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Abstract

We discuss some extremality issues concerning the circumradius, the inradius, and
the condition number of a closed convex cone in Rn. The condition number refers to the
ratio between the circumradius and the inradius. We also study the eccentricity of a closed
convex cone, which is a coefficient that measures to which extent the circumcenter differs
from the incenter.

1 Introduction

This paper is the last part of a triptych initiated in [7] and continued in [8]. It deals with two
concepts related to the geometric nature of a convex cone: the circumradius and the inradius. A
few words on notation are in order before we recall these concepts. In the sequel the symbol Ξn
indicates the set of nontrivial closed convex cones in the Euclidean space Rn. That a convex
cone is nontrivial means that it is different from the singleton {0} and different from the whole
space Rn. For avoiding trivialities we assume that the dimension n is at least three. Some
special subsets of Ξn play a prominent role in the discussion, namely

Ξsol
n = {K ∈ Ξn : K is solid},

Ξptd
n = {K ∈ Ξn : K is pointed},

Ξreg
n = {K ∈ Ξn : K is regular}.

Recall that a closed convex cone is solid if its topological interior is nonempty, and it is pointed
if it contains no line. Regularity is understood as the combination of solidity and pointedness.

The inradius of K ∈ Ξn is defined as the coefficient

ρ(K) = sup
x∈K∩Sn

dist[x, ∂K], (1)

where Sn is the unit sphere of Rn, ∂K is the boundary of K , and dist[ · ,Ω] stands for the
distance function to a set Ω. Various interpretations of ρ(K) and calculus rules for computing
this coefficient have been proposed in [3, 4, 5, 7, 8, 10] and other places. We recall that (1) is a
matter of finding the radius and center of a largest ball contained in K :

maximize r (2)

‖x‖ = 1

r ∈ [0, 1]

x+ rBn ⊂ K,
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where Bn denotes the closed unit ball of Rn. The coefficient ρ(K) is equal to the optimal value
of the maximization problem (2). The function ρ : Ξn → [0, 1] is continuous if Ξn is equipped
with the gap metric

δ(K1, K2) = max

{
max

x∈K1∩Sn

dist[x,K2], max
x∈K2∩Sn

dist[x,K1]

}
,

or with any other equivalent metric for that matter (cf. [10, Proposition 6.3]). We mention in
passing that convergence with respect to the metric δ is equivalent to convergence in the
Painlevé-Kuratowski sense (cf. [14, Proposition 4.4]). This fact will be used on several occa-
sions. If K ∈ Ξn is solid, then the solution set

Πinc(K) = {x ∈ K ∩ Sn : dist[x, ∂K] = ρ(K)}

to the variational problem (1) is a singleton. The unique element of this set is denoted by
πinc(K) and called the incenter of K . Theorem 2.9 of [7] asserts that πinc : Ξsol

n → Rn is
a continuous map.

The circumradius of K ∈ Ξn, denoted by µ(K), is defined as the optimal value of the mini-
mization problem

minimize r (3)

‖x‖ = 1

r ∈ [0, 1]

K ⊂M(x, r).

Here M(x, r) stands for the closed convex cone generated by the ball x+ rBn, that is,

M(x, r) = cl

[⋃
α≥0

α (x+ rBn)

]
.

The closure operation “cl” is superfluous when r = 1. If K ∈ Ξn is pointed, then

Πcirc(K) = {x ∈ Rn : (x, r) solves (3)}

is a singleton. The unique element of this set is denoted by πcirc(K) and called the circumcenter
of K . By combining Proposition 4.8 and Theorem 5.2 in [7], one sees that µ : Ξn → [0, 1] and
πcirc : Ξptd

n → Rn are continuous functions.

This is all what the reader needs to know for having a good understanding of our work. The
organization of the paper is as follows. Section 2 discusses some extremality issues concerning
inradii and circumradii. Inspired by the definition of the condition number of a nonsingular matrix,
we refer to the ratio

c(K) =
µ(K)

ρ(K)

as the condition number of a solid cone K ∈ Ξn. The analysis of this concept is the object of
Section 3. A regular cone K ∈ Ξn is non-eccentric if πinc(K) = πcirc(K), otherwise it is said
to be eccentric. The eccentricity is a coefficient that measures the gap between the incenter
and the circumcenter:

e(K) = ‖πinc(K)− πcirc(K)‖. (4)

This coefficient is studied in detail in Section 4.
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2 Extremality issues for inradii and circumradii

2.1 Preliminary results

Inradii and circumradii are dual objects. Indeed, for all K ∈ Ξn one has

µ(K) =
√

1− [ρ(K+)]2 , (5)

ρ(K) =
√

1− [µ(K+)]2 ,

where K+ stands for the dual cone of K , i.e.,

K+ = {y ∈ Rn : 〈y, x〉 ≥ 0 for all x ∈ K}.

Furthermore,

Πinc(K) = Πcirc(K
+) , (6)

Πcirc(K) = Πinc(K
+) . (7)

These duality relationships have been established in [7, Theorem 5.2]. Of course, the inequality

ρ(K) ≤ µ(K) (8)

holds for any K ∈ Ξn. The next lemma is easy and consistent with intuition. We mention it only
for the sake of subsequent use. Recall that a revolution cone is a set of the form

Γ(y, θ) := {x ∈ Rn : 〈y, x〉 ≥ ‖x‖ cos θ} ,

where y is a unit vector of Rn. The parameter θ ∈ [0, π/2] is referred to as the half-aperture
angle of the cone.

Lemma 2.1. For K ∈ Ξn the following conditions are equivalent:

(a) ρ(K) = µ(K).

(b) K is a ball-generated cone.

(c) K is a revolution cone.

Proof. That (b) ⇔ (c) is mentioned in [6, Section 3.1]. By the way, the equivalence between
ball-generated cones and revolution cones holds even in Hilbert spaces. In fact, by combining
Lemmas 4.12 and 5.1 in [7] one gets

Γ(y, θ) = M(y, sin θ),

M(x, r) = Γ(x, arcsin r).

For proving (b) ⇒ (a) one just needs to observe that

ρ(M(x, r)) = µ(M(x, r)) = r (9)
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for all (x, r) ∈ Sn × [0, 1]. The proof of (a) ⇒ (b) is more subtle. Let r̄ := ρ(K) = µ(K).
We suppose that r̄ > 0, otherwise K is a ray, i.e., a cone generated by a ball of radius 0. Let
x̄ := πinc(K) and w̄ ∈ Πcirc(K). In such a case

x̄+ r̄Bn ⊂ K ⊂M(w̄, r̄). (10)

Since ρ(M(w̄, r̄)) = r̄, the unit vector x̄ must be the incenter of M(w̄, r̄). In other words,

x̄ = πinc (M(w̄, r̄)) = w̄.

Hence, the chain of inclusions in (10) yields M(x̄, r̄) = K = M(w̄, r̄).

Remark 2.2. It is well known that the dual of a revolution cone is a revolution cone. Hence, the
dual of a ball-generated cone is a ball-generated cone. More precisely,

[M(x, r)]+ = M
(
x,
√

1− r2
)
.

For the reader’s convenience we recall below a technical result (cf. [8, Lemma 2.25]) that char-
acterizes the incenter of a solid polyhedral cone. Such result will be used on a few occasions.
The notation “pos” stands for positive (or convex conic) hull.

Lemma 2.3. Let K ∈ Ξn be a solid polyhedral cone represented by

K = {x ∈ Rn : 〈f1, x〉 ≥ 0, . . . , 〈fm, x〉 ≥ 0} ,

where {fi}mi=1 is a finite collection of unit vectors in Rn. Then x̄ = πinc(K) if and only if

x̄ ∈ K ∩ Sn, (11)

x̄ ∈ pos {fi : i ∈ I(x̄)} , (12)

where I(x̄) is the set of indices j ∈ {1, . . . ,m} such that

〈fj, x̄〉 = min
1≤i≤m

〈fi, x̄〉. (13)

Furthermore, if x̄ is the incenter of K , then the minimum in (13) is equal to ρ(K).

As first use of Lemma 2.3 we derive an explicit formula for computing the incenter of a special
type of polyhedral cone. Recall that a simplicial cone in Rn is a polyhedral cone generated by a
basis of Rn. In other words, K ∈ Ξn is simplicial if and only if

K = {Gλ : λ ∈ Rn
+} (14)

with G standing for a nonsingular matrix of order n. A simplicial cone in Rn is regular and has
exactly n facets. General information on simplicial cones and facial analysis can be found in [1].

Theorem 2.4. Suppose that K ∈ Ξn is generated by the columns of a nonsingular matrix
G = [g1, . . . , gn]. Let fj denote the j-th column of F = (G−1)T . Consider the following
statements:
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(a) 〈gi, gj〉 ≥ 0 for all i, j ∈ {1, . . . , n}.

(b)
∑n

j=1〈gi, gj〉 ‖fj‖ ≥ 0 for all i ∈ {1, . . . , n}.

(c) The incenter of K is equidistant to each facet of K .

(d) The incenter of K is equal to the vector

x̄ :=

∑n
i=1 ‖fi‖ gi

‖
∑n

i=1 ‖fi‖ gi‖
. (15)

(e) ρ (K) =
∥∥∑n

i=1 ‖fi‖ gi
∥∥−1

.

Then one has (a) ⇒ (b) ⇔ (c) ⇔ (d) ⇒ (e).

Proof. Before starting with the proof itself, observe that

〈fj, gi〉 = δij for all i, j ∈ {1, . . . , n} , (16)

where δij refers to the Kronecker delta. Hence, the simplicial cone (14) can be rewritten as

K =
{
x ∈ Rn : 〈f̂1, x〉 ≥ 0, . . . , 〈f̂n, x〉 ≥ 0

}
with f̂j = ‖fj‖−1 fj . For convenience we split the proof in several parts:
(a) ⇒ (b). This implication is obvious.
(b) ⇔ (d). The vector x̄ given by (15) clearly belongs to K ∩ Sn. Thanks to (16) one has

〈
f̂j, x̄

〉
= κ :=

∥∥∥∥∥
n∑
i=1

‖fi‖ gi

∥∥∥∥∥
−1

(17)

for all j ∈ {1, . . . , n}. Hence,

I(x̄) :=

{
j ∈ {1, . . . , n} : 〈f̂j, x̄〉 = min

1≤i≤n
〈f̂i, x̄〉

}
is equal to the whole index set {1, . . . , n}. By Lemma 2.3 one has

x̄ = πinc(K) ⇔ x̄ ∈ pos
{
f̂1, . . . , f̂n

}
⇔ 〈g1, x̄〉 ≥ 0, . . . , 〈gn, x̄〉 ≥ 0

⇔
n∑
j=1

〈gi, gj〉 ‖fj‖ ≥ 0 for all i ∈ {1, . . . , n}.

(d) ⇒ (e). It follows from (17) and the last part of Lemma 2.3.
(d) ⇒ (c). The facets of K are Fj = K ∩ f̂⊥j with

f̂⊥j =
{
x ∈ Rn : 〈f̂j, x〉 = 0

}
.
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By assumption the vector x̄ given by (15) is the incenter of K . The condition (17) shows that
x̄ is equidistant to each hyperplane f̂⊥j , the common distance being ρ(K). Let ξj denote the

orthogonal projection of x̄ into f̂⊥j . Hence,

ξj = x̄− 〈f̂j, x̄〉f̂j = x̄− ρ(K)f̂j

and ‖ξj − x̄‖ = ρ(K). It follows that ξj ∈ Fj and

dist[x̄,Fj] = dist[x̄, f̂⊥j ] = ρ(K).

This proves the condition (c).
(c) ⇒ (d). One has ū := πinc(K) =

∑n
i=1 λigi, where each λi is positive. Note that

ρ(K) = dist[ū, ∂K] = min
1≤j≤n

〈fj, ū〉
‖fj‖

= min
1≤j≤n

λj
‖fj‖

,

where the last equality is due to (16). Hence,

ρ(K) ‖fj‖ ≤ λj (18)

for all j ∈ {1, . . . , n}. But,

ρ(K) = dist[ū,Fj] ≥ dist[ū, f̂⊥j ] =
〈fj, ū〉
‖fj‖

=
λj
‖fj‖

,

where the first equality is due to the assumption (c). So, (18) is in fact an equality, and therefore

ū = ρ(K)
n∑
i=1

‖fi‖ gi.

A due normalization shows that ū is equal to the vector given by (15).

The condition (a) says that the angle between any pair of generators ofK does not exceed π/2.
This requirement is stronger than (b). To see this, consider the simplicial cone K generated by
the columns of

G =

 1 −1 −1
0 1 −2
0 0 1

 .
The condition (a) is clearly violated. However

F = (G−1)T =

 1 0 0
1 1 0
3 2 1

 ,
‖f1‖ =

√
11, ‖f2‖ =

√
5, ‖f3‖ = 1,

and a direct computation shows that (b) holds. Thus, one can use (15) for computing the incenter
of K .
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Kelly et al. [17] propose a different concept of “center” for a simplicial coneK , namely, any point
in the interior of K which is equidistant from each facetal hyperplane. This property is satisfied
by the vector x̄ given by (15). However, such x̄ may not be the incenter of K . To see this,
consider the simplicial cone K generated by the columns of

G =

 1 −1 −1
0 1 1
0 0 1

 .
One has

F = (G−1)T =

 1 0 0
1 1 0
0 −1 1

 ,
‖f1‖ =

√
2, ‖f2‖ =

√
2, ‖f3‖ = 1,

and the condition (b) is violated. As a consequence, πinc(K) and x̄ do not coincide.

Theorem 2.4 can be dualized in order to obtain a formula for computing the circumcenter of a
simplicial cone.

Corollary 2.5. Let K ∈ Ξn be the simplicial cone generated by the columns of the nonsingular
matrix G = [g1, . . . , gn]. Let fj denote the j-th column of F = (G−1)T . Then the following
conditions are equivalent:

(a)
∑n

j=1〈fi, fj〉 ‖gj‖ ≥ 0 for all i ∈ {1, . . . , n}.

(b) The circumcenter of K is equal to the vector

ȳ :=

∑n
i=1 ‖gi‖ fi

‖
∑n

i=1 ‖gi‖ fi‖
.

Proof. We apply Theorem 2.4 to K+ and use the duality formula (7).

2.2 Comparing the inradii of K and K+

The theory of solidity and pointedness indices for convex cones has been developed in recent
years in [10, 11, 12, 13]. Within the context of such theory one can interpret the inradii ofK and
K+ as follows:

ρ(K) = solidity index of K,

ρ(K+) = pointedness index of K.

The first question addressed in this section is to find a closed convex cone that is as solid and
pointed as possible:

maximize F (K) :=
(
ρ(K), ρ(K+)

)
with respect to K ∈ Ξn. (19)
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Beware that solidity and pointedness are antagonic notions. What we mean by this is that both
coefficients ρ(K) and ρ(K+) cannot be large (i.e., near 1) at the same time.

Proposition 2.6 characterizes the Pareto solutions to the above bicriteria optimization problem.
By definition, K ∈ Ξn is a Pareto solution to (19) if there is no Q ∈ Ξn such that

ρ(K) ≤ ρ(Q) and ρ(K+) ≤ ρ(Q+)

with at least one inequality being strict.

Proposition 2.6. K ∈ Ξn is a Pareto solution to (19) if and only if K is a ball-generated cone.

Proof. As a consequence of (5) and (8) one gets

[ρ(K)]2 +
[
ρ(K+)

]2 ≤ 1 (20)

for all K ∈ Ξn. In fact, Corollary 8.4 in [10] asserts something stronger: the image set

F (Ξn) :=
{(
ρ(K), ρ(K+)

)
: K ∈ Ξn

}
of the problem (19) is equal to

Ω =
{
(r, t) ∈ R2

+ : r2 + t2 ≤ 1
}
.

Hence, K ∈ Ξn is a Pareto solution to (19) if and only if the pair (ρ(K), ρ(K+)) lies in the
upper right portion of Ω, that is to say,

[ρ(K)]2 +
[
ρ(K+)

]2
= 1.

Lemma 2.1 and the duality formula (5) do the rest of the job.

Besides the inequality (20), is there any other interesting relationship between the inradii of K
and K+? The next result applies only to simplicial cones. That K ∈ Ξn is orthogonal simply
means that K a polyhedral cone generated by an orthogonal basis of Rn. Every orthogonal
cone is simplicial, but not conversely.

Theorem 2.7. If K ∈ Ξn is simplicial, then

ρ(K)ρ(K+) ≤ 1/n. (21)

The above inequality becomes an equality if and only if K ∈ Ξn is orthogonal.

Proof. Let K ∈ Ξn be generated by the columns of a nonsingular matrix G = [g1, . . . , gn]
and let fj denote the j-th column of F = (G−1)T . There are vectors λ, β in Rn

+ such that

ū := πinc(K) = Gλ =
n∑
i=1

λigi ,

v̄ := πinc(K
+) = Fβ =

n∑
i=1

βjfj .
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It follows that

ρ(K) = dist[ū, ∂K] = min
1≤j≤n

〈fj, ū〉
‖fj‖

= min
1≤j≤n

λj
‖fj‖

,

ρ(K+) = dist[v̄, ∂K+] = min
1≤i≤n

〈gi, v̄〉
‖gi‖

= min
1≤i≤n

βi
‖gi‖

.

Hence, for all j ∈ {1, . . . , n} one gets

ρ(K) ‖fj‖ ≤ λj ,

ρ(K+) ‖gj‖ ≤ βj ,

and therefore

ρ(K) ρ(K+)

(
n∑
j=1

‖fj‖ ‖gj‖

)
≤

n∑
j=1

λjβj . (22)

Thanks to (16) and the Cauchy-Schwarz inequality, one has ‖fj‖ ‖gj‖ ≥ 1. Hence,

n ≤
n∑
j=1

‖fj‖ ‖gj‖. (23)

For completing the proof of (21) it remains to observe that

n∑
i=1

λjβj = 〈G−1ū, F−1v̄〉 = 〈ū, (G−1)TF−1v̄〉 = 〈ū, v̄〉 (24)

is less than or equal to 1. If K ∈ Ξn is orthogonal, then ρ(K) = ρ(K+) =
√

1/n, and
ρ(K)ρ(K+) = 1/n. Conversely, letK = pos{g1, . . . , gn} be a simplicial cone such that (21)
holds as an equality. In such a case

n∑
j=1

‖fj‖ ‖gj‖ = n,

and therefore ‖fj‖ ‖gj‖ = 1 for all j ∈ {1, . . . , n}. This and (16) imply that, up to normaliza-
tion, the sets {gj}nj=1 and {fj}nj=1 coincide. Hence,〈

gj
‖gj‖

,
gi
‖gi‖

〉
=

〈
fj
‖fj‖

,
gi
‖gi‖

〉
=

〈fj, gi〉
‖fj‖ ‖gi‖

= 0

for all i 6= j, that is to say, K is orthogonal.

Remark 2.8. The product rule (21) does not apply beyond a simplicial context. For instance, the
Lorentz (or ice-cream) cone

Λn =
{
x ∈ Rn :

[
x2

1 + . . .+ x2
n−1

]1/2 ≤ xn

}
satisfies ρ(Λn) = ρ(Λ+

n ) = sin(π/4) =
√

1/2. So, ρ(Λn)ρ(Λ
+
n ) = 1/2 is greater than 1/n.
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We now derive a second product rule for inradii. It is less sharp than (21), but applies to arbitrary
convex cones. One says that K ∈ Ξn is Lorentzian if there exists an orthogonal matrix U of
order n such that K = U(Λn). Equivalently, a Lorentzian cone is a revolution cone with π/4
as half-aperture angle.

Proposition 2.9. For any K ∈ Ξn one has

ρ(K)ρ(K+) ≤ 1/2 . (25)

The above inequality is an equality if and only if K ∈ Ξn is Lorentzian.

Proof. The proof of Proposition 2.6 shows that

ρ(K)ρ(K+) ≤ max
(r, t)∈Ω

rt = 1/2. (26)

Note that (25) becomes an equality if K is Lorentzian. Indeed, in such a case one has

ρ(K) = ρ(K+) =
√

1/2. (27)

Conversely, let K ∈ Ξn be such that (25) is an equality. Then the pair (ρ(K), ρ(K+)) solves
the maximization problem in (26). This is equivalent to saying that (27) holds. By combining (5)
and Lemma 2.1 one deduces that K is generated by a ball. More precisely,

K = M
(
x̄,
√

1/2
)

(28)

with x̄ = πinc(K). But, according to [6], the set (28) is equal to a revolution cone with x̄
as revolution axis and arcsin(

√
1/2 ) = π/4 as half-aperture angle. So, up to orthogonal

transformation, K is equal to Λn.

2.3 Inradii and maximal angles

The next theorem establishes a curious relationship between the circumradius µ(K) and the
maximal angle

θmax(K) = max
u,v∈K∩Sn

arccos 〈u, v〉

of K ∈ Ξn. It also establishes a link between the inradius ρ(K) and the maximal angle of the
dual cone K+.

Theorem 2.10. For all K ∈ Ξn one has

[µ(K)]2 ≤
(

1− 1

n

)
(1− cos [θmax(K)]) , (29)

[ρ(K)]2 ≥ 1

n
+

(
1− 1

n

)
cos
[
θmax(K

+)
]
. (30)

10



Proof. In view of the duality formula (5), it is enough to prove the relation (30). Suppose that
K ∈ Ξn is solid, otherwise θmax(K

+) = π and (30) holds trivially. For convenience we distin-
guish between two cases.
I. The polyhedral case. LetK be expressible as intersection of finitely many closed half-spaces,
that is,

K = {x ∈ Rn : 〈f1, x〉 ≥ 0, . . . , 〈fm, x〉 ≥ 0} . (31)

Without loss of generality one assumes that{
{fi}mi=1 is a positively independent
collection of unit vectors of Rn.

(32)

Note that the integer m could be much larger than n. According to Lemma 2.3, the incenter
x̄ = πinc(K) of the solid polyhedral cone (31) satisfies the condition (12) and

〈fj, x̄〉 = ρ(K) (33)

for all j ∈ I(x̄). The conic version of Caratheodory’s theorem applied to (12) yields the repre-
sentation

x̄ =
∑
i∈I

λifi, (34)

where each scalar λi is positive and I is a subset of I(x̄) such that {fi}i∈I is linearly indepen-
dent. The general formulation and proof of the conic version of Caratheodory’s theorem can be
found in numerous references, see for instance Theorem 3.2 in [18, Chapter 1]. From (34) one
gets

〈fj, x̄〉 =
∑
i∈I

λi〈fi, fj〉 (35)

for all j ∈ I , as well as

〈x̄, x̄〉 =
∑
i∈I

λi〈fi, x̄〉 = ρ(K)
∑
i∈I

λi.

Since x̄ has unit length, it follows that∑
i∈I

λi = 1/ρ(K). (36)

Thanks to (33) and (35), for all j ∈ I one has

ρ(K) = λj +
∑

i∈I\{j}

λi〈fi, fj〉. (37)

Since the fi are unit vectors in K+, one has

γ := cos
[
θmax(K

+)
]
≤ 〈fi, fj〉.

Hence, ∑
i∈I\{j}

λi〈fi, fj〉 ≥ γ
∑

i∈I\{j}

λi = γ

(∑
i∈I

λi − λj

)

11



for all j ∈ I . This, together with (36) and (37), produces the inequality

ρ(K) ≥ λj + γ

(
1

ρ(K)
− λj

)
for all j ∈ I . By passing to the sum and using (36) again, one obtains

card(I)

(
ρ(K)− γ

ρ(K)

)
≥ 1− γ

ρ(K)
.

But the cardinality of I cannot exceed n. Hence, the above line leads to

[ρ(K)]2 − γ ≥ 1− γ

n
,

which is just another way of writing (30).
II. The nonpolyhedral case. Suppose that K is not polyhedral. Theorem 4.4 in [16] asserts that
any closed convex cone in an Euclidean space can be written as Painlevé-Kuratowski limit of
a sequence of polyhedral cones. As a consequence of this approximation result, there exists a
sequence {Kν}ν∈N of polyhedral cones Kν ∈ Ξn such that

lim
ν→∞

δ(Kν , K) = 0.

But the celebrated Walkup -Wets Isometry Theorem (cf. [19, Theorem 1]) says that the duality
operation Q 7→ Q+ is an isometry on (Ξn, δ), i.e.,

δ(Q+
1 , Q

+
2 ) = δ(Q1, Q2) for all Q1, Q2 ∈ Σn.

Hence, one also has
lim
ν→∞

δ(K+
ν , K

+) = 0.

As shown in Part I, for each ν ∈ N one can write

[ρ(Kν)]
2 ≥ 1

n
+

(
1− 1

n

)
cos
[
θmax(K

+
ν )
]
. (38)

Thanks to the continuity of ρ : Ξn → [0, 1] and θmax : Ξn :→ [0, π], one has

lim
ν→∞

ρ(Kν) = ρ(K), lim
ν→∞

θmax(K
+
ν ) = θmax(K

+).

It suffices then to pass to the limit in (38) as ν →∞.

There are a number of interesting consequences that can be derived from Theorem 2.10. Recall
that K ∈ Ξn is said to be 

supradual if K ⊃ K+,
infradual if K ⊂ K+,
selfdual if K = K+.

Clearly, infraduality implies pointedness and supraduality implies solidity. A quantitative version
of these statements reads as follows.
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Corollary 2.11. One has:

(a) If K ∈ Ξn is infradual, then µ(K) ≤
√

1− (1/n).

(b) If K ∈ Ξn is supradual, then ρ(K) ≥
√

1/n.

Proof. K ∈ Ξn is infradual if and only if θmax(K) ≤ π/2. Part (a) is then a consequence of
(29). Similarly, thatK ∈ Ξn is supradual is equivalent to saying that θmax(K

+) ≤ π/2. Hence,
part (b) is a consequence of (30).

The lower bound in Corollary 2.11(b) is optimal. Indeed,

min
K∈Ξn

K supradual

ρ(K) =
√

1/n (39)

with attainment of the minimum ifK ∈ Ξn is orthogonal. Similarly, the upper bound in Corollary
2.11(a) is optimal because

max
K∈Ξn

K infradual

µ(K) =
√

1− (1/n) (40)

with attainment of the maximum at any K ∈ Ξn that is orthogonal.

Remark 2.12. Every orthogonal cone is selfdual. Beware that an arbitrary selfdual cone may
not achieve the minimum in (39) or the maximum in (40). To see this, consider the cone K
generated by the vectors 1

1
1

 ,
 0

1
1

 ,
 −1

0
1

 ,
 0
−1
1

 ,
 1
−1
1

 .
This cone is proposed by Barker and Foran [2] as example of self-dual polyhedral cone that is
not simplicial. On the other hand, it is shown in [8, Example 2.3] that ρ(K) >

√
1/3, which

means that K does not achieve the minimum in (39).

For the sake of completeness we mention another result in the same vein as Corollary 2.11.

Corollary 2.13. Let K ∈ Ξn.

(a) If K is infradual, then ρ(K) ≤
√

1/2.

(b) If K is simplicial and infradual, then ρ(K) ≤
√

1/n.

(c) If K is supradual, then µ(K) ≥
√

1/2.

(d) If K is simplicial and supradual, then µ(K) ≥
√

1− (1/n).

Proof. Part (a) is a consequence of (5) and (8). Part (b) follows from Theorem 2.7. Parts (c) and
(d) are obtained by applying (a) and (b) to the dual cone K+.
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3 Condition number of a convex cone

As mentioned before, the condition number of a solid cone K ∈ Ξn is defined as the ratio
c(K) = µ(K)/ρ(K). By mimicking the parlance of numerical linear algebra, one says that K
is well-conditioned if c(K) is near to 1 and ill-conditioned if c(K) is much larger than 1.

Example 3.1. Consider the elliptic cone

EA = {(z, t) ∈ Rn−1 × R :
√
〈z, Az〉 ≤ t}

associated to a positive definite symmetric matrix A of order n − 1. Proposition 6.4 in [10]
asserts that

ρ(EA) = [1 + λmax(A)]−1/2 ,

µ(EA) = [1 + λmin(A)]−1/2 ,

where λmax(A) and λmin(A) denote, respectively, the largest and smallest eigenvalue of A.
Hence,

c(EA) =

√
1 + λmax(A)

1 + λmin(A)
.

Note that c(EA) = 1 if and only if A is a positive multiple of the identity matrix.

Example 3.2. As a generalization of the above example, consider the epigraph

epiφ = {(z, t) ∈ Rn−1 × R : φ(z) ≤ t}

of a norm φ on Rn−1. Such set is clearly a regular cone in Rn. Lemmas 3.1 and 4.1 in [15]
assert, respectively, that

ρ(epiφ) =
[
1 + β2

φ

]−1/2
,

µ(epiφ) = αφ
[
1 + α2

φ

]−1/2
,

where
αφ := min

‖z‖=1
φ(z) and βφ := max

‖z‖=1
φ(z).

Hence,

c(epiφ) =

√
1 + β2

φ

1 + α2
φ

.

Note that c(epiφ) = 1 if and only if φ is constant on the unit sphere Sn−1.

What does it mean actually that c(K) is near to 1? The next theorem provides an answer to
this question. We establish first a topological lemma concerning the collection

Ξball
n = {M(x, r) : (x, r) ∈ Sn × [0, 1]}

of ball-generated cones in Rn.
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Lemma 3.3. Ξball
n is a closed set in the metric space (Ξn, δ).

Proof. The lemma is surely known, so we give only a sketch of the proof. Let {Kν}ν∈N be
a sequence in Ξball

n such that limν→∞ δ(Kν , K) = 0. For each ν ∈ N one has Kν =
M(xν , rν) with (xν , rν) ∈ Sn×[0, 1]. By taking a subsequence if necessary, one may suppose
that

lim
ν→∞

(xν , rν) = (x̂, r̂) ∈ Sn × [0, 1].

A routinary work shows that

lim sup
ν→∞

M(xν , rν) ⊂M(x̂, r̂) ⊂ lim inf
ν→∞

M(xν , rν),

where the upper and lower limits are understood in the Painlevé-Kuratowski sense. One proves
in this way that K = M(x̂, r̂). Hence, K ∈ Ξball

n .

In view of Lemma 2.1, a solid cone K ∈ Ξn satisfies c(K) = 1 if and only if K ∈ Ξball
n . An

asymptotic version of this statement is formulated in the next theorem. The notation

dist
[
K,Ξball

n

]
:= min

M∈Ξball
n

δ(K,M) (41)

indicates the distance from K ∈ Ξn to the closed set Ξball
n . Since the metric space (Ξn, δ)

is compact (cf. [9, Proposition 2.1]), the subset Ξball
n is compact as well. This explains why the

minimum in (41) is attained.

Theorem 3.4. Let {Kν}ν∈N be a sequence in Ξn satisfying the Uniform Solidity Condition

inf
ν∈N

ρ(Kν) > 0. (42)

Then
lim
ν→∞

c(Kν) = 1 ⇐⇒ lim
ν→∞

dist
[
Kν ,Ξ

ball
n

]
= 0.

Proof. Let us start with the “if” part. Suppose that

dν := dist
[
Kν ,Ξ

ball
n

]
goes to 0 as ν →∞. For each ν ∈ N, pick (xν , rν) ∈ Sn× [0, 1] such thatMν = M(xν , rν)
achieves the distance from Kν to Ξball

n , that is,

δ (Kν ,Mν) = dν . (43)

As shown in [10, Proposition 6.3], the inradius ρ is a nonexpansive function on (Ξn, δ). Hence,

| ρ(Kν)− ρ(Mν)| ≤ δ (Kν ,Mν) . (44)

By combining (9), (43), and (44), one gets

ρ(Kν) = ρ(Mν) + εν = rν + εν (45)
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with {εν}ν∈N converging to 0. We now examine the term µ(Kν). The nonexpansiveness of ρ
and the Walkup-Wets Isometry Theorem yield∣∣ρ(K+

ν )− ρ(M+
ν )
∣∣ ≤ δ

(
K+
ν ,M

+
ν

)
= δ (Kν ,Mν) .

But
M+

ν = [M(xν , rν)]
+ = M

(
xν ,
√

1− r2
ν

)
.

One gets in this way

ρ(K+
ν ) = ρ(M+

ν ) + γν =
√

1− r2
ν + γν

with {γν}ν∈N converging to 0. Thanks to the duality relation (5), one arrives at

µ(Kν) =
(
1−

[
ρ(K+

ν )
]2)1/2

=

(
1−

[√
1− r2

ν + γν

]2)1/2

.

We must show that

c(Kν) =

(
1−

[√
1− r2

ν + γν

]2)1/2

rν + εν
(46)

goes to 1 as ν → ∞. In view of (45), the Uniform Solidity Condition (42) implies that the
sequence {rν}ν∈N remains away from 0. Hence, the numerator and denominator of the quotient
(46) are asymptotically equal. More precisely, both behave as rν . We now prove the “only if” part.
Suppose that limν→∞ c(Kν) = 1. We claim that the upper limit

∆ = lim sup
ν→∞

dist
[
Kν ,Ξ

ball
n

]
is equal to zero. Let ϕ : N → N be an increasing function such that

lim
ν→∞

dist
[
Kϕ(ν),Ξ

ball
n

]
= ∆.

Since {Kϕ(ν)}ν∈N lies in the compact metric space (Ξn, δ), there exists yet another increasing

function ψ : N → N and an element K̃ ∈ Ξn such that

lim
ν→∞

δ(Qν , K̃) = 0

with Qν = Kϕ(ψ(ν)). Let rν = ρ(Qν) and sν = µ(Qν). Then

M(xν , rν) ⊂ Qν ⊂M(wν , sν)

with xν = πinc(Qν) and wν ∈ Πcirc(Qν). Since ρ, µ are continuous functions on Ξn, one gets

r̄ := lim
ν→∞

rν = ρ(K̃)

s̄ := lim
ν→∞

sν = µ(K̃).
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The Uniform Solidity Condition (42) implies that r̄ > 0. Hence, K̃ is solid and

1 = lim
ν→∞

c(Kν) = lim
ν→∞

c(Qν) = lim
ν→∞

sν/rν = s̄/r̄,

that is to say, s̄ = r̄. Given that {xν}ν∈N and {wν}ν∈N are in the compact set Sn, there is an
increasing function φ : N → N such that both limits

x̄ = lim
ν→∞

xφ(ν), w̄ = lim
ν→∞

wφ(ν)

exist. By continuity arguments one obtains x̄ = πinc(K̃) and w̄ ∈ Πcirc(K̃). Now, passing to
Painlevé-Kuratowski limits in the sandwich

M(xφ(ν), rφ(ν)) ⊂ Qφ(ν) ⊂M(wφ(ν), sφ(ν)),

and keeping in mind that s̄ = r̄, one arrives at

x̄+ r̄Bn ⊂ M(x̄, r̄) ⊂ K̃ ⊂M(w̄, r̄).

We are in the same situation as in (10), so one deduces that K̃ = M(w̄, r̄) is a ball-generated
cone. Hence,

∆ = lim
ν→∞

dist
[
Kϕ(ν),Ξ

ball
n

]
= lim

ν→∞
dist

[
Qν ,Ξ

ball
n

]
= lim

ν→∞
dist

[
K̃,Ξball

n

]
= 0.

This proves our claim and completes the proof of the theorem.

4 Eccentricity of a regular cone

The eccentricity of a regular cone K ∈ Ξn is defined by the expression (4), that is to say, it
is the gap between the incenter and the circumcenter of K . By squaring both sides of (4) and
keeping in mind that πinc(K) and πcirc(K) are unit vectors, one gets

[e(K)]2 = ‖πinc(K)− πcirc(K)‖2 = 2− 2 a(K),

where a(K) := 〈πinc(K), πcirc(K)〉. In other words, the eccentricity

e(K) =
√

2(1− a(K)) (47)

of a regular cone K has to do also with the angle formed by πinc(K) and πcirc(K).

Proposition 4.1. The function e : Ξreg
n → R is continuous and satisfies the following proper-

ties:

(a) e(K+) = e(K) for all K ∈ Ξreg
n .

(b) 0 ≤ e(K) <
√

2 for all K ∈ Ξreg
n .
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Figure 1: Mutually dual simplicial cones in R3. One ray corresponds to the incenter of K , the other
ray corresponds to the circumcenter of K (i.e., the incenter of K+). In this example the angle between
πinc(K) and πcirc(K) is almost π/4, suggesting a rather high degree of eccentricity.

(c) {e(K) : K ∈ Ξreg
n } is an interval.

Proof. Both functions πinc and πcirc are continuous on Ξreg
n . Part (a) is a consequence of (6)

and (7). The strict inequality in (b) follows from (47) and the fact that a(K) > 0 for allK ∈ Ξreg
n .

Recall that πinc(K) belongs to the interior of K and πcirc(K) belongs to the interior of K+.
The set in (c) is an interval because Ξreg

n is arc-connected (cf. [9, Proposition 7.3]).

The next theorem provides an upper bound for the eccentricity in terms of the coefficient

Φ(K) =
ρ(K) + ρ(K+)

1 + ρ(K)ρ(K+)
.

Such an expression is well defined for all K ∈ Ξn and satisfies

0 ≤ max
{
ρ(K), ρ(K+)

}
≤ Φ(K) ≤ 1. (48)

These inequalities are all strict when K is regular.

Theorem 4.2. For all K ∈ Ξreg
n one has

e(K) <
√

2 (1− Φ(K)) . (49)

Furthermore, there exists sequence {Kν}ν∈N in Ξreg
n such that√

2 (1− Φ(Kν))− e(Kν) → 0 as ν →∞.
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Proof. We claim that the inner product of x = πinc(K) and y = πcirc(K) is greater than
Φ(K). We suppose that x 6= y, otherwise we are done. If one sets r = ρ(K) and s = µ(K),
then one can write

x+ rBn ⊂ K ⊂M(y, s).

Hence, for all u ∈ Bn one has x+ ru ∈M(y, s) or, equivalently,

t ‖x+ ru‖ ≤ 〈y, x+ ru〉 (50)

with t =
√

1− s2 = ρ(K+). We exploit the relation (50) for the particular choice u = −y.
Since x and y are not collinear, one has

‖x− ry‖ > 1− r〈x, y〉,

and therefore
t(1− r〈x, y〉) < 〈x, y〉 − r.

After simplification one obtains

〈x, y〉 > r + t

1 + rt
.

This confirms our claim and completes the proof of (49). For proving the last part of the theorem
we consider a revolution cone

Kν = {w ∈ Rn : (1/ν)‖w‖ ≤ 〈z, w〉}

whose revolution axis is a given vector z ∈ Sn. For each ν ≥ 1 one has

πinc(Kν) = πcirc(Kν) = z,

and therefore e(Kν) = 0. On the other hand, ρ(Kν) =
[
1− (1/ν)2]1/2 and ρ(K+

ν ) = 1/ν ,
so Φ(Kν) → 1 as ν goes to infinity.

Keeping in mind (48) one gets in particular

e(K) <
√

2 (1− ρ(K)) , (51)

e(K) <
√

2 (1− ρ(K+)) (52)

for all K ∈ Ξreg
n . However, these upper bounds are less sharp than (49).

Corollary 4.3. If K ∈ Ξreg
n is either infradual or supradual, then

e(K) <
√

2 (1− n−1/2) . (53)

Proof. If K ∈ Ξreg
n is supradual, then ρ(K) ≥

√
1/n by Corollary 2.11. The relation (53) is

then a consequence of (51). If K ∈ Ξreg
n is infradual, then ρ(K+) ≥

√
1/n and (53) is a

consequence of (52).
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The following theorem proposes an alternative to the upper bound (49), but it concerns only the
class of simplicial cones. Note that the new bound (54) is exact for orthogonal cones, whereas
(49) is not.

Theorem 4.4. If K ∈ Ξn is simplicial, then

e(K) ≤
√

2 (1− n ρ(K)ρ(K+)) . (54)

Proof. Consider again the proof of Theorem 2.7. By combining (22), (23), and (24), one gets

n ρ(K) ρ(K+) ≤ 〈πinc(K), πinc(K
+)〉.

But
〈πinc(K), πinc(K

+)〉 = 〈πinc(K), πcirc(K)〉 = 1− (1/2) [e(K)]2 .

This yields the announced relation (54).

Though we know that the eccentricity of a regular cone is smaller that
√

2, it remains an open
question to compute

En = sup{e(K) : K ∈ Ξreg
n }.

It is not clear whether this supremum depends on n and which one is its exact value. For the
sake of illustration we give below an example showing that√

2−
√

2 ≤ E3 ≤
√

2. (55)

Example 4.5. For each ν ≥ 2, let Kν be the simplicial cone generated by the columns of

Gν =

 0 ν−1 ν−1

0
√

1− ν−2 0

1 0
√

1− ν−2

 .
A long and tedious computation shows that limν→∞ e(Kν) =

√
2−

√
2 , which explains the

lower bound in (55).
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