and lower lines show spectra of the

output without and with �ltering respec-

tively. The position of the resonances of

each DFB section is indicated in the up-

per spectrum. The �lter gives a 15 dB

suppression at the wavelength of the in-

jected optical signal.

The meaning of these parameters is as follows:

� The parameter �re_ifofrq� is the relative wavelength of the injected optical

signal and corresponds to the optical frequency � in (2). The wavelength of

the injection can be seen in the optical spectrum of the output at Fig. 1.

� The parameters �se_modon� or �re_ifon� give the time moment t0, when the

modulation of the signal starts (see Fig. 2(a-e)).

If, additionally, the parameter �time_modulation_on� = 0, then t0 is an ab-

solute time moment, counting from a �rst run of the program. This is very

important when investigating the synchronisation of the �elds, seeking to keep

the modulation without any phase shift if continuing computations from the

previous data.

If the parameter �time_modulation_on� = 1, then t0 is a relative time moment

within the actually computed time interval.

� The parameters �se_modtype� and �re_iftype� describe di�erent types of the

modeled functions b1(t) and a1(t) respectively.

Type 0. There is no modulation at all, I(t) = I0 and a(t) = 0.

Types 1-6. b1(t) and a1(t) are periodic functions describing a sequence of

pulses. A pro�le of each single pulse is given by sinusoidal (types 1,2), rect-

angular step (types 3,4) or Gaussian (types 5,6) functions (see Fig. 2(a-c)).

Type 7. A single short (two computational time steps) perturbation of the

injected current or the optical signal (see Fig. 2(d)).

Type 8. A single �trapezoidal� variation of the current or the optical signal

(see Fig. 2(e)).

� The parameters �se_Id� and �re_ifmeanpow� give either a background level

of the pulses (types 2,4,6,7,8), or the average of the functions I(t) or ja(t)j2

over a long time interval (types 1,3,5).
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� The parameters �se_modfreq� or �re_ifpfrq� represent the frequency f of the

pulse trace (types 1-6) or indicate the growth or the decay velocity of the single

�trapezoidal� pulse (type 8, see Fig. 2(e)).

� The parameters �se_modduty� or �re_ifduty� indicate a duty cycle d (full

width at half maximum) of the single pulse (types 1-6, Fig. 2(a-c)) or a width

of the �trapezoidal� pulse at its maximal (minimal) value (type 8, Fig. 2(e)).

This value of d is given in the units of period 1=f , i.e., the value of d=f is

measured in seconds.

� The parameters �se_modampl� or �re_ifmodpow� give the amplitude A of

the pulses (see Fig. 2(a-e)). Whenever negative values are adjusted to these

amplitude parameters, holes or �negative� pulses are modeled (Fig. 2(c,e)).

� Finally, the parameters �se_modrand� and �re_ifrand� allow to model a se-

quence of the pulses (types 1-6), which is generated by randomly selecting

pulses from a periodic sequence (see Fig. 2(c)).
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Figure 2: Di�erent pro�les of the modulated optical injection power ja(t)j2.

It can be seen from the structure of a LDSL input data �le given above that an

optical injection can be applied also at junctions of the sections. This is not a

physical injection, of course, but it can be useful when modeling multiple optical

injections via the same facet. In this case one has to introduce a short �ctive section

S0 with no gain, coupling or losses. One of the optical signals should be injected via

the �ctive facet at the left side of the section S0, another signal should be injected

via the junction of the sections S0 and S1, which corresponds to a realistic facet of

the laser.

Let us discuss now the methods to investigate the quality of the self pulsating

solutions occuring in the model described above.
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3 Characteristics of the self pulsations

3.1 Analysis of the output in the frequency domain

Assume that we have computed a time series of the complex output �eld and its self

pulsating power on the time interval [0; T ]:

 �(0; k�)jMk=0; and j �(0; k�)j2jMk=0; M� = T (s): (3)

We assume that f0 (Hz) and P0 = 1=f0 (s) are the mean frequency and period of

the self pulsating output power j �(0; k�)j2 respectively. That is, the pulses in this

sequence appear approximately with the period P0 jittering around the mean value

P0, if they are not exactly periodic.

It is important to know the precise frequency of the SP in a free running laser, since

it should be close to the frequency fext of external modulation. It was observed

experimentally that a locking of the laser output to the external modulation can

be realized when jf0 � fextj is not bigger then 150 - 200 MHz. Therefore, before

applying an external modulated signal we need to have a good approximation (say,

with � 10 MHz precision) of f0.

A Fast Fourier Transform (FFT) applied to a discrete set of the data (3) allows to

compute e�ectively the optical (see Fig. 1) and the power (see Fig. 3) spectrum of

the signal. The main peak in the power spectrum shows immediately a frequency

fFFT (Hz) of the SP signal which, in general, is slightly di�erent from the mean

frequency f0. Let us set fFFT = f0 + Æf .
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Figure 3: Power spectrum of the same

self pulsating output based on di�erent

time intervals [0; T ]. Solid and dashed

lines correspond to T = 100 (ns) and

T = 5 (ns) respectively.

It is well known that the minimal di�erence of two frequencies that can be estimated

by means of the FFT is 1=T Hz. Therefore, the estimate jÆf j � 1=2T for the

frequency error holds. This is one of the problems which arises when analysing

a power spectrum of the output. Namely, in order to have a 10 MHz frequency

resolution which implies 5 MHz bound for jÆf j, one has to compute time series

on a 100 ns interval, what requires a su�ciently large amount of computing time

and memory. 5 ns intervals, which are in general su�cient to arrive at a stable

stationary or SP state in the time domain, gives only a 200 MHz resolution in the
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frequency domain (100 MHz bound for jÆf j), which is not satisfactory for de�ning

the frequency of SP or for measuring the width of the spikes in the power spectrum

of the output (see Fig. 3).

It will be also shown later that even a small frequency error Æf 6= 0 in the FFT

can imply a poor representation of the possibly periodic signal when drawing �eye�

diagrams (see Fig. 6(IIa)).

Summary of this subsection:

� To have a satisfactory frequency resolution of the power spectrum one has to

apply the FFT to computed data on su�ciently large time intervals, which

requires large computing time and memory.

� Even for large T , fFFT does not provide a precise mean frequency of SP.

� Even a small frequency error Æf causes closed �eye� diagram when sampling

at least N = f0=jÆf j pulses computed on the [0; 1=jÆf j] time interval.

� In order to analyze the jitter of the pulses in the time domain, we need alter-

native algorithms to de�ne the mean frequency of SP.

In the sequel we will discuss the implemented tools to analyze the quality of SP in

the time domain.

3.2 A de�nition of the mean frequency of SP

Let us return to the problem, how to determine properly the mean frequency f0
and the corresponding period P0 = 1=f0 of a given self pulsating function g(t) =

j �(0; t)j2 de�ned on [0; T ]. To ful�ll this task correctly for the given function

is quite di�cult, especially if shapes of the consequent pulses of g(t) are slightly

di�erent or if the applied noise implies jittering of the mean period.

Computations of the period P0 and of the characteristics of the quality of SP are

based on the series of the half height time moments ti;k and td;k, where increasing

or decreasing part of the function y = g(t) crosses the pulse half height line

y =M = [min(g(t)) +max(g(t))]=2:

In the case when noise or an optical injection are applied, an increasing (decreasing)

part of each separate pulse can cross the line y = M more than once. In this

case, the half height moment ti;k (or td;k) will be de�ned as the mean value of the

corresponding crossing points (see Fig. 4(a)).

The following algorithm allows to determine the mean frequency of SP:

� Find the minimal (A), the maximal (B) and the half height M = (A + B)=2

values of the g(t).
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time moments tA and tB corresponding to minima and maxima of g(t) within each

approximate period PFFT . Solid points indicate the half height moments ti;k and td;k.

c) Half height moments t(k) = ti;k are �tted with the line t(k) = P0k + ti;0.

� For SP with a good extinction ratio ((A�B)=(A+B) > 0:2) we continue our

algorithm.

� Find the approximate frequency fFFT and the corresponding period PFFT =

1=fFFT .

� Find the pulse minimum position tA within the two �rst approximate periods

(see Fig. 4(b)). Adjust an index k = 1.

� Starting from tA, �nd the pulse maximum position tB within one approximate

period.

� Find the half height moment ti;k within the interval [tA; tB].

� Starting from tB, �nd the pulse minimum position tA within one approximate

period.

� Find the half height moment td;k within the interval [tB; tA].

� Repeat last four steps of the algorithm (see Fig. 4(b)) taking k = k + 1, until

T is not reached.

� The half height moments t(k) = tsl;kjNk=1 with sl = i or sl = d are approximat-

ing the line t(k) = P0k+ tsl;0 as in Fig. 4(c). The period P0 and the frequency

f0 = 1=P0 are found from the least square approximation.

Summary of this subsection:

� The half height moments tsl;k describing mean intersection of the increasing

(sl = i) or the decreasing (sl = d) slopes of the pulses with a half height line

y = M are de�ned.
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� The algorithm de�ning the mean period and mean frequency of the given pulse

sequence is given.

� If this sequence would be replaced by a shorter or a longer one, then the mean

frequency and the period can slightly change, but in any case they are more

precise than those evaluated from FFT.

3.3 Di�erent diagrams and jitter measures describing quality

of SP

In order to analyze computed pulses and to determine their quality in the time

domain the sampling technique (eye diagrams) can be used. For this reason, the

computed signal g(t) = j �(0; t)j2, t 2 [0; T ] is sampled on the interval [0; P ] by

means of the following mapping:

M : ([0; T ]�R) 7! ([0; P ]�R); M([t; g(t)]) =
h
P
n t
P

o
; g(t)

i
;

n t
P

o
=

t

P
� k 2 [0; 1); k 2 N:

As a rule, when investigating periodic or quasi-periodic SP of a free running laser,

or of a laser with constant power optical injection, the sampling interval length P

should be adjusted to the already computed (see previous subsection) mean period

P0 = 1=f0.

Let us introduce the notion of the relative phase (RP) �sl(k; P ) with sl = i or sl = d:

�sl(k; P ) = (tsl(k)� Pk)=P: (4)

This value will characterize the relative phase between the corresponding half height

moments and some P -periodic function.

Whenever P is equal to the mean period P0 of the pulse sequence, these relative

phases should deviate from some constant value for the di�erent pulses (see, e.g.,

Fig. 5(Ib,IIb,IIIb)). Otherwise, if P 6= P0, the RP �sl(k; P ) will deviate from some

slant line (see Fig. 6(Ib,IIb)).

After sampling such SP with period P = P0, we represent and characterize the SP

by the following diagrams:

� The �eye� diagrams as depicted in Fig. 5(Ia-IIIa).

� The �TRP� diagrams represented in Fig. 5(Ib-IIIb) show the traces of the

relative phases �sl(k; P ) de�ned in (4) of the pulses with respect to a P -

periodic function. These �TRP� diagrams represent a similar situation as

Fig. 4(c), where the half height moments tsl;kjNk=1 are distributed around the

approximating line tsl = P0k+ tsl;0. As units of the ordinate axis in the �TRP�

diagram we can choose parts of the sampling period P or picoseconds (drawing
~�sl(k; P ) = P � �sl(k; P ) instead of �sl(k; P )) as well.
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Figure 5: (a)

�Eye�, (b) �TRP�,

(c) �DRP� dia-

grams. I): Ideal

periodic case with-

out noise. II):

Realistic value of

noise. III): 30

times larger level

of noise than in

the case II.

� The �DRP� diagrams in Fig. 5(Ic-IIIc) represent the distribution of the relative

phases �sl(k; P ) (or ~�sl(k; P )) within the sampling period.

To characterize the jitter of pulses, we use two di�erent measures:

� The absolute jitter of the increasing (ji;abs) or the decreasing (jd;abs) slope of a

pulse is de�ned by

jsl;abs = maxkf�sl(k; P )g �minkf�sl(k; P )g; sl = i; d;

and is shown in Fig. 5(IIbc).

� Assume, that the locations of the relative phases �sl(k; P ), sl = i; d are de-

scribed by the Gaussian distribution with mean value �sl and dispersion �sl.

The normal jitter ji;nrm (or jd;nrm) is de�ned by the full width at half maximum

of this distribution

jsl;nrm = 2�sl
p
ln 4; �sl =

vuut NX
k=1

(�sl(k; P )� �sl)2

N � 1
; �sl =

NX
k=1

�sl(k; P )

N
= tsl;0;

and is depicted in Fig. 5(IIc).

10



Fig. 5 represents SP at � 33 GHz of a model of a 3 section DFB laser with two

active DFB sections whose stop-bands do not overlap. The SP depicted in I,II and

III di�er only by the applied level of noise:

� Fig. 5(I): no noise, the signal j �(0; t)j2 is periodic with the exact period

P = P0 = 1=f0. The di�erent sampled pulses precisely overlap and could not

be distinguished (Fig. 5(Ia)). There is no drift of the RP �sl(k; P0) from the

horizontal lines t = tsl;0 and both measures of the jitter are almost zero (Fig.

5(Ibc)).

� Fig. 5(II): a �realistic� level of noises is applied. The SP are no more exactly

periodic. Nevertheless, an open �eye� in Fig. 5(IIa) is clearly seen. Di�erent

pulses do not overlap each other precisely, but their random drift around some

mean position is not very large. Such a drift of the RP together with the jitter

measures is shown in Fig. 5(IIbc).

� A much higher level of the noise causes a closing of the �eye� in Fig. 5(IIIa).

The �gures 5(IIIbc) are still representing the random nature of the pulse drift

around some mean value. A distribution of the RP shown in Fig. 5(IIIc) can

be still considered as Gaussian, if we will shift a part of the indicated data by

one sampling period.

Summary of this subsection:

� The notion of the relative phase (RP) between pulses of the SP and P -periodic

function is introduced in (4).

� Three types (�eye�, �TRP�, �DRP�) of diagrams based on a sampling of the SP

and on a location of the RP are presented.

� An absolute and a normal measures for a jitter are introduced.

� The �TRP� and the �DRP� diagrams yield information about the absolute and

the normal jitter respectively.

� The dependence of the quality of SP on the level of noise is presented.

3.4 In�uence of a small error in de�ning the sampling period

Let us assume that the sampling frequency f (and the period P = 1=f) di�ers

from the mean frequency f0 (and the period P0 = 1=f0) with the frequency error

Æf = f0 � f 6= 0. This error implies an error of the number of periods in the time

interval [0; T ]. Now really computed (non-integer number) N0 = Tf0 pulses are

incorrectly treated and sampled as (non-integer number) Tf = N0 + TÆf 6= N0

pulses.

In these cases one should be quite careful when interpreting diagrams and jitter of

the SP:
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Figure 6: The

diagrams represent

the same SP as in

Fig. 5(II) with an

error of sampling

frequencies and

periods. I): The

frequency error

1=T causes a total

closing of the �eye�.

II): The frequency

error 1=2T implies

a half period drift

of the pulses (their

RP) and almost

closed �eye�.

� When sampling the given pulses with an incorrect period P = 1=f , an arti�cial

drift of the probably good signal (its RP) in the �eye� diagram will be observed

(see Fig. 6(Ia,IIa)).

� Such a drift of the RP �sl(k; P ) will be approximately equal to TÆf �P seconds

or TÆf sampling periods and will be wrongly interpreted as a jitter of SP (see

Fig. 6(Ib,IIb)).

� In case jTÆf j = 1=2, which can arise in estimating the sampling frequency f

by the FFT (f = fFFT ), the drift of the pulses (their RP) is equal to PFFT=2

and, therefore, the �eye� in the corresponding diagram in Fig. 6(IIa) will be

almost closed.

To avoid such misleading interpretation of the diagrams above and of the size of the

jitter one has to look more carefully at the �TRP� and the �DRP� diagrams in Fig.

6(Ibc,IIbc):

� It seems that the assumption of a Gaussian distribution of the RP in the

�DRP� diagrams in Fig. 6(Ic,IIc) is not correct.

� A better indication of the error in de�ning the sampling period can be provided

by the �TRP� diagrams in Fig. 6(Ib,IIb). Here the RP �sl(k; P ) are drifting not

around the horizontal line t = tsl;0, but around some slant line t = Ck + tsl;0,

where C � P0 � P � �Æf=f 2 is determined by the frequency error Æf .

Summary of this subsection:

� The frequency error which arises in de�ning the sampling frequency can cause

an overestimation of the jitter and a closing of the �eye� diagrams.
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� This frequency error can be recognized from the �TRP� diagrams, if the RP

are drifting around some slant line.

3.5 Closing of the �eye� diagram due to an optical injection

The superposition of an optical injection with the optical �eld of the laser leads to

high frequency oscillations along the �slowly� pulsating output power. An example

of such fast oscillations for an increasing slope of the single pulse is given in Fig.

4(a). If the optical signal is strong enough, then these oscillations are visible in the

computed signal and can even cause a closing of the �eye� diagram.

Figure 7: The

diagrams repre-

senting the same

SP as in Fig.

5(II) with an

applied 4 mW

constant power

optical injection

at �8 nm relative

wavelength. I):

Output signal

without �lter-

ing. II): Filtered

output signal.

The discussion of these diagrams suggests how to recognize this situation and to

avoid a wrong interpretation of the bad quality of the SP:

� The fast oscillations due to superposition of signals at di�erent wavelengths

cause a broadening of each separate pulse as in Fig. 4(a) as well as a broadening

of the sampled pulses in the eye diagram in Fig. 7(Ia).

� To de�ne the half height moments we have to take into account only mean

values of the multiple crossings of each pulse with the mean line y = M (see

white points in Fig. 4(a)).

� The drift of the pulses visible in the �eye' diagram 7(Ia) is much higher than

the introduced measures of the jitter (see 7(Ibc)), which take into account only

drift of the relative phases.

� In order to suppress an in�uence of the optical injection we �lter the output

�eld  �(0; t) with a Lorentzian �lter, given by the following relation between

13



the complex amplitudes of the input Ainp(!) and of the output Bout(!) in the

optical frequency domain:

Bout(!) =
� j!inject � !lasingj
j!inject � !lasingj+ i(! � !lasing)

�10
Ainp(!):

This �lter exhibits approximately a 15 dB amplitude suppression at wave-

lengths of the injection and only a small suppression for the lasing wavelengths.

The resulting �ltered output is represented in Fig. 7(II), and do not di�ers

signi�cantly from the original signal in the laser without the injection shown

in Fig. 5(II).

Summary of this subsection:

� The superposition of an injected relatively strong optical signal with the optical

�eld induced by the laser can close the �eye� diagram.

� The jitter measures jabs;nrm can be much smaller than the jitter at a half height

of the pulses visible in the �eye� diagrams.

� The jitter induced by an optical injection can be removed from the �eye� dia-

grams by �ltering the output signal.

4 Applications

4.1 Locking of SP

If we investigate locking of self pulsations, then the sampling period P is determined

by the period of the external modulated signal Pext = 1=fext. It is known that in

order to achieve locking, the modulation frequency fext should be close to the mean

frequency f0 of the free running laser.

Let us again consider a 3 section laser with 2 active DFB sections demonstrating SP

at f0 � 33 GHz (see Fig. 5(II)). To have a more precise representation of the same

signal, we computed it on a T = 400 ns time interval. Assume that the electrical

modulation with the amplitude A and the frequency fext = f0 + Æf , Æf = 50 MHz

is applied to one of the DFB sections.

The transition from the unlocked to the locked state is shown in the Fig. 8 and will

be discussed below:

� For reference, in Fig. 8(I) shows the SP of the laser without modulation

(A = 0) sampled with its mean period P0.

� Next we consider a sampling of the signal with the modulation period P = Pext.

For a small modulation amplitude A � 0 the locking can not be realized. The

14



Figure 8: The

diagrams represent

the transition from

the SP at f0 � 33

GHz in the free

running laser to-

wards the locked

SP at fext = f0+50

MHz. I): SP of

the free running

laser (A = 0)

sampled with its

mean period P0.

II): Unlocked situ-

ation at A = 3:35

mA. Sampling

was made with

P = Pext, the am-

plitude A is close

to its critical value

where locking can

be detected. III):

The locked SP with

A = 6 mA.

sampling period Pext is di�erent from the mean period P0 and, therefore, the

�eye� diagram will be closed as in Fig. 6(Ia), if a su�ciently large number of

the pulses will be applied. Otherwise the situation in Fig. 6(IIa) should be

observed. The computed output over T = 400 ns guarantees that the drifting

relative phases �sl(k; Pext) along a slant line in the �TRP� diagram will cover

T � Æf = 20 periods, i.e., jsl;abs � 20 (periods).

� At some amplitude (A � 3:45 mA in our case), still being unlocked, the laser

strongly �feels� a modulation of the signal. The �eye� is still closed (see Fig.

8(IIa)), but a �stairway� form of the �TRP� diagram indicates intervals, where

the SP is almost locked, (an interval [C;D] in Fig. 8(IIb)).

� On the interval [C;D] (Fig. 8(IIb)) the relative phases �sl(k; Pext) are drifting

along almost horizontal lines, indicating a coincidence of the frequencies of SP

and external signal.

� Afterwards, during the much shorter interval [D;E], an almost linear increase

of the RP indicates that the di�erence between the SP and external frequencies

is approximately equal to

Æ ~f � Nperiods=Tint = 0:9 (periods) =20 (ns) = 45 MHz:
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This value is close to the Æf = 50 MHz, which is a di�erence between the

frequency f0 of the free running SP and the modulation frequency fext.

� Approximately at the position D the locking is lost and during the interval

[D;E] the self pulsations are running with their own (free running) frequency

f0. The RP is changing during [D;E] by almost one period and approximately

at the position E it reaches similar �locking� conditions (with a shift of one

period ) as at the position C. Here a new �locking� interval starts, where the

RP exhibits only a drift around the horizontal line.

� In such regimes one needs to apply long enough data sequence: if, by chance,

only a sequence of the data from the interval [C;D] (corresponding to a quite

long 180 ns time interval) would be considered, an open �eye� diagram would

be seen. The study of the �TRP� diagram within the interval [C;D] in Fig.

8(IIb) in general will also indicate the already achieved locking. Due to this

problem, it is a very time consuming task to detect an exact value of the

amplitude A, where the locking starts to be realised.

� Finally, at the su�ciently big amplitude (A = 6 mA in our case) the laser

is locked to the frequency fext, a nice open �eye� is visible in Fig. 8(IIIa), a

jitter of the locked solution is clearly smaller than a jitter of the SP in the free

running laser (see 8(IIIbc)).

Summary of this subsection:

� The diagrams allow us to analyze a transition of the SP from the unlocked

state (A � 0) to the locked state.

� A detection of the exact amplitude A where locking is achieved for the �rst time

requires very time consuming computations. It can be di�cult to distinguish

locked and unlocked regimes close to this precise value of A.

� At least in the demonstrated case, locked SP performs a smaller jitter than SP

in the free running laser.

4.2 The quality of SP for di�erent phases '

Let us introduce the phase parameter ' = 2lphasÆphas=2� which is related to the

detuning Æ (see (1)) in the passive phase tuning section.

It is known that tuning of the phase conditions ' in the phase section implies a

transition from the stationary lasing states to self pulsations, or a transition to

di�erent regions of self pulsations (see [1, 5]).

In our previous examples we demonstrated � 33 GHz self pulsations which were

observed for the phase ' = 0:8 which is located in a middle of the phase interval

[0:66; 0:92] with frequency f0 2 [31; 39] GHz.
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Figure 9: Quality

of SP in the free

running laser for

the phases ' = 0:7

(I) and ' = 0:9

(II).

The following �gure and the discussion are concerned with self pulsations close to

the border of this interval:

� For the phases ' = 0:7 and ' = 0:9 the jitter of SP in the free running laser

is similar to the jitter of SP for the reference phase ' = 0:8 indicated in Fig.

8(I).

� The frequencies of SP can be continuously tuned from � 31 GHz up to � 39

GHz by tuning the phase parameter '.

The ability of these SP to synchronize with a modulated current injection was also

checked:

� The modulation frequency fext = f0 + 50 MHz as in Fig. 8, or fext = f0 � 50

MHz was considered.

� It was observed that for a �xed phase ' the required modulation amplitude

in any of the DFB sections (A1 or A3) is approximately the same for both

frequency o�sets (Æf = �50 MHz).

� Surprisingly, the �critical� value of the amplitudes A1 and A3 are similar

and are sensitively dependent for di�erent phases. It has been found that

A1j'=0:7 � 4:5 mA, A1j'=0:8 � 3:4 mA (see Fig. 8(II)), and A1j'=0:9 � 2:2

mA.

� The locking ranges for the di�erent phases when modulating injection in the

both DFB sections or when applying an optical modulated signal will be dis-

cussed in more details in the following report.
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Summary of this subsection:

� The frequency of SP in the free running laser can be tuned in certain range by

tuning the phase parameter '.

� It seems that the quality of SP in the free running laser for di�erent values of

' is quite similar.

� The locking ranges are quite di�erent for SP for di�erent phases '.

4.3 The in�uence of the internal re�ectivities

It is supposed that the optical �elds  � can be re�ected from junctions between

di�erent sections:

 +
out = rjunct  

�

inc +
q
1� jrjunctj2  +

inc;  �out = �r�junct  
+
inc +

q
1� jrjunctj2  �inc:

Here, the complex parameter rjunct, jrjunctj � 1 should be adjusted to each of the

laser section junctions.

The in�uence of the internal re�ectivities to the quality of SP is as follows:

� In the ideal case we have adjusted rjunct = 0 at each junction. It is clear that

while this parameter remains small enough, it should not have a big in�uence

onto the SP observed in the laser.

� When the re�ectivity amplitude jrjunctj grows, then a transition of the initial

30�40 GHz frequency SP to another region of SP with di�erent frequencies or

to the some other solution can be observed. These transitions will be observed

later, if our parameters (e.g., phase ') of an �ideal� (rjunct = 0) laser are

located in the middle of the parameter region with similar SP.

� Such a situation is represented in Fig. 10, where SP with jrjunct;1;2j = 0:075

for ' = 0:8 2 [0:66; 0:92] are indicated. Similar SP in the �ideal� laser have

been considered earlier (e.g., in Fig. 8).

� The phases of the complex re�ectivity coe�cients rjunct;1;2 also play an impor-

tant role. When selecting these phases arbitrary, one can �nd quite good SP

with good locking properties. Such SP in general can be of the same or even

better quality as SP with rjunct;1;2 = 0 (see, e.g., Fig. 10(I,II) and compare

with Fig. 8(I,III)).

� Nevertheless, when taking other phases of the coe�cients rjunct, the quality as

well as the locking of SP can become much worse (see Fig. 10(III,IV)).

� One can improve the SP indicated in Fig. 10(III,IV) by slightly tuning the

parameter '. Nevertheless, we have tested that such SP become worse again

by readjusting phases of rjunct.
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Figure 10: SP

for ' = 0:8 when

internal re�ectiv-

ities are applied.

I,II): rjunct;1 =

0:075 � ei2��0:7

and rjunct;2 =

0:075 � ei2��0:3.

III,IV): rjunct;1 =

rjunct;2 = 0:075. the

diagrams I and III

indicate SP in the

free running laser,

while diagrams

II and IV show

locking at the mod-

ulation frequency

fext = f0 + 50 MHz

and with the ampli-

tude A1 = 6 mA.

First the locking of

SP was observed

for A1 = 4:9 mA

(I,II diagrams), and

for A1 = 3:6 mA

(III,IV diagrams).

Note a bad per-

formance of SP in

III,IV diagrams.

� When using larger amplitudes jrjunctj (say, jrjunctj = 0:1), even a shift of '

does not help to return to a required region of SP at 30� 40 GHz frequency.

Summary of this subsection:

� The internal �eld re�ectivities at the junctions of the sections can cause di�er-

ent dynamical behaviour of the laser than predicted by the �ideal� model without

such re�ectivities.

� The importance of both the amplitude and the phase of such re�ectivities was

has been demonstrated.
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5 Conclusions

Possibilities of LDSL tool to investigate and to characterize the quality of SP and
their locking behaviour were discussed. Useful characteristics, such as temporal drift
and distribution of the relative phases were introduced and discussed. Advantages
of these characteristics with respect to the conventional �eye� diagrams have been
demonstrated. An in�uence of some selected parameters such as phase condition,
noise or internal re�ectivity on the quality of SP have been also discussed.
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