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Abstract: In this paper we introduce a novel approach for an important
problem of break detection. Specifically, we are interested in detection of
an abrupt change in the covariance structure of a high-dimensional random
process – a problem, which has applications in many areas e.g., neuroimag-
ing and finance. The developed approach is essentially a testing procedure
involving a choice of a critical level. To that end a non-standard bootstrap
scheme is proposed and theoretically justified under mild assumptions. The-
oretical study features a result providing guaranties for break detection. All
the theoretical results are established in a high-dimensional setting (dimen-
sionality p � n). Multiscale nature of the approach allows for a trade-off
between sensitivity of break detection and localization. The approach can
be naturally employed in an on-line setting. Simulation study demonstrates
that the approach matches the nominal level of false alarm probability and
exhibits high power, outperforming a recent approach.
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1. Introduction

The analysis of high dimensional time series is crucial for many fields includ-
ing neuroimaging and financial engineering. There, one often has to deal with
processes involving abrupt structural changes which necessitate a corresponding
adaptation of a model and/or a strategy. Structural break analysis comprises
determining if an abrupt change is present in the given sample and if so, esti-
mating the change-point, namely the moment in time when it takes place. In
literature both problems may be referred to as change-point or break detection.
In this study we will be using terms break detection and change-point localization
respectively in order to distinguish between them. The majority of approaches
to the problem consider only a univariate process [14] [2]. However, in recent
years the interest for multi-dimensional approaches has increased. Most of them
cover the case of fixed dimensionality [31] [29] [1] [41] [42]. Some approaches
[11, 28, 12] feature high-dimensional theoretical guaranties but only the case
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of dimensionality polynomially growing in sample size is covered. The case of
exponential growth has not been considered so far.

In order to detect a break, a test statistic is usually computed for each point
t (e.g. [31]). The break is detected if the maximum of these values exceeds a
certain threshold. A proper choice of the latter may be a tricky issue. Consider
a pair of plots (Figure 1) of the statistic A(t) defined in Section 2. It is rather
difficult to see how many breaks are there, if any. The classic approach to the
problem is based on the asymptotic behaviour of the statistic [14] [2] [1] [28] [7]
[42]. As an alternative, permutation [28] [31] or parametric bootstrap may be
used [28]. Clearly, it seems attractive to choose the threshold in a solely data-
driven way as it is suggested in the recent paper [11], but a careful bootstrap
validation is still an open question.

In the current study we are interested in a particular kind of a break – an
abrupt transformation in the inverse covariance matrix – which is motivated
by applications to neuroimaging. The covariance structure of data in functional
Magnetic Resonance Imaging has recently drawn a lot of interest, as it encodes
so-called functional connectivity networks [40] which refer to the explicit influ-
ence among neural systems [22]. A rather popular approach to inferencing these
networks is based on estimating inverse covariance or precision matrices [21].
The technique generally makes use of the observation that functional connec-
tivity networks are of small-world type [40], which makes sparsity assumptions
feasible. Analysing the dynamics of these networks is particularly important for
the research on neural diseases and also in the context of brain development with
emphasis on characterizing the re-configuration of the brain during learning [4].

A similar problem is found in finance: the dynamics of the covariance struc-
ture of a high-dimensional process modelling exchange rates and market indexes
is crucial for a proper asset allocation in a portfolio [13, 6, 16, 33].

One approach to the change-point localization is developed in [29], the cor-
responding significance testing problem is considered in [1]. However, neither of
these papers address the high-dimensional case.

A widely used break detection approach (named CUSUM) [12, 1, 28] suggests
to compute a statistic at a point t as a distance of estimators of some parameter
of the underlying distributions obtained using all the data before and after that
point. This technique requires the whole sample to be known in advance, which
prevents it from being used in online setting. In order to overcome this drawback
we propose a method ideologically similar to MOSUM [5] [15]: choose a window
size n ∈ N and compute parameter estimators using only n points before and
n points after the central point t (see Section 2 for formal definition). Window
size n is an important parameter and its choice is case-specific (see Section 4
for theoretical treatment of this issue). Using a small window results in high
variability and low sensitivity, while a large window implies higher uncertainty
in change-point localization yielding the issue of a proper choice of window
size. The multiscale nature of the proposed method enables us to incorporate
the advantages of narrower and wider windows by considering multiple window
sizes at once in order for wider windows to provide higher sensitivity while
narrower ones improve change-point localization. Moreover, the local nature
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Figure 1. Plots of test statstics A(t) computed on synthetically generated data without (left)
and with a single change-point at t = 150 (right). The ticks and their corresponding values
are intentionally hidden for the vertical axis, since we aim to draw a conclusion about a brake
based only on a single time series, not a collection of them. Clearly, the choice of a threshold
is not obvious.

of the proposed statistic allows for detection of multiple change points if the
change-points are not too close to each other (see Section 4).

The contribution of our study is the development of a novel break detection
approach which is

• high-dimensional, allowing for up to exponential growth of the dimension-
ality with the window size

• suitable for on-line setting
• suitable for detection of multiple change-points
• multiscale, attaining trade-off between break detection sensitivity and

change-point localization accuracy
• using a fully data-driven threshold selection algorithm rigorously justified

under mild assumptions
• featuring formal sensitivity guaranties in high-dimensional setting

We consider the following setup. Let X1, ... XN ∈ R
p denote sample of

independent zero-mean vectors (the on-line setting is discussed in Section 3)
and we want to test a hypothesis

H0 := {∀i : Var [Xi]
−1

= Var [Xi+1]
−1}

versus an alternative suggesting the existence of a break:

H1 :=
{
∃τ : Var [X1]

−1
= Var [X2]

−1
= ... = Var [Xτ ]

−1

�= Var [Xτ+1]
−1

= ... = Var [XN ]
−1

}
and localize the change-point τ as precisely as possible or (in on-line setting) to
detect a break as soon as possible.
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The approach proposed in the paper focuses on applications in neuroimag-
ing. Independence of the vectors Xi is fulfilled only approximately in practice
but functional connectivity network analysis, which assumes temporal indepen-
dence, has been proven to be very successful and validated [35].

In the current study it is also assumed that some subset of indices Is ⊆ 1..N
of size s (possibly, s = N) is chosen. The threshold is chosen relying on the
sub-sample {Xi}i∈Is while the test-statistic is computed based on the whole
sample.

To this end we define a family of test statistics in Section 2.1 which is fol-
lowed by Section 2.2 describing a data-driven (bootstrap) calibration scheme
and Section 2.3 describing change-point localization procedure. The theoretical
part of the paper justifies the proposed procedure in a high-dimensional setting.
The result justifying the validity of the proposed calibration scheme is stated
in Section 3. Section 4 is devoted to the sensitivity result yielding a bound for
the window size n necessary to reliably detect a break of a given extent and
hence bounding the uncertainty of the change-point localization (or the delay of
detection in online setting). The theoretical study is supported by a compara-
tive simulation study (described in Section 5) demonstrating conservativeness of
the proposed test and higher sensitivity compared to the other algorithms and
by analysis of real-world datasets (Section 6). Appendix A contains a finite-
sample version of sensitivity result along with the proofs. Appendix B provides
a a finite-sample version of bootstrap sensitivity result which is followed by the
proofs. Finally, Appendix H lists results which were essential for our theoretical
study.

2. Proposed approach

This section describes the proposed approach along with a data-driven cali-
bration scheme. Informally the proposed statistic can be described as follows.
Provided that the break may happen only at moment t, one could estimate
some parameter of the distribution using n data-points to the left of t, estimate
it again using n data-points to the right and use the norm of their difference
as a test-statistic An(t). Yet, in practice one does not usually possess such
knowledge, therefore we propose to maximize these statistics over all possible
locations t yielding An. Finally, in order to attain a trade-off between break de-
tection sensitivity and change-point localization accuracy we build a multiscale
approach: consider a family of test statistics {An}n∈N for multiple window sizes
n ∈ N ⊂ N at once.

2.1. Definition of the test statistic

Now we present a formal definition of the test statistic. In order to detect a
break we consider a set of window sizes N ⊂ N. Denote the size of the widest
window as n+ and of the narrowest as n−. Given a sample of length N , for each
window size n ∈ N define a set of central points Tn := {n + 1, ..., N − n + 1}.
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Next, for all n ∈ N define a set of indices which belong to the window on the left
side of the central point t ∈ Tn as Il

n(t) := {t−n, ..., t−1} and correspondingly
for the window on the right side define Ir

n(t) := {t, ..., t + n − 1}. Denote the
sum of numbers of central points for all window sizes n ∈ N as

T :=
∑
n∈N

|Tn| .

For each window size n ∈ N, each central point t ∈ Tn and each side S ∈ {l, r}
we define a de-sparsified estimator of precision matrix [26] [27] as

T̂S
n (t) := Θ̂S

n (t) + Θ̂S
n (t)T − Θ̂S

n (t)T Σ̂S
n (t)Θ̂S

n (t) (2.1)

where

Σ̂S
n (t) =

1

n

∑
i∈IS

n (t)

XiX
T
i

and Θ̂S
n (t) is a consistent estimator of precision matrix which can be obtained by

graphical lasso [37] or node-wise procedure [27] (see Definition 3.1 and Appendix
H.5 for details). Note, the symmetricity of Θ̂S

n (t) is not required, yet T̂S
n (t) is

symmetric by construction.
Now define a matrix of size p× p with elements

Zi,uv := Θ∗
uXiΘ

∗
vXi −Θ∗

uv (2.2)

where Θ∗ := E
[
XiX

T
i

]−1
for i ≤ τ , Θ∗

u stands for the u-th row of Θ∗. De-
note their variances as σ2

uv := Var [Z1,uv] and introduce the diagonal ma-
trix S = diag(σ1,1, σ1,2, ..., σp,p−1, σp,p). Denote a consistent estimator (see
Definition 3.1 for details) of the precision matrix Θ∗ obtained based on the
sub-sample {Xi}i∈Is as Θ̂ . In practice, the variances σ2

uv are unknown, but
under normality assumption one can plug in σ̂2

uv := Θ̂uuΘ̂vv + Θ̂2
uv which have

been proven to be consistent (uniformly for all u and v) estimators of σ2
uv [26] [3].

If the node-wise procedure is employed, the uniform consistency of an empirical
estimate of σ2

uv has been shown under some mild assumptions (not including
normality) [27].

For each window size n ∈ N and a central point t ∈ Tn we define a statistic

An(t) :=

∣∣∣∣
∣∣∣∣
√

n

2
S−1(T̂ l

n(t)− T̂ r
n(t))

∣∣∣∣
∣∣∣∣
∞

(2.3)

where we write M for a vector composed of stacked columns of matrix M .
Finally we define our family of test statistics for all n ∈ N as

An = max
t∈Tn

An(t).

Our approach heavily relies on the following expansion under H0

√
n(T̂S

n (t)−Θ∗) =
1√
n

∑
i∈IS

n (t)

Zi + rSn (t)
√
n, (2.4)
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where the residual term

rSn (t) := T̂S
n (t)−

(
Θ∗ −Θ∗

(
Σ̂S

n (t)− Σ∗
)
Θ∗

)
can be controlled under mild assumptions [26] [27] [3] as

max
S∈{l,r}

n∈N,t∈Tn

∣∣∣∣rSn (t)
∣∣∣∣
∞ = OP

(
d log p

n

)
.

The main reason why we prefer to use de-sparsified estimators T̂S
n (t) over

using �1-penalized estimators Θ̂S
n (t) is that the former allows for the expansion

(2.4) which pitches an idea behind the bootstrap procedure we suggest and
makes the theoretical analysis possible.

This expansion might have been used in order to investigate the asymptotic
properties of An and obtain the threshold, however we propose a data-driven
scheme.

Remark 2.1. A different test statistic can be defined as the maximum dis-
tance between elements of empirical covariance matrices Σ̂l

n(t) and Σ̂r
n(t). Such

a method would be computationally less burdensome, since it does not involve
precision matrix estimation. However, there are extremely effective implemen-
tations of the latter which makes the computational costs of calibration proce-
dure dominate. In turn, the calibration complexity is the same for both of the
approaches, since matrix inversion is not involved therein (see Section 2.2).
Therefore, the computational gain would be negligible. Furthermore, application
to neuroimaging motivates the search for a structural change in a functional
connectivity network which is encoded by the structure of the corresponding pre-
cision matrix. Clearly, a change in the precision matrix also means a change in
the covariance matrix, though we believe that the definition (2.3) increases the
sensitivity to this kind of alternative (see Remark 4.1 for more details).

Remark 2.2. The estimator T̂S
n (t) is indeed a de-biased estimator. We can

easily rearrange the definition (2.1) as

T̂S
n (t) = Θ̂S

n (t)− Θ̂S
n (t)T

(
Σ̂S

n (t)Θ̂S
n (t)− I

)
in order to represent it as a difference of �1-penalized estimator and bias-cor-
recting term.

2.2. Bootstrap calibration

Our approach rejects H0 in favor of H1 if at least one of statistics An exceeds
the corresponding threshold x�

n(α) or formally if ∃n ∈ N : An > x�
n(α).

In order to properly choose the thresholds, we define bootstrap statistics
A�

n in the following non-standard way. Note, that we cannot use an ordinary
scheme with replacement or weighted bootstrap since in a high-dimensional
case (|Is| ≤ p) the covariance matrix of bootstrap distribution would be singular
which would make inverse covariance matrix estimation procedures meaningless.
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First, draw with replacement a sequence {κi}Ni=1 of indices from Is and de-
note

X�
i
= Xκi − Es [Xj ]

where Es [·] stands for averaging over values of index belonging to Is e.g.,
Es [Xj ] =

1
|Is|

∑
j∈Is

Xj . Denote the measure X�
i are distributed with respect

to as P�. In accordance with (2.2) define

Z�
i,uv := Θ̂uX

�
i Θ̂vX

�
i − Θ̂uv

and for technical purposes define

Ẑi,uv := Θ̂uXiΘ̂vXi − Θ̂uv.

Now for all central point t define a bootstrap counterpart of An(t)

A�
n(t) :=

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

1√
2n

S−1

⎛
⎝ ∑

i∈Il
n(t)

Z�
i −

∑
i∈Ir

n(t)

Z�
i

⎞
⎠
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∞

(2.5)

which is intuitively reasonable due to expansion (2.4). And finally we define the
bootstrap counterpart of An as

A�
n = max

t∈Tn

A�
n(t).

Now for each given x ∈ [0, 1] we can define quantile functions z�n(x) such that

z�n(x) := inf
{
z : P�

{
A�

n > z
}
≤ x

}
. (2.6)

Next for a given significance level α we apply multiplicity correction choosing
α∗ as

α∗ := sup
{
x : P�

{
∃n ∈ N : A�

n > z�n(x)
}
≤ α

}
(2.7)

and finally choose thresholds as x�
n(α) := z�n(α

∗).

Remark 2.3. In order to detect multiple breaks we suggest to repeat the cali-
bration procedure after each detected break using a portion of data acquired after
the break.

Remark 2.4. One can choose Is = 1, 2, ..., N and use the whole given sample
for calibration as well as for detection. In fact, it would improve the bounds in
Theorem 3.1 and Theorem 4.1, since it effectively means s = N . However, in
practise such a decision might lead to reduction of sensitivity due to overesti-
mation of the thresholds.
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2.3. Change-point localization

In order to localize a change-point we have to assume that Is ⊆ 1..τ . Consider
the narrowest window detecting a change-point as n̂:

n̂ := min
{
n ∈ N : An > x�

n(α)
}

(2.8)

and the central point where this window detects a break for the first time as

τ̂ := min
{
t ∈ Tn̂ : An̂(t) > x�

n̂(α)
}
. (2.9)

By construction of the family of test statistics we conclude (up to the confidence
level α) that the change-point τ is localized in the interval

[τ̂ − n̂; τ̂ + n̂− 1] .

Clearly, if a non-multiscale version of the approach is employed, i.e. |N| = {n},
n = n̂ and the precision of localization (delay of the detection in online setting)
equals n.

3. Bootstrap validity

This section states and discusses the theoretical result demonstrating the valid-
ity of the proposed bootstrap scheme i.e.

P

{
∀n ∈ N : An ≤ x�

n(α)
}
≈ 1− α.

Our theoretical results require the tails of the underlying distributions to be
light. Specifically, we impose Sub-Gaussianity vector condition.

Assumption 3.1 (Sub-Gaussianity vector condition).

∃L : ∀i ∈ 1..N sup
a∈R

p

||a||2≤1

E

[
exp

((
aTXi

L

)2
)]

≤ 2.

Naturally, in order to establish a theoretical result we have to assume that
a method featuring theoretical guaranties was used for estimating the precision
matrices. Such methods include graphical lasso [37], adaptive graphical lasso
[43] and thresholded de-sparsified estimator based on node-wise procedure [27].
These approaches overcome the high dimensionality of the problem by imposing
a sparsity assumption, specifically bounding the maximum number of non-zero
elements in a row: d := maxi

∣∣{j|Θ∗
ij �= 0}

∣∣. These approaches are guaranteed to
yield a root-n consistent estimate revealing the sparsity pattern of the precision
matrix [37, 3, 27] or formally
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Definition 3.1. Consider an i.i.d. sample x1, x2, ...xn ∈ R
p. Denote their pre-

cision matrix as Θ∗ = E
[
X1X

T
1

]−1
. Let p and d grow with n. A positive-definite

matrix Θ̂n is a consistent estimator of the high-dimensional precision matrix if

∣∣∣∣∣∣Θ∗ − Θ̂n
∣∣∣∣∣∣
∞

= Op

(√
log p

n

)

and
∀i, j ∈ 1..p and Θ∗

ij = 0 ⇒ Θ̂n
ij = 0.

Graphical lasso and its adaptive versions impose an assumption, common for
�1-penalized approaches.

Assumption 3.2 (Irrepresentability condition). Denote an active set

S :=
{
(i, j) ∈ 1..p× 1..p : Θ∗

ij �= 0
}

and define a p2 × p2 matrix Γ∗ := Θ∗ ⊗Θ∗ where ⊗ denotes Kronecker product.
Irrepresentability condition holds if there exists ψ ∈ (0, 1] such that

max
e/∈S

∣∣∣∣Γ∗
eS(Γ

∗
SS)

−1
∣∣∣∣
1
≤ 1− ψ.

The interpretation of irrepresentability condition under normality assump-
tion is given in [26] [37]. Particularly, Assumption 3.2 requires low correlation
between the elements of empirical covariance matrix from the active set S and
from its complement. The higher the constant ψ is, the stricter upper bound is
assumed.

While the Assumption 3.2 allows for the recovery of the active set, the test
statistic does not explicitly require it, since it is based on the de-sparsified es-
timators. But this assumption is still essential for demonstrating consistency
of estimation of the non-zero elements Θ∗

S by either graphical lasso or its
adaptive versions. Alternatively, one can use thresholded de-sparsified estima-
tor, for which the theoretical guaranties can be established in the absence of
Assumption 3.2.

These observations give rise to the two following assumptions.

Assumption 3.3.A. Suppose, either graphical lasso or its adaptive version was
used with regularization parameter λn 


√
log p/n and also impose

Assumption 3.2.

Assumption 3.3.B. Suppose, thresholded de-sparsified estimator based on node-
wise procedure was used with regularization parameter λn 


√
log p/n.

Now we are ready to establish a result which guarantees that the suggested
bootstrap procedure yields proper thresholds.

Theorem 3.1. Assume H0 holds and furthermore, let X1, X2, ...XN ∈ R
p be

i.i.d. Let Assumption 3.1 and either Assumption 3.3.A or Assumption 3.3.B
hold. Also assume, the spectrum of Θ∗ is bounded. Allow the maximal number
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d of non-zero elements in a row of the matrix Θ∗, the size s of the set Is, the
dimensionality p, the number |N| of window sizes being considered, the maximum
and minimum window sizes n+ and n− grow with the sample size N . Further
let N > 2n+, n+ ≥ n− and also impose the sparsity assumption

d = o

⎛
⎝ 4

√
min

{
s, n2

−
}

|N|3 log10(pN)

⎞
⎠ .

Then ∣∣∣∣P{
∀n ∈ N : An ≤ x�

n(α)
}
− (1− α)

∣∣∣∣ = oP (1).

The finite-sample version of this result, namely, Theorem B.1, is given in
Appendix B along with the proofs.

Bootstrap validity result discussion Theorem 3.1 guarantees under mild
assumptions (Assumption 3.2 seems to be the most restrictive one, yet it may
be dropped if the node-wise procedure is employed) that the first-type error
rate meets the nominal level α if the narrowest window size n− and the set Is
are large enough. Clearly, the dependence on dimensionality p is logarithmic
which establishes applicability of the approach in a high-dimensional setting.
It is worth noticing that, unusually, the sparsity bound gets stricter with N
but the dependence is only logarithmic. Indeed, we gain nothing from longer
samples, since we use only 2n data points each time.

On-line setting As one can easily see, the theoretical result is stated in off-
line setting, when the whole sample of size N is acquired in advance. In on-line
setting we suggest to control the probability α to raise a false alarm for at
least one central point t among N data points (which differs from the classical
techniques controlling the mean distance between false alarms [38]). Having α
and N chosen one should acquire s data-points (the set Is), use the proposed
bootstrap scheme with bootstrap samples of length N in order to obtain the
thresholds. Next the approach can be naturally applied in on-line setting and
Theorem 3.1 guarantees the capability of the proposed bootstrap scheme to
control the aforementioned probability to raise a false alarm.

Proof discussion The proof of the bootstrap validity result, presented in Ap-
pendix B, mostly relies on the high-dimensional central limit theorems obtained
in [10], [9]. These papers also present bootstrap justification results, yet do not
include a comprehensive bootstrap validity result. The theoretical treatment is
complicated by the randomness of x�

n(α). We overcome it by applying the so-
called “sandwiching” proof technique (see Lemma C.1), initially used in [39].
The high-level structure of the proof can be summarized as follows:

1. Approximate statisticsAn by norms of sub-vectors ηn of a high-dimensional
Gaussian vector η up to the residual RA using the high dimensional central
limit theorem by [10].
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2. Similarly, approximate bootstrap counterparts A�
n of the statistics by

norms of sub-vectors ζn of a high-dimensional Gaussian vector ζ up to
the residual RA� .

3. Prove that the covariance matrix Var [ζ] is concentrated in the ball of
radius ΔY centered at its real-world counterpart Var [η].

4. By employing the Gaussian comparison result provided by [10] and [9]
obtain similarity of joint distributions of the norms of ζ and η, which in
combination with the steps 1 and 2 yields similarity of joint distributions
of An and A�

n.
5. Finally, obtain the bootstrap validity result using the sandwiching

Lemma C.1.

The rigorous treatment of steps 1 through 4 is presented in Sections E, F, G
and D respectively, while step 5 is formalized in Sections B and C.

4. Sensitivity and consistency results

Consider the following setting. Let there be index τ , such that {Xi}i≤τ are i.i.d.
and {Xi}i>τ are i.i.d. as well. Denote precision matrices Θ−1

1 := E
[
X1X

T
1

]
and

Θ−1
2 := E

[
Xτ+1X

T
τ+1

]
. Define the break extent Δ as

Δ := ||Θ1 −Θ2||∞ . (4.1)

The question is, how large the window size n should be in order to reliably reject
H0 and how firmly can we localize the change-point.

Theorem 4.1. Let Assumption 3.1 and either Assumption 3.3.A or
Assumption 3.3.B hold. Also assume, the spectrums of Θ1 and Θ2 are bounded.
Allow the maximal number d of non-zero elements in a row of the matrix Θ∗,
the size s of the set Is, the dimensionality p, the number |N| of window sizes
being considered, the maximum and minimum window sizes n+ and n− grow
with the sample size N and let the break extent Δ decay with N . Further let
N > 2n+, n+ ≥ n−,

d = o

(√
max{s, n−}

|N| log7(pN)

)
(4.2)

and there exists n∗ ∈ N such that

log2(pN)

n∗Δ
= o(1). (4.3)

Then H0 will be rejected with probability approaching 1.

This result is a direct corollary of the finite-sample sensitivity result estab-
lished and discussed in Appendix A.

The assumption Is ⊆ 1..τ is only technical. A similar result may be proven
without relying on it by methodologically the same argument. See Remark A.1
for more details.

Next we formulate a trivial corollary of Theorem 4.1 establishing consistency
of the change-point estimator τ̂ defined by (2.9).
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Corollary 4.1. Let assumptions of Theorem 4.1 hold. Moreover, assume a suit-
able window is being considered

n∗ :=

⌈(
log2(pN)

Δ

)η
⌉
∈ N, where η > 1. (4.4)

then
P {|τ − τ̂ | ≤ n∗} � 1− α.

Sensitivity and consistency results discussion Assumptions (4.2) and
(4.3) are essentially a sparsity bound and a bound for the sufficient windows
size n∗. Clearly, they do not yield a particular value n∗ necessary to detect a
break, since it depends on the underlying distributions. A more restrictive as-
sumption (4.4) suggests a particular choice of n∗ which is suitable in asymptotic
setting. Note, the results include dimensionality p only under the sign of loga-
rithm, which guarantees high sensitivity of the test and proper localization of
the change-point in high-dimensional setting.

Online setting Theorem 4.1 and Corollary 4.1 are established in off-line set-
ting. In on-line setting they guarantee that the proposed approach can reliably
detect a break of an extent not less than Δ with a delay at most n∗.

Multiple change-point detection Consider a setting which allows for mul-
tiple breaks: let there be nb change-points {τj}nb

j=1 ⊂ N and let {Xi}τj+1

i=τj+1 be

i.i.d for all 1 ≤ j ≤ nb. Also define nb + 1 precision matrices {Θj}nb
j=0 – one

for each region between a pair of consecutive change-points. Define the minimal
extent of the breaks as

Δmin = min
j

||Θj −Θj+1||∞ .

Then under assumption that two change-points are not too close to each other

min
j

|τj − τj+1| ≥ n∗ + s

we can apply Theorem 4.1 and conclude that the method detects all the change
points with probability approaching 1.

Remark 4.1. The sensitivity and consistency results heavily depend on the
break extent Δ defined by (4.1). As Remark 2.1 suggests, a test statistic based
on the �∞ norms of the covariance matrices, not of their inverses, may also
be considered. For such a statistic a similar result could be established, but the
break extent would have to be correspondingly redefined as a �∞ distance between
the covariance matrices instead of Θ1 and Θ2 which would unnecessarily restrict
the application of this approach in the field of neuroimaging where the precision
matrix is the main object of interest.
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5. Simulation study

5.1. Design

In our simulation we test

H0 =
{
{Xi}Ni=1 ∼ N (0, I)

}
versus an alternative

H1 =
{
∃τ : {Xi}τi=1 ∼ N (0, I) and {Xi}Ni=τ+1 ∼ N (0,Σ1)

}
.

The alternative covariance matrix Σ1 was generated in the following way. First
we draw k ∼ Poiss(3). The matrix Σ1 is composed as a block-diagonal matrix
of k matrices of size 2 × 2 with ones on their diagonals and their off-diagonal
element drawn uniformly from [−0.6;−0.3]∪ [0.3; 0.6] and an identity matrix of
size (p− 2k)× (p− 2k). The dimensionality of the problem is chosen as p = 50,
the length of the sample N = 1000 and we choose the set Is = [1, 2, ..100]. The
absence of positive effect of large sample size N is discussed in Sections 3 and 4.
Moreover, in all the simulations under alternative the sample was generated with
the change point in the middle: τ = N/2 but the algorithm was oblivious about
this as well as about either of the covariance matrices. The significance level
α = 0.05 was chosen. In all the experiments graphical lasso with penalization

parameter λn =
√

log p
n was used in order to obtain Θ̂S

n (t). In the same way,

graphical lasso with penalization parameter λs was used in order to obtain Θ̂.
We assess the performance of the proposed approach in both on-line and

off-line settings. Multiple break detection is left out of the scope because the
suggested method attacks the problem repetitively detecting the breaks one-
by-one in on-line fashion. In on-line setting the method is calibrated in order
to raise a false alarm with probability α = 0.05 on N data points using for
calibration the set {Xi}i∈Is which is known in advance (unlike the rest of the
dataset).

5.2. Experiment results

We have also come up with an approach to the same problem not involving boot-
strap. The paper [30] defines a high-dimensional two-sample test for equality of
matrices. Moreover, the authors prove asymptotic normality of their statistic
which makes computing p-value possible. We suggest to run this test for every
t ∈ Tn and every n ∈ N, adjust the obtained p-values using Holm method [23]
and eventually compare them against α. This example is considered in order
to demonstrate inapplicability of a straightforward application of a two-sample
test for change-point detection.

The paper [31] suggests an approach based on comparing characteristic func-
tions of random variables. The critical values were chosen with permutation
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test as proposed by the authors. In our experiments the method was allowed to
consider all the sample at once. The R-package ecp [25] was used.

In [12] a high-dimensional approach aiming to detect a change-point in second-
order structure of the time series is suggested. In order to investigate its perfor-
mance in our setting we use the implementation kindly provided by the authors
of the paper.

Our approach is implemented as an R-package covcp, which is available on
GitHub.1

Below we report and discuss results for a particular alternative matrix Σ1

generated in such a way suggested in Section 5.1. All the methods being con-
sidered exhibit comparable performance for other matrices Σ1 drawn from the
same distributions.

The first type error rate and power for our approach are reported in Table 1.
As one can see, our approach allows to properly control first type error rate
in both off-line and on-line setting. In fact, the test is conservative and we be-
lieve this is caused by the ≤ signs entering the definitions of z�n(·) (2.6) and the
multiplicity correction (2.7). As expected, the power of the test is higher for
larger windows and it is decreased by adding narrower windows into considera-
tion which is the price to be paid for better localization of a change point. The
power of the test is rather similar in on-line and off-line settings which is due
to its local nature.

In our study the approaches proposed in [31], [12] and the one based on the
two sample test [30] turned out to be conservative, but neither of them exhibited
power above 0.1.

In order to justify application of multiscale approach (i. e. |N| > 1) for the
sake of better change-point localization in off-line setting we report the distribu-
tion of the narrowest detecting window n̂ (defined by (2.8)) over N in Figure 2.
The Table 1 represents average precision of change-point localization for var-
ious choices of set of window sizes N. One can see, that multiscale approach
significantly improves the precision of localization.

Similarly, in on-line setting we analyze delay of detection – the average num-
ber of data points after the break which have to be considered before the method
detects a break. As Table 1 shows, the delay of detection is significantly de-
creased by the use of multiscale approach which justifies its use in on-line setting
as well.

6. Analysis of real-world datasets

The paper [36] presents a functional magnetic resonance imaging study on hu-
man subjects, who had to learn the relation between different auditory stimuli
and a monetary reward while being scanned. Based on their recorded perfor-
mance (e.g. success rate) those of them who have managed to learn the relation
within the time course of the experiment are considered learners. The authors

1https://github.com/akopich/covcp.

https://github.com/akopich/covcp
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Table 1

First type error rate and power of change-point localization of the proposed approach for
various sets of window sizes N. Localization precision and delay of detection are also

reported for off-line and on-line settings respectively.

Off-line On-line

N
I type

error rate
Power

Localization
precision

I type
error rate

Power
Delay of
detection

{70} 0.02 0.09 70 0.02 0.08 46
{100} 0.00 0.37 100 0.00 0.37 97
{140} 0.01 0.81 140 0.01 0.81 127
{200} 0.00 0.99 200 0.00 0.99 160

{140, 200} 0.00 0.99 153 0.00 0.99 140
{100, 140, 200} 0.00 0.98 146 0.00 0.99 134

{70, 140} 0.01 0.76 135 0.01 0.76 124
{100, 140} 0.01 0.75 124 0.01 0.75 118

{70, 100, 140} 0.01 0.74 123 0.01 0.72 118

Figure 2. Pie charts representing distribution of narrowest detecting window n̂ and the pre-
cision of localization in cases of |N| = {70, 140}, |N| = {100, 140} and |N| = {70, 100, 140}
respectively.

have investigated the activity of 4 brain regions-of-interest (ROI) which are be-
lieved to be involved in solving problems like the suggested one. Among the
learners 3 of the ROIs exhibit a statistically significant change in the Blood
Oxygenation Level Dependent (BOLD) response between the first and the last
quarters of the experiment.

In this paper we analyze the BOLD responses for 18 subjects which were
classified as learners. We have considered a finer-grained brain atlas with p = 256
ROIs [19]. For each subject and for each ROI a time-course of length N =
1680 was acquired. Datasets for each subject were analyzed separately. We have
applied the proposed approach to the residuals of linear modeling usual in fMRI
experiments [35]. The residuals are publicly available.2 We have used graphical

lasso with the penalty parameter λn =
√

log p
n , a single window size n = 50 was

considered and the first 200 data points were used for bootstrap simulations
(Is = {1...200}). The proposed approach has detected a change-point in the
covariance structure of residuals at significance level α = 0.05 for each of the
subjects.

2http://www.wias-berlin.de/preprint/2404/wias_preprints_2404.zip.

http://www.wias-berlin.de/preprint/2404/wias_preprints_2404.zip
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Appendix A: Proof of sensitivity result

Proof of Theorem 4.1. Proof consists in applying of the finite-sample
Theorem A.1. Its applicability is guaranteed by the consistency results given
in papers [37, 3, 27] and by the results from [26, 27, 3] bounding the term RT̂ .
High probability of set T↔ is ensured by Lemma G.1.

Theorem A.1. Let Is ⊆ 1..τ . Let Θ̂ denote a symmetric estimator of Θ1 s.t.
for some r ∈ R it holds that ∣∣∣∣∣∣Θ1 − Θ̂

∣∣∣∣∣∣
∞

< r

and (Θ1)ij = 0 ⇒ Θ̂ij = 0. Suppose Assumption 3.1 holds and there exists RT̂

such that
∣∣∣∣∣∣rSn+

(t)
∣∣∣∣∣∣
∞

≤ RT̂ for all S ∈ {l, r} and t ∈ Tn+ on some set

T↔ :=
{
∀t ≤ τ − n+ :

∣∣∣∣∣∣Σ̂S
n (t)− Σ∗

1

∣∣∣∣∣∣
∞

≤ δn+

}
⋂{

∀t ≥ τ + n+ :
∣∣∣∣∣∣Σ̂S

n (t)− Σ∗
2

∣∣∣∣∣∣
∞

≤ δn+

}
.

Moreover, let the residual RA� defined in Lemma F.2 be bounded:

RA� ≤ α

6 |N| .

Also let √
n+

2
||S||∞

(
Δ− 2RT̂

)
≥ q, (A.1)

where

q :=

√
2 (1 + ΔY (r)) log

(
2N |N| p2

α− 3 |N|RA�

)
(A.2)

and ΔY is defined in Lemma G.2. Then on set T↔ with probability at least

1− pΣY
s (x, q),

where pΣY
s (x, q) is defined in Lemma G.2, H0 will be rejected.

Discussion of finite-sample sensitivity result The assumption (A.1) is
rather complicated. Here we note that if either graphical lasso [37], adaptive
graphical lasso [43] or thresholded de-sparsified estimator based on node-wise
procedure [27] with penalization parameter chosen as λs 
 o(

√
log p/n) was

used, given d, s, p,N, n−, n+ → ∞, N > 2n+, n+ ≥ n−, s ≥ n− and d = o(
√
n+)

it boils down to

n+ ≥ D6
1

Δ

(∣∣∣∣S−1
∣∣∣∣
∞ log(N |N| p2)

)2
for some positive constant D6 independent of N,N, p, d, S while the parameters
q, γ and x may be chosen as in (B.5), (B.4), (B.3) (high probability of T↔ is
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ensured by Lemma G.1). At the same time the remainder RA� can be bounded
by (B.2).

As expected, the bound for sufficient window size decreases with growth of
the break extent Δ and the size of the set Is, but increases with dimensionality
p. It is worth noticing, that the latter dependence is only logarithmic. And again,
in the same way as with Theorem 3.1, the bound increases with the sample size
N (only logarithmically) since we use only 2n data points.

Proof of Theorem A.1. The strategy of the proof is straightforward.

1. Bound the probability of a large deviation of the Gaussian approximation∣∣∣∣ζn+

∣∣∣∣
∞ of A�

n+
using Chernoff bound.

2. Bound the corresponding critical level x�
n+

(α) up to the remainder term
RA� , using the approximation guaranties provided by Lemma F.2.

3. Conclude that An+ > x�
n+

(α) and therefore the H0 is rejected, by con-
struction of the test statistic An+ .

First, denote all the window sizes being considered as n1, n2, ...n|N|:

N = {n1, n2, ..., n|N|},

n− = n1 < n2 < ... < n|N| = n+.

Consider a pair of centered normal vectors

η :=
(
ηn1 ηn2 ... ηn|N|

)
∼ N (0,Σ∗

Y ),

ζ :=
(
ζn1 ζn2 ... ζn|N|

)
∼ N (0, Σ̂Y ),

Σ∗
Y :=

1

2n+

2n+∑
j=1

Var
[
Y n
·j
]
,

Σ̂Y :=
1

2n+

2n+∑
j=1

Var
[
Y n�
·j

]
,

where vectors Y n
·j and Y n�

·j are defined in proofs of Lemma E.2 and Lemma F.1
respectively.

Lemma A.2 applies here and yields for all positive q

P
{∣∣∣∣ζn+

∣∣∣∣
∞ ≥ q

}
≤ 2

∣∣Tn+

∣∣ p2 exp
⎛
⎝− q2

2
∣∣∣∣∣∣Σ̂Y

∣∣∣∣∣∣
∞

⎞
⎠ ,

where Σ̂Y = Var [ζ] and
∣∣Tn+

∣∣ is the number of central points for window of
size n+. Applying Lemma G.2 on a set of probability at least 1 − pΣY

s (x, q)



Change-point detection in high-dimensional covariance structure 3271

yields
∣∣∣∣∣∣Σ∗

Y − Σ̂Y

∣∣∣∣∣∣
∞

≤ ΔY , and hence, due to the fact that ||Σ∗
Y ||∞ = 1 by

construction,

P
{∣∣∣∣ζn+

∣∣∣∣
∞ ≥ q

}
≤ 2

∣∣Tn+

∣∣ p2 exp(
− q2

2 (1 + ΔY )

)
.

Due to Lemma F.2 and continuity of Gaussian c.d.f.

P
�
{
A�

n+
≥ x�

n+
(α)

}
≥ α/ |N| − 2RA�

and due to Lemma F.2 along with the fact that
∣∣Tn+

∣∣ < N , choosing q as

proposed by equation (A.2) we ensure that x�
n+

(α) ≤ q.
Now by assumption of the theorem and by construction of the test statistics

An

An+ ≥
√

n+

2
||S||∞

(
Δ− 2RT̂

)
.

Finally, we notice that due to assumption (A.1) An+ > q and therefore, H0 will
be rejected.

Remark A.1. The assumption Is ⊆ 1..τ is only technical. A similar result may
be proven without relying on it by methodologically the same argument. Really, if
we drop the assumption, the matrix S (depending only on the distribution before

the break) will fail to normalize the vectors Y n�
·j and therefore

∣∣∣∣∣∣Σ̂Y

∣∣∣∣∣∣
∞

will

significantly deviate from 1. Yet a bound (omitted for brevity) of sort
∣∣∣∣∣∣Σ̂Y

∣∣∣∣∣∣
∞

<

C where C would depend on ΔY , distributions before and after the break as well
as on the portions of the data points before and after the break included in the
Is can be established. The term C will have to enter the definition (A.2) of q
instead of (1 + ΔY ).

Lemma A.1. Consider a centered random Gaussian vector ξ ∈ R
p with arbi-

trary covariance matrix Σ. For any positive q it holds that

P

{
max

i
ξi ≥ q

}
≤ p exp

(
− q2

2 ||Σ||∞

)
.

Proof. By convexity we obtain the following chain of inequalities for any t

etE[maxi ξi] ≤ E
[
etmaxi ξi

]
≤ E

[
et

∑
i ξi

]
≤ pet

2||Σ||∞/2.

Chernoff bound yields for any t

P

{
max

i
ξi ≥ q

}
≤ pet

2||Σ||∞/2

etq
.

Finally, optimization over t yields the claim.

As a trivial corollary, one obtains
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Lemma A.2. Consider a centered random Gaussian vector ξ ∈ R
p with arbi-

trary covariance matrix Σ. For any positive q it holds that

P {||ξ||∞ ≥ q} ≤ 2p exp

(
− q2

2 ||Σ||∞

)
.

Appendix B: Proof of bootstrap validity result

Proof of Theorem 3.1. Proof consists in applying of the finite-sample
Theorem B.1. Its applicability is guaranteed by the consistency results given
in papers [37, 3, 27] and by the results from [26, 27, 3] bounding the term RT̂ .
High probability of set TT is ensured by Lemma G.1.

Theorem B.1. Assume H0 holds and furthermore, let X1, X2, ...XN be i.i.d.
Let Θ̂ denote a symmetric estimator of Θ∗ s.t. for some positive r∣∣∣∣∣∣Θ∗ − Θ̂

∣∣∣∣∣∣
∞

< r

and Θ∗
ij = 0 ⇒ Θ̂ij = 0. Suppose Assumption 3.1 holds and there exists RT̂

such that
√
n
∣∣∣∣rSn (t)

∣∣∣∣
∞ ≤ RT̂ for all S ∈ {l, r}, n ∈ N and t ∈ Tn on set

TT :=
{
∀S ∈ {l, r}, n ∈ N, t ∈ Tn :

∣∣∣∣∣∣Σ̂S
n (t)− E

[
X1X

T
1

]∣∣∣∣∣∣
∞

≤ δn

}
.

Moreover, let

R := (3 + 2 |N|)
(
2RA(RT̂ ) + 2RA� +R±

Σ(r)
)
≤ α

2
,

where the remainders RA, RA� , R±
Σ are defined in Lemma E.1, Lemma F.2 and

Lemma C.1 respectively and the mis-tie ΔY involved in the definition of R±
Σ

comes from Lemma G.2. Then on set TT it holds that∣∣∣P{
∀n ∈ N : An ≤ x�

n(α)
}
− (1− α)

∣∣∣ ≤ R+ 2(1− q).

where
q = 1− pΣY

s (x, q)− pΣ(γ)− pMs (x) (B.1)

and the terms pΣY
s (x, q), pΣ(γ) and pMs (x) are defined in Lemma G.2,

Lemma G.1 and Lemma F.2 respectively.

Discussion of finite-sample bootstrap validity result The terms ΔY ,
RA, RA� and R±

Σ involved in the statement of Theorem B.1 are rather compli-
cated. The exact expressions for them are provided by Lemma G.2, Lemma E.1,
Lemma F.2 and Lemma C.1 respectively, 3rd and 4th moments M3

3 and M4
4 in-

volved therein are bounded by Lemma E.4 and Lemma G.3 while asymptotic
bounds for RT̂ are provided in [27] (for node-wise procedure) and [26] (for
graphical lasso). For the case of graphical lasso an explicit form of RT̂ is given
in [3].
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Here we just note that if Θ̂ is a root-n consistent estimator, recovering spar-
sity pattern (graphical lasso [37], adaptive graphical lasso [43] or thresholded de-
sparsified estimator based on node-wise procedure [27]), then for

d, s, p,N, n−, n+ → ∞, N > 2n+, n+ ≥ n−, s ≥ n− and d2

n−
= o(1) given

the spectrum of Θ∗ is bounded

RA� ≤ D1

(
L4d log7(2p2Tn+)

n−

)1/6

log2(ps). (B.2)

If either graphical lasso, adaptive graphical lasso or node-wise procedure [32] is

used with λn 

√

log p
n in order to obtain Θ̂S

n (t), then on set TT it holds that

RA ≤ D2

(
L4d log7(2p2Tn+)

n−

)1/6

+D3

√
log 2p2T

n−
d log p.

The high probability of TT may be ensured by means of Lemma G.1 e.g., choos-
ing γ = log(500T ) for P {TT } ≥ 0.99. Further

ΔY ≤ D4
L4d2√

s
,

R±
Σ ≤ D5

(
L4d2√

s

)1/3

log2/3(2p2T ).

Here D1, ..., D5 are positive constants independent of N , N, d, p and s. We also
note that the proper choice of x, γ and q in (B.1) is

x = 6, (B.3)

γ = log(500T ), (B.4)

q = 7 + 4 log(p) (B.5)

which ensures the probability defined by (B.1) to be above 0.99. For exact
expression of pΣY

s (x, q), pΣ(γ) and pMs (x) see Lemma G.2, Lemma G.1 and
Lemma F.2.

Proof of Theorem B.1. The proof consists in application of Lemma F.1,
Lemma E.2 and Lemma D.1 justifying applicability of Lemma C.1.

Appendix C: Sandwiching lemma

Lemma C.1. Consider a normal multivariate vector η with a deterministic
covariance matrix and a normal multivariate vector ζ with a possibly random
covariance matrix such that

sup
{xn}n∈N⊂R

|P {∀n ∈ N : An ≤ xn} − P {∀n ∈ N : ||ηn||∞ ≤ xn}| ≤ RA, (C.1)
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sup
{xn}n∈N⊂R

∣∣∣P�
{
∀n ∈ N : A�

n ≤ xn

}
− P

� {∀n ∈ N : ||ζn||∞ ≤ xn}
∣∣∣ ≤ RA� ,

(C.2)

sup
{xn}n∈N⊂R

∣∣∣P {∀n ∈ N : An ≤ xn} − P
�
{
∀n ∈ N : A�

n ≤ xn

}∣∣∣ ≤ R. (C.3)

where ηn and ζn are sub-vectors of η and ζ respectively. Then∣∣∣P{
∀n ∈ N : An ≤ x�

n(α)
}
− (1− α)

∣∣∣ ≤ (3 + 2 |N|) (R+RA +RA�) .

Proof. Let us introduce some notation. Denote multivariate cumulative distri-
bution function of An, A

�
n, ||ηn||∞ , ||ζn||∞ as P, P �,N ,N � : R|N| → [0, 1] re-

spectively. Define the following sets for all δ ∈ [0, α]

Z+(δ) := {z : N (z) ≥ 1− α− δ} ,

Z−(δ) := {z : N (z) ≤ 1− α+ δ}

and their boundaries

∂Z+(δ) := {z : N (z) = 1− α− δ} , (C.4)

∂Z−(δ) := {z : N (z) = 1− α+ δ} .

Consider δ = R+RA +RA� and denote sets Z+ = Z+(δ), Z− = Z−(δ), ∂Z− =
∂Z−(δ), ∂Z+ = ∂Z+(δ) Define a set of thresholds satisfying the confidence level

Z� :=
{
z : P �(z) ≥ 1− α & ∀z1 < z : P �(z1) < 1− α

}
here and below comparison of vectors should be understood element-wise. Notice
that due to continuity of multivariate normal distribution and assumption (C.2)
∀z� ∈ Z� ∣∣∣P �(z�)− (1− α)

∣∣∣ ≤ RA� . (C.5)

Now for all z− ∈ ∂Z− and for all z� ∈ Z� it holds that

P �(z−) ≤ P (z−) +R

≤ N (z−) +R+RA

≤ 1− α−RA�

≤ P �(z�)

where we have consequently used (C.3), (C.1), (C.4) and (C.5). In the same way
one obtains for all z+ ∈ ∂Z+ and for all z� ∈ Z�

P �(z+) ≥ P �(z�)

which implies that Z� ⊂ Z− ∩ Z+.
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Now denote quantile functions of ||ηn||∞ as zN : [0, 1] → R
|N|:

∀n ∈ N : P
{
||ηn||∞ ≥ zNn (x)

}
= x.

In exactly the same way define quantile functions zN
�

: [0, 1] → R
|N| of ||ζn||∞.

Clearly for all x ∈ [0, 1],

zN (x + δ) ≤ z�(x) ≤ zN (x− δ)

and hence

z�(α∗) ≤ zN (α∗ − δ) ≤ z�(α∗ − 2δ),

1− α ≤ P �(zN (α∗ − δ)) ≤ P �(z�(α∗ − 2δ)).

Using Taylor expansion with Lagrange remainder term we obtain for some 0 ≤
κ ≤ 2δ

N �
(
z�(α∗ − 2δ)

)
≤ N �

(
zN

�

(α∗ − 2δ)
)
+ δ

= N �
(
zN

�

(α∗)
)
+

∑
n∈N

∂z�
n
N �(zN

�

(α∗))∂αz
N�

n (α∗)κ+ δ

≤ 1− α+
∑
n∈N

∂z�
n
N �(zN

�

(α∗))∂αz
N�

n (α∗)κ+ 3δ.

Next successively using Lemma C.2 and the fact that the quantile function is
an inverse function of c.d.f. we obtain

N �
(
z�(α∗ − 2δ)

)
≤ 1− α+ 3δ + 2δ |N|

and therefore

1− α ≤ P �
(
z�(α∗ − 2δ)

)
≤ 1− α+ δ (3 + 2 |N|) ,

1− α ≤ P �
(
zN (α∗ − δ)

)
≤ 1− α+ δ (3 + 2 |N|) .

In the same way one obtains

1− α− δ (3 + 2 |N|) ≤ P �
(
zN (α∗ + δ)

)
≤ 1− α.

Next, by the argument used in the beginning of the proof we obtain

zN (α∗ + δ), zN (α∗ − δ) ∈ Z−(δ (3 + 2 |N|)) ∩ Z+ (δ (3 + 2 |N|)) .

As the final ingredient, we need to choose deterministic α+ and α− such that

N(zN (α− + δ)) = 1− α− δ (3 + 2 |N|) ,

N(zN (α+ − δ)) = 1− α+ δ (3 + 2 |N|)
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(which is possible due to continuity), so α− ≤ α∗ ≤ α+ and hence by mono-
tonicity

zN (α− + δ) ≤ zN (α∗ + δ) ≤ z�(α∗) ≤ zN (α∗ − δ) ≤ zN (α+ − δ)

and finally

1− α− δ (3 + 2 |N|) ≤ P (zN (α− + δ))

≤ P (z�(α∗))

≤ P (zN (α+ − δ))

≤ 1− α+ δ (3 + 2 |N|) .

Lemma C.2. Consider a random variable ξ and an event A defined on the
same probability space. Let c.d.f. P {ξ ≤ x} and P {ξ ≤ x&A} be differentiable.
Then

∂xP {ξ ≤ x&A}
∂xP {ξ ≤ x} ≤ 1

Proof. Indeed, denoting the complement of set A as A we obtain,

∂xP {ξ ≤ x&A}
∂xP {ξ ≤ x} =

∂xP {ξ ≤ x&A}
∂x

(
P {ξ ≤ x&A}+ P

{
ξ ≤ x&A

})
=

∂xP {ξ ≤ x&A}
∂xP {ξ ≤ x&A}+ ∂xP

{
ξ ≤ x&A

}
=

1

1 +
∂xP{ξ≤x&A}
∂xP{ξ≤x&A}

Using the fact that derivative of c.d.f. is non-negative we finalize the proof.

Appendix D: Similarity of joint distributions of {An}n∈N and
{A�

n}n∈N

Lemma D.1. Under assumptions of Theorem 3.1 it holds that on set T with
probability at least

1− pΣY
s (x, q)− pΣ(γ)− pMs (x)

that

sup
{xn}n∈N⊂R

∣∣∣P {∀n ∈ N : An ≤ xn} − P
�
{
∀n ∈ N : A�

n ≤ xn

}∣∣∣ ≤ RA+RA� +R±
Σ .

Proof. The proof consists in applying Lemma F.1, Lemma E.2, Lemma G.2 and
Lemma H.3.
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Appendix E: Gaussian approximation result for An

Lemma E.1. Suppose there exists RT̂ such that
√
n
∣∣∣∣rS(t)

∣∣∣∣
∞ ≤ RT̂ for all S

and t on some set T . Then on set T it holds that

sup
x

|P {∀n ∈ N : An ≤ xn} − P {∀n ∈ N : ||ηn||∞ ≤ xn}| ≤ RA

:= CA

((
F log7(p2Tn+)

)1/6
+ 4RT̂

√
log(2p2T )

)
.

where F is defined by (E.2) and ηn by (E.1).

Proof. Substituting (2.4) to (2.3) yields

An(t) =

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣
1√
2n

S−1

⎛
⎝ ∑

i∈Il
n(t)

Zi −
∑

i∈Ir
n(t)

Zi

⎞
⎠

︸ ︷︷ ︸
Sn
Z(t)

+
1√
2
(rln − rrn)

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣
∞

.

Now denote stacked Sn
Z(t) for all n ∈ N and as Sn

Z and for all n as SZ .
Lemma E.2 bounds the c.d.f. of ||SZ ||∞ as

sup
x

|P {∀n ∈ N : ||Sn
Z ||∞ ≤ xn} − P {∀n ∈ N : ||ηn||∞ ≤ xn}|

≤ CA

(
F log7(p2Tn+)

)1/6
.

But clearly on set T
|An − ||Sn

Z ||∞| ≤
√
2RT̂

And hence for all {xn}n∈N ⊂ R

|P {∀n ∈ N : An < xn|T } − P {∀n ∈ N : ||ηn||∞ ≤ xn}|

≤ CA

(
F log7(p2Tn+)

)1/6
+ P

{
∀n ∈ N : ||ηn||∞ ≤ xn +

√
2RT̂

}
− P

{
∀n ∈ N : ||ηn||∞ ≤ xn −

√
2RT̂

}
.

Now notice that ∀i : (Σ∗
Y )ii = 1 and bound the latter two terms by means of

Lemma H.2:

sup
{xn}n∈N⊂R|N|

|P {∀n ∈ N : An < xn|T } − P {∀n ∈ N : ||ηn||∞ ≤ xn}|

≤ CA

(
F log7(p2Tn+)

)1/6
+ 4RT̂ (

√
log(2p2T ))
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Lemma E.2. Let Assumption 3.1 hold. Then

sup
x

|P {∀n ∈ N : ||Sn
Z ||∞ ≤ xn} − P {∀n ∈ N : ||ηn||∞ ≤ xn}|

≤ CA

(
F log7(2p2Tn+)

)1/6
Where (

η1 η2 ... η|N| )
∼ N (0,Σ∗

Y ), (E.1)

Σ∗
Y =

1

N

N∑
i=1

Var [Y·i] ,

F =
1

2n−

(
β log 2 ∨

√
2√

2− 1
γ

)2

∨ 1

2n+

(
n+

n−

)1/3

M2
3 ∨

√
1

2n+n−
M2

4 (E.2)

with γ defined by (E.5), β by (E.6) and Y by (E.3) and an independent constant
CA .

Proof. Consider a matrix Yn with 2n+ columns

Y T
n :=

√
n+

n
×⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ZS
1 O ... O −ZS

2n++1 ...

ZS
2 ZS

2 ... ... ... ...
... ZS

3 ... ... ... ...
ZS
n ... ... ... ... ...

−ZS
n+1 ZS

n+1 ... ... ... ...
−ZS

n+2 −ZS
n+2 ... ... ... ...

... −ZS
n+3 ... O ... ...

−ZS
2n ... ... ZS

2n+−2n+1 O ...

O −ZS
2n+1 ... ZS

2n+−2n+2 ZS
2n+−2n+2 ...

O O ... ... ... ...
... ... ... −ZS

2n+−1 −ZS
2n+−1 ...

O O ... −ZS
2n+

−ZS
2n+

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where ZS
i := (S−1Zi)

T . Clearly, columns of the matrix are independent and

Sn
Z =

1√
2n+

2n+∑
l=0

(Yn)·l

Next define a block matrix composed of Yn matrices:

Y :=

⎛
⎜⎜⎝

Y1

Y2

...
Y|N|

⎞
⎟⎟⎠ (E.3)
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Clearly vectors Y·l are independent and

SZ =
1√
2n+

2n+∑
l=0

Y·l

In order to complete the proof we make use of Lemma H.1. Denote

Bn+ =

√
n+

n−

(
β log 2 ∨

√
2√

2− 1
γ

)
∨
(
n+

n−

)1/6

M3 ∨
(
n+

n−

)1/4

M4 (E.4)

By means of Lemma G.3 one shows that the assumptions of Lemma E.3 hold
for components of ZS

i with

γ := 12L2
√
dΛ (Θ∗) ||Θ∗||∞

∣∣∣∣S−1
∣∣∣∣
∞ (E.5)

β :=

(
9

2
L2

√
dΛ (Θ∗) + 1

)
||Θ∗||∞

∣∣∣∣S−1
∣∣∣∣
∞ (E.6)

where Λ (Θ∗) denotes the maximal eigen value of Θ∗. Therefore condition (H.1)
holds with Bn defined by equation (E.4).

1

N

N∑
i=1

E
[
(Y n

ij )
2
]
≥ min

j
Var

[
ZS
1j

]
= 1

Hence, Assumption H.1 is fulfilled with b = 1. Next notice that for some k-th
component of ZS

i and central point t (both defined by j):

1

2n+

2n+∑
i=1

E

[∣∣Y n
ij

∣∣3] =
1

2n+

∑
i∈Il

n(t)∪Ir
n(t)

E

[(√
n+

n

∣∣ZS
ik

∣∣)3
]

=
1

2n+

∑
i∈Il

n(t)∪Ir
n(t)

(n+

n

)3/2

E

[∣∣ZS
ik

∣∣3]

=
2n

2n+

(n+

n

)3/2

E

[∣∣ZS
ik

∣∣3]
=

√
n+

n
E

[∣∣ZS
ik

∣∣3]
≤

√
n+

n−
M3

3

and in the same way:

1

2n+

N∑
i=1

E

[∣∣Y n
ij

∣∣4] ≤ n+

n−
M4

4

Therefore Assumption H.2 holds with Bn+ so Lemma H.1 applies here and pro-
vides us with the claimed bound. Moreover, CA depends only on b which equals
one which implies that the constant CA depends on nothing.
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Lemma E.3. Consider a random variable ξ. Suppose the following bound holds
∀x ≥ 0:

P {|ξ| ≥ γx+ β} ≤ e−x

Then

E

[
exp

(
|ξ|
B

)]
≤ 2

for

B = β log 2 ∨
√
2√

2− 1
γ

Proof. Integration by parts yields

E

[
exp

(
|ξ|
B

)]
≤ exp

(
β

B

)
+

γ

B

∫ +∞

0

exp

(
γx+ β

B

)
e−xdx

∫ +∞

0

exp

(
γx+ β

B

)
e−xdx =

B

B − γ
exp

(
β

B

)

E

[
exp

(
|ξ|
B

)]
≤ B

B − γ
exp

(
β

B

)
≤ 2

By the same technique the following lemma can be proven

Lemma E.4. Under assumptions of Lemma E.3

E

[
|ξ|3

]
≤ β3 + 3γβ2 + 6βγ2 + 2γ3,

E
[
ξ4
]
≤ β4 + 4γβ3 + 12β2γ26βγ3 + 24γ4.

Appendix F: Gaussian approximation result for A�
n

Lemma F.1.

sup
{xn}n∈N⊂R

∣∣∣P�
{
∀n ∈ N : A� ≤ xn

}
− P

� {∀n ∈ N : ||ζn||∞ ≤ xn}
∣∣∣

≤ ĈA�

(
F � log7(2p2Tn+)

)1/6

.

Where (
ζ1 ζ2 ... ζ |N| )

∼ N (0, Σ̂Y ),

Σ̂Y =
1

N

N∑
i=1

Var
[
Y �
·i

]
,

F � =

(
1

2n− log2 2
∨ 1

2n+

(
n+

n−

)1/3

∨
√

1

2n+n−

)∣∣∣∣S−1
∣∣∣∣2
∞ (M �)2
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M � = max
i∈Is

∣∣∣∣∣∣Ẑi

∣∣∣∣∣∣
∞

Y �
n are defined by (F.1), and ĈA� depends only on min1≤k≤p(Σ̂Y )kk

Proof. Denote the term under the sign of ||·||∞ in (2.5) as Sn�
Z

Sn�
Z :=

1√
2n

⎛
⎝ ∑

i∈Il
n(t)

ZS�
i −

∑
i∈Ir

n(t)

ZS�
i

⎞
⎠T

where ZS�
i := (S−1Z�

i )
T and let S�

Z be a vector composed of stacked vectors Sn�
Z

for all n ∈ N.
Consider a matrix

(Y �
n)

T :=

√
n+

n
×⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ZS�
1 O ... O −ZS�

2n++1 ...

ZS�
2 ZS�

2 ... ... ... ...
... ZS�

3 ... ... ... ...
ZS�
n ... ... ... ... ...

−ZS�
n+1 ZS�

n+1 ... ... ... ...
−ZS�

n+2 −ZS�
n+2 ... ... ... ...

... −ZS�
n+3 ... O ... ...

−ZS�
2n ... ... ZS�

2n+−2n+1 O ...

O −ZS�
2n+1 ... ZS�

2n+−2n+2 ZS�
2n+−2n+2 ...

O O ... ... ... ...
... ... ... −ZS�

2n+−1 −ZS�
2n+−1 ...

O O ... −ZS�
2n+

−ZS�
2n+

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(F.1)

which is a bootstrap counterpart of Yn from the proof of Lemma E.2 and con-
struct a block matrix Y � :

Y � =

⎛
⎜⎜⎝

Y �
1

Y �
2

...

Y �
|N|

⎞
⎟⎟⎠

Clearly vectors Y �
·l are independent and

S�
Z =

1√
2n+

N∑
l=0

Y �
·l

Now notice

1

2n+

N∑
i=1

E

[
|Yij |3

]
≤

√
n+

n−
max
i∈Is

∣∣∣∣∣∣Ẑi

∣∣∣∣∣∣3
∞

∣∣∣∣S−1
∣∣∣∣3
∞
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1

2n+

N∑
i=1

E

[
|Yij |4

]
≤ n+

n−
max
i∈Is

∣∣∣∣∣∣Ẑi

∣∣∣∣∣∣4
∞

∣∣∣∣S−1
∣∣∣∣4
∞

And finally apply Lemma H.1.

Lemma F.2. Let Θ̂ denote an estimator of Θ∗ s.t. for some positive r∣∣∣∣∣∣Θ∗ − Θ̂
∣∣∣∣∣∣
∞

< r

and Θ∗
ij = 0 ⇒ Θ̂ij = 0, furthermore, let ΔY (r) < 1/2, also suppose

Assumption 3.1 holds. Then at least with probability 1− pMs (x)− pΣY
s (x, q)

sup
{xn}n∈N⊂R

∣∣∣P�
{
∀n ∈ N : A� ≤ xn

}
− P

� {∀n ∈ N : ||ζn||∞ ≤ xn}
∣∣∣

≤ RAb := CA�

(
F̂ log7(2p2Tn+)

)1/6

where

F̂ =

(
1

2n− log2 2
∨ 1

2n+

(
n+

n−

)1/3

∨
√

1

2n+n−

)∣∣∣∣S−1
∣∣∣∣2
∞ (C�)2

C� := Zs(x) + (3(dx)2 + 1)r

and constant CA� depends only on ΔY .

Proof. The proof consists in subsequently applying Lemma F.1 and Lemma F.3

ensuring C� ≥ M � = maxi∈Is

∣∣∣∣∣∣Ẑi

∣∣∣∣∣∣
∞

with probability at least 1−pMs (x) and ap-

plying Lemma G.2 providing that
∣∣∣∣∣∣Σ∗

Y − Σ̂Y

∣∣∣∣∣∣
∞

≤ ΔY ≤ 1 = min1≤k≤p(Σ
∗
Y )kk

with probability at least 1 − pΣY
s (x, q) which implies the existence of a deter-

ministic constant CA� > ĈA� .

Lemma F.3. Let Θ̂ denote an estimator of Θ∗ s.t. for some positive r∣∣∣∣∣∣Θ∗ − Θ̂
∣∣∣∣∣∣
∞

< r

and Θ∗
ij = 0 ⇒ Θ̂ij = 0. Also let Assumption 3.1 hold. Then with probability at

least 1− pMs (x)
M � ≤ Zs(x) + ΔZ(x) (F.2)

where pMs (x) := pZs(x) + pXs (x).

Proof. Direct application of Lemma G.4 yields

P {∀i ∈ Is : ||Zi||∞ ≤ Zs(x)} ≥ 1− pZs(x)

which in combination with the fact (provided by Lemma G.6) that
∣∣∣∣∣∣Ẑi − Zi

∣∣∣∣∣∣
∞
≤

ΔZ(x) implies (F.2).
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Appendix G: Σ̂Y ≈ Σ∗
Y

First of all, if Σ∗
Z := Var

[
Zi

]
≈ Var�

[
Z�
i

]
, then Σ∗

Y ≈ Σ̂Y as well (Lemma G.2).

The idea is to notice that

Var
[
Z�
i

]
= Σ̂Ẑ := Es

[(
Ẑi − Es

[
Ẑi

])(
Ẑi − Es

[
Ẑi

])T
]

due to the choice of the bootstrap scheme. Next we show that Σ∗
Z ≈ Σ̂Z :=

Es

[(
Zi − Es

[
Zi

]) (
Zi − Es

[
Zi

])T ]
(Lemma G.5) and finalize the proof by prov-

ing that Σ̂Z ≈ Σ̂Ẑ (Lemma G.7).
The results of this section rely on a lemma which is a trivial corollary of

Lemma 6 by [26] providing the concentration result for the empirical covariance
matrix

Lemma G.1. Let Assumption 3.1 hold for some L > 0. Then for any positive γ

δn(χ) := 2L2

(
2 log p+ χ

n
+

√
4 log p+ 2χ

n

)

P

{∣∣∣∣∣∣Σ̂− Σ∗
∣∣∣∣∣∣
∞

≥ δn(γ)
}
≤ pΣ(γ) := 2e−χ.

Lemma G.2. Assume, Assumption 3.1 holds. Moreover, let∣∣∣∣Es

[
XiX

T
i

]
− Σ∗∣∣∣∣

∞ ≤ δs

and let Θ̂ denote a symmetric estimator of Θ∗ s.t.∣∣∣∣∣∣Θ∗ − Θ̂
∣∣∣∣∣∣
∞

< r

and Θ∗
ij = 0 ⇒ Θ̂ij = 0. Then for positive x and q

P

{∣∣∣∣∣∣Σ̂Y − Σ∗
Y

∣∣∣∣∣∣
∞

≥ ΔY

}
≤ pΣY

s (x, q)

where
pΣY
s (x, q) := pΣZ1

s
(x, q) + pΣZ2

s
(x)

ΔY :=
∣∣∣∣S−1

∣∣∣∣2
∞

(
Δ

(1)
ΣZ

+Δ
(2)
ΣZ

)
and Δ

(1)
ΣZ

and Δ
(2)
ΣZ

along with the probabilities pΣZ1
s

(x, q) and pΣZ2
s

(x) are defined
in Lemma G.5 and Lemma G.7 respectively.

Proof. Notice that∣∣∣∣∣∣Σ̂Y − Σ∗
Y

∣∣∣∣∣∣
∞

=
∣∣∣∣∣∣S−1Σ̂ẐS

−1 − S−1Σ∗
ZS

−1
∣∣∣∣∣∣
∞

≤
∣∣∣∣S−1

∣∣∣∣2
∞

∣∣∣∣∣∣Σ̂Ẑ − Σ∗
Z

∣∣∣∣∣∣
∞
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because the matrices Σ̂Y and Σ∗
Y are composed of blocks S−1Σ̂ZS

−1 and
S−1Σ∗

ZS
−1 respectively, each block multiplied by some positive value not greater

than 1 (which can be verified by simple algebra).
By Lemma G.7 and Lemma G.5∣∣∣∣∣∣Σ̂Ẑ − Σ∗

Z

∣∣∣∣∣∣
∞

≤ Δ
(1)
ΣZ

+Δ
(2)
ΣZ

and hence ∣∣∣∣∣∣Σ̂Y − Σ∗
Y

∣∣∣∣∣∣
∞

≤
∣∣∣∣S−1

∣∣∣∣2
∞ (Δ

(1)
ΣZ

+Δ
(2)
ΣZ

)

with probability at least

1− pΣZ1

s
(x, q)− pΣZ2

s
(x)

Lemma G.3. Under Assumption 3.1 it holds for arbitrary 1 ≤ u, v ≤ p and
positive x that

P

{
|Z1,uv| ≤

(
3L2

√
dΛ (Θ∗)

(
3

2
+ 4x

)
+ 1

)
||Θ∗||∞

}
≥ 1− e−x

Proof. Re-write the definition (2.2) of an element Zi,uv for arbitrary 1 ≤ u, v ≤ p

Zi,uv = Θ∗
uXiΘ

∗
vXi −Θ∗

uv

= XT
i

[
Θ∗

u(Θ
∗
v)

T
]
Xi −Θ∗

uv.

The first term is clearly a value of a quadratic form defined by the matrix
B = Θ∗

u(Θ
∗
v)

T . Note that rankB = 1 which implies that it is either positive
semi-definite or negative semi-definite. Next we apply Lemma H.4 and obtain
for all positive x

P

{∣∣XT
i BXi

∣∣ ≥ 3L2
(
|trB|+ 2

√
tr(B2)x+ 2 |Λ (B)|x

)}
≤ e−x. (G.1)

Again, due to the fact that B is a rank-1 matrix

trB = Λ(B) =
√
trB2 (G.2)

and by construction of matrix B

|trB| =
∣∣Θ∗

u(Θ
∗
v)

T
∣∣

≤ ||Θ∗
u||1 ||Θ∗||∞

≤
√
d||Θ∗

u||2 ||Θ∗||∞
≤

√
dΛ (Θ∗) ||Θ∗||∞ .

(G.3)

Substitution of (G.2) and (G.3) to (G.1) yields

P

{∣∣XT
i BXi

∣∣ ≥ 3L2
√
dΛ (Θ∗) ||Θ∗||∞

(
1 + 2

√
x+ 2x

)}
≤ e−x.
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And since
√
x ≤ x+ 1

4

P

{∣∣XT
i BXi

∣∣ ≥ 3L2
√
dΛ (Θ∗) ||Θ∗||∞

(
3

2
+ 4x

)}
≤ e−x.

Finally, we obtain a bound for Zi,uv as

P

{
|Zi,uv| ≥

(
3L2

√
dΛ (Θ∗)

(
3

2
+ 4x

)
+ 1

)
||Θ∗||∞

}
≤ e−x.

Correction for all i, u and v establishes the following result

Lemma G.4. Consider an i.i.d. sample Xi of length n. Under Assumption 3.1
for positive x it holds that

P {∀i ∈ {1..n} : ||Zi||∞ ≤ Zn(x)} ≥ 1− pZn(x)

where

Zn(x) :=

(
3L2

√
dΛ (Θ∗)

(
3

2
+ 4 log p2n+ 4x

)
+ 1

)
||Θ∗||∞ ,

pZn(x) := e−x.

Lemma G.5. Under Assumption 3.1 for positive x and q

P

{∣∣∣∣∣∣Σ̂Z − Σ∗
Z

∣∣∣∣∣∣
∞

≥ Δ
(1)
ΣZ

}
≤ pΣZ1

s
(x, q)

where

Δ
(1)
ΣZ

:=
s

s− 1

(
4Z2

s (x)+
s−1
s ||Σ∗

Z ||∞
)
q

3s

(
1 +

√
1 +

9sσ2
W

q
(
4Z2

s (x)+
s−1
s ||Σ∗

Z ||∞
)2

)

pΣZ1

s
(x, q) := p4e−q + pZs(x)

Proof. Denote

W (i) := (Zi − Es

[
Zi

]
)(Zi − Es

[
Zi

]
)T − s− 1

s
Σ∗

Z

and note that
s− 1

s

(
Σ̂Z − Σ∗

Z

)
=

1

s

∑
i∈Is

W (i).

By Lemma G.4 we have ||Zi||∞ ≤ Zs(x) with probability at least 1− pZs(x)

which implies
∣∣∣∣W (i)

∣∣∣∣
∞ ≤ 4Z2

s (x)+
s−1
s ||Σ∗

Z ||∞. Since W
(i)
kl are i.i.d., bounded

and centered, Bernstein inequality applies here:

P

{
Es

[
W

(i)
kl

]

≥
(
4Z2

s (x) +
s−1
s ||Σ∗

Z ||∞
)
q

3s

(
1 +

√
1 +

9sσ2
W

q
(
4Z2

s (x) +
s−1
s ||Σ∗

Z ||∞
)2

)}
≤ e−q
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where σ2
W is the smallest variance of components of W (i). Therefore

P

{∣∣∣∣∣∣Es

[
W (i)

]∣∣∣∣∣∣
∞

≥
(
4Z2

s (x) +
s−1
s ||Σ∗

Z ||∞
)
q

3s

(
1 +

√
1 +

9sσ2
W

q
(
4Z2

s (x) +
s−1
s ||Σ∗

Z ||∞
)2

)}

≤ p4e−q.

The following lemma bounds the mis-tie between Zi and Ẑi.

Lemma G.6. Let Assumption 3.1 holds and let Θ̂ be a symmetric estimator of
Θ∗ s.t. ∣∣∣∣∣∣Θ∗ − Θ̂

∣∣∣∣∣∣
∞

< r

and Θ∗
ij = 0 ⇒ Θ̂ij = 0. Then for positive x

P

{
∀i ∈ Is :

∣∣∣∣∣∣Zi − Ẑi

∣∣∣∣∣∣
∞

≤ ΔZ(x)
}
≥ 1− pXs (x)

where
ΔZ(x) := 2rd3/2x2 ||Θ∗||∞ + (rdx)2

pXs (x) := se−x2/L2

Proof. Due to sub-Gaussianity,

∀α ∈ R
p : P

{∣∣αTXi

∣∣ ≤ x
}
≥ 1− se−x2/L2

(G.4)

Now consider the mis-tie of arbitrary elements Zi,uv and Ẑi,uv:∣∣∣Zi,uv − Ẑi,uv

∣∣∣ = ∣∣∣Θ∗
uXiΘ

∗
vXi +Θ∗

uv − Θ̂uXiΘ̂vXi − Θ̂uv

∣∣∣
≤

∣∣∣(Θ∗
u − Θ̂u)XiΘ

∗
vXi

∣∣∣+ ∣∣∣(Θ∗
u − Θ̂u)XiΘ̂vXi

∣∣∣+ r

Now note that due to (G.4) and assumptions imposed on Θ∗

|Θ∗
vXi| ≤

√
d ||Θ∗||∞ x∣∣∣(Θ∗

v − Θ̂v)Xi

∣∣∣ ≤ rdx∣∣∣Θ̂vXi

∣∣∣ ≤ |Θ∗
vXi|+

∣∣∣(Θ∗
v − Θ̂v)Xi

∣∣∣ ≤ √
d ||Θ∗||∞ x+ rdx

And hence ∣∣∣Zi,uv − Ẑi,uv

∣∣∣ ≤ 2rd3/2x2 ||Θ∗||∞ + (rdx)2
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Lemma G.7. Assume Assumption 3.1 holds. Let Θ̂ be a symmetric estimator
of Θ∗ s.t. ∣∣∣∣∣∣Θ∗ − Θ̂

∣∣∣∣∣∣
∞

< r

and Θ∗
ij = 0 ⇒ Θ̂ij = 0. Then for positive x

P

{∣∣∣∣∣∣Σ̂Z − Σ̂Ẑ

∣∣∣∣∣∣
∞

≥ Δ
(2)
ΣZ

}
≤ pΣZ2

s
(x)

where

pΣZ2

s
(x) := pXs (x) + pZs(x)

Δ
(2)
ΣZ

= ΔZ(x)(2Zs(x) + ΔZ(x))

Proof. By Lemma G.4 with probability at least 1 − pZs(x) we have ||Zi||∞ ≤
Zs(x) and in combination with Lemma G.6 we obtain

∣∣∣∣∣∣Ẑi

∣∣∣∣∣∣
∞

≤ Zs(x)+ΔZ(x)

with probability at least 1− pZs(x)− pXs (x). Now denote

ξi := Zi − Es

[
Zi

]
and ξ̂i := Ẑi − Es

[
Ẑi

]
And deliver the bound∣∣∣∣∣∣Σ̂Z − Σ̂Ẑ

∣∣∣∣∣∣
∞

≤ Es

[
ξi(ξi − ξ̂i)

T + (ξi − ξ̂i)ξ̂
T
i

]
≤

(∣∣∣∣∣∣ξ̂i∣∣∣∣∣∣
∞

+ ||ξi||∞
) ∣∣∣∣∣∣ξi − ξ̂i

∣∣∣∣∣∣
∞

≤ ΔZ(x)(2Zs(x) + ΔZ(x))

Appendix H: Known results

H.1. Gaussian approximation result

In this section we briefly describe the result obtained in [10].
Throughout this section consider an independent sample x1, ..., xn ∈ R

p of
centered random variables. Define their Gaussian counterparts yi∼N (0,Var [xi])
and denote their scaled sums as

SX
n :=

1√
n

n∑
i=1

xi

SY
n :=

1√
n

n∑
i=1

yi

Definition H.1. We call a set A of the form A = {w ∈ R
p : ai ≤ wi ≤ bi ∀i ∈

{1..p}} a hyperrectangle. The family of all hyperrectangles is denoted as Are.
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Assumption H.1. ∃b > 0 such that

1

n

n∑
i=1

E
[
x2
ij

]
≥ b for all j ∈ 1..p

Assumption H.2. ∃Gn ≥ 1 such that

1

n

n∑
i=1

E

[
|xij |2+k

]
≤ G2+k

n for all j ∈ 1..p and k ∈ {1, 2}

E

[
exp

(
|xij |
Gn

)]
≤ 2 for all j ∈ 1..p and i ∈ 1..n (H.1)

Lemma H.1 (Proposition 2.1 by [10]). Let Assumption H.1 hold for some b
and Assumption H.2 hold for some Gn. Then

sup
A∈Are

∣∣P{
SX
n ∈ A

}
− P

{
SY
n ∈ A

}∣∣ ≤ C

(
G2

n log
7(pn)

n

)1/6

and the constant C depends only on b.

H.2. Anti-concentration result

Lemma H.2 (Nazarov’s inequality [34]). Consider a normal p-dimensional
vector X ∼ N (0,Σ) and let ∀i : Σii = 1. Then for any y ∈ R

p and any positive a

P {X ≤ y + a} − P {X ≤ y} ≤ Ca
√
log p,

where C is an independent constant.

H.3. Gaussian comparison result

By the technique given in the proof of Theorem 4.1 by [10] one obtains the
following generalization of the result given in [8]

Lemma H.3. Consider a pair of covariance matrices Σ1 and Σ2 of size p× p
such that

||Σ1 − Σ2||∞ ≤ Δ

and ∀k : C1 ≥ Σ1,kk ≥ c1 > 0. Then for random vectors η ∼ N (0,Σ1) and
ζ ∼ N (0,Σ2) it holds that

sup
A∈Are

|P {η ∈ A} − P {ζ ∈ A}| ≤ CΔ1/3 log2/3 p,

where C is a positive constant which depends only on C1 and c1.
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H.4. Tail inequality for quadratic forms

The following result is a direct corollary of Theorem 1 in [24]

Lemma H.4. Consider a positive semi-definite or negative semi-definite matrix
B and suppose Assumption 3.1 holds. Then for all t > 0

P

{∣∣XT
1 BX1

∣∣ ≥ 3L2
(
|trB|+ 2

√
tr(B2)t+ 2 |Λ (B)| t

)}
≤ e−t

H.5. High-dimensional precision matrix estimation

In order to address the problem of high-dimensional precision matrix estimation
one has to assume its sparsity. Below we describe two approaches exploiting this
assumption. In both of them we assume that an i.i.d. sample X1, ...Xn ∈ R

p is
supplied.

H.5.1. Graphical lasso

In [20] the graphical lasso approach was suggested. An estimate may be obtained
as the solution of the following optimization problem over a positive-definite
cone Sp

++ of p× p dimensional matrices.

Θ̂GL := arg min
Θ∈Sp

++

[
tr(ΘΣ̂)− log detΘ+ λ ||Θ||1

]
(H.2)

where Σ̂ stands for the empirical covariance matrix

Σ̂ =
1

n

n∑
i=1

XiX
T
i .

The theoretical treatment of the approach keeps track on the following Schat-
ten norms: κΣ∗ = |||Σ∗|||∞ and κΓ∗ =

∣∣∣∣∣∣(Γ∗
SS)

−1
∣∣∣∣∣∣

∞. The following result
establishes consistency of the estimator in the sense of Definition 3.1.

Lemma H.5 (Theorem 1, [37]). Consider a distribution satisfying
Assumption 3.2 with some φ ∈ (0, 1], let Θ̂ be a solution of the optimization
problem (H.2) with tuning parameter λn = 8

ψ δn. Furthermore, impose the fol-
lowing sparsity assumption:

d ≤ 1

6(δn + λn)max{κΓ∗κΣ∗ , κ2
Γ∗κ3

Σ∗}
.

Then on the set T =
{∣∣∣∣∣∣Σ̂− Σ∗

∣∣∣∣∣∣
∞

< δn

}
the following holds:∣∣∣∣∣∣Θ̂GL −Θ∗

∣∣∣∣∣∣
∞

≤ rλ := 2κΓ∗(δn + λn)

and
Θ∗

ij = 0 ⇒ Θ̂ij = 0.

A rather similar result is provided in paper [3] for adaptive versions of graph-
ical lasso suggested and studied in [44] [17] [18] [43] .
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H.5.2. Node-wise lasso

This section describes the node-wise lasso approach which was suggested in [32].
For each 1 ≤ j ≤ n define a vector

Γ̂j := (γ̂j 1, ..., γ̂j j−1, 1, γ̂j j+1, ..., γ̂j p)

where γ̂j is defined as a solution of the following lasso regression:

γ̂j := arg max
γ∈Rp−1

1

n

∑
1≤i≤n

(
Xij −XT

i,−jγ
)2

+ 2λ ||γ||1

and

τ̂2j :=
1

n

∑
1≤i≤n

(
Xij −XT

i,−j γ̂j
)2

+ λ ||γ||1 .

Finally the j-th column of the estimator is defined as

Θ̂MB
j := Γ̂j/τ̂

2
j .

Note, that this estimator might not be symmetric, so one cannot use it as
an estimator Θ̂ based on the sub-sample {Xi}i∈Is . The paper [27] suggests to
construct a de-sparsified estimator T̂ (Θ̂MB) where

T̂ (Θ̂) := Θ̂ + Θ̂T − Θ̂T Σ̂Θ̂

and threshold elements of T̂ obtaining a positive-definite estimate.
Under Assumption 3.1, the sparsity assumption d log p

n = o(1) and the as-
sumption of the bounded spectrum (Assumption H.3) the paper [27] establishes
the root-n consistency of such an estimator (see Definition 3.1).

Assumption H.3.

∃E :
1

E
≤ λ (Θ∗) ≤ Λ (Θ∗) ≤ E.

H.5.3. Bounds for r

While graphical lasso and node-wise estimate are point estimates, de-sparsified
estimators have been suggested in order to obtain confidence intervals [26] [27].

The analysis of these estimators relies on the bounds for the residual term r:

r := T̂ −
(
Θ∗ −Θ∗(Σ∗ − Σ̂)Θ∗

)
The next two lemmas bound the remainder r for the case of graphical lasso

and node-wise estimator.
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Lemma H.6 (by [26]). Impose Assumption 3.1, Assumption 3.2 and
Assumption H.3. Then under the sparsity assumption

d log p√
n

= o(1) (H.3)

it holds that

||r||∞ = Op

(
d log p

n

)
.

A finite sample-size bound for r along with its adaptations for the case of
adaptive graphical lasso may be found in [3]

Lemma H.7 (by [27]). Let Θ̂ be yielded by the node-wise procedure with λn 
√
log p
n . Then under Assumption 3.1, Assumption H.3 and sparsity assumption

(H.3)

||r||∞ = Op

(
d log p

n

)
.
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[6] Luc Bauwens, Sébastien Laurent, and Jeroen V K Rombouts. Multivariate
GARCH models: a survey. Journal of Applied Econometrics, 21(1):79–109,
Jan 2006. MR2225523

http://www.ams.org/mathscinet-getitem?mr=2572452
http://www.ams.org/mathscinet-getitem?mr=3008012
http://www.ams.org/mathscinet-getitem?mr=2225523


3292 V. Avanesov and N. Buzun

[7] Gérard Biau, Kevin Bleakley, and David M. Mason. Long signal change-
point detection. Electron. J. Statist., 10(2):2097–2123, 2016. MR3522670

[8] Victor Chernozhukov, Denis Chetverikov, and Kengo Kato. Comparison
and anti-concentration bounds for maxima of gaussian random vectors.
Dec 2013. MR3262468

[9] Victor Chernozhukov, Denis Chetverikov, and Kengo Kato. Gaussian
approximations and multiplier bootstrap for maxima of sums of high-
dimensional random vectors. Ann. Statist., 41(6):2786–2819, 12 2013.
MR3161448

[10] Victor Chernozhukov, Denis Chetverikov, and Kengo Kato. Central limit
theorems and bootstrap in high dimensions. Dec 2014.

[11] Haeran Cho. Change-point detection in panel data via double cusum statis-
tic. Electron. J. Statist., 10(2):2000–2038, 2016. MR3522667

[12] Haeran Cho and Piotr Fryzlewicz. Multiple-change-point detection for high
dimensional time series via sparsified binary segmentation. Journal of the
Royal Statistical Society Series B, 77(2):475–507, 2015. MR3310536
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