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A B S T R A C T

The application of visible (Vis; 400–750 nm) and near infrared red (NIR; 750–2500 nm) region spectroscopy to
assess fruit and vegetables is reviewed in context of ‘point’ spectroscopy, as opposed to multi- or hyperspectral
imaging. Vis spectroscopy targets colour assessment and pigment analysis, while NIR spectroscopy has been
applied to assessment of macro constituents (principally water) in fresh produce in commercial practice, and a
wide range of attributes in the scientific literature. This review focusses to key issues relevant to the widespread
implementation of Vis-NIR technology in the fruit sector. A background to the concepts and technology involved
in the use of Vis-NIR spectroscopy is provided and instrumentation for in-field and in-line applications, which
has been available for two and three decades, respectively, is described. A review of scientific effort is made for
the period 2015 - February 2020, in terms of the application areas, instrumentation, chemometric methods and
validation procedures, and this work is critiqued through comparison to techniques in commercial use, with
focus to wavelength region, optical geometry, experimental design, and validation procedures.
Recommendations for future research activity in this area are made, e.g., application development with con-
sideration of the distribution of the attribute of interest in the product and the matching of optically sampled and
reference method sampled volume; instrumentation comparisons with consideration of repeatability, optimum
optical geometry and wavelength range). Recommendations are also made for reporting requirements, viz.
description of the application, the reference method, the composition of calibration and test populations, che-
mometric reporting and benchmarking to a known instrument/method, with the aim of maximising useful
conclusions from the extensive work being done around the world.

1. Review objectives

The use of Visible-Near Infrared (Vis-NIR) spectroscopy (Vis-NIRS)
to analyze fresh produce (intact fruit or vegetables; referred to as ‘fruit’
throughout this article) in postharvest applications is a relatively ma-
ture topic. The basics of the spectroscopic and chemometric theory is
established, and a range of instrumentation dedicated to the post-har-
vest sector is available. Indeed, in-line Vis-NIR spectroscopic cap-
abilities have been offered by manufacturers of commercial packing
lines for nearly three decades, and handheld equipment dedicated to
fruit analyses have been available for two decades. However, while
technologies such as weight cells and colour cameras are now ubiqui-
tous in pack-lines, adoption of spectroscopic technologies into com-
mercial post-harvest practice to assess chemical properties is still rela-
tively limited. Thus, there is room for confirmation of past work and for

further improvements to underpin adoption.
It is also now over a decade since the comprehensive review on Vis-

NIRS in postharvest biology by Nicolaï et al. (2007). A review on the
same topic was produced by Wang et al. (2015), followed by a similarly
scoped reviews by Xie et al. (2016); Kawano (2016) and Cattaneo and
Stellari (2019). In the period 2015 to February 2020, a further 18 re-
views relevant to the use of Vis-NIR spectroscopy with fruit were
published. Some of these reviews were relatively wide in scope, con-
sidering applications to food in general (e.g., Aleixandre-Tudó et al.,
2019; Cortés et al., 2019; Kumaravelu and Gopal, 2015; Xu et al.,
2019), while others review specific commodities (e.g., assessment of
thick rind fruit, Arendse et al., 2017; wine grapes, Dambergs et al.,
2015; avocado, Magwaza and Tesfay, 2015; olives, Stella et al., 2015)
or specific attributes (e.g., detection of insect infestation, Jamshidi,
2019; TSS of a number of fruit types, Li et al., 2016; Magwaza and
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Opara, 2015). Yet other reviews have focused to a consideration of
specific techniques applied to fruit assessment, such as data processing
(Srivastava and Sadistap, 2018), methods for assessment of light scat-
tering (Torricelli et al., 2015) or to comparison of a range of techniques,
including Vis-NIRS, e.g., in assessing fruit ripeness (Li et al., 2018).

The current review is submitted in context of a special edition of the
journal of Postharvest Biology and Technology on the use of vibrational
spectroscopy in postharvest applications, and focusses to a considera-
tion of ‘point’ measurements, as opposed to ‘area’ measurements such as
achieved with hyperspectral imaging (for this topic, see the companion
review of Lu et al., 2020). The review also focusses the use of the at-
tenuation spectrum of a fruit, i.e., the combination of both absorbance
and scattering of photons. For consideration of attempts to separate the
two phenomena of absorption and scattering through time or spatially
resolved spectroscopy, see the companion review by Lu et al. (2020).
The topic of chemometrics is considered only briefly in the current
manuscript, given coverage in the companion review by Saeys et al.
(2019).

Given the extensive coverage of other reviews, e.g., in tabulating
RMSEC and RMSECV achieved for the commodity and attribute as-
sessed in published work, the current review focusses to key issues
relevant to the widespread implementation of Vis-NIR technology in the
fruit sector, as follows:

Section 2 provides a background to the concepts and technology
involved in the use of Vis region spectroscopy in assessment of colour
and pigment content, and NIR spectroscopy in assessment of intact fruit
attributes with use of chemometrics,.

Section 3 contains a description of commercial instrumentation
available for in-line and in-field applications.

Section 4 documents scientific effort published over the period 2015
- February 2020 in terms of application areas, instrumentation, che-
mometric methods and validation procedures.

Section 5 provides a critique of published work, with suggestions for
future work.

Section 6 contains recommendations for documentation of future
research activity in this area, to maximise gain in the form of useful
conclusions from the extensive work that is being done by many re-
searchers around the world.

2. Background

2.1. Spectroscopy

The Vis and NIR regions of the spectrum span the ranges
400–750 nm and 750–2500 nm, respectively. Of this range, the

750–1100 nm region is referred to as the short wave NIR (SWNIR), or
Herschel region, while the 1100–2500 nm region is considered the NIR
region proper.

The Lambert-Beer-Bouguer law for dilute, non-scattering solution,
as established some two centuries ago, relates absorbance (-log It/Ii,
where It is the intensity of the transmitted signal and Ii is the intensity of
the incident signal) to the pathlength, extinction coefficient, and con-
centration of absorbing analyte. In fresh produce there is, however, a
high level of light scattering for light interacting with tissue, increasing
the effective pathlength travelled by light and invalidating the elig-
ibility of the Lambert-Beer-Bouguer law. Nonetheless, the attenuation
of Vis and NIR radiation from or through fruit has been used for a
variety of quantitative applications (e.g., Nicolaï et al., 2007).

Visible region spectroscopy is based on electronic transitions of
molecules that result in the absorption of light of matched energy level
(i.e., at specific wavelength). The resulting, rather sharp absorption
peaks, with typical full width half maximum, FWHM, of approximately
20 nm occur, are hardly affected by temperature (Zude-Sasse et al.,
2002). Near infrared spectroscopy (NIRS) involves measure of the ab-
sorption of light associated with vibration of molecular bonds. In the
assessment of intact fruit, this typically involves absorption associated
with the stretching of OeH and CeH bonds (Kawano, 1994; Golic et al.,
2003), associated primarily with water and storage reserves (the
dominant macroconstituents of fruit). The fundamental absorption
bands associated with these features lies in the infrared region
(> 2500 nm), with much narrower and higher absorption peaks than
associated with the overtones seen in NIR region.

2.2. Vis spectroscopy

The visual colour of a food product is determined by the pigment
classes of chlorophylls, carotenes, xanthophylls, anthocyanins and
other phenols (De Jager and Roelofs, 1996). Colour is an important
quality characteristic for consumer acceptance, either aesthetic or
linked to functional attributes and to the developmental stage of the
product (Pathare et al., 2013).

Several tristimulus scales based on human perception are used in
measurement of colour, e.g., CIELAB, Lch. These color scale values can
be correlated to fruit pigment levels. For example, the hue (h) and
CIELAB colour parameters a* and the ratio a*/b* were correlated to
carotenoids content in apricot fruit (Ruiz et al., 2008) and chlorophyll
content in apple (Knee, 1980). Colour space values have also been used
in various maturity and ripening indices. For example, Uwadaira et al.
(2018) related peach maturity to colour and firmness.

Alternatively, fruit pigments can be assessed based on their spectral

Fig. 1. Absorption spectra of pigments in acetone, and of holmium oxide, used for spectral calibration.
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features. Carotenes and xanthophylls absorb with three peak maxima in
the wavelength range from 420 to 503 nm (Fig. 1). The common fruit
pigment beta-carotene has a yellow to orange-red colour and a strong
absorption feature near to 475 nm. The xanthophylls, lutein and vio-
laxanthin, display an absorbance peak at approximately 435 nm, with
strong absorption across the 350–500 nm range. Absorbance in the
green region around 530–550 nm is caused by an anthocyanin pigment-
sugar–protein complex (Merzlyak et al., 2003; Toledo-Martín et al.,
2016), e.g., in apples (Iglesias and Alegre, 2009; Iglesias et al., 2012).
Chlorophyll absorbance in the blue and red wavelength regions is well
described (Kuai et al., 2018). The 680 nm in-vivo peak is utilised by
various spectral indices and non-destructive analyses implemented in
commercial devices for analysing mainly the chlorophyll content of
fruit.

Several simple spectral absorption indices have been proposed for
assessment of pigments. Many of these indices have been developed in
remote sensing applications such as the normalized difference vegeta-
tion index (NDVI; Rouse et al., 1973) and the red-edge, and adapted for
fruit assessment (Herold et al., 2009) (Table 1). In intact fruit, chlor-
ophyll content has been related to the difference of the intensity of
diffuse reflectance measured at 680 and 720 nm for apples (Zude-Sasse
et al., 2000), and at 670 and 720 nm for nectarines (DA index, Ziosi
et al., 2008). These indices typically involve measurement at a wave-
length associated with absorption of the pigment of interest, referenced
by measurement at a wavelength that is affected by scattering in the
fruit tissue but not affected by pigment absorbance. NDVI is sensitive to
low chlorophyll contents such as in ripened fruits, but it and many
other indices are saturated at high chlorophyll content (Dash and
Curran, 2004). Fruit with high chlorophyll content can be better as-
sessed using the red-edge value (Zude-Sasse et al., 2002; Sims and
Gamon, 2003; Dash and Curran, 2004). These approaches are com-
promised, however, if there are changes in the level of scattering in the
fruit, e.g., during ripening (Seifert et al., 2015).

2.3. NIRS

The concept of quantitative determination of analyte level in solid
materials using near infrared spectroscopy was established by Karl
Norris of the United States Department of Agriculture (USDA) in the
1960s, based on work with low moisture agricultural products (water in
grains, Norris and Hart, 1965, later published in Norris and Hart, 1996).
USDA work continued into application to high moisture content intact

fruit and vegetables, with Birth et al. (1985) publishing on the assess-
ment of the dry matter content (DM) on onions, and the group con-
tinuing into assessment of total soluble solids (TSS) of melons (Dull
et al., 1989). A research and development program then began in
Japan, with the first publication (Kawano et al., 1992) reporting on
assessment of TSS on intact peaches.

The absorptivity of the overtones features seen in the near infrared
region are lower than those in the infrared. This characteristic is the
reason for the use of the NIR wavelength region with intact product, as
it allows for effective pathlengths through fruit in the order of milli-
metres to centimetres rather than micrometres as experienced for wa-
velengths> 2500 nm. For the same reason, longer effective pathlengths
are possible with higher overtone features in the SWNIR region com-
pared to overtones in the NIR region, i.e., with use of the 750−1100 nm
region over the 1100−2500 nm region.

Absorption at 840, 960 and 1440 nm is associated with the first,
second and third overtones of OeH stretching, while absorption at
1900 nm associated to a combination OeH feature. The position of the
OeH features, however, are affected by the degree of H bonding, and
thus by temperature and solute concentration. Absorption near 910,
1100 and 1700 nm is associated with C–H third, second and first
overtone features. All absorption features are broad and overlapped,
such that interpretation of the raw absorption spectra of fruit is diffi-
cult, beyond noting features related to water. The enabler for use of
NIRS over infrared spectroscopy was the development of chemometrics,
which allowed relevant data to be ‘teased out’ of the spectra.

3. Instrumentation for Vis-NIR systems

3.1. Visible region devices for colorimetry and pigment spectroscopy

Features to look for the instrumentation for colour measurement
include (i) an optical geometry achieving an even, diffuse illumination
of the object surface with an integrating sphere, a colour stable illu-
mination source with high end instrumentation utilise Xe flash lamps,
while lower cost instrumentation use halogen lamps or light emitting
diodes (LEDs) and a full spectrum or tristimulus detector (Table 2).
Lamp spectral output can be affected by lamp temperature (Hayes et al.,
2014). The most widely used light source standard in colour measure-
ment of food is the illuminant CIE (Commission Internationale de
l'Eclairage) D65, which corresponds to the spectral distribution of the
midday sun in Western Europe. Instruments using light sources with a

Table 1
Spectral indices relevant to pigment analysis.

Index Equation Source

Xanthophyll indices
Photochemical Reflectance Index (570) PRI570 = (R570 − R531)/(R570 + R531) Gamon et al. (1992)
Photochemical Reflectance Index (515) PRI515 = (R515 − R531)/(R515 + R531) Hernández-Clemente et al. (2011)
Chlorophyll pool indices
Red Edge ZM = R750/R710 - 1 Zarco-Tejada et al. (2001); Herold et al. (2009)
Lichtenthaler indices Blue/Red = (ρ440)/(ρ690) Lichtenthaler et al. (1996)

Blue/far red = (ρ440)/(ρ740)
Vogelmann VOG1 = R740/R720 Vogelmann et al. (1993)
Gitelson and Merzlyak indices GM1 = R750/R550 Gitelson and Merzlyak (1997)

GM2 = R750/R700

Pigment Specific Simple Ratio Chlorophyll a PSSRa = R800/R675 Blackburn (1998)
Pigment Specific Simple Ratio Chlorophyll b PSSRb = R800/R650 Blackburn (1998)
Transformed Chlorophyll Absorption in Reflectance Index TCARI=3·[(R700 − R670) − 0.2·(R700 − R550)·(R700/R670)] Haboudane et al. (2002)
IAD-Index IAD = R670 - R720 Ziosi et al. (2008)
Normalised Difference Vegetation Index (NDVI) NDVI=[R780 – R660] / [R780 + R660] Rouse et al. (1972) Zude (2003)
Carotenoids indices
Structure-Intensive Pigment Index (carotenoid to chlorophyll

ratio)
SIPI = (R800 − R445)/(R800 + R680) Peñuelas et al. (1995)

Pigment Specific Simple Ratio Carotenoids PSSRc = R800/R500 Blackburn (1998)
Others R520/R500 Zarco-Tejada et al. (2012)

R515/R570

R515/R670
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different spectral output can utilise a conversion factor to achieve a
virtual D65 output.

The most widespread electronic, low cost, colour detector is the
ubiquitous colour camera. Common CMOS and CCD cameras utilise red,
green or blue (RGB) filters centred at 700, 546 and 436 nm, respec-
tively, in a Bayer pattern across individual pixels. These devices were
first adopted into electronic packing lines in the late 1970s and are now
widely implemented. RGB data can be approximately transferred to the
XYZ colour coordinate space and then to other colour spaces such as the
CIELAB (Poynton, 1997). Alternatively, XYZ values can be calculated
from a 400–700 nm spectrum, typically using data at 5 nm steps, but
CIE (1986) also provides colour tables at 1 nm resolution. In practice,
e.g., for sorting purposes on packlines, RGB values are used directly.

Achieving a more direct match to a colour space, several ‘tristi-
mulus’ colorimeters capture light in wavelength ranges matched to the
colour coordinate system of interest with the use of filtered photo-
detectors, e.g., the ‘industry standard’ Minolta CR400 (www.minolta.
com) (Table 2). The expense of such specialty filters, however, can add
greatly to the overall cost of an instrument.

The tristimulus devices are also not appropriate for complex colour
analysis such as metamerism and colorant strength. The standardised
assessment of colour can be achieved using a spectrophotometer based
on Si photodiode or CMOS technology, which may measure beyond the
visible range into SWNIRS (e.g., the ST from Ocean Optics, https://
www.oceaninsight.com/products/spectrometers/microspectrometer/
sts-series; doa 5/3/20), given appropriate lighting.

Low cost LED based instrumentation for assessment of ‘colour’ is
becoming available. For example, the Colour Stick employs a diffuse
white LED source and four photodetectors (RGB filters and a clear
channel), with output using various colour spaces (pers. comm. Paul
Riding, Colour Stick; Table 3). The Agrosta fruit spectrophotometer
uses LEDs of 18 peak wavelengths that sequentially illuminate the fruit,
with use of a single detector (https://www.agro-technology.co.uk, doi
5/3/2020), providing ‘colour’ defined in terms of the 18 remittance

values rather than in terms of a colour space such as CIELAB.
Several LED based instruments have also been released that target

assessment of specific pigment in fruit (Table 3). The DA meter, Kiwi
meter and Cherry meter measure at two or three wavelengths aimed at
chlorophyll or red pigment detection. The MultiPlex operates using
several wavelengths, with several indices to address a range of pig-
ments. While the Multiplex employs a diffuse reflection optical geo-
metry, the Turoni devices and the FIORAMA probe operate using a
partial transmission geometry and the IDD4 utilises a full transmission
geometry in a packline application, for assessment of internal defects
such as internal browning (Table 4).

3.2. SWNIRS in-line equipment

In-line applications are characterised by constraints related to speed
of assessment, appropriate to packline conveyor speed, to the geometry
of the conveyor belt and to operating conditions (e.g., vibration). On a
positive note, ambient light conditions can be reasonably controlled
using a housing over the conveyor system, in contrast to spectrometers
intended for in-orchard use. The first commercial use of NIRS tech-
nology was in Japan, beginning in the late 1980s/early 1990s, with use
for in-line sorting of fruit on attributes such as Total Soluble Solids
(TSS) (Walsh, 2005). The first providers of in-line NIRS equipment in-
cluded Mitsui Metals and Mining, Sumitomo, Fantec and Emitec (all of
Japan). The early systems utilized reflectance optics, but this geometry
was soon replaced by partial or full transmittance optics, presumably
due to model robustness issues associated with a reflectance geometry.
All systems utilized halogen lamps, with the notable exception of the
Sumitomo system, which utilized diode lasers. This product was dis-
continued, presumably due to the added cost and to issues associated
with stability of laser output intensity. Technology adoption continued
in the new century (early 2000s), with release of in-line equipment by
the global grading equipment manufacturers, Colour Vision Systems
(Australia, now part of MAF RODA, France) and Compac (now part of
Tomra, Norway), and later, Greefa (Holland), Multiscan Technologies
(Spain), Aweta (Holland), Sacmi and Unitec (Italy).

Current ‘state of art’ commercial systems achieve assessment of fruit
travelling at a belt speed of 1m.s−1 with simultaneous operation of
multiple lanes, with sorting of up to 10 fruit per second (depending on
fruit size). Current systems employ a SWNIR spectrophotometer, i.e.,
operate to approx. 1050 nm, in partial or full transmission geometry.
Issues relevant to in-line application include: (i) the influence of the
movement of the samples during the measurement interval, e.g., a
20ms integration time involves movement of the fruit by 20mm during
assessment at a 1m.s−1 belt speed; (ii) use of an optical geometry that
minimizes the impact of changing fruit size and shape (including
minimizing specular reflectance received by the detector); (iii) mea-
surement of a representative portion of the fruit, given natural internal
distribution of the constituents; and (iv) robust chemometric models

Table 2
Examples of handheld chromameters used in assessment of fruit and vegetables.

Instrument Manufacturer Light source

CR400a Minolta, Japan Xe flash
ColourStickb Lincoln University, NZ broad spectrum (white) LED
Pro Colorc Nix, USA broad spectrum (white) LED
Triadd Agrosta, France LEDs of 18 wavelengths

a https://sensing.konicaminolta.us/products/cr-400-chroma-meter-
colorimeter; doa 5/3/20.

b https://www.lincolnagritech.co.nz/capabilities/tech-licensing/
colourstick-moist-surface-colorimeter; doa 5/3/20.

c https://www.agro-technologies.com/ang/produits/spectrophotometer;
doa 5/3/20.

d https://www.nixsensor.com/compare-nixes; doa 5/3/20.

Table 3
Dedicated multi wavelength meters used in assessment of fruit and vegetables.

Instrument Format LED peak wavelengths (nm) Optical geometry Application

DA metera handheld 670, 720 remittance chlorophyll
Kiwi metera handheld 560, 640, 750 remittance red pigments
Cherry metera handheld 560, 640, 750 remittance red pigments
MultiPlex330b handheld 435, 685, 735 diffuse reflectance pigments
SoftRipec handheld 660, 720 diffuse reflectance chlorophyll
FIORAMAd handheld 535, 570, 685, 720, 950 remittance chlorophyll, red pigments
IDD4e in-line 4 wavelengths transmittance internal defects

a T.R. Turoni Srl., Forlì, Italy; https://www.trturoni.com/en/fruit-veg-ripeness-quality-control/da-meter; doa 5/3/20.
b Force-A, Paris, France; https://www.force-a.com/fr/produits/multiplex ; doa 5/3/20.
c Frigotec GMBH, Landsberg, Germany; https://softripe.com/discover/ripening-technology/home; doa 5/3/20.
d CP, Potsdam-Golm, Germany; http://cp-info.de/Our-Products; doa 5/3/20.
e MAF, Montabaun, France; https://www.maf-roda.com/en/page/electronic-sorting.php; doa 5/3/20.
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(Cortés et al., 2019).
Due to commercial sensitivities, performance benchmarking of the

commercially available equipment is not available in the scientific lit-
erature, with (to the authors knowledge) the exception of Walsh et al.
(2020). Attempts have been made to emulate issues relevant in-line
systems, e.g., Ignat et al. (2014) compared performance of PLSR models
on apple attributes for static and moving fruit using two different
spectrometers. Unfortunately, attempts to emulate in-line systems in
scientific reports are often misguided in use of design features not used
in commercial instrumentation, e.g., reflectance optics or wavelength
ranges beyond 1050 nm (e.g., Ignat et al., 2014; Salguero-Chaparro and
Peña-Rodríguez, 2014).

However, although a range of instrument manufacturers have sup-
plied the fruit and vegetables market for some decades, commercial
adoption has been relatively modest relative to adoption of technolo-
gies such as machine vision and load (weight) cells. The resistance to
uptake can be attributed to three factors: (i) achievable accuracy and
precision, (ii) operational complexity and (ii) value created. Unlike the
direct measurement of an attribute such as weight on a packline,
visible-NIRS measurements are indirect, and the strength of the indirect
relationship is stronger for some attributes in some applications than
others. This uncertainty requires a higher level of management effort.
Operational complexity relates to the need for regular calibration
(model updating) of the equipment, which if not undertaken will
compromise the reliability of operation (e.g., Walsh et al., 2020). An
example of value created is seen in the Japanese gift fruit market which
rewards premium internal quality. This ‘pull factor’ underpinned early
technology uptake in Japan with exceptionally high prices. However,
improved eating quality (e.g., higher TSS) is not associated with sig-
nificant premium pricing in many markets. In western countries, a
greater market pull exists for sorting for removal of internal defects for
which there is a strong penalty (e.g., consignment rejection if incidence
of apple internal browning exceeds 2%). Uptake of NIR sorting has thus
favored defect sorting applications in western markets, despite the level
of uncertainty in assessment (e.g., Khatiwadi et al., 2016).

3.3. SWNIR devices for handheld use

These are a number of models of dedicated handheld ‘fruit spec-
trometers’ on the market which provide for calculation and display of
the predicted level of an attribute on the device and are physically
designed for use with fruit (Table 5). A primary difference for a field

spectrometer compared to a unit designed for indoor use is tolerance of
variation in ambient light levels (sunlight) and temperature. A range of
generic, i.e., not specific to fruit, miniature spectrometers have also
been released, with promotional material often providing examples of
fruit assessment (Table 4). Luggable or handheld equipment purpose
built for fruit assessment in field became commercially available in the
early 2000s, with instruments released by Fantec (Japan), CP (Ger-
many), Sacmi (Italy), Integrated Spectronics (Australia), Kubota
(Japan) and later, Felix Instruments (USA). While Fantec (NIRGun),
Integrated Spectronics (Nirvana) and CP (Pigment Analyzer) have ex-
ited this field, recent releases targeting the handheld market include the
GWon (Korea), SunForest (South Korea), Atago Hikari (Japan) and FHK
(Japan) (Table 4).

The ‘fruit spectrophotometers’ are most commonly based on a
tungsten halogen light source, a grating and Si photodiode or CMOS
linear array detector, operating within the range 350–1100 nm and a
partial transmission (interactance) geometry. Referencing with every
sample can be used to accommodate variation in ambient light level.

A range of alternative detector technologies (see review by Yan and
Siesler, 2018; also Table 4) have been released and others are in de-
velopment. These technologies have been deployed within generic use
spectrometers, but they have yet to be utilised in systems dedicated to
fruit assessment, with appropriate optical geometry, wavelength range
and graphical user interface. Such adaption can be expected over the
next decade.

For example, the Atago and SCiO devices employ LEDs as short
wave near infrared region (SWNIR) light sources, using less power and
avoiding the need for heat dissipation systems inherent in the use of a
halogen lamp, the classical light source for NIRS systems. The cost of
doped InGaAs based detectors has decreased, enabling use of this
technology for applications requiring a longer NIR wavelength region
(e.g., 800−2400 nm). Light dispersion technologies such as a linear
variable filter (as used in the MicroNIR, Viavi) can allow for a more
compact instrument design than achieved with use of a grating. Bao and
Bawendi (2015) produced a quantum dot spectrometer chip by printing
quantum dot inks on the surface of a detector array, allowing multiple
spectral bands to be encoded and detected simultaneously with one
filter and one detector. This type of spectrometer is small enough for
use in a mobile phone. FTNIR, which uses an interferometer and a
single detector, provides a different approach to wavelength dispersion.
This technology holds advantages over other dispersive technologies in
optical resolution achieved and is promoted as providing ease of model

Table 4
Commercially available portable Vis-NIR spectrophotometers.

Technology Manufacturer, model Wavelength range
(nm)

Dedicated fruit spectrometers
grating and CMOS array based spectrometer, halogen lamp, partial transmission SunForest (Korea)

Felix Instruments, F751 (USA) (www.felixinstruments.com)
790 – 950
330 – 1100

grating and Si diode array based spectrometer, halogen lamp, partial transmission Sacmi, (Italy) (http://www.sacmi.com)
Felix Instruments, F751

650 – 1050
330 – 1100

K-BA-100R1, Kubota (Japan)
(jnouki.kubota.co.jp/product/kanren/fruit_selector/)

500 – 1000

Si detector, 20 LEDs of 6 wavelengths, partial transmission Atago, Hikari (Japan) (atago.net/product/) na
Generic miniature spectrometers
linear variable filter, halogen lamp, reflection Viavi, MicroNIR (USA) (www.viavisolutions.com/en-us/osp/

products/micronir-spectrometers)
900 – 1700

Digital light projector (DLP), reflection SG1 (Taiwan) (www.ti.com/tool/TIDA-00,155) 900 – 1700
Fabry-Perot filter inferometer grid and image sensor with 12 receptors, diffuser/

plate with holes of different aperture sizes/lens, broad region LED, reflection
SCiO (Israel) (www.consumerphysics.com/scio-for-consumers/)

plasmonic filter - a metal film perforated with subwavelength 32×32 hole arrays
directly on the light sensor array IC, reflection

NanoLambda (Daejeon, Korea);
(www.nanolambda.myshopify.com/)

390 – 760

Fourier Transform using Mach-Zehnder interferometers, reflection (www.fringoe.com/fringoe-spectrometer)
MEMS, reflection Thermo, Phazir 2400. (Wilmington, MA, USA) (www.

thermofisher.com/order/catalog/product/MICROPHAZIR)
1600 – 2400

MEMS-FTNIR Michelson interferometer, reflection Si-Ware (Cairo, Egypt) (www.neospectra.com/) 1350 – 2500
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transfer between instruments. Micro-Electro-Mechanical Systems
(MEMS) have been used in micromirror arrays (so called Digital Light
Processors, DLP) to create compact dispersive elements that can then be
coupled to other optics and detector elements to create miniature
micro-opto-electro-mechanical systems (MOEMS) based spectrometers,
as used in the SCiO, SG1 and Phazir instruments.

4. Scientific effort (2015–2020)

While spectrophotometric assessment of fruit has been in commer-
cial use for over thirty years, scientific community activity, as indexed
by publication output recorded by Scopus (http://www.scopus.com),
has increased dramatically in the last 15 years (with 310, 804 and 863
publications in the previous 5, 10, and 30 years, respectively, given
keyword search as detailed in Fig. 2). This increase in output is un-
derpinned by the availability of instrumentation, with advances in re-
levant technology, including miniaturisation, detector types, low power
use light emitting diodes, computing speed and chemometric data
analyses, wireless communication and cloud computing are under-
pinning new generations of instruments at a budget that is affordable
for producers, consultant services and other post-harvest stakeholders.
Over the last decade, output of around 80 publications per annum has
occurred.

Journal publications from 2015-Feb 2020 (n= 316) were categor-
ized on the commodity and attribute assessed, the wavelength range
and optical geometry of the instrumentation used, the chemometric
modelling technique and the validation procedure employed (Table 5;
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Fig. 2. Scopus record as of 02/2020 on documents using the keywords “visible”
or “near infrared” or “spectroscopy” and “fruit”, with exclusion of “metal na-
noparticles” and “plant extracts”. Top panel: publication number per annum on
a log scale. Bottom panel: cumulative total of publication number.
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full metadata table available on request from authors) with the number
of publications per category presented in Table 6. Papers using multi- or
hyperspectral imaging only (n= 35 for this period and keyword search)
were excluded. Most papers originated from China (45 %), followed by
United States (8 %), Spain (8 %), Italy (6 %), and Japan (5 %).

Over the period 2015 to Feb 2020, Vis-NIR spectroscopy was re-
ported in measurement of a range of post-harvest attributes of fruit
including moisture content, pigmentation (anthocyanins, carotenoids,
chlorophylls), storage reserve level (soluble sugar, starch or oil), or-
ganic acid levels, various internal defects (internal browning, glassi-
ness, stone cracking, bruising, bitter pit, internal rots), maturity indices,
and claims were made for measurement of firmness and more indirect
analyses.

Pome fruit, particularly apple, received the most attention in these
publications, followed by stone fruit and citrus, with TSS being the most

investigated attribute (29 % of reports, Table 6). Acidity and firmness
featured in 22 % of all 2018 publications. The majority of publications
reported use of a wavelength region above 1050 nm (61 %) and a re-
flection geometry (75 %). PLS was the dominant multivariate regres-
sion method in use (45 % of publications), with only 11 % of reports
employing an independent test population. Where cross validation was
used, (33 %) of reports used the leave-one-out procedure.

A proportion of the published papers are ‘derivative’ in that they
demonstrate application of an existing technique to a different fruit
commodity, e.g., a ‘known’ wavelength selection or multivariate ana-
lysis technique. While incremental improvements and documentation
of Vis-NIRS applications to a given commodity-attribute are useful to
support adoption of the technology, there are additional requirements
to provide a useful addition to scientific literature. The following sec-
tions attempt to document such requirements, and also highlight dif-
ferences between Vis-NIRS technology used in commercial postharvest
practice and the weight of scientific studies (Table 6). These differences
may reflect cost and ease of implementation pressures on commercial
practice, at a compromise to performance, or alternatively the differ-
ences may reflect the instrumentation and resourcing available to re-
searchers.

5. Visible-NIR spectroscopy and colour assessment

5.1. Definitions

Nomenclature for the geometries of light source, sample and de-
tector has been described in previous reviews (e.g., Chen, 1978; Nicolaï
et al., 2007; Herold et al., 2009), but as the terminology is often con-
fused in postharvest literature the terms are briefly repeated here
(Fig. 1). By IUPAC definitions, the terms ‘reflectance’, ‘interactance’ and
‘transmittance’ refer to the quantity of light received from a ‘reflection’,
‘interaction’ and ‘transmission’ optical geometry. The term ‘attenuance’
(formerly termed extinction) is analogous to absorbance but en-
compasses scattering and luminescence (Cohen et al., 2008; Verhoeven,
1996). ‘Apparent absorbance’ is an equivalent term to attenuance. The
term ‘remittance’ is also sometimes used, referring to the quantity of
light that is received by the detector, being used in context of partial
transmission geometry. The terms reflection, transmission, interaction
and remission refer to the geometry involved (Fig. 3).

In a reflection geometry, the detector views an illuminated part of
the fruit, receiving both specular and diffusely reflected light (‘re-
flectance’). Specular reflections carry no information on the internal
attributes of the sample. The intensity of the ‘useless’ specular

Table 6
Publications on visible or near infrared spectroscopy over the period Jan 2015 -
Feb 2020, segregated by topic (in terms of number and percentage). Note that a
given publication can be scored in several categories (e.g., if it involved several
fruit types).

Commodity # % Attribute # %

Citrus 33 12 TSS 135 32
Pome 75 26 Dry matter 32 7
Stone 50 18 Acidity 62 14
Tomato 25 9 Firmness 42 10
Other 102 36 Color, pigment 42 10

Internal defect 30 7
Species, variety, origin 27 6
Maturity, ripeness 24 6
Other 76 18

Wavelength range (nm) # % Statistical method # %
<1050 108 43 Partial least-square (PLS) 198 45
<1700 33 13 Support vector machine

(SVM)
41 9

<2500 112 44 Discriminant analysis (DA) 76 17
Full range 147 56 Other 127 29
Variable selection 116 44

Test set # %
Optical geometry # % Cross validation only 185 66
Reflection 210 75 Dependent test pop 62 22
Partial Transmission 54 19 Independent test pop 32 11
Full Transmission 16 6

Cross validation # %
Leave one out 134 68
Group based 62 32

Fig. 3. Representation of potential pathways of light interacting with a sample, depicted with a single incident ray.

K.B. Walsh, et al. Postharvest Biology and Technology 168 (2020) 111246

7



reflections seen by the detector can exceed the detected diffusely re-
flected light in a poorly designed system. A 45° angle between detected
rays, collimated illuminating rays and a planar surface will minimise
the proportion of specular rays received by the detector. A fundamental
limitation to application of a reflectance geometry, however, is that
most of the detected diffusely scattered light will have emanated from
the superficial layers of the fruit, rather than from the mesocarp which
is generally of interest in assessment of fruit internal quality (see further
discussion at 4.4).

In transmission geometry, lamp, sample and detector are arranged
such that light must pass through the sample to the detector, with no
light passing directly from lamp to detector. Such arrangements can
involve 180° geometry of lamp-sample-detector (‘full transmission’
geometry) or lesser angles (‘interactance’, ‘remission’ or ‘partial trans-
mission’). The ‘shadow probe’ configuration (Greensill and Walsh,
2001) is a specific partial-transmission geometry that is of use in non-
contact assessment of a sample, as required for moving fruit on a
packline. In this geometry, an optical probe is placed in front of a
collimated light source, creating a shadow on the fruit which is viewed
by the probe, with detected signal relatively independent of detector to
sample distance. A limitation to use of a 180° transmission geometry
with many fruit types is fruit optical density and tissue inhomogeneity.
The former issue requires use of strong illumination sources and/or
sensitive detectors, while the latter results in a mis-match of the opti-
cally sampled volume (i.e., fruit skin, flesh and core) to the attribute of
interest (e.g., flesh TSS).

Point spectroscopy provides the sum signals of attenuation, i.e., of
absorption and scattering. The scattering properties of a tissue influence
the effective path of photons, and thus the effective depth of penetra-
tion of light into that tissue and the effective pathlength between the
light source and the detector (Cubeddu et al., 2001). However, the
amount of scattering differs between fruit types (Cubeddu et al., 2001;
Lu et al., 2019) and may change during fruit development (Qin and Lu,
2008; Nicolaï et al., 2008; Zerbini et al., 2015; Seifert et al., 2015). If
scattering properties of a fruit change, as shown for European plum
during ripening (Seifert et al., 2015), apparent absorption will be
changed, upsetting any relationship between apparent absorbance and
an attribute of interest. A number of studies have attempted to correct
for the perturbations related to scattering, through the use of indices or
chemometric data pre-treatments when entire spectra are available
(e.g., Sun et al., 2020a, 2020b). Attempts to estimate scattering coef-
ficients and the correct attenuation data to achieve ‘true’ absorption
data, however, have rarely resulted in better correlations between Vis-
NIR spectra and attribute levels (e.g., Nguyen Do Trong et al., 2014).

The ‘depth of penetration’ of light into a sample is defined
(Verhoeven, 1996) as the inverse of the decadic absorption coefficient,
i.e., the depth at which radiant power is decreased to one tenth of its
incident value. Characterisation of this attribute for a given application
is useful, towards understanding of the volume of the sample that is
optically sampled. Peirs et al. (2003) describe a useful empirical tech-
nique based on slices of fruit to assess this characteristic. Methods to
easily model light distribution through tissue for a given optical geo-
metry and sample would also be helpful, aiding understanding of the
‘optical sample’ achieved with a given optical geometry and sample
(fruit) type.

5.2. Optical geometry applied in recent years

The choice of optical geometry for a given postharvest application
should be informed by a consideration of fruit structure in context of
the optical geometry of the spectrophotometric system. The over-
whelming majority (75 %) of studies published since 2015 that use Vis-
NIRS to assess internal attributes of fruit have employed a reflection
geometry, yet such a geometry is not used in any commercial spectro-
photometer targeted to fruit application (Section 3). This may be a
result of available instrumentation in research laboratories, with a

reflection geometry dominating instrumentation used in food applica-
tions (Aleixandre-Tudó et al., 2019). Most food applications involve a
homogenized material for which a surface (reflection) assessment can
be representative of the whole sample. Future reports on application
development using Vis-NIRS for fruit attribute assessment should
therefore include justification of the optical geometry employed.

Vis-NIR spectroscopy of intact fruit requires the passage of light
through fruit ‘skin’ (typically exocarp and non-edible mesocarp), edible
mesocarp and back out through the skin. Spectra acquired using a re-
flection geometry will carry primarily surface information about the
sample in terms of both specular and diffusely reflected light. Variation
in fruit shape and surface features will impact the level of specular
reflection, affecting apparent absorption values. As specular light is
identical to the incident light, its contribution to the apparent absorp-
tion spectra can be ‘physically’ removed by use of polarizing filters, or
mathematically removed using pre-treatments such as a derivative. The
latter process, however, does not allow for improvement of the signal to
noise ratio of the diffuse reflection component.

The diffuse reflected radiation will emanate in majority from within
5mm depth of apple fruit (e.g., Lammertyn et al., 2000; Peirs et al.,
2003) and from less depth for fruit with a denser (higher scattering
coefficient) skin such as avocado. Assessment of internal attributes
using a reflection geometry therefore requires a correlation between the
internal attribute and spectra of external layers of the fruit (as assessed
by the reflection geometry).

The use of transmission or interaction geometries seems more ap-
propriate for acquisition of useful spectral information from greater
depths of the fruit, relative to use of reflectance geometries. This was
demonstrated by Schaare and Fraser (2000) who ranked an interaction,
180° (light-sample-detector) transmission and reflection geometry in
the order of highest to lowest performance for assessment of TSS of
intact kiwifruit. The reflection result was compromised by the level of
specular reflection and superficial layer diffuse reflection, and the
transmission result was compromised by either the low detected signal
(poor signal to noise ratio) or the impact of seeds and other central zone
tissue on the measurement. It is also expected that models based on a
reflectance geometry will be less robust in prediction of independent
populations than those based on transmittance geometries, being sen-
sitive to change in surface reflectance.

It is thus no surprise that the NIRS technique is suited to thin
skinned fruit with homogenous mesocarp (e.g., stone fruit, pome fruit,
mango) and that the optical geometry employed must be matched to
the fruit type and the signal level (Walsh et al., 2004).

Assessment of internal defects usually requires a pass/fail (dis-
criminant) decision. However, the defect may not be uniformly dis-
tributed within the fruit. A reflection geometry involves assessment of
one area of the fruit. With a full 180° light-sample-detector geometry,
light is scattered within the fruit, including a level of reflection from the
internal surface of the skin, and thus this geometry effectively involves
assessment of a greater proportion of the fruit volume (Fraser et al.,
2003). This geometry may therefore provide a better result than other
geometries, as reported in assessment of internal browning of apple
(Khatiwada et al., 2016) and pear (Sun et al., 2016), and internal rot in
citrus (Lorente et al., 2015).

Several approaches have been attempted to remove the influence of
the skin from fruit spectra, including approaches involving combined
reflection and transmission measurements (Krivoshiev et al., 2000) and
subtraction of a mean skin spectrum. Attempts to estimate the true
absorption coefficients, separated from scattering coefficients, for cor-
relation to the attribute of interest are logical (e.g., Lu et al., 2019), but
have not resulted in practically relevant solutions to date. Further work
is appropriate in this area.

5.3. Optical and reference sampled volume

While ‘point’ refers to assessment of a point on the fruit surface, the
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detected light received carries information on some proportion of the
fruit. The volume of the fruit that is ‘optically’ sampled is dictated by
the optical geometry employed, the scattering of light within the
sample, and sample movement (e.g., for fruit moving past a detector on
a pack line). For example, with in-line assessment, the movement of
fruit past the spectrometer results in assessment of a larger volume of
tissue than a stationary assessment.

The application of NIRS to assessment of an attribute for a given
fruit commodity should therefore also be accompanied by a description
of the distribution of the attribute of interest and the likely path of light
for the chosen optical geometry, together with a justification for the
chosen geometry and the volume of tissue physically sampled for
analysis using the reference method. This requirement was recognized
early in the application of NIRS to fruit assessment (Peiris et al., 1999),
but is lacking in many contemporary reports. An example is provided in
the report of Jantra et al. (2017), who note variation of the attribute of
interest (TSS and DM) within onion in context of the optical geometry
used. Another example is provided by Long and Walsh (2006) for a Vis-
NIRS application on intact melon, in which the optically sampled vo-
lume was of the outer (inedible) mesocarp only for the instrumentation
employed, while the attribute of interest was on inner mescocarp TSS.
Thus NIR-TSS predictions were heavily influenced by the correlation of
inner and outer mesocarp TSS, which varied with fruit development.

If the optically sampled volume does not represent the whole fruit,
consideration should be given to the intent of a sampling regime. For
example, the blush (sun) side of fruit typically has higher TSS and
chlorophyll than the non-blush (shade) side (Kuckenberg et al., 2008).
Thus, a program to assess average TSS of a consignment of fruit should
consider either measurement of only blush or non-blush side, or of both.
Alternatively, an optical geometry could be employed that assesses the
whole fruit, e.g., multiple point measurements. For example, Trong
et al. (2013) employed spatially resolved spectroscopy, with several
measurements made of each fruit, achieving a TSS prediction R2>0.83
against refractometer TSS assessed of juice of the whole fruit.

5.4. Spectrophotometer characterisation

The results of a spectrophotometric based study will be heavily in-
fluenced by the instrumentation used, as instrumentation is not ‘equal’
in performance. Scientific reports should therefore provide a justifica-
tion for the choice of the spectrophotometric system employed, in
context of the application. Reports should also provide detail on in-
strumentation characters to better allow comparison between studies.
For example, Huang et al. (2017) provided relevant descriptions in
comparison of CCD detectors for assessment of anthocyanins in mul-
berry fruit.

Reportable characters include the optical geometry employed, wa-
velength range, optical resolution, dynamic range and repeatability.
Geometry and wavelength range are commonly reported. Optical re-
solution can be assessed as FWHM of HgAr lamp line spectra. This
characteristic is a function of the optical bench of the spectrometer.
Note that it is not the same as the pixel resolution or read out wave-
length step. Dynamic range provides an index of the intensity resolution
of the spectrometer, often quoted as maximum signal divided by
baseline (dark) noise measured at the shorted exposure time of the
system.

Repeatability can be indexed as the SD of absorbance of repeated
measures (e.g., n= 20) of a reference tile. Repeatability will be im-
pacted by the signal and signal to noise level of the detector, variations
in lamp intensity and changes in the level of stray light.

‘Stray light’ in a spectrometer represents ‘unwanted’ reflections that
occur within the the optical bench of the spectrometer, i.e., reflections
from photons not following the intended path from input light source to
detector. Together with detector noise, stray light sets a limit to the
sensitivity of a system. For example, if 1 % of light received by the
detector is stray light, the system can not assess absorbance values of

greater than 2 units (i.e., the system can not distinguish a signal at 1%
of a reference value when there is background noise from stray light at
1% of total light).

Continuing instrumentation advances promise lower cost and easier
use of Vis-NIRS within postharvest applications. Appropriately designed
comparative studies to existing documented equipment (e.g., Kaur
et al., 2017; Subedi and Walsh, 2020) will provide value to the post-
harvest community, supporting adoption of appropriate technologies.
Such instrument benchmarking exercises should describe performance
of the instrument with variation in instrument temperature, ambient
light levels or vibration and the impact of instrument ageing (e.g.,
Acharya et al., 2016). Consistency of performance across different units
of the same make and model of instrument should also be demon-
strated, as demonstrated in the comparative study undertaken by Kaur
et al. (2017).

With an increasing array of instrumentation available, it becomes
more important to document the characters of the instrumentation
used. This is a weak point for most published studies, in terms of both
the description of the instrumentation characters and the justification
for the choice of instrumentation. In summary, instruments are not
‘equal’ in performance, so the interpretation of the comparison of in-
struments differing in wavelength range or optical geometry must be
tempered by consideration of these characteristics.

Documentation is also required of the requirements (e.g., wave-
length resolution, repeatability) required for a particular application.
For example, a requirement for an optical resolution at least 10 nm and
a repeatability (SD of repeated reference spectra) of at least 10 mAbs
was documented for the application of NIRS assessment of fruit TSS
(Greensill and Walsh, 2000). Higher optical resolution and detector
pixel resolution can be useful for calibration transfer between instru-
ments. Thus, it is claimed that calibration transfer between FTNIR in-
struments is more successful than between diode array instruments, as
FTNIR provides higher wavelength accuracy optical resolution
(Andersen et al., 2013).

5.5. Applications of vis spectroscopy

There has many reports of non-destructive pigment analysis in
horticultural applications, from macroscopic studies on plastid devel-
opment (e.g. Sadali et al., 2019) to interaction with ethylene (Dar et al.,
2018), both relevant for determining the optimum harvest date and
shelf life prediction. These studies of the assessment of fruit pigmen-
tation have been based on association to colour space values, to ab-
sorption indices of a few (usually two) indices and to multispectral
analyses.

Visible region assessment of the chlorophyll content of fruits has
been reported by many authors over many decades (Olsen et al., 1969;
Merzlyak et al., 1999; Zude-Sasse et al., 2002; Zude, 2003; Ziosi et al.,
2008), including on tree assessments (Herold et al., 2009). Various two-
wavelength indices have been used for chlorophyll content of fruit (e.g.,
Table 3; Kuckenberg et al., 2008). More recently, fruit chlorophyll
analysis has become intensively studied in proximal sensing aimed at
phenotyping (Li et al., 2018), which is enabled on single fruit due to
recent developments in 3D point cloud analyses with spectral intensity
data (Tripodi et al., 2018; Tsoulias et al., 2020).

Red pigments are particularly interesting for both the visual ap-
pearance and the health benefits of fruit (e.g., Ilahy et al., 2019). For
example, Acharya et al. (2017) and Tilahun et al. (2018) reported
prediction of lycopene and ß-carotene content of tomato fruit using PLS
models based on Vis-NIR spectra to be slightly superior to predictions
based on CIE a*/b* colour coordinates.

Other spectral indices target have been developed for assessment of
fruit maturity, based on pigment levels and colour. For example, the
citrus colour index (CCI) is based on Hunter Lab values for fruit skin
(Jiménez-Cuesta et al., 1981) (eqn. 1).
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=CCI
L b

100 . a
. (1)

Zude-Sasse et al. (2000) proposed a simple maturity index (MI) for
apple (eqn. 2), based on firmness (f), reflectance at 720 (R720) and
680 nm (R680) and the starch index (SI),

=MI f (R R )
SI

720 680
(2)

The use of visible region spectroscopy for intact fruit pigment
analysis is made difficult by the overlapped spectral features associated
with the various pigments (Fig. 1) and by scattering (Taroni et al.,
2003). Wellburn (1994) developed a simple algorithm to account for
the over-lapping absorption spectra of extracted pigments in lipophilic
solution. This approach was extended to measurement of chlorophylls
and carotenoids in fruit extracts, enabling analysis of chlorophyll a and
b, and carotenoids (Nagata et al., 2007) and chlorophyll a and b,
pheophytin a and carotenoids (Pflanz and Zude, 2008) in one extraction
step. This approach has been applied to intact fruit with much lower
success (Pflanz and Zude, 2008), but may become applicable once the
absorption spectrum is distinguished from scattering spectrum with
time or spatially resolved spectroscopy.

Another measurement issue is associated with the variation in pig-
ment spectra that can in-vivo. For example, binding of chlorophyll by
NADPH affects the electron excitation energy, and, therefore, the wa-
velength at which the chlorophyll molecule absorbs. During fruit de-
velopment, the red region peak maximum of chlorophyll absorption can
change by 2.3 nm (Seifert et al., 2014). Repots claiming use of a spectral
assessment should therefore demonstrate robustness of the method
across the range of conditions expected in application.

In general, a RMSEP of 7% and 6% (fresh weight basis) for total
chlorophylls and anthocyanins, respectively, can be expected using Vis
spectroscopy (Zude-Sasse et al., 2011), considering that the absorbance
features of anthocyanins do not overlap with that of the carotenoids.

5.6. NIR assessable attributes

Dry matter and TSS: There is consensus in the literature (from the
316 papers reviewed, Table 7) that Vis-NIRS can be used to assess the
macro-constituents of dry matter content and TSS in intact thin-skinned
fruit to a RMSEP of less than 1% for both these constituents, and that
temperature can be assessed to a RMSEP of approximately 1 °C. Indeed,

the use of Vis-NIRS in assessment of fruit dry matter content and TSS of
thin skinned fruit is established in commercial practice.

Dry matter content is used as an index of: (i) storage reserves, be
that the sum of starch and soluble sugar content, e.g., in pre-harvest
apple or mango, or of oil content, e.g., in avocado or olive fruit; and (ii)
future soluble sugar content in climacteric fruit storing starch, i.e., after
ripening with conversion of starch to sugars, as seen in ripened apple or
mango fruit. Thus, dry matter content of fruit at harvest is related to
future eating quality.

Some supply chains now set specifications on fruit dry matter con-
tent at harvest, with assessment undertaken using NIRS (e.g., Australian
Mango Industry Association, 2019). Accumulation of fruit dry matter is
also useful in gauging fruit harvest maturity, with the target dry matter
level adjusted by growing condition, e.g., in durian (Timkhum and
Terdwongworakul, 2012) and mango (Subedi et al., 2007; Anderson
et al., 2017).

The relationship between the attributes of dry matter content and
TSS is complicated by the presence of insoluble components. The NIRS
measurement of fruit TSS involves spectra collected on intact fruit and
TSS commonly based on measurement of the refractive index of ex-
tracted juice, i.e., ignoring the insoluble components of the fruit.
Consider that a fruit of 1 kg weight with 15 % dry matter content
contains 150 g of solids and 0.85 L of water. If all the dry matter content
was soluble sugar, the TSS of extracted juice would be 17.6 %w/v. In
practice, mango fruit with 15 % w/w dry matter has a TSS of ap-
proximately 14 in juice of ripened fruit (Subedi et al., 2007), inferring
around 3% w/w dry matter is associated with non-carbohydrate ma-
terial, such as cell walls.

NIRS PLS models for dry matter content have been developed that
are relatively robust to stage of ripening, i.e., to proportion of starch
and soluble sugars. However, the accuracy of TSS models is decreased
by variation in starch levels (e.g., in ripening apple and mango fruit,
McGlone et al., 2002; Subedi and Walsh, 2011, respectively). This issue
is presumably due to the similarity of NIRS spectra of starch and sugar
in water. Thus, for fruit containing starch, accuracy and precision of
NIR-TSS estimates is highest in fully ripe fruit, when all starch is con-
verted to sugar (e.g., Subedi and Walsh, 2011). This ‘interference’ is not
an issue in fruit that store soluble sugars rather than starch as their
primary reserve, e.g., stonefruit or grape.

Internal defects: After dry matter and TSS levels, the Vis-NIRS based
discriminant sorting of fruit on internal defects is the application that

Table 7
Parameters to be reported in a chemometric report on use of Vis-NIRS in a postharvest application, from the guidelines of Dardenne (2011) and Williams et al. (2017).
The example of the attribute dry matter content is used.

Attribute, units The attribute and its units. Units apply to RMSE and bias.

N The number of samples (as reference analyses, not number of spectra). There may be more than one sample taken per fruit (e.g., two
sides of a fruit). Replicate spectra of a sample should be averaged or contained within the same data set, i.e., not split between cross
validation sets).

Range, average, SD The minimum, maximum, average and SD of reference values for calibration and test populations.
Standard error of laboratory, SEL The root mean square error (rmse) of replicate measurements of samples using the reference method.
Model type, #LVs or tuned parameters The type of model used (e.g. NIPALS-PLSR or stepwise MLR) and parameter settings, e.g., number of latent variables used (with

justification) for a PLSR model.
Wavelength range and step (nm) The wavelength range or ranges chosen, with justification.
Outliers The number of samples removed from a calibration set. Outliers can be removed on basis of an X residual (i.e., a spectral difference)

as same rule can be applied in prediction. A justification should be provided for removal of outliers based on Y residual – this will
reflect whether the goal of the model is to predict the average sample or the extreme samples well.

Pre-treatments The pre-treatments employed should be listed, in the order employed, with some justification for their choice.
# CV folds In LOO, the number of folds is N. RMSECV will increase with a decrease in the number of folds. In extreme, the folds can be

independent groups, e.g., samples of different harvest events, in which case the outcome is equivalent to an averaged RMSEP.
Calibration and cross validation statistics Calibration results (R2c, RMSEC) are often not reported in favour of CV results, but mention should be made of the difference between

RMSEP or RMSECV and RMSEC.
Cross validation results should include R2cv and RMSECV, and the ratio of SD to RMSECV.

Test set statistics R2p, RMSEP, RMSEPbc, bias, slope [Yref = a +b.YNIR] and the ratio of SD to RMSEP or RMSEPbc. RSD, the residual standard deviation
after slope and bias correction, may be reported. A Mahalanobois distance based measure of the test set is recommended, to indicate
similarity of the test set to the calibration set.

NIR repeatability The standard error of NIR estimated attribute level from repeated spectra acquisition of a sample. As a guideline, SENIR should be <
0.5 RMSECV.
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has seen greatest commercial adoption, on packlines.
Both scattering and absorption influence the apparent absorption

spectrum of a fruit. Internal features of the fruit that result in changes in
light scattering within the fruit can be as detectable using Vis-NIRS as
features related to absorbance. The internal defect of water core is as-
sociated with a decrease in the level of light scattering in a fruit and
detection of this disorder by Vis-NIRS has been reported by a number of
authors (e.g., Guo et al., 2020). Detection of other internal defects have
also been reported, e.g., apple mouldy core (Shenderey et al., 2010) and
apple internal browning (Khatiwadi et al., 2016).

Acidity: Acidity is a macro-constituent in fruit such as lemons and
limes, which contain around 70 g L−1 (citric acid equivalents), but a
micro-constituent in most fruit, e.g., the peach fruit assessed by Subedi
et al. (2012b) had a mean acidity of 8.8 g L−1 (citric acid equivalents).
A refractometer based TSS reading of lime juice is thus dominated by
the contribution of organic acids and not soluble sugars, while the re-
verse is true for peach. The RMSEP of SWNIRS assessment of an in-
dependent population of intact and cut lime fruit was reported by
Subedi et al. (2012a, 2012b) at 3.0 and 1.6 g L−1 (citric acid equiva-
lents), respectively. Given this RMSEP value, the reliable direct as-
sessment of acidity in fruit with lower levels of acidity is unlikely,
where reliable refers to assessment of test sets not included in the ca-
libration set. However, indirect assessment of acidity may have prac-
tical value, if the indirect association holds in practical use. An indirect
assessment involves correlation of acidity level to another attribute that
is assessable by Vis-NIRS, such as chlorophyll level.

Firmness: The non-invasive assessment of fruit firmness remains a
‘holy grail’ in postharvest research. The traditional method of assess-
ment is destructive, involving insertion of a penetrometer into the fruit.
There have been many claims for the assessment of fruit firmness using
Vis-NIRS. Indeed, 10 % of all papers published in the period 2015–2020
involved assessment of firmness (Table 6).

Change in firmness is associated with minor changes in chemical
composition, such as pectin levels. It is unlikely that NIRS can be used
to detect these chemical changes in intact fruit. Change in firmness is
also associated with change in cell wall adherence. Changes in cell
shape might result in changes in the scattering of light within the fruit
that could be detectable in the apparent absorbance spectrum, however
such changes in scattering have not been consistently liked with firm-
ness level. Firmness levels are correlated to a range of other attributes,
from water content to pigment level and starch-sugar conversion during
ripening, providing fertile ground for secondary Vis-NIRS correlations
(e.g., Subedi and Walsh, 2008).

Thus, there is no consensus that firmness can be robustly (and di-
rectly) assessed using Vis-NIRS.

Other ‘macro’ attributes: Reasonable evidence is available in the
literature that physiological states such as maturity or ripening stage
and level of internal defects such as internal browning or water core can
be assessed, with appropriate hardware, e.g., optical geometry.

Minor constituents: The direct assessment of minor constituents in
intact, high moisture content fruit using Vis-NIRS is also unlikely, un-
less through indirect correlation to the level of another macro-con-
stituent or pigment. For example, Ignat et al. (2012) reported an
RMSECV of 15.1–18.9mg per 100 g (fresh weight) for estimation of
ascorbic acid in intact bell peppers using Vis-NIRS. The assessed fruit
varied in maturity level. As many attributes vary during fruit matura-
tion, the ascorbic acid assessment may effectively be of another attri-
bute with correlation to ascorbic acid level. Lower detection limits
should be possible in dry fruits.

The assessment of some minor constituents has been achieved using
sample concentration techniques. For example, a NIRS assessment of
surface fungicides on mango fruit was achieved of a dry extract of a
solvent wash of fruit (Acharya et al., 2012).

Discrimination: There is often no need for a quantitative assessment
of the level of an attribute, but rather a discriminant analysis is required
for fruit sorting. The statistics of discriminant sorting is discussed by

Walsh et al. (2020). There are increasing claims for discrimination of
populations, e.g., on variety or species, geographic origin or production
system, e.g., organic. However, robustness remains to be demonstrated
in terms of successful application of such models on independent test
sets. For example, the extent of internal browning in apple can be as-
sessed by Vis-NIRS as either acceptable or not (Khatiwadi et al., 2016).

Future fruit properties: NIRS may be used to directly predict an
attribute without direct a priori knowledge of the NIR assessed com-
ponent. For example, Jacobs et al. (2016) reported on use of NIR
spectra to predict storage life of lettuce. Such models need to be in-
terpreted in terms of the underlying principle and demonstrated to be
robust across populations to support practical adoption.

Combined attributes: Sometimes indices combining different quality
parameters are useful. Vis-NIRS based models can be developed against
the index itself, rather than the component attributes. For example,
Cortés et al. (2016) developed Vis-NIRS based models on the IQI (in-
ternal quality index; Eq. 4) and the RPI (ripening index; eqn. 5), which
are based on the attributes of penetrometer firmness (F), CIELAB color
space L* value, titratable acidity (TA), total soluble solids (TSS), and
CIELCh colour space values hab* and Cab*.

IQI= ln (100·F·L* · hab*· TSS−1 ·Cab*−1) (4)

RPI= ln (100·F·TA·TSS−1) (5)

5.7. NIRS special issue – water, H bonding and temperature

Water is the dominant NIR active molecule in fruit. Fleshy fruit
contain around 80–90 % by weight water, and thus the measure of any
other variable in fresh fruit is made against the large absorption fea-
tures of water. Indeed, the increase of any fruit macro-constituent is
associated with a decrease in the water content of the sample and the
NIR assessment of a macro-constituents such as TSS and dry matter
content may in practice rely strongly on a negative correlation with
water.

The water absorption features are temperature sensitive. Water
exists in several states associated with the degree of H bonding. The
effect of increasing temperature (energy status) or soluble sugar con-
centration is a decreased level of H-bonding and a shift in the apparent
OeH associated absorption peaks to shorter wavelengths (Golic et al.,
2003). In practice, the impact of fruit temperature variation on a fruit
dry matter prediction is primarily on accuracy (i.e., bias) rather than
precision (i.e., bias corrected RMSEP) (e.g., Acharya et al., 2014a).

There are several approaches to deal with variation in sample
temperature. The simplest approach is to include samples scanned at
several temperatures into a ‘global’ model (Kawano, 2016), at a ratio of
at least 500:1 (single temperature samples: multiple temperature sam-
ples) (Acharya et al., 2014a,b; Sun et al., 2020a, 2020b). Another ap-
proach requires development of a NIRS model on fruit temperature and
estimation of predicted attribute bias per unit sample temperature
change. NIR predicted fruit temperature can then be used in a calcu-
lation to adjust the predicted attribute level. Alternatively, various
chemometric methods can be employed to remove the influence of
temperature from spectra. Acharya et al. (2014a,Acharya et al., 2014b
recommended use of a repeatability file over orthogonal scatter cor-
rection, generalized least square weighting and external parameter
orthogonalisation, but the simple approach of a global model also
produced good results.

5.8. NIR wavelength region

The SWNIR region (750−1100 nm) is used in commercial practice
(see Section 3) for assessment of internal attributes of intact fruit such
as TSS and dry matter content, in preference to the use of wave-
lengths> 1100 nm. However, most (57 %, Table 6) published reports
on assessment of internal attributes of fruit involve instrumentation
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employing longer (> 1000 nm) wavelength ranges. Longer wavelength
ranges offer narrower and stronger absorption features than those ob-
served in the SWNIR, and so may support superior performance in the
assessment of internal quality attributes than use of the SWNIR. How-
ever, the absorption coefficient of water is relatively low in the SWNIR
region, giving greater effective penetration depth into fruit. The lower
effective penetration depth associated with use of longer wavelengths
should limit performance robustness across independent populations,
given variation in outer layer attributes. Even if similar results were
obtained using the extended NIR region, the Vis-NIR option would be
preferred for commercial purposes due to (currently) lower hardware
cost (as noted by Ignat et al., 2014).

To clarify the issue of the optimal wavelength region for assessment
of fruit internal quality attributes such as TSS and DM in the scientific
literature, clear comparative studies are required. For example, better
results were obtained using Vis-SWNIR than short wave IR reflectance
spectroscopy for a bell-pepper application (Ignat et al., 2012). Better
results were also reported using Vis-SWNIR than NIR for a carrot TSS
application (Rady et al., 2018), for a grape color, phenolics, TSS and
stage of ripeness application (Xiao et al., 2018) and for a persimmon
astringency application (Cortés et al., 2017d). Better results were also
obtained using the Vis-NIR than the NIR range for assessment of TSS of
intact beets, while for cut slices of sugar beets, practically identical
results were obtained (Pan et al., 2015), consistent with the effective
penetration depth for these wavelength ranges. Conversely, Ignat et al.
(2014) recorded a better result in assessment of apple parameters for a
detector operating over the region 850−1888 nm than for a
340−1014 nm detector (using a reflectance geometry).

The comparison of wavelength ranges for an application usually
involves use of different detectors and may involve use of different
instruments. A comparison of results for different wavelength ranges
must therefore separate the impact of different wavelength range from
the impact of variation in other characters (e.g., repeatability, optical
geometry and resolution). Settings should also be optimised separately
for each wavelength range to achieve the same signal (and signal to
noise) level, e.g., in a transmission geometry integration time should be
set higher to optimise performance in longer wavelength regions, to the
extent that the detector may be saturated with light at lower wave-
lengths.

5.9. Chemometrics

Typical data processing: The development of models relating
spectra to attributes of interest is covered in the companion review of
Saeys et al. (2020). In brief summary, the partial least squares regres-
sion (PLSR) technique is the dominant chemometric technique used in
relating fruit spectra to attribute levels, with employ of a range of
standard pre-processing techniques, typically mean centering, standard
normal variate or multiplicative scattering correction and derivatives.
Wavelength selection methods involving down sampling of spectral
data to remove redundant data is also required for the optimisation of a
given application, with a range of methods reported, e.g., Bexiga et al.
(2017).

The optimization of pre-processing technique using standard ap-
proaches is not novel, and thus not the focus for a scientific research
report, but it is a pre-requisite for NIRS application, and thus it should
be briefly reported in application development reports. If a novel
method is proposed, benchmarking to a standard method well re-
presented in the literature is recommended. A useful illustration of such
benchmarking is provided for an avocado application by Sun et al.
(2020a). Whether a pre-processing procedure optimised for a PLSR
model is also optimal for another model type (e.g., ANN) is an open
question.

Modelling: PLSR is the most common chemometric modelling
method employed in postharvest research studies (Table 6). Current
commercial postharvest Vis-SWNIRS instrumentation exclusively

employ PLSR or MLR techniques. In other food applications neural
networks have been commercially deployed (e.g., Anderson, 2007),
suggesting there is scope for further work with other multivariate
techniques in postharvest applications, with benchmarking to PLSR
using the same data set for calibration and independent test sets. Re-
ports of applications of these modelling techniques in postharvest ap-
plications exist (e.g., Mukarev and Walsh, 2012), but consistent benefit
over use of PLSR has not been demonstrated.

Other applications require classification rather than quantification
of attribute level. The techniques of principal component regression
(PCA), linear discriminant analysis (LDA), and PLS-DA are typically
employed for such applications. For example, Cortés et al.
(2017b,Cortés et al., 2017c differentiate cultivars of nectarine, while
Timkhum and Terdwongworakul. (2012) classified durian fruit to ma-
turity classes and Khatiwada et al. (2016) differentiated apple with
internal browning.

Calibration transfer: Calibration transfer between instruments is a
relatively under reported topic for postharvest applications. A difficulty
for this application is that fresh fruit samples are unstable and can not
be maintained as check samples as practiced with low moisture sam-
ples. Current recommendation is either a model updating procedure
(existing model based on spectra from a master instrument updated
using data from the slave unit) and/or appropriate wavelength selection
based on orthogonal signal correction or a partial direct standardisation
procedure involving use of a set of ‘transfer’ spectra scanned on both
instruments to create a transfer function (e.g., Igne et al., 2009; Roger,
2016; Hayes et al., 2016). Further activity in this area is therefore
warranted, both in terms of transfer between instruments of the same
make/model and between different instruments.

Benchmarking: Comparison of the performance of methods or in-
struments reported in different publications is difficult given differences
in the data sets of these reports (e.g., population structure). The ma-
chine vision community addresses this issue through a number of
challenges involving access to open data sets (e.g., ImageNet Large
Scale Visual Recognition Challenge, ILSVRC; http://image-net.org/
challenges/LSVRC/) and similar open Vis-NIRS data sets, admittedly
of a smaller scale, exist for other applications, e.g., for a soil applica-
tion, Pierna and Dardenne (2008). To the authors knowledge, similar
open data sets do not exist for postharvest examples. However, journals
are encouraging submission of data sets associated to articles (e.g.,
https://data.mendeley.com/research-data/?search=fruit%20nirs),
creating a resource for comparative chemometric studies.

Reporting requirements: The comparison of reports on the use of
Vis-NIR spectroscopy requires use of a common language. Dardenne
(2010) and Williams et al. (2017) provide useful guides to the re-
quirements for reporting of a chemometric study, relevant for any
postharvest report involving spectroscopy. Williams et al. (2017) note
nearly 40 items that should be reported in a spectroscopic study to
enable duplication of the application and for extension of the work to
industrial application. These items range from characterization of the
calibration and validation sets and characterisation of the model, e.g.,
number of terms used in, and b coefficients of a PLSR model, to re-
porting of performance statistics. These guides also comment on the
need for consistency in use of chemometric terms and abbreviations.
For example, labelling should distinguish between calibration, cross
validation and independent test set results, e.g., for the coefficient of
determination associated with a calibration, R2c; for cross validation, R2cv
and for an independent test (or ‘prediction’) set result R2v or R2p.

Population standard deviation (SD) is integral to determining the
value of the NIRS technique for sorting of fruit. The technique hold
value only when sample variation (standard deviation, SD) in the at-
tribute of interest is greater than the measurement RMSEP. Indeed, the
R2 of the prediction is directly related to measurement bias corrected
RMSEP (RMSEPbc) and SD (eqn. 3).

R2= 1 – (RMSEPbc/SD)2 (3)
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For example, if RMSEPbc= 1, and SD=2, R2 will be 0.75. For the
same RMSEPbc, and SD=3, R2 will be 0.89. Thus, if RMSEP=1, the
technique has no value for sorting of a population of SD=1.0, but it
has great value to sorting of a population of SD=10. In consequence,
the interpretation of calibration and validation statistics requires
knowledge of population SD.

Calibration set size: Some reports of NIRS application development
are based on a small number of samples in the calibration set. Consider
that there is a reasonable chance that two random numbers will fall in
ascending order. For an extreme case, consider if spectra of hundreds of
wavelength data points were acquired of only three fruit spectra. There
is a probability that values at some wavelengths will randomly trend
with attribute level for those fruit. This represents over-fitting of mul-
tivariate regression models.

For assessment of intact fruit, it is recommended that application
studies include in the order of hundreds of spectra paired to reference
values. Practical use of a model will require inclusion of data from
multiple harvests or seasons to produce a ‘robust’ model, resulting in
data sets of many hundreds of samples (e.g., Peirs et al., 2003; Subedi
et al., 2007; Blakey, 2016). Thus, a comparison of PLS, MLR and LS-
SVM modelling approaches based on spectra of 120 fruit collected at
one location and time, with division to calibration and validation sets
based on a ranking of reference (TSS) values (Hu et al., 2019) will
provide prediction results that are optimistic relative to use in predic-
tion of independent sets, and it is unclear if the proposed solution will
hold in practical use. Blakey (2016) provides a useful case study em-
ploying nearly 10,000 samples with use of independent test sets for an
avocado dry matter content application. Cross validation routines help
avoid this issue, but the cross-validation groups should be large, ideally
based on distinct groups of data, rather than, for example, single sample
cross validation.

An indication of insufficient numbers in the calibration set is pro-
vided by a RMSEP or RMSECV value that is substantially higher than
the RMSEC value is. Papers rarely present both RMSEC and RMSECV
but at a comment on the difference between the values should be made
in justification of the sample size used.

Independent test sets: For practical implementation, a Vis-NIRS
model should be ‘robust’ in use across production conditions, seasons,
storage conditions, plant varieties and instruments, as well as mea-
surement conditions such as ambient light and temperature.
Demonstration of model robustness is a prerequisite to adoption of the
technology by the postharvest industry and should be a focus of current
and future studies. Many reviews have stressed the need for an in-
dependent test set, unused in tuning of model parameters, to generate
prediction statistics (e.g., Williams et al., 2017).

The majority of publications (66 %; with 68 % of those reports using
leave one out (LOO) cross validation) are based on cross validation
results only, and most remaining publications (22 % of total) deliber-
ately select their test sets to be representative of the calibration set (e.g.,
ranking of samples by attribute level followed by selection of every
third sample for the test set). For example, Clark et al. (2003) utilized
fruit of four harvests (n= 180), with random splits of each harvest set
to create the calibration (n=120) and validation (n= 60) sets
(Table 6). Validation using within-population sets will provide an in-
dication of model performance that is optimistic in comparison to use
with independent tests sets, as must happen in practical implementa-
tion.

The selection of test sets that mirror the intended use of the model is
therefore recommended, e.g., in a NIRS pack-line implementation, a
model will be used in prediction of fruit from different harvest dates,
growing locations and conditions and perhaps of different cultivars.
Such fruit may vary in chemical matrix or in light scattering properties,
e.g., change in the soluble sugar types or the level of organic acids can
impact a refractometric assessment of TSS, or skin properties may
change with water stress, changing scattering coefficients.

Several reports indicate that inclusion of three years (growing

seasons) of data is required to create a robust model on standard
parameters such as TSS and DM (e.g., Peirs et al., 2003; Subedi et al.,
2007), although this result may also be linked to the duration of a
standard funding grant. Some attempts have been made to create ro-
bustness within a single season by including samples from range of
water stress treatments (Anderson et al., 2017) and maturation/ripe-
ness stages in the calibration set.

It is recommended that future application development studies in-
clude multiple populations. Results should be reported in terms of
prediction statistics for these sets, or as cross validation results using the
independent sets as cross validation groups. The results for the separate
tests sets should be used to tease out the conditions that cause NIRS
model accuracy or precision to decrease (e.g., sensitivity to variety,
growing location, season, instrument ageing).

6. Conclusions and recommendations

6.1. Expected future advances

Instrumentation for colour measurement and Vis-NIRS spectroscopy
has become widely available, and at decreasing cost. This availability
has supported an increase postharvest research literature. These mea-
surement technologies were initially commercially applied in the
packhouse, but with the advent of handheld technology, adoption is
now occurring throughout the postharvest value chain, both upstream
to the orchard and downstream to distribution centers and to consumer
use. Future advances in technology promise further miniaturization,
enabling integration of spectrometers into other devices.

Multiple cameras and sensors are used in fruit pack-lines, and the
trend to use of multiple probes in assessment of fruit is likely to con-
tinue, extending from packhouse to other points in the value chain. For
example, Cortés et al. (2017a) integrated two Vis-NIR spectrometric
probes to view opposite sides of a mango fruit in a robotic harvesting
arm. An accelerometer was incorporated to assess fruit firmness and
data combined into a measure of the overall quality of the fruit. The
system was impractical (9 s per evaluation) but is indicative of the
potential for multiple measurements and sensor fusion.

Advances in wireless connectivity is allowing the use of cloud
computing for model predictions, either in context of enabling a simpler
spectrometer, as seen in the SCiO unit (Table 4), or in context of device
agnostic services that offer more complex chemometric modelling
techniques, e.g., Hone (https://www.honeag.com/hone-create/; doa
19/03/20).

6.2. Recommendations for future application development work

The following areas are recommended in future documentation on
development of Vis-NIR region ‘point’ spectroscopy applications:

Procedure

(i) The error associated with the reference method (SEL) should be
documented.

(ii) Inter-correlations of the attribute of interest with other Vis-NIR
active attributes should be documented, e.g., with pigment level or
water content. Assessment of an attribute of interest with a strong
secondary correlation to a Vis-NIRS assessable attribute will be
robust only if the attribute of interest is always correlated to the
attribute of interest.

(iii) Spatial variation within the product (i.e., within a single fruit) of
the attribute of interest should be described, with consideration of
factors such as product maturity and storage time, and the sam-
pling position on the fruit for point spectroscopy should be justi-
fied in terms of representation of the whole fruit.

(iv) The physically sampled tissue volume used for the reference
method should be matched to the optically sampled volume.
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Equipment

(v) In some published studies, it appears that the spectrometer was
selected because it was available, not because the instrument was
matched to the application. The choice of spectrometer should be
justified, and specifications of the spectrometer used should be
documented in terms of repeatability (e.g., SD of Absorbance of 20
repeated measurements of a white reference, optical resolution as
FWHM and pixel resolution), to enable a level of comparison with
other published studies.

(vi) The following instrumentation characteristics are offered as a
benchmark condition, to be challenged for a particular fruit ap-
plication:

- a full or partial transmission optical geometry over a reflection
geometry

- use of the SWNIR region for improved depth of penetration into the
sample and lower cost hardware

- an optical resolution at least 10 nm and a repeatability (SD of re-
peated reference spectra) of at least 10 mAbs (Greensill and Walsh,
2000)

- use of instruments with higher wavelength resolution to improve
calibration transfer between instruments.

Most current studies on use of Vis-NIRS to assess intact fruit (see
Section 3) utilize a reflection geometry and a long wavelength region
(1100–2500 nm). This is likely to result in spectra dominated by ab-
sorption features of the fruit skin, and thus less robust models if skin
properties change between populations. Nonetheless, the ‘proof is in the
pudding’, and any geometry or instrumental wavelength range that
results in a good prediction result of populations independent of the
calibration set is acceptable. Further work involving direct comparisons
of geometries and other instrumentation characters is warranted to
achieve consensus in these areas.

Statistical reporting

(vii) Dardenne (2011) and Williams et al. (2017) have stressed the
need for consistency in use of chemometric terms and abbrevia-
tions. Table 7 provides a summary of these two guides in context
of a postharvest applications.

(viii) At the very least, prediction results should be reported in terms of
population mean and SD, with prediction statistics of R2p, RMSEP
and bias.

(ix) The wavelength range selected and pre-treatments used (e.g., use
of % transmission compared to absorbance, SNV, MSC, level of
derivative) should be optimized, with reporting avoiding the
detail of these comparisons, but including what was considered
and the best result.

(x) Terminology should be used to avoid confusion between re-
ference method and NIRS based estimates of an attribute, e.g.,
refractometer–TSS and NIR–TSS, or oven–DM and NIR–DM.

Validation and transfer

(xi) The adage of ‘no interpretation without prediction and no pre-
diction without interpretation’ should be followed. Models should
be tested on independent sets of fruit, i.e., different harvest events
or storage conditions, and not only on sets drawn from the po-
pulations used in calibration. Interpretation involves an under-
standing of the principle behind the model, with interpretation of
in context of spectroscopic features and model coefficients.

(xii) Models should be tested in a range of usage conditions (e.g., fruit
and instrument temperatures, ambient light levels, different
models of the same instrument, fruit pose), i.e., reports should
involve multiple validation populations.

(xiii) Calibration model transfer between instruments should be de-
monstrated and optimized.
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