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Abstract

This paper is concerned with the time-harmonic electromagnetic scattering problem for a finite
number M of point-like obstacles in R3. First, we give a rigorous justification of the Foldy method and
describe the intermediate levels of scattering between the Born and Foldy models. Second, we study
the problem of detecting the scatterers and the scattering strengths from the far-field measurements
and discuss the effect of multiple scattering related to each of these models.

1 Introduction

We consider the scattering of a time-harmonic electromagnetic plane wave from an inhomogeneous
isotropic medium in R3 with electric permittivity ε = ε(x) > 0, magnetic permeability µ = µ0 > 0
and electric conductivity σ = σ(x). It is supposed that the inhomogeneous medium occupies a bounded
domain such that ε(x) = ε0 > 0 and σ(x) = 0 for x outside of some sufficiently large ball. Assume that
the time-harmonic incident plane waves (with the time-form exp(−iωt)) take the form

Ei(x; θ, p) = p exp(iκ x · θ), H i(x; θ, p) = (θ × p) exp(iκ x · θ), θ⊥p,

where κ := ω
√
ε0µ0 > 0 is the wavenumber corresponding to the background medium and θ, p ∈

S2 := {x : |x| = 1} stand for the propagation and polarization directions, respectively. Then, the total
electric and magnetic fields E,H satisfy the reduced time-harmonic Maxwell equations

curlE − iκH = 0, curlH + iκ n(x)E = 0, in R3, (1.1)

where the refractive index n = n(x) is given by

n(x) :=
1

ε0

(
ε(x) + i

σ(x)

ω

)
.

The scattered fields Es := E − Ei, Hs := H − H i are required to satisfy the Silver-Müller radiation
condition

lim
|x|→∞

(Hs × x− |x|Es) = 0,

uniformly in all directions x̂ := x
|x| ∈ S2, leading to the electric and magnetic far-field patterns E∞, H∞

given by the asymptotic behavior

Es(x) =
eiκ |x|

|x|

{
E∞(x̂) +O(

1

|x|
)

}
, Hs(x) =

eiκ |x|

|x|

{
H∞(x̂) +O(

1

|x|
)

}
(1.2)

as |x| → ∞. It is well known that E∞ and H∞ are both analytic functions defined on S2, satisfying
E∞⊥H∞, and that they are both normal to S2.

1



In this paper we assume that the inhomogeneous medium consists of a finite number of components and
that the wavelength of incidence is much larger than the diameter of each component. The inhomoge-
neous medium in this situation can be regarded as the collection of a finite number of point-like obstacles
centered at yj, j = 1, 2, · · · ,M. These point-like obstacles are treated as isotropic, so we can write the
refractive index function in the form

κ2(n(x)− 1) =
M∑
j=1

aj δ(x− yj), (1.3)

where aj ∈ C is the scattering strength attached to the scatterer located at yj , see [12]. The value of aj
can be viewed as the limit of the potential coefficients for approximating the idealized δ-function δ(x−yj).
Eliminating the magnetic field from (1.1) and making use of (1.3), we find

curl curlE − κ2E =
M∑
j=1

aj δ(x− yj)E, (1.4)

which models the electromagnetic scattering by M point-like obstacles.

We refer the reader to the interesting book [9] for a comprehensive study of the multiple scattering in
general and the scattering by point-like scatterers in particular, where practical motivations of the corre-
sponding models and historical facts are discussed. Another close reference to our work is the seminal
book [1] concerning the scattering by point-like potentials in quantum mechanics, where applications to
many different areas and historical references are provided. Regarding the scattering by point-like scat-
terers for the Maxwell models, we use [12] as a key reference where an overview of the applications
related to the model (1.2)-(1.4) is given.

The contributions of this paper are twofold. First, we give sense to the scattering problem (1.2)-(1.4).
For this, we follow the regularization approach developed in the frame work of the solvable models in
quantum mechanics, see [1]. A main difficulty regarding the Maxwell system, compared to the acoustic
model or the elastic system, is the fact that the corresponding Green’s tensor has a higher (and non
integrable) singularity. To overcome this difficulty, we use an idea from [12], where the problem (1.2)-(1.4)
is studied in the case of one point-scatterer and a formal computation of the scattering matrix is shown.
This idea consists of decomposing this Green’s tensor into its longitudinal and transversal parts, see
(2.23)-(2.24) and then regularize them (in the Fourier variables), see (2.32). Using this regularization step,
we generalize the method in [1] to the Maxwell system and we derive the explicit form of the Green’s tensor
of the problem (1.4) from which we deduce the representation of far fields corresponding to plane incident
waves, see (2.40). This representation is nothing but the model (2.13) obtained using the formal Foldy
method after adjusting accordingly the scattering strengths, compare (2.13) with (2.40). In particular, we
retrieve the results in [12] as a special case, see Remark 2.6. In addition, this representation takes into
account the multiple scattering between the point scatterers. Based on this model, we then describe the
intermediate scattering models and the Born model as well. The analogue results for the Lamé system
are shown in [7]. Second, we study the inverse scattering problem consisting of recovering the point-
scatterers as well as the attached scattering strengths from the far fields corresponding to incident plane
waves. For this, we use the three different models given by Born, Foldy and intermediate levels and
discuss the effect of the multiple scattering on the resolution of the reconstructions in terms of the used
wavelength, the distance between the scatterers and the scattering strengths. This study is a continuation
of the one provided in [4] for the acoustic and elastic cases.
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The rest of the paper is organized as follows. In Section 2, we study the forward problem where we
justify the Foldy model and derive the intermediate levels of scattering. In Section 3, we study the inverse
problems related to these models while in Section 4, we justify some technical identities used in our
analysis.

Throughout the paper the notation (·)> means the transpose of a vector or a matrix, and ej, j = 1, 2, 3,
denote the Cartesian unit vectors in R3.

2 The forward problem

2.1 The far-field patterns corresponding to Born, Foldy and intermediate models

We introduce the dyadic Green’s function Πκ for the Maxwell equations in the homogeneous isotropic
background. It is well-known that Πκ takes the form (see e.g. [10, Chapter 12] and [11, Theorem 5.2.1])

Πκ(x, y) = Φκ(x, y) I +
1

κ2
∇y∇yΦκ(x, y) ∈ C3×3, x 6= y, (2.1)

satisfying

curl ycurl yΠκ(x, y)− κ2Πκ(x, y) = δ(x− y) I, x 6= y, (2.2)

where the notation I stands for the 3 × 3 identity matrix, Φκ(x, y) := (4π)−1 exp(iκ|x − y|)/|x − y|
is the fundamental function to the Helmholtz equation (∆ + κ2)u = 0 in R3, and∇y∇yΦκ(x, y) is the
Hessian matrix for Φκ defined by

(∇y∇yΦκ(x, y))j,l =
∂2Φ

∂yj∂yl
, 1 ≤ j, l ≤ 3.

Note that curl Πκ is understood as the application of curl to each column of Πκ. A simple calculation
shows that each column of Πκ satisfies the Silver-Müller radiation condition, leading to the far-field matrix
Π∞(x̂; y) of Πκ(x, y) as |x| → ∞ given by

Π∞(x̂; y) =
e−iκx̂·y

4π
(I− x̂⊗ x̂), (2.3)

where x̂⊗ x̂ := x̂ x̂> ∈ R3×3. For the incident electric field Ei and the scattered field Es, we have (see
e.g. [10, Theorem 12.2] )

Ei(x) = −
∫
|y|=R

{
Π>κ (x, y)(ν × curlEi)(y) + (curl yΠκ)

>(x, y)(ν × Ei)(y)
}
ds(y) (2.4)

for |x| < R, and

0 = lim
R→∞

∫
|y|=R

{
Π>κ (x, y)(ν × curlEs)(y) + (curl yΠ

>
κ )(x, y) (ν × Es)(y)

}
ds(y), (2.5)

where ν is the unit normal vector to the sphere |y| = R directed outside. Note that each term in (2.4)
and (2.5) is understood as the matrix-vector multiplication. Multiplying Πκ to both sides of (1.4) and using
integration by parts with the aid of (2.4) and (2.5), we obtain

E(x) = Ei(x) +
M∑
j=1

aj Πκ(x, yj)E(yj), x 6= yj, j = 1, . . . ,M. (2.6)
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However, it is not easy to evaluate E(x) by calculating the values of E(yj)’s, since the Green’s function
on the right hand side of (2.6) is singular at yj . Below we describe several methods for approximating
solutions of (2.6).

2.1.1 Born approximation

In the Born approximation, we only need to replace E(yj) by the value Ei(yj) of the incident field.
Therefore, E(x) can be represented as

E(x) = Ei(x) +
M∑
j=1

aj Πκ(x, yj)E
i(yj), (2.7)

and the far-field pattern of the scattered field is given by

E∞(x̂) =
1

4π

(
M∑
j=1

aj e
iκ (θ−x̂)·yj

)
(I− x̂⊗ x̂) p, x̂ ∈ S2. (2.8)

The Born (weak) approximation neglects the multiple scattering between the point-like obstacles. Hence
(2.7) is a good approximation only if the distance between yj and yl (l 6= j) is relatively large with the
wave length.

2.1.2 Foldy method

In the Foldy model, the total field E(x) has the form

E(x) = Ei(x) +
M∑
j=1

aj Πκ(x, yj) Λj, Λj ∈ C3×1, (2.9)

where the approximating terms Λj := Λj(yj) can be calculated from the Foldy linear algebraic system
given by

Λj = Ei(yj) +
M∑
l=1
l 6=j

al Πκ(yj, yl) Λl, ∀ j = 1, . . . ,M. (2.10)

Remark that (2.10) is obtained from (2.6), tending x to yj and deleting the singular part Πκ(yj, yj). The
equations in (2.10) can be written as the system

[Γ̃]3M×3M [Λ]3M×1 = [EI ]3M×1, (2.11)

with Λ := (Λ>1 ,Λ
>
2 , · · · ,Λ>M)> ∈ C3M×1, EI := (Ei(y1)

>, · · · , Ei(yM)>)> ∈ C3M×1 and

Γ̃ :=


I −a2Πκ(y1, y2) −a3Πκ(y1, y3) · · · −aMΠκ(y1, yM)

−a1Πκ(y2, y1) I −a3Πκ(y2, y3) · · · −aMΠκ(y2, yM)
...

...
...

. . .
...

−a1Πκ(yM , y1) −a2Πκ(yM , y2) −a3Πκ(yM , y3) · · · I

 .
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Assuming det(Γ̃) 6= 0 and denoting the 3-by-3 blocks of Γ̃−1 ∈ C3M×3M by [Γ̃−1]lj for l, j =
1, 2, · · ·M , we deduce from (2.9) that the scattered field takes the form

Es(x) =
M∑
l,j=1

aj Πκ(x, yj) [Γ̃−1]jlE
i(yl), (2.12)

with the far-field pattern

E∞(x̂) =
1

4π

M∑
l,j=1

aj e
−iκx̂·yjeiκ θ·yl(I− x̂⊗ x̂) [Γ̃−1]jl p, x̂ ∈ S2. (2.13)

We will rigorously justify the validity of the Foldy method in Section 2.2, extending the renormalization
techniques in quantum mechanics for modeling M -particle interactions to the electromagnetic case. In
particular, this justifies the choice of (2.10) and gives sense to the comments made just after (2.10).
Following the seminal paper [5] by Foldy, we call the system (2.10) the fundamental system of multiple
scattering.

2.1.3 Intermediate levels of approximations

Between the Born and Foldy models, we can define the k-th (k ∈ N) level of the total fieldE(k) as follows

E(k)(x) = Ei(x) +
M∑
j=1

aj Πκ(x, yj) Λ
(k)
j (2.14)

where the value Λ
(k)
j can be computed recursively via

Λ
(k+1)
j := Ei(yj) +

M∑
l=1
l 6=j

aj Πκ(yj, yl) Λ
(k)
l , j = 1, 2, · · · ,M, (2.15)

with the 0-th level approximations Λ
(0)
j given by

Λ
(0)
j := Ei(yj), j = 1, 2 · · · ,M.

Thus E(0) is just the Born approximation (2.7). When k = +∞, we define Λ
(∞)
j as

Λ
(∞)
j := Ei(yj) +

M∑
l=1
l 6=j

aj Πκ(yj, yl) Λ
(∞)
l , j = 1, 2, · · · ,M.

Then, we see that for k = +∞ the total field in (2.14) coincides with the total field in (2.9), i.e. the
Foldy regime. The k-th level approximation E(k) only takes into account k time interactions between the
scatterers, and thus is considered as the intermediate level.
Remark that, the system (2.15) is nothing but the k + 1th iteration of the Foldy algebraic system (2.10).
From (2.14), we write the following form of the scattered field in kth level:

E(k,s)(x) =
M∑
j=1

aj Πκ(x, yj) Λ
(k)
j (2.16)
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To write (2.16) and the corresponding far fields in a more useful form, we define the vector Λ(k) ∈ C3M

with components Λ
(k)
j arranged elementwise as in the pattern of Λ in (2.11). Define Ĩ ∈ C3M×3M as

an identity matrix, then the 3 × 3 diagonal blocks of Ĩ, Ĩjl , are I and the non diagonal blocks are zero
matrices. Set M̃ := Γ̃− Ĩ,1 then (2.15) can be written in a compact form as

Λ(k) =
k∑
l=0

(−M̃)lEI for k = 0, 1, . . . . (2.17)

Define the matrix C̃k ∈ C3M×3M by C̃k :=
∑k

l=0(−M̃)l for k = 0, 1, . . . . Denote the 3-by-3 blocks of
C̃k ∈ C3M×3M by [C̃k]lj for l, j = 1, 2, · · ·M . With this setting we deduce from (2.15),(2.16) that the
scattered field in kth intermediate level takes the form

E(k,s)(x) =
M∑
l,j=1

aj Πκ(x, yj) [C̃k]jlE
I(yl), (2.18)

and so the far-field pattern of the scattered field in the kth intermediate level is

E(k,∞)(x̂) =
1

4π

M∑
l,j=1

aj e
−iκx̂·yjeiκ θ·yl(I− x̂⊗ x̂) [C̃k]jl p, x̂ ∈ S2. (2.19)

2.2 Justification of the Foldy model

Define the Fourier transform F : L2(R3)3 → L2(R3)3 by

(Ff)(ξ) = f̂(ξ) := (2π)−3/2 lim
R→∞

∫
|x|≤R

f(x) e−ix·ξ dx, ξ = (ξ1, ξ2, ξ3)
> ∈ R3.

Its inverse transform is given by

(F−1g)(x) := (2π)−3/2 lim
R→∞

∫
|ξ|≤R

g(ξ) eix·ξ dξ.

For u = (u1, u2, u3)
> ∈ L2(R3)3, a simple calculation shows

F(curl curlu) = (|ξ|2I− ξ ⊗ ξ)û = |ξ|2(I− ξ̂ ⊗ ξ̂)û, ξ̂ = ξ/|ξ|,

where û := Fu = (û1, û2, û3)
>. Define

Mκ(ξ) := |ξ|2(I− ξ̂ ⊗ ξ̂)− κ2I = (|ξ|2 − κ2)I− ξ ⊗ ξ ∈ R3×3.

It is easy to check that the inverse matrix ofMκ takes the form

M−1
κ (ξ) =

1

|ξ|2 − κ2
(I− 1

κ2
ξ ⊗ ξ) (2.20)

and that (cf. (2.2))

(2π)−3/2F−1[Mκ(ξ)] =

(
I +

1

κ2
∇x∇x

)
eiκ |x|

4π|x|
= Πκ(x, 0), x 6= 0. (2.21)

1In the case that the norm of M is less than one, the inverse of Γ can be approximated by the truncated Neumann series.
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For the purpose of analyzing the solvability of electromagnetic scattering by M point-like obstacles, we
adapt the regularization procedures proposed in [12]. To do this, we decomposeM−1

κ (ξ) into the sum

M−1
κ (ξ) = Tκ(ξ) + Lκ(ξ), Tκ :=

1

|ξ|2 − κ2
(I− ξ̂ ⊗ ξ̂), Lκ := − 1

κ2
ξ̂ ⊗ ξ̂, (2.22)

where Tκ, Lκ denote the transverse and longitudinal parts with respect to ξ, respectively. Accordingly,
the dyadic Green’s function Πκ(x, 0) admits the decomposition (see [12, Part II])

Πκ(x, 0) = ΠT
κ (x) + ΠL

κ (x), x 6= 0,

with (see [12, Part II] or the appendix of the present paper)

ΠL
κ (x) := (2π)−3/2F−1[Lκ(ξ)] = − I− 3x̂⊗ x̂

4πκ2|x|3
, (2.23)

ΠT
κ (x) := (2π)−3/2F−1[Tκ(ξ)]

=
I− 3x̂⊗ x̂
4πκ2|x|3

+
eiκ |x|

4π|x|
[P (iκ |x|)I +Q(iκ |x|)x̂⊗ x̂] , (2.24)

where P (t) = 1− 1/t+ 1/t2, and Q(t) = −1 + 3/t− 3/t2.

Now, we introduce a new operator

HκE := curl curlE − κ2E −
M∑
j=1

aj δ(x− yj)E, yj = (yj1 , yj2 , yj3)
> ∈ R3.

The objective of subsequent sections is to give a mathematically rigorous meaning of this operator and
derive the associated Green’s function. To start, we set H̃(f) := FHκF−1(f) for f = (f1, f2, f3)

> ∈
L2(R3)3. Then, we have

[F(curl curl − κ2)F−1] f̂ =Mκ(ξ)f̂ ,

and formally

(Fδ(x− yj)F−1 f̂)(ξ) = (Fδ(x− yj)f)(ξ)

= (2π)−3/2f(yj)e
−iyj ·ξ

= (2π)−3/2e−iyj ·ξ
(

1

(2π)3/2

∫
R2

f̂(ξ)eiyj ·ξdξ

)
=

3∑
m=1

〈
f̂ , ϕmyj

〉
ϕmyj(ξ),

where

ϕmyj(ξ) := φyj(ξ) em ∈ C3×1, m = 1, 2, 3, φyj(ξ) := (2π)−3/2e−iyj ·ξ.

Here we used the inner product

〈f, g〉 :=

∫
R2

f(ξ) · g(ξ) dξ, for f, g ∈ L2(R3)3.
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Therefore, formally we have

H̃(f)(ξ) =Mκ(ξ)f −
M∑
j=1

3∑
m=1

〈
aj f, ϕ

m
yj

〉
ϕmyj(ξ),

which is a finite rank perturbation of the multiplication operatorMκ(ξ). Our aim is to prove the existence
of H̃−1 and deduce an explicit expression of the Green’s tensor to H̃−1. To make the computations
rigorous, we introduce the cut-off function

χε(ξ) =

{
1, if ε ≤ |ξ| ≤ 1/ε,
0, if |ξ| < ε or |ξ| > 1/ε,

for some 0 < ε < 1,

and define the operator

H̃ε
αf :=Mκα(ξ) f −

M∑
j=1

3∑
m=1

〈
aj(ε) f, ϕ

ε,m
yj

〉
ϕε,myj (ξ), ϕε,myj (ξ) := χε(ξ)ϕ

m
yj

(ξ), (2.25)

where κα := κ + iα with α > 0. We will choose the coupling constants aj(ε) in a suitable way such

that H̃ε has a reasonable limit as ε tends to zero. Let us first recall the Weinstein-Aronszajn determinant
formula from [1, Lemma B.5], which is our main tool for analyzing the inverse of H̃ε

α.

Lemma 2.1. LetH be a (complex) separable Hilbert space with a scalar product
〈
·, ·
〉
. LetA be a closed

operator inH and Φj, Ψj ∈ H, j = 1, ...,m. Then

(
A+

m∑
j=1

〈
·,Φj

〉
Ψj−z

)−1

=
(
A−z

)−1−
m∑
j=1

[
Γ(z)

]−1

j,j′

〈
·, [
(
A−z

)−1
]∗Φj′

〉(
A−z

)−1
Ψj (2.26)

for z in the resolvent of A such that det
[
Γ(z)

]
6= 0, with the entries of Γ(z) given by[

Γ(z)
]
j,j′

:= δj,j′ +
〈(
A− z

)−1
Ψj′ ,Φj

〉
. (2.27)

Note that in Lemma 2.1, the notation [Γ(z)
]−1

j,j′
denotes the (j, j′)-th entry of the matrix [Γ(z)

]−1
, and

[ ]∗ stands for the adjoint operator of [ ]. To apply Lemma 2.1, we take

H := L2(R3)3, A(f) := |ξ|2(I− ξ̂ ⊗ ξ̂)f(ξ), m := 3M, z = κ2
α

and Φj := Φε
j , Ψj = −ãjΦε

j for j = 1, · · · , 3M , with ãj and Φε
j defined as follows:

ãj(ε) = al(ε) if j ∈ {3l − 1, 3l − 2, 3l}, Φε
j :=


ϕε,1yl if j = 3l − 2,
ϕε,2yl if j = 3l − 1,
ϕε,3yl if j = 3l,

for some l ∈ {1, 2, · · · ,M}. The multiplication operator A is closed with a dense domain

D(A) :=
{
f(ξ) ∈ L2(R3)3 : |ξ|2(I− ξ̂ ⊗ ξ̂)f(ξ) ∈ L2(R3)3

}
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in L2(R3)3 hence H̃ε
α, with ε > 0, α > 0, is also closed with the same domain. For a complex-valued

number κ + iα, one can observe that det(Mκα(ξ)) 6= 0 for all ξ ∈ R3, so that (Mκα)−1(ξ) always
exists. Further, it holds that

[(Mκα)−1]∗ = [(Mκα)]−1,

where κα := κ− iα denotes the conjugate of κα. Simple calculations show

(A− z
)−1

Ψj = −ãj(Mκα)−1Φε
j,

δj,j′ +
〈(
A− z

)−1
Ψj′ ,Φj

〉
= ãj [ã−1

j δj,j′ −
〈
(Mκα)−1Φε

j′ ,Φ
ε
j′

〉
].

Therefore, by Lemma 2.1 we arrive at an explicit expression of the inverse of H̃ε
α, given by

(H̃ε
α)−1f = (Mκα)−1f +

3M∑
j,j′=1

[Γε(κα)]−1
j,j′

〈
f, χε F

(j′)
−κα

〉
χε F

(j)
κα , α > 0, (2.28)

with

Γε(κα) :=
[
ã−1
j δj,j′ −

〈
(Mκα)−1Φε

j′ , Φε
j

〉]3M
j,j′=1

, χεF
(j)
κα := (Mκα)−1Φε

j, (2.29)

provided det[Γε(κα)] 6= 0.

In order to get H̃−1 for the complex wavenumber κα, we need to remove the cut-off function in (2.28) by

evaluating the limits of Γε(κα) and
〈
f, χεF

(j′)
−κα

〉
χεF

(j)
κα as ε → 0. This will be done in the subsequent

lemmas 2.2 and 2.4.

Lemma 2.2. The coefficients ãj(ε) can be chosen in such a way that the limit ΓB,Y (κα) = limε→0 Γε(κα)
exists and takes the form

ΓB,Y (κα) =


(−a−1

1 + b1) I −Πκα(y1, y2) · · · −Πκα(y1, yM)
−Πκα(y2, y1) (−a−1

2 + b2) I · · · −Πκα(y2, yM)
...

...
. . .

...
−Πκα(yM , y1) −Πκα(yM , y2) ... (−a−1

M + bM) I

 , (2.30)

where aj ’s are the scattering strengths and B := (b1, b2, · · · , bM) with

bj := bj(βT,j, βL,j, κα) =
βT,j + iκα

6π

β2
T,j

β2
T,j + κ2

α

− (βL,j/
√

2)3

6πκ2
α

, βT,j, βL,j ∈ R. (2.31)

If in addition we assume that aj ∈ R, then [ΓB,Y (κα)]∗ = ΓB,Y (−κα).

Remark 2.3. For j = 1, . . . ,M , the coefficient aj can be absorbed by bj , through the coefficients βT,j
or βL,j . We kept these three coefficients aj , βT,j and βL,j just to make our final form of the scattering am-
plitude consistent with the formula (2.31) of [12] concerning the scattering by a single point-like scatterer,
see also Remark 2.6.

Proof : The proof will be carried out in the following three cases of j, j′ ∈ {1, · · · , 3M}.
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� Case 1: |j′ − j| = 1, and j, j′ ∈ {3l − 2, 3l − 1, 3l} for some l ∈ {1, · · · ,M}.
Assume firstly that j = 3l−2, j′ = 3l−1 for some l = 1, · · · ,M . Then, we have Φε

j = χεφyle1,
Φε
j′ = χεφyle2. Hence〈

(Mκα)−1Φε
j,Φ

ε
j′

〉
= (2π)−3

〈
(Mκα)−1χεe1, χεe2

〉
since ϕyj(ξ) ϕyj(ξ) = (2π)−3. Consequently, it holds that

〈
(Mκα)−1Φε

j,Φ
ε
j′

〉
= (2π)−3

∫
ε<|ξ|<1/ε

(Mκα)−1e1 · e2dξ = 0

because the scalar function (Mκα)(ξ)−1e1 ·e2 is odd in ξj , j = 1, 2, 3 (see (2.20)). By symmetry,
we have also

〈
(Mκα)−1Φε

j′ ,Φ
ε
j

〉
= 0. The other cases for j 6= j′ and j, j′ ∈ {3l−2, 3l−1, 3l}

can be proved analogously.

� Case 2: j = j′ ∈ {3l − 2, 3l − 1, 3l} for some l ∈ {1, 2, · · · ,M}.
In this case, we set

Θ(ε, κα, βT,l, βL,l) :=
1

(2π)3

∫
ε<|ξ|<1/ε

[
Tκα(ξ)

|ξ|2 + 2β2
T,l

β2
T,l + |ξ|2

+ Lκα(ξ)
|ξ|4 + 2β4

L,l

β4
L,l + |ξ|4

]
dξ

(2.32)
for some βT,l, βL,l ∈ R, and define

ã−1
j (ε) := −a−1

l +


[Θ(ε, κα, βT,l, βL,l)]1,1 if j = 3l − 2,

[Θ(ε, κα, βT,l, βL,l)]2,2 if j = 3l − 1,

[Θ(ε, κα, βT,l, βL,l)]3,3 if j = 3l,
l = 1, 2, · · · ,M. (2.33)

Employing (2.22) and the definition of the inverse Fourier transformation, we see

lim
ε→0

[
Θ(ε, κα, βT,l, βL,l)−

1

(2π)3

∫
ε<|ξ|<1/ε

(Mκα)−1(ξ)dξ

]
= lim

ε→0

[
Θ(ε, κα, βT,l, βL,l)−

1

(2π)3

∫
ε<|ξ|<1/ε

(Tκα(ξ) + Lκα(ξ)) dξ

]
= lim

ε→0

1

(2π)3

∫
ε<|ξ|<1/ε

[
Tκα(ξ)

β2
T,l

β2
T,l + |ξ|2

+ Lκα(ξ)
β4
L,l

β4
L,l + |ξ|4

]
dξ

= b(κα, βT,l, βL,l) I, (2.34)

where the constant b(κα, βT,l, βL,l), which is given in (2.31), follows from the arguments in [12];
see also the Appendix for the details. This implies that, for j ∈ {3l − 2, 3l − 1, 3l},

lim
ε→0

[
ã−1
j (ε)−

〈
(Mκα)−1Φε

j, Φε
j

〉]
= −a−1

l + b(κα, βT,l, βL,l). (2.35)

To sum up Cases 1 and 2, we conclude that the 3 × 3 diagonal blocks of the matrix ΓB,Y :=
limε→0 Γε(ω) coincide with the 3× 3 matrix (−a−1

l + b(κα, βT,l, βL,l)) I.
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� Case 3: j ∈ {3l − 2, 3l − 1, 3l}, j′ ∈ {3l′ − 2, 3l′ − 1, 3l′} for some l, l′ ∈ {1, · · · ,M} such
that |l − l′| ≥ 1, i.e. the element [ΓB,Y ]j,j′ lies in the off diagonal-by-3× 3-blocks of ΓB,Y .

Without loss of generality we assume j = 3l − 2, j′ = 3l′ − 2. Define the 3 × 3 matrix Υl :=
(Φε

j,Φ
ε
j+1,Φ

ε
j+2) = χεφyl I. A short computation shows〈

(Mκα)−1(ξ)Υl(ξ), Υl′(ξ)
〉

=

∫
ε<|ξ|<1/ε

(Mκα)−1(ξ)φyl(ξ)φyl′ (ξ) dξ

=
1

(2π)3

∫
ε<|ξ|<1/ε

(Mκα)−1(ξ) exp[i(yl′ − yl) · ξ] dξ

→
[
Πκα(yl′ , yl)

]
as ε→ 0,

where the last step follows from the inverse Fourier transformation.

Finally, combining Cases 1-3 gives the matrix (2.30).

We next prove the convergence of the operator Kε
j,j′ : L2(R3)3 → L2(R3)3 defined by

Kε
j,j′(f) :=

〈
f, χεF

(j′)
−κα

〉
χεF

(j)
κα , f ∈ L2(R3)3.

To be consistent with the definitions of Φε
j and χεF

(j)
ω , we introduce the functions

Φj(ξ) :=


(2π)−3/2e−iξ·yle1 if j = 3l − 2,
(2π)−3/2e−iξ·yle2 if j = 3l − 1,
(2π)−3/2e−iξ·yle3 if j = 3l

, F (j)
κα := (Mκα)−1Φj(ξ), (2.36)

for l = 1, ...,M.

Lemma 2.4. For α > 0, the operator Kε
j,j′ converges in the operator norm to Kj,j′ : L2(R3)3 →

L2(R3)3, defined by

Kj,j′(f) :=
〈
f, F

(j′)
−κα

〉
F (j)
κα .

Proof : The proof is similar to [7, Lemma II. 5].

Combining Lemma 2.2 and Lemma 2.4, we obtain the convergence in the operator norm of (H̃ε
α)−1 to

G(κα)f̂ := (Mκα)−1f̂ +
3M∑
j,j′=1

[
ΓB,Y (κα)

]−1

j,j′

〈
f̂ , F

(j′)
−κα

〉
F (j)
κα , ∀ f̂ ∈ L

2(R3)3, (2.37)

for α > 0 such that det[ΓB,Y (κα)] 6= 0. The main theorem of this section is stated as follows.

Theorem 2.5. Suppose that the constant ãj(ε) is given by (2.33), with βT,l, βL,l ∈ R for j ∈ {3l −
2, 3l − 1, 3l}, l = 1, 2, · · · ,M . Let ΓB,Y , F

(j)
κα be defined by (2.30), (2.36) respectively. Then we have

the following properties.
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(i) The operator H̃ε
α converges in norm resolvent sense to a closed and self-adjoint operator Ξ̂B,Y as

ε→ 0, where the resolvent of Ξ̂B,Y is given by (2.37). That is, forα > 0 such that det[ΓB,Y (κα)] 6=
0,

(Ξ̂B,Y − κ2
α)−1 = (Mκα)−1 +

3M∑
j,j′=1

[
ΓB,Y (κα)

]−1

j,j′

〈
· , F (j′)

−κα

〉
F (j)
κα ,

where
[
ΓB,Y (κα)

]−1

j,j′
denotes the (j, j′)-th entry of the matrix

[
ΓB,Y (κα)

]−1

.

(ii) For κ2 > 0 such that det[ΓB,Y (κ)] 6= 0, the resolvent of ΞB,Y reads

(ΞB,Y − κ2)−1 = Πκ +
M∑

l,l′=1

Πκ(·, yl)
[
Γ−1
B,Y (κ)

]
l,l′

〈
· ,Πκ(·, yl′)

〉
,

with the Green’s tensor

(ΞB,Y − κ2)−1(x, y) = Πκ(x, y) +
M∑

l,l′=1

Πκ(x, yl)
[
Γ−1
B,Y (κ)

]
l,l′

Πκ(yl′ , y), (2.38)

for x 6= y and x, y 6= yl. Here
[
Γ−1
B,Y (κ)

]
l,l′

denote the 3-by-3 blocks of the matrix
[
ΓB,Y (κ)

]−1
.

Proof : Based on (2.37), the proof of Theorem 2.5 can be carried out analogously to [7, Theorem II.6].

In classical scattering theory, (2.38) describes the total field by the collection of point like scatterers
Y = {y1, y2, . . . , yM} corresponding to the incident point source Πκ(x, y) located at y. We are also
interested in the case of plane wave incidence. By making use of (2.3) in (2.38), we obtain

U(x, θ) =
eiκ x·θ

4π
(I− θ ⊗ θ) +

M∑
l,l′=1

Πκ(x, yl)
[
Γ−1
B,Y (κ)

]
l,l′

eiκ yl′ ·θ

4π
(I− θ ⊗ θ),

with θ := −ŷ and U(x, θ) := lim
|y|→∞

|y|(ΞB,Y − κ2)−1(x, y) . In particular, multiplying the previous

identity by the polarization direction p ∈ S2 (p⊥θ) gives the total field

E(x, θ, p) = Ei(x, θ, p) +
M∑

l,l′=1

Πκ(x, yl)
[
Γ−1
B,Y (κ)

]
l,l′
Ei(yl′ , θ, p), (2.39)

corresponding to a plane wave incidence Ei(x, θ, p) = p exp(iκ x · θ) with E(x, θ, p) := U(x, θ) · p.
The far-field corresponding to the scattered field is then given by

E∞(x̂; θ, p) =
1

4π

M∑
l,l′=1

exp(−iκx̂ · yl)(I− x̂⊗ x̂)
[
Γ−1
B,Y (κ)

]
l,l′
Ei(yl′ , θ, p), (2.40)

which is reminiscent to the representation (2.13) in the Foldy method.
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Remark 2.6. If we choose, as in [12], the regularization parameters βT,j sufficiently large (compared to
the fixed wavenumber κ), then the coefficient bj in Lemma 2.2 takes the form

bj := bj(βT,j, βL,j, κ) =
βT,j + iκ

6π
− (βL,j/

√
2)3

6πκ2
+O(

κ

βT,j
),

κ

βT,j
� 1. (2.41)

Additionally, suppose that there exists only one point-like scatterer located at the origin (i.e.M = 1, y1 =
O). Then by neglecting the term O( κ

βT,j
) in (2.41), the identity (2.38) becomes

(ΞB,Y − κ2)−1(x, y) = Πκ(x, y) + tΠκ(x, 0)Πκ(0, y),

where t is given by (see (2.31) in Lemma 2.2)

t = (b1 − a−1
1 )−1 =

1

−a−1
1 + (βT + iκ)(6π)−1 − β3

L(6πκ2)−1 2−3/2
, βT , βL ∈ R.

The number t is exactly the one characterizing to the scattering T matrix in [12] (cf. [12, Section III, A (33)
and (19)]), remarking that in [12], βL√

2
is taken as βL, i.e. 1√

2
is absorbed in βL, and κ2αB = a1.

3 The inverse problems for the Born, Foldy and intermediate
models

From (2.8),(2.13),(2.19), we can write the far-field corresponding to scattered field in various models as

E∞(x̂; θ, p) =
1

4π

M∑
l,j=1

aj e
−iκx̂·yjeiκ θ·yl(I− x̂⊗ x̂) [T̃]jl p. (3.1)

with

T̃ :=


Ĩ, Born approximation,

Γ̃−1, Foldy method,

C̃k, kth intermediate level.

(3.2)

The above mentioned far-field patterns are vectors. We define the following scalar far field, denoted by
Ė∞(x̂), which will be useful in the statement and the justification of the MUSIC algorithm, see [4, 6] for
instance.

Ė∞(x̂; θ, p) := x̂⊥ · E∞(x̂) =
1

4π

M∑
l,j=1

aj e
−iκx̂·yjeiκ θ·ylx̂⊥

>
[T̃]jl p. (3.3)

Here, x̂⊥ ∈ S2 is any orthogonal direction to the observational direction x̂ ∈ S2. Since p is any direction
in S2 perpendicular to θ, it has two orthogonal components called horizontal and vertical polarization
directions denoted by ph and pv respectively. So, p := θ⊥ = θ⊥/|θ⊥| with θ⊥ := c1 p

h + c2 p
v for

arbitrary constants c1 and c2. To give the explicit forms of ph and pv, we recall the Euclidean basis
{e1, e2, e3} where e1 := (1, 0, 0)>, e2 := (0, 1, 0)> and e3 := (0, 0, 1)>, write θ := (θx, θy, θz)

> and
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set r2 := θ2
x + θ2

y . LetR3 be the rotation map transforming θ to e3. Then in the basis {e1, e2, e3},R3 =
R3(θ) is given by the matrix

R3 =
1

r2

 θ2
y + θ2

xθz −θxθy(1− θz) −θxr2

−θxθy(1− θz) θ2
x + θ2

yθz −θyr2

θxr
2 θyr

2 θzr
2

 . (3.4)

It satisfiesRT
3R3 = I andR3 θ = e3. Correspondingly, we write ph := RT

3 e1 and pv := RT
3 e2. These

two directions represent the horizontal and the vertical directions of the polarized direction and they are
given by

ph := θ⊥h =
1

r2
(θ2
y+θ

2
xθz, θxθy(θz−1),−r2θx)

>, pv = θ⊥v =
1

r2
(θxθy(θz−1), θ2

x+θ
2
yθz,−r2θy)

>.

(3.5)
Hence, p can be written in terms of θ and then we can write Ė∞ as a function of x̂ and θ only.

Our concern in this section is to study the following inverse problem.

Inverse Problem : Given the far-field pattern Ė∞(x̂, θ) for several incident and observation directions
θ and x̂, find the locations y1, y2, . . . , yM and the scattering strengths a1, a2, . . . , aM .

In the next sections, we deal with the mentioned models, (3.2)-(3.3), providing a detailed study of the
resolution of the reconstruction depending on the distance between the scatterers, the frequency used
and the scattering strengths.

3.1 MUSIC algorithm for the Maxwell system

The MUSIC algorithm is a method to determine the locations yj, j = 1, 2, . . . ,M , of the scatterers
from the measured far-field pattern Ė∞(x̂, θ) for a finite set of incidence and observation directions, i.e.
x̂, θ ∈ {θj, j = 1, . . . , N} ⊂ S2. We refer the reader to the monographs [2] and [8] for more information
about this algorithm. We follow the way presented in [4, 8]. We assume that the number of scatterers is
not larger than the number of incident and observation directions, in particular N ≥ 3M . We define the
response matrix F ∈ CN×N by

Fst := Ė∞(θs, θt). (3.6)

Then by making use of (3.3), the response matrix F can be factorized as

F = H∗TH (3.7)

with the matrices T ∈ C3M×3M and H ∈ C3M×N are given by

T := a T̃, a := Diag(a1I, a2I, . . . , aM I), (3.8)

and

H :=


θ⊥1 e

iκθ1· y1 θ⊥2 e
iκθ2· y1 . . . θ⊥Ne

iκθN · y1

θ⊥1 e
iκθ1· y2 θ⊥2 e

iκθ2· y2 . . . θ⊥Ne
iκθN · y2

...
...

. . .
...

θ⊥1 e
iκθ1· yM θ⊥2 e

iκθ2· yM . . . θ⊥Ne
iκθN · yM

 .
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In order to determine the locations yj , we consider a grid of sampling points z ∈ R3 in a region containing
the scatterers y1, y2, . . . , yM . For each point z, we define the vectors φuz ∈ CM by

φmz :=
((
θ⊥1 · em

)
e−iκθ1·z,

(
θ⊥2 · em

)
e−iκθ2·z, . . . ,

(
θ⊥N · em

)
e−iκθN ·z

)>
,∀m = 1, 2, 3. (3.9)

MUSIC characterization of the scatterers: Recall that MUSIC is essentially based on characterizing the
range of the response matrix F , forming projections onto its null space, and computing its singular value
decomposition. Under the assumption that the matrix T in the factorization (3.7) of F is non-singular, the
standard linear algebraic argument yields that,R(H∗) andR(F ) coincide for N ≥ 3M , if the matrix H
has maximal rank 3M . So, let us discuss the invertibility of the matrix T . From the definition of T in (3.8),
its invertibility depends only on the non-singularity of T̃.

� In case of the Born approximation, it is clear that T is invertible as T̃ = Ĩ from the definition (3.2)
of T̃.

� In case of the Foldy’s method, from (3.2), we have T̃ = Γ̃−1. So, the invertibility of T depends on
the existence of Γ̃−1. It can be observed that Γ̃ can be factorized as Γ̃ = Γ̄a with

Γ̄ =


1
a1

I −Πκ(y1, y2) −Πκ(y1, y3) · · · −Πκ(y1, yM)

−Πκ(y2, y1)
1
a2

I −Πκ(y2, y3) · · · −Πκ(y2, yM)
...

...
...

. . .
...

−Πκ(yM , y1) −Πκ(yM , y2) −Πκ(yM , y3) · · · 1
aM

I

 .

Then Γ̃ is invertible when Γ̄ is invertible and T = Γ̄−1. Let us assume it holds and postpone this
issue to Section 3.2.

� In case of the approximation by intermediate level k, we have T̃ = C̃k =
∑k

l=0(−M̃)l. One can
observe that the norm of M̃ less than half is a sufficient condition for the invertibility of T in every
level of scattering.

Hence, under the assumption of the non-singularity of T , we can state the MUSIC related theorem for
the Electromagnetic wave scattering by point-like scatterers as follows.

Theorem 3.1. Let {θs : s ∈ N} ⊂ S2 be a countable set of directions such that any analytic function
on S2 that vanishes in θs for all s ∈ N vanishes identically. Let K be a compact subset of R3 containing
{yj : j = 1, . . . ,M}. Then there existsN0 ∈ N such that for anyN ≥ N0 the following characterization
holds for every z ∈ K :

z ∈ {y1, . . . , yM} ⇐⇒ φmz ∈ R(H∗), for some m = 1, 2, 3. (3.10)

Furthermore, the ranges of H∗ and F coincide and thus

z ∈ {y1, . . . , yM} ⇐⇒ φmz ∈ R(F )⇐⇒ Pφmz = 0, for some m = 1, 2, 3, (3.11)

where P : CN → R(F )⊥ = N (F ∗) is the orthogonal projection onto the null spaceN (F ∗) of F ∗.

Proof : One can prove this theorem in the lines of the proofs of Theorem 4.1 in [8] concerning the Born-
approximation for the acoustic model and more closely Theorem 3.1 and Theorem 3.2 in [4] concerning
the acoustic and elastic wave scattering respectively related to the Born, Foldy and the intermediate
models, by proving the maximal rank property of the matrix H and using the test vector φmz .

Remark 3.2. We can observe in (3.3) that either horizontal polarized directions, ph, or vertical polarized
directions, pv, are sufficient for the reconstruction. In addition, either the horizontal observation directions
or the vertical observation directions are also sufficient for the reconstruction.
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3.2 Invertibility of the matrix Γ̄

To discuss the invertibility of Γ̄, we distinguish two situations.
Case 1 (Diagonally dominant condition): As mentioned in [4], concerning acoustic and elastic cases,
when the scatterers are relatively far away from each other comparing to the scattering strengths, then
the invertibility condition of Γ̄ is the diagonally dominant condition and it is given by

M∑
j=1
j 6=l

||Πκ(yj, yl)||1 <
1

|al|
,∀ l = 1, 2, . . . ,M. (3.12)

Here ||·||1 is the 1-norm and it is defined for a matrix L = [Lnm] ∈ CN×M , as ||L||1 := max
1≤m≤M

N∑
n=1

|Lnm|.

Case 2 (Non-diagonally dominant condition): Using the form (2.1), we can write Πκ(x, y) explicitly as

Πκ(x, y) = Φκ(x, y)I +
1

κ2

Φκ(x, y)

r2

[
−κ2R⊗ R + (1− iκ r)(3R̂⊗ R̂− I)

]
, (3.13)

where R = x − y, r = |x − y| and R̂ = R
r

. We remark that the entries of Πκ(x, y) are analytic
in terms of the variables ηjlm = (yj − yl)m, j, l = 1, . . . ,M and m = 1, 2, 3 for ηjlm ∈ R\{0}.
Remark also that the determinant of Γ̄, detΓ̄, is given by the products and sums of a−1

j and the entries

of Πκ(yj, yl) for j, l = 1, . . . ,M . Then detΓ̄ is analytic in terms of the 3M(M−1)
2

real variables ηjlm for
j, l = 1, . . . ,M with j < l, m = 1, 2, 3. Fix the wavenumber κ and the scattering strengths aj , for
j = 1, . . . ,M , we deduce then that except for few distributions of the scatterers, y1, . . . , yM , the matrix
Γ̄ is invertible. The wavenumbers κ for which Γ̄ is not invertible are called resonances, see [1] for a study
of these resonances concerning the acoustic case.

3.3 Recovering the scattering strengths aj ’s

In this section we discuss how one can recover the scattering strengths aj of the scatterers yj for j =
1, . . . ,M for the given far-field pattern, i.e. response matrix F . Recall that F has the factorization F =
H∗TH where H and T are defined as in Section 3.1. As the matrix H is of maximal rank 3M and
N ≥ 3M the matrix HH∗ ∈ C3M×3M is invertible. Let us denote this inverse by IH . Once we locate
the scatterers y1, y2, . . . , yM by using MUSIC algorithm for the given far-field patterns, we can recover
the matrix T ∈ C3M×3M as T = IHHFH

∗IH , IHH is the pseudo inverse ofH∗. Then, we can recover
the scattering strengths a1, . . . , aM from the entries of the matrix T . We explain how this procedure is
going to work in each model.

� In the Born approximation we have T = a, and hence the diagonal entries of T give the scattering
strengths a1, . . . , aM .

� In the Foldy’s method we have T = Γ̄−1, and hence the reciprocals of the diagonal entries of T−1

produces the scattering strengths a1, . . . , aM .

� In the intermediate level, k, approximation we have T = a
∑k

l=0(−M̃)l. We have already seen
how one can recover the scattering strengths for k = 0 (Born) and for k =∞ (Foldy). In the case
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k = 1, we have T = a−aM̃. As we know that a is a diagonal matrix and the 3×3 diagonal blocks
of M̃ are zero, the diagonal entries of T are equal to the scattering strengths of the M scatterers.
But for intermediate level approximation k > 1, it is difficult to recover the scattering strengths
due to the complicated structure of the matrices (−M̃)l, for l = 2, . . . , and hence of T . For this
reason, as in the acoustic and elastic cases of [4], we restrict ourselves to the special case of two
point-like obstacles y1, y2 with the corresponding scattering strengths a1, a2. In this case using the
symmetry relation of the fundamental matrix Πκ(x, y), i.e. Πκ(x, y) = [Πκ(y, x)]>, we have the
explicit form of (−M̃)l for l = 0, 1, 2, . . . as follows

(−M̃)l =



[
a
l
2
1 a

l
2
2 Πl

κ(y1, y2) 0

0 a
l
2
1 a

l
2
2 Πl

κ(y1, y2)

]
, l ∈ 2N ∪ {0}

[
0 a

l−1
2

1 a
l+1
2

2 Πl
κ(y1, y2)

a
l+1
2

1 a
l−1
2

2 Πl
κ(y1, y2) 0

]
, l ∈ 2N− 1

Here, 0 is the zero matrix of order 3. The matrix (−M̃)l is either diagonal or anti-diagonal by blocks
of the size 3×3. This structure is not valid anymore for the case of more than two scatterers. From
this structure, we obtain the explicit form of T = a

∑k
l=0(−M̃)l in the kth order scattering as

follows

T =



[
a1I 0
0 a2I

]
, k = 0,


a1

k
2∑
l=0

al1a
l
2Π

2l
κ (y1, y2)

k
2∑
l=1

al1a
l
2Π

2l−1
κ (y1, y2)

k
2∑
l=1

al1a
l
2Π

2l−1
κ (y1, y2) a2

k
2∑
l=0

al1a
l
2Π

2l
κ (y1, y2)

 , k ∈ 2N,


a1

k−1
2∑
l=0

al1a
l
2Π

2l
κ (y1, y2)

k−1
2∑
l=0

al+1
1 al+1

2 Π2l+1
κ (y1, y2)

k−1
2∑
l=1

al+1
1 al+1

2 Π2l+1
κ (y1, y2) a2

k−1
2∑
l=0

al1a
l
2Π

2l
κ (y1, y2)

 , k ∈ 2N− 1,

[ 1
a1

I −Πκ(y1, y2)

−Πκ(y1, y2)
1
a2

I

]−1

, k =∞.

From the above explicit form of T , we observe the following points.

� The diagonal entries of T give the scattering strengths in the Born approximation, i.e. k = 0.

� Substituting the non diagonal entries in the diagonal entries give the scattering strengths in

every even level scattering k, i.e. k ∈ 2N. Indeed, define ă :=

k
2∑
l=1

al1a
l
2Π

2l−1
κ (y1, y2) then

the non-diagonal entries of T are equal to ă. Also the diagonal entries T11 and T22 of T are
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equal to a1(1+Πκ(y1, y2)ă) and a2(1+Πκ(y1, y2)ă) respectively. Now, with the knowledge
of the scatterers y1 and y2 from the MUSIC algorithm and by substituting the value of ă in
the diagonal entries, we can evaluate the scattering strengths a1 and a2.

� Substituting the diagonal entries in the non diagonal entries give the scattering strengths in

every odd level scattering k, i.e. k ∈ 2N − 1. Indeed, define b̆1 := a1

k−1
2∑
l=0

al1a
l
2Π

2l
κ (y1, y2)

and b̆2 := a2

k−1
2∑
l=0

al1a
l
2Π

2l
κ (y1, y2) then the diagonal entries T11 and T22 of T are equal to

b̆1 and b̆2 respectively. Also the non-diagonal entries T12 and T21 of T are the same and are
equal to a1b̆2Πκ(y1, y2) = a2b̆1Πκ(y1, y2). Now again with the knowledge of the scatterers
y1 and y2 from the MUSIC algorithm and by substituting the diagonal entries in the non
diagonal entries of T , we can evaluate the scattering strengths a1 and a2.

� The diagonal entries of T−1 give the scattering strengths in the method of Foldy. i.e. k =∞.

3.3.1 Numerical results and discussions

Figure 1: Incident and the observational directions

For the convenience of visualization, we show the results for the scatterers in XY-plane. For our calcu-
lations, we consider 50 incident and observational directions and the point-like scatterers of the same
scattering strength located at the points y1 = (0, 0, 0), y2 = (0, 0.5, 0), y3 = (0.5, 0, 0), y4 =
(0.5, 0.5, 0), y5 = (1, 1, 0), y6 = (1,−1, 0), y7 = (−1,−1, 0), y8 = (−1, 1, 0), y9 = (1,−1.5, 0)
, y10 = (1.5, 0.5, 0) and y11 = (−1.5, 1, 0). Let dGL stands for the degree of Gauss-Legendre poly-
nomial. We used the 2d2

GL(= 50) incident and the observational directions obtained from the Gauss-
Legendre polynomial of degree dGL(= 5), i.e. if we denote the zeros of the Gauss-Legendre polynomial
of degree by GLk, for k = 1, . . . , dGL then the azimuth and the zenith angles θ and φ are given by

φ = cos−1(GLk), k = 1, . . . , dGL

θ = j ∗ π

dGL
, j = 0, 1, . . . , 2dGL − 1.
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Combinations of these spherical coordinates will allow us to find the incident and the observational direc-
tions given by (cos θ sinφ, sin θ sinφ, cosφ). These directions are shown in Fig.1. To show numerically
that horizontal, ph, or vertical, pv, polarization direction is enough for the reconstruction, we used the
directions ph and pv as per the definition (3.5).

(a) (b) (c)

Figure 2: (a) Born , (b) Foldy , (c) 10thlevel - based reconstructions using ph with 0% noise, aj=1 and
κ = π for 4 scatterers.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: Born (a,b,e,f) and Foldy (c,d,g,h) based reconstructions with 1% noise, aj=1 and κ = 2π for 6
scatterers. Upper part (a,b,c,d) - ph, lower part(e,f,g,h) -pv.

Since MUSIC algorithm is an exact method, the reconstruction is very accurate in the absence of noise
in measured data, for Born, Foldy and intermediate models. It can be observed in Fig.2, from the pseudo
spectrum of the scatterers located at the points y1, y2, y5, y6 having scattering strengths 1 for each with
the wavenumber κ = π (i.e. minimum distance between the scatterers is quarter of the wavelength) with
respect to the Born, the Foldy and the intermediate models.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: Born (a,b,e,f) and Foldy (c,d,g,h) based reconstructions with 1% noise, aj=1 and κ = π for 6
scatterers. Upper part (a,b,c,d) - ph, lower part(e,f,g,h) -pv.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5: Born (a,b,e,f) and Foldy (c,d,g,h) based reconstructions with 6% noise, aj=10 and κ = 2π for
6 scatterers. Upper part (a,b,c,d) - ph, lower part(e,f,g,h) -pv.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6: Reconstruction of 3 scatterers with 1% noise, aj=7 and κ = π. 3rd level (a,b,e,f) and 12th level
(c,d,g,h) approximations. Upper part (a,b,c,d) - ph, lower part(e,f,g,h) -pv.

To analyze the effect of the noise level on the resolution of the algorithm, different noise levels are used.
To distinguish the differences between the Born approximation and the Foldy model, we used different
scattering strengths, noise levels and distance between the scatterers.

Fig.3 and Fig.4 are related to the 6 scatterers located at the points y1, y2, y5, y6, y7 and y8 having
scattering strength 1 for each with 1% random noise in the measured far-field pattern. Fig.3 shows the
pseudo spectrum of the mentioned 6 scatterers for the wavenumber κ = 2π whereas figure Fig.4 shows
the pseudo spectrum for the wavenumber κ = π. i.e., minimum distance between the scatterers is half
of the wave length and quarter of the wavelength respectively. We observe that due to the higher wave
number, Fig.3 has the better reconstruction comparing to Fig.4 w.r.t to ph and pv respectively. Also, we
can observe that the scatterers satisfy largely the condition (3.12) and the reconstruction looks similar in
both the Born approximation and the Foldy model. Hence, if the scatterers are well separated with low
scattering strengths there is no much difference in the reconstruction between the Born approximation
and the Foldy model.

Now, we present an example where the scatterers do not satisfy the condition (3.12). Fig.5 shows the
pseudo spectrum of the 6 scatterers again located at y1, y2, y5, y6, y7 and y8 of each having scattering
strength 10 for κ = 2π with 6% random noise in the measured far field patterns with respect to the Born
approximation and the Foldy method. Compared to Fig.3 and Fig.4, we see in Fig.5 how the reconstruction
deteriorates due to the effect of multiple scattering created by the close obstacles. In this case, we can
see the differences between the Born approximation and the Foldy model.

As a conclusion, we have seen that if the condition (3.12) is satisfied largely then the effect of the multiple
scattering is quite low and the reconstruction is similar in both Born and Foldy but above the condition
(3.12) the use of the Born approximation gives better reconstruction than the use of the Foldy method.
However in the latter case, Born approximation is not valid as the scatterers are relatively close. It is
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observed that, in general, increase of the noise level and decrease of the distance between the scatterers
make the reconstruction worse in both the approximations. It is also observed that when the scatterers
have different scattering strengths and if they are not well separated, the visibility of the scatterer is
proportional to the scattering strength of the respective scatterer.

We have similar kind of difference between the intermediate level approximations as the level k increases
with respect to the condition (3.12). We can observe this in Fig.6 which shows the numerical reconstruc-
tion of the 3 scatterers, based on 3rd and 12th level approximations, located at y3, y4 and y9 and having
scattering strength 7 with κ = π and of 1% random noise in the measured far-field pattern. Finally, let us
remind that the reconstruction depends on the choice of the signal and noise subspaces of the multiscale
response matrix, see for instance [4] for a discussion on this issue concerning the acoustic and elastic
cases.

4 Conclusion

We justified the Foldy method to model the electromagnetic scattering by point-like scatterers by gen-
eralizing the regularization method, known in the quantum mechanics [1], to the Maxwell case. Then
we described the intermediate levels of scattering between the Born and the Foldy models. We showed
how we can locate the scatterers, using MUSIC type algorithms, and then how to recover the scattering
strengths from far fields corresponding to incident plane waves. We demonstrated by several numerical
tests that the accuracy of the reconstruction is proportional to the distance between the scatterers but in-
versely proportional to the wavelength and the noise in measured far-field patterns. In addition, the point-
like scatterers with high scattering strengths are more visible compared to the ones with less scattering
strength. Finally, we have seen that either horizontal polarized directions, or vertical polarized directions,
and either the horizontal observation directions, or the vertical observation directions, are enough for the
reconstruction. This is true for Born, Foldy or any of the intermediate levels of scattering.

5 Appendix

For the reader’s convenience we show the proofs of (2.23), (2.24) and (2.34).

Proofs of (2.24) and (2.23) : The Green’s tensor Πκ(x, 0) can be written as

Πκ(x, 0) =
eiκ |x|

4π|x|
{P (iκ |x|)I +Q(iκ |x|) x̂⊗ x̂} , (5.1)

where the functions P and Q are defined in Section 2.2.

In the following we will only prove (2.24), since (2.23) follows automatically from (2.24), (2.21) and (5.1).
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By the definitions of Tκ and the inverse Fourier transform,

(2π)−3/2F−1(Tκ(ξ)) =
1

(2π)3

∫
R3

1

|ξ|2 − κ2
eiξ·xdξ I− 1

(2π)3

∫
R3

1

|ξ|2 − κ2
ξ̂ ⊗ ξ̂eiξ·xdξ

=
eiκ|x|

4π|x|
I− 1

(2π)3
∇x∇x

∫
R3

1

(κ2 − |ξ|2)|ξ|2
eiξ·xdξ

=
eiκ|x|

4π|x|
I− 1

(2π)3κ2
∇x∇x

∫
R3

(
1

κ2 − |ξ|2
+

1

|ξ|2

)
eiξ·xdξ

=
eiκ|x|

4π|x|
I− 1

(2π)3/2κ2
∇x∇x

(
F−1(

1

|ξ|2
)−F−1(

1

|ξ|2 − κ2
)

)
.

Employing (2π)−3/2F−1( 1
|ξ|2−κ2 )(x) = eiκ|x|

4π|x| , we get

(2π)−3/2F−1(Tκ(ξ)) =
eik|x|

4π|x|
I− 1

4πκ2
∇x∇x

(
1− eiκ|x|

|x|

)
= (I +

1

κ2
∇x∇x)

eiκ|x|

4π|x|
− 1

4πκ2
∇x∇x

1

|x|

= Πκ(x, 0)− 1

4πκ2
∇x∇x

1

|x|
.

Simple calculations show

∇x∇x
1

|x|
= − 1

|x|3
{I− 3x̂⊗ x̂} . (5.2)

With the help of (5.1), we finally obtain

1

(2π)3

∫
R3

1

|ξ|2 − κ2
(I− ξ̂ ⊗ ξ̂)eiξ·xdξ

=
I− 3x̂⊗ x̂
4πκ2 |x|3

+
eiκ |x|

4π|x|
{P (iκ |x|)I +Q(iκ |x|) x̂⊗ x̂} .

The identity (2.24) is thus proven.

Proof of (2.34) : We first compute the integral (2π)−3
∫

R3 Tκ(ξ)f(βT , ξ) dξ with f(βT , ξ) =
β2
T

β2
T+|ξ|2 .

Again using the definition of Tκ, we find

Tκ(ξ) f(βT , ξ) = Tκ(ξ) f(βT , κ) + Tκ(ξ) (f(βT , ξ)− f(βT , κ))

=

[
Tκ(ξ) + Tκ(ξ)

κ2 − ξ2

β2
T + ξ2

]
f(βT , κ)

=

[
1

ξ2 − κ2
(I− ξ̂ ⊗ ξ̂)− 1

ξ2 + β2
T

(I− ξ̂ ⊗ ξ̂)
]
f(βT , κ).

Recalling that ΠT
κ (x) = (2π)−3/2F−1[ 1

ξ2−κ2 (I− ξ̂ ⊗ ξ̂)], we have

(2π)−3/2F−1[Tκ(ξ) f(βT , ξ)] = [ΠT
κ (x)− ΠT

iβT
(x)] f(βT , κ).

23



It is easy to see [
I− 3x̂⊗ x̂
4πκ2|x|3

− I− 3x̂⊗ x̂
−4πβ2

T |x|3

]
β2
T

β2
T + κ2

=
I− 3x̂⊗ x̂
4πκ2|x|3

.

Using the previous identity, it follows from the expression of ΠT
κ (x) that

(2π)−3/2F−1[Tκ(ξ) f(βT , ξ)] =
I− 3x̂⊗ x̂
4πκ2|x|3

+
{ eiκ |x|

4π|x|
[P (iκ |x|)I +Q(iκ |x|)x̂⊗ x̂]

−e
−βT |x|

4π|x|
[P (−βT |x|)I +Q(−βT |x|)x̂⊗ x̂]

} β2
T

β2
T + κ2

.

Now, by the inverse Fourier transformation and the expressions for P and Q,

1

(2π)3

∫
R3

Tκ(ξ)f(βT , ξ) dξ = (2π)−3/2 lim
|x|→0

F−1[Tκ(ξ) f(βT , ξ)](x)

=
βT + iκ

6π

β2
T

β2
T + κ2

I. (5.3)

Indeed, recall that

P (z) = 1− 1

z
+

1

z2
, Q(z) = −1 +

3

z
− 3

z2
.

Now,

� Consider the term eiκ |x|

4π|x|Q(iκ |x|)− e−βT |x|

4π|x| Q(−βT |x|) =: AQ, then

AQ =
eiκ |x|

4π|x|

[
−1 +

3

iκ |x|
+

3

κ2 |x|2

]
− e−βT |x|

4π|x|

[
−1− 3

βT |x|
− 3

β2
T |x|2

]
.

From the Taylor series, we have

eiκ |x| = 1 + iκ |x| − κ2 |x|2

2
− iκ3 |x|3

6
+ o(|x|4),

e−βT |x| = 1− βT |x|+
β2
T |x|2

2
− β3

T |x|3

6
+ o(|x|4).

Then by using the Taylor series, we obtain the following after few computations,

eiκ |x|

4π|x|

[
−1 +

3

iκ |x|
+

3

κ2 |x|2

]
=

1

8π |x|
+

3

4πκ2 |x|3
+ o(|x|),

e−βT |x|

4π|x|

[
−1− 3

βT |x|
− 3

β2
T |x|2

]
=

1

8π |x|
− 3

4πβ2
T |x|3

+ o(|x|).

By substituting the above expressions in AQ, we obtain

AQ =
3

4π |x|3

[
1

κ2
+

1

β2
T

]
+ o(|x|)

=
3

4πκ2 |x|3
1

f(βT , κ)
+ o(|x|); f(βT , κ) :=

β2
T

β2
T + κ2

.

(5.4)
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� Consider the term eiκ |x|

4π|x| P (iκ |x|)− e−βT |x|

4π|x| P (−βT |x|) =: AP , then

AP =
eiκ |x|

4π|x|

[
1− 1

iκ |x|
− 1

κ2 |x|2

]
− e−βT |x|

4π|x|

[
1 +

1

βT |x|
+

1

β2
T |x|2

]
.

Again by using the Taylor series, we obtain the following after few computations,

eiκ |x|

4π|x|

[
1− 1

iκ |x|
− 1

κ2 |x|2

]
=

iκ

6π
+

1

8π |x|
− 1

4πκ2 |x|3
+ o(|x|),

e−βT |x|

4π|x|

[
1 +

1

βT |x|
+

1

β2
T |x|2

]
= −βT

6π
+

1

8π |x|
+

1

4πβ2
T |x|3

+ o(|x|).

By substituting the above expressions in AP , we obtain

AP =
βT + iκ

6π
− 1

4π |x|3

[
1

κ2
+

1

β2
T

]
+ o(|x|)

=
βT + iκ

6π
− 1

4πκ2 |x|3
1

f(βT , κ)
+ o(|x|). (5.5)

Gathering all :

g̃T0 (κ, |x|) :=
I− 3x̂⊗ x̂
4πκ2|x|3

+
{ eiκ |x|

4π|x|
[P (iκ |x|)I +Q(iκ |x|)x̂⊗ x̂]

−e
−βT |x|

4π|x|
[P (−βT |x|)I +Q(−βT |x|)x̂⊗ x̂]

} β2
T

β2
T + κ2

=
I− 3x̂⊗ x̂
4πκ2 |x|3

+
{βT + iκ

6π
I +

3x̂⊗ x̂− I

4πκ2 |x|3
1

f(βT , κ)

}
f(βT , κ) + o(|x|)

=
βT + iκ

6π
f(βT , κ)I + o(|x|).

Hence

lim
|x|→0

g̃T0 (κ, |x|) =
βT + iκ

6π
f(βT , κ)I. (5.6)

It remains to check the relation

1

(2π)3

∫
R3

Lκ(ξ)
β4
L

β4
L + ξ4

dξ = − β̃3
L

6πκ2
I, β̃L = βL/

√
2. (5.7)

From the definition of Lk, we see

1

(2π)3/2
F−1[Lκ(ξ)

β4
L

β4
L + |ξ|4

](x)

=
−1

(2π)3κ2

∫
R3

β4
L

β4
L + |ξ|4

ξ̂ ⊗ ξ̂ eiξ·x dξ

=
1

(2π)3κ2
∇x∇x

∫
R3

β4
L

(β4
L + |ξ|4)|ξ|2

eiξ·x dξ

=
1

(2π)3κ2
∇x∇x

∫
R3

(
1

|ξ|2
− |ξ|2

β4
L + |ξ|4

)
eiξ·x dξ

=
−1

(2π)3/2κ2
∇x∇x

(
F−1[

|ξ|2

β4
L + |ξ|4

](x)−F−1[
1

|ξ|2
](x)

)
. (5.8)
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In view of (5.2),

1

(2π)3/2κ2
∇x∇x

(
F−1[

1

|ξ|2
](x)

)
=

1

κ2
∇x∇x

1

4π|x|
= − I− 3x̂⊗ x̂

4πκ2|x|3
.

To evaluate the first term on the right hand side of (5.8), we need the integral identity∫
R3

|ξ|2

β4
L + |ξ|4

eiξ·xdξ =

∫ ∞
0

∫ 2π

0

∫ π

0

|ξ|4

β4
L + |ξ|4

sin θ ei|ξ| |x| cos θdθ dφ d|ξ|

= 4π

∫ ∞
0

|ξ|3 sin(|ξ| |x|)
(β4

L + |ξ|4) |x|
d|ξ|

= 2π2 e
−β̃L|x| cos(β̃L|x|)

|x|

with β̃L = βL/
√

2, where the last equality follows from the Fourier sine transform of the odd function
t3/(β4

L + t4). It then follows that

−1

(2π)3/2κ2
∇x∇xF−1[

|ξ|2

β4
L + |ξ|4

](x) =
−1

4πκ2
∇x∇x

e−β̃L|x| cos(β̃L|x|)
|x|

=
1

4πκ2
{g(|x|) I + |x| g′(|x|) x̂⊗ x̂}

where g(t) = {e−β̃Lt[cos(β̃Lt) + β̃Lt(cos(β̃Lt) + sin(β̃Lt))]}/t3. After elementary calculations, we
obtain

1

(2π)3/2
F−1[Lκ(ξ)

β4
L

β4
L + |ξ|4

](x) = − I− 3x̂⊗ x̂
4πκ2

{
1− g(|x|)

}
− β̃2

Le
−β̃L|x| sin(β̃L|x|)

2πκ2|x|
x̂⊗ x̂,

and arguing similarly to the justification of (5.3), we obtain

1

(2π)3

∫
R3

Lκ(ξ)
β4
L

β4
L + ξ4

dξ = lim
|x|→0

1

(2π)3/2
F−1[Lκ(ξ)

β4
L

β4
L + |ξ|4

](x) = − β̃3
L

6πκ2
I.

This proves (5.7). Finally, combining (5.7) and (5.3) yields (2.34).
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