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COUNTING CURVES ON TORIC SURFACES
TROPICAL GEOMETRY & THE FOCK SPACE

RENZO CAVALIERI PAUL JOHNSON HANNAH MARKWIG DHRUV RANGANATHAN

ABSTRACT. We study the stationary descendant Gromov-Witten theory of toric surfaces by com-
bining and extending a range of techniques — tropical curves, floor diagrams, and Fock spaces. A
correspondence theorem is established between tropical curves and descendant invariants on toric
surfaces using maximal toric degenerations. An intermediate degeneration is then shown to give
rise to floor diagrams, giving a geometric interpretation of this well-known bookkeeping tool in
tropical geometry. In the process, we extend floor diagram techniques to include descendants in
arbitrary genus. These floor diagrams are then used to connect tropical curve counting to the alge-
bra of operators on the bosonic Fock space, and are shown to coincide with the Feynman diagrams
of appropriate operators. This extends work of a number of researchers, including Block-Géttche,
Cooper-Pandharipande, and Block-Gathmann-Markwig.

1. INTRODUCTION

1.1. Overview. The scope of this manuscript is to establish an equivalence between the following
enumerative and combinatorial geometric theories of surfaces, studied by a number of researchers
in the last decade:

(1) decorated floor diagram counting;

(2) logarithmic descendant Gromov—-Witten theory of Hirzebruch surfaces;
(3) tropical descendant Gromov-Witten theory of Hirzebruch surfaces;

(4) matrix elements of operators on a bosonic Fock space.

Floor diagrams are loop free graphs on a linearly ordered set of vertices, further endowed with
vertex, edge, and half-edge decorations as specified in Definition 4.1. Each diagram is counted
with a weight which is the product of vertex and edge multiplicities. Floor diagrams capture the
combinatorial essence of the other three theories, in the sense that the simplest way to exhibit the
above equivalences is through a weight preserving bijection between floor diagrams and specific
ways to organize the enumeration in the other theories.

Logarithmic Gromov-Witten theory studies the intersection theory on moduli spaces of maps
from pointed curves to a target surface, with specified tangency conditions along certain bound-
ary divisors, as in Definition 2.3. These moduli spaces admit a virtual fundamental class, and we
construct zero dimensional cycles by capping with the virtual class two types of cycles: point con-
ditions, corresponding to requiring a point on the curve to map to a specified point on the surface;
and descendant insertions, which are Euler classes of certain tautological line bundles on the mod-
uli space, associated to each marked point. The word stationary refers to the fact that descendant
insertions are always coupled with point conditions. In this work, we specify special tangencies
to the 0 and oo sections of Hirzebruch surfaces, with transverse contact along the torus invariant
fibers, taking inspiration from the geometry of double Hurwitz numbers. Such invariants may
be computed by studying maps to a degeneration of the target surface consisting of a chain of
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Hirzebruch surfaces glued to each other along the sections. In Theorem 4.9, the equivalence of
the two theories is established, by identifying the decorated graphs that naturally organize the
degeneration as floor diagrams.

Tropical Gromov-Witten theory of surfaces consists of the study of piecewise linear, balanced
maps from tropical curves into R?, see Definition 3.3. One obtains a finite count by imposing
point conditions (i.e. specifying the image of a contracted marked end on the plane), and tropical
descendant conditions. The descendant conditions constrain the valency of the vertex adjacent
to a marked end. Each map is counted with a weight that arises as a product of local vertex
multiplicities and tropical intersection-theoretic factors coming from cycles and point evaluations.
In good cases, the latter factors can again be spread out as a product over areas of dual polygons
of non-marked vertices. The directions and multiplicities of the infinite ends define a Newton fan,
which determines at the same time a toric surface, a curve class on it, and prescribed tangencies
along the toric divisors, offering a natural candidate for a correspondence between the logarithmic
and tropical theories.

The simplest way to establish this correspondence is via a combinatorial geometry argument;
showing that the tropical curve count matches with the floor diagram count, see Theorem 4.11: if
the point conditions are horizontally stretched, then all tropical curves contributing to the count-
ing problem become floor decomposed, meaning that certain subgraphs of the tropical curves may
be contracted to give rise to a floor diagram.

For completeness and its conceptual value, in Theorem 3.14 we also offer a direct proof of the
correspondence between logarithmic and tropical invariants, as we feel it provides valuable in-
sight into the geometric motivation for such a correspondence: each tropical curve contributing
to a particular invariant identifies a subdivision of the polytope of the surface, and hence a degen-
eration of the target surface. A common refinement of these subdivisions gives a degeneration of
the target surface such that each tropical curve arises as the dual graph of some map to this degen-
eration. The key new ingredient in this aspect of the work is the recently established decomposition
formula for logarithmic Gromov-Witten invariants [2].

The bosonic Fock space is a countably infinite dimensional vector space with a basis indexed
by ordered pairs of partitions consisting of non-negative integers. It has an action of a Heisenberg
algebra of operators, generated by two families of operators as, bs parameterized by the integers.
The distinguished basis vectors can naturally be identified with tangency conditions along the 0
and oo sections of a Hirzebruch surface. In Definition 5.1, we construct a family of linear opera-
tors My on the Fock space which are naturally associated to stationary descendant insertions. To
each Gromov-Witten invariant then corresponds a matrix element for an operator obtained as an
appropriate composition of the M;’s above. The equality between a Gromov-Witten invariant
and the corresponding matrix element goes through a comparison with the floor diagrams count:
by Wick’s theorem a matrix element can be naturally evaluated as a weighted sum over Feyn-
man graphs (see Definition 5.4). In Theorem 5.3 we exhibit a weight preserving bijection between
the Feynman graphs for a given matrix element, and the floor diagrams for the corresponding
Gromov-Witten invariant.

1.2. Context and Motivation. This work provides an extension and unification of several previ-
ous lines of investigation on the subject. Correspondence theorems between tropical curve counts
and primary Gromov-Witten invariants of surfaces — those with only point conditions and no de-
scendant insertions — were established by Mikhalkin, Nishinou-Siebert, and Gathmann-Markwig
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FIGURE 1. An overview of the content and background.

in [31, 33, 20]; the tropical descendant invariants in genus 0 was first investigated by Markwig—
Rau [30], and correspondence theorems were established independently, using different tech-
niques, by A. Gross [23] and by Mandel-Ruddat [28]. Tropical descendants have also arisen in
aspects of the SYZ conjecture [24, 35].

Cooper and Pandharipande pioneered a Fock space approach to the Severi degrees of P! x P!
and P? by using degeneration techniques [17]. Block and Géttsche generalized their work to a
broader class of surfaces (the h-transverse surfaces, see for instance [4] and [10]), and to refined
curve counts, via quantum commutators on the Fock space side [7]. Both cases deal only with
primary invariants. Block and Gottsche assign an operator on the Fock space to point insertions,
and observe the connection between floor diagrams and Feynman graphs. We generalize their op-
erator to a family of operators, one for each descendant insertion, and notice that the operators can
be written with summands naturally corresponding to the possible sizes of the floor (see Definition
5.1) that contains a particular descendant insertion. In the primary case, there were only floors of
size O (elevators) or 1(floors), and hence the operator had two terms.

Section 4 contains a brief summary of how floor diagrams came to be employed for these type
of enumerative problems (Subsection 4.1). This discussion follows our definition of floor diagrams
(Definition 4.1) to explain and motivate some of the minor combinatorial tweaks we made in order
to adapt to the current geometric context.

It is at this point a well understood philosophy that correspondence theorems between classical
and tropical enumerative invariants are based on the fact that tropical curves encode the combina-
torics of possible degenerations of the classical objects. It is especially satisfactory when one can
turn this philosophy into a precise mathematical statement, to understand the “seed” geometric
data that one needs in order for tropical geometry to combinatorially reconstruct the classical the-
ory. In this work, we appeal to logarithmic Gromov-Witten theory to achieve this. The ability to
generalize the degeneration formula to targets with simple normal crossing boundaries (see the
recent results of [2]) allows us to realize the tropical-classical curve count correspondence as an
instance of the degeneration formula; the geometric inputs then appear in our formulas as the
vertex multiplicities associated to tropical maps.

An appealing feature of the generality provided by the logarithmic setup is that it establishes
a formula from which one can witness the collapsing of geometric inputs in different settings to
give rise to a purely combinatorial theory. In genus 0, the descendant contributions collapse into
closed combinatorial formulas. Conceptually, this is because the intersection theory of the space
of genus 0 logarithmic maps is essentially captured by the intersection theory on a particular toric
variety, see [36]. Without descendants but still in higher genus, there is a different collapsing — on
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a surface, one can degenerate in such a way that all the algebraic inputs are 1 up to multiplicity -
the multiplicity can be detected combinatorially, leading to Mikahlkin’s formula (3.15).

Restricting our attention to the study of invariants of Hirzebruch surfaces is a stylistic choice,
as we strived to write a paper that communicates the various connections we explore, rather than
making the most general statements possible. Results of Section 3 could as well be formulated for
any toric surface, results of Sections 4 and 5 for any toric surface dual to a so-called h-transverse
lattice polygon, see [7, Section 2.3].

This paper is a sequel to the authors” work in [13], in which the relationship between tropi-
cal curves, Fock spaces, and degeneration techniques was studied for target curves, combining
Okounkov and Pandharipande’s seminal work in [34], with the tropical perspective on the enu-
merative geometry of target curves [11, 12, 15, 14]. We refer the reader to [13] for a more detailed
discussion of the history of the target curve case.

The paper is organized as follows. In Section 2 we present some basic facts about the geometry
of Hirzebruch surfaces, and introduce logarithmic stationary descendant Gromov-Witten invari-
ants. Section 3 introduces the tropical theory of descendant stationary invariants of Hirzebruch
surfaces, and proves the correspondence theorem with the classical theory. In Section 4 we de-
fine our version of decorated floor diagrams, explain the connection with the previous notions in
the literature, and then provide two correspondence theorems. First we compare floor diagram
counts with the classical theory, as an application of the degeneration formula. Next we provide a
correspondence theorem with the tropical theory. Section 5 provides a brief and hopefully friendly
introduction to the Fock space, and then proves the correspondence theorem between floor dia-
gram counts and matrix elements for specific operators in the Fock space.
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2. LOGARITHMIC DESCENDANTS OF HIRZEBRUCH SURFACES

For k > 0, the Hirzebruch surface Fy is defined to be the ruled surface P(Op1 @& Opi(k)); it
is a smooth projective toric surface. The 1-skeleton of its fan Xy is given by the four vectors
ej, ez, —e7 + kez. The 2-dimensional cones are spanned by the consecutive rays in the natural
counterclockwise ordering. The zero section B, the infinity section E, and the fiber F have intersec-
tions

B2 =k, E?=—k, BFE=EF=1, and F> = BE =0.
The Picard group of Fy is isomorphic to Z x Z generated by the classes of B and F. In particular,
we have E = B —kF. A curve in Fy has bidegree (a, b) if its class is aB + bF. The polygon depicted
in Figure 2 defines [y as a projective toric variety, equivariantly polarized by an (a, b) curve.

(0,ak + b)

(a,b)

(0,0) (a,0)

FIGURE 2. The polygon defining the Hirzebruch surface Iy as a toric surface with
hyperplane section the class of a curve of bidegree (a,b). The vertical sides corre-
sponds to the sections B (left) and E (right).

We study the virtual enumerative invariants of curves in Hirzebruch surfaces that have pre-
scribed special contact orders with the zero and infinity sections, with generic intersection with
the fibers. This numerical data is encoded in terms of the Newton fan.

Definition 2.1. A Newton fan is a sequence § = {v1, ..., vy} of vectors v; € Z? satisfying

k
Zvi =0.
i=1

If vi = (vi1,Vvi2), then the positive integer wi = gecd(viy,viz) (resp. the vector W%vi) is called the
expansion factor (resp. the primitive direction) of vi. We use the notation

§={vi"", ..., v ¥}

to indicate that the vector vi appears m; times in 5.

For a Newton fan 9, one can construct a polarized toric surface, identified by the dual polygon
M5 in R2, in the following way: for each primitive integer direction («, ) in , we consider the
vector w(—f3, @), where w is the sum of the expansion factors of all vectors in & with primitive
integer direction («, 3). Up to translation, ITs is the unique (convex, positively oriented) polygon
whose oriented edges are exactly the vectors w(—f3, ).

Notation 2.2. (Discrete data) Fix a Hirzebruch surface Fy.. The following discrete conditions govern
the enumerative geometric problems we study throughout the paper:
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A positive integer n;

Non-negative integers g, a, kq,...,kn, 1,12 ;
Avector ¢ = (@1,...,0n,) € (Z\0O)™;

A vector u = (W1,...,Hn,) € (Z\0)™2.

We assume that ¢ and p are non-decreasing sequences.

We denote by (¢, ut) the positive entries of (¢, i), and by (¢, u~) the negative ones.
yle ,u p o, 1 yle ,u &

Further, the following two equations must be satisfied:

ng no
(1) > ei+ D> wtka=0;
i=1 i=1
n
(2) n2+2a+g—1:n+Zk)~.

j=1

The first enumerative geometric problem we introduce is stationary, descendant, logarithmic
Gromov-Witten invariants of Fy, which morally count curves in Fy with prescribed tangency con-
ditions along the boundary, and satisfying some further geometric constrains, called descendant
insertions (see Section 2.1), at a number of fixed points in the interior of the surface. In this context,
g is the arithmetic genus of the curves being counted, n is the number of ordinary marked points
on the curves, and the k; are the degrees of the descendant insertions at each point. The sequences
(¢, ) identify a curve class in H (Fy, Z), as well as the required tangency with the toric boundary,
as we now explain.

The tuple (¢, u) determines the curve class

3) p=aB+| ) @it ) w|F

PiEDT HiERT
The compatibility condition (1) ensures that 3 is an effective, integral curve class in H, (Fy, Z).
The Newton fan
(4) S, =10, =) (K, )% @1 - (1,0), ..., @n, - (1,0), 11 - (1,0),..., pn, - (1,0)1

encodes contact orders a curve may have with the toric boundary of Fy.. Such a curve is necessarily
of class 3.

We count curves with contact orders |@;| for ¢; < 0 (resp. @i > 0) with the zero (resp. infinity)
section at fixed points, and contact orders |u;| for p; < 0 (resp. py > 0) with the zero (resp. infinity)
section at arbitrary points.

2.1. Virtual enumerative invariants. Logarithmic stable maps and logarithmic Gromov-Witten
invariants were developed in the articles [1, 16, 25]. Consider the moduli space

mg,n+n1 +ny (Fk) 6(9»E) ))

parameterizing families of minimal logarithmic stable maps

%%Fk

|

S,
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where ¢ is a family of connected marked genus g nodal curves and f is a map of logarithmic
schemes, whose underlying map is stable in the usual sense. The minimality condition is a tech-
nical condition on the logarithmic structure on S. Since it only plays a background role here, we
refer the reader to the literature for a discussion of the concept.

Concerning the discrete data, contact orders with the toric boundary are specified by the New-
ton fan 8¢, ). We choose to mark the points of contact with the zero and infinity sections, and
to not mark the points of contact with the torus-invariant fibers, where the behavior requested is
generic.

This moduli space is a Deligne-Mumford stack of virtual dimension (g —1) +2a+n+mnj +ny,

and it carries a virtual fundamental class denoted by [1]V'". For each of the first n marked points,
which carry trivial contact orders, there are evaluation morphisms

evi : Mg nn,+n, (Fx, 8(¢p,u)) = Fi
The points marking the contact points with the zero and infinity sections give rise to evaluation
morphisms
C/\Vi . Mg,n+n1+n2 (Fk) 6(&,&)) — ]P)] .
Here, the target P! is the the zero section B for negative entries of ¢ or p, and the infinity section
E for positive entries.
For each of the first n marks (with trivial contact order) there is a cotangent line bundle, whose
first Chern class is denoted ;.
Definition 2.3. Fix a Hirzebruch surface Fy and discrete data as in Notation 2.2.
The stationary descendant log Gromov—-Witten invariant is defined as the following intersection
number on Mg nyn,+n, (Fx, 6@,&) ):

n+ng

® (@ (), (U@ g = | me evi(pt) [ evilipt)

i=n+1

Condition (2) comes from equating the expected dimension of the moduli space with the codimension of
the intersection cycle, and hence it is a necessary condition for Equation (5) to be non-zero.

We also define the disconnected descendant log Gromov—Witten invariant

(o7 1)ty (pt) - . T (PO)I(D T, 1))

to be the intersection number obtained via an analogous moduli space of log stable maps where the source
curves are not required to be connected.

Since they appear as local vertex multiplicities of tropical stable maps contributing to tropical
stationary descendant Gromov—-Witten invariants, we also define marked descendant Gromov-
Witten invariants for curves in other toric surfaces.

Definition 2.4. Let = 84, U 8y, be a two part partition of a Newton fan. Denoting Ss the polarized toric
surface identified by 8, for each entry in 8, fix a point in the corresponding torus invariant line of Ss. We
consider log-stable maps intersecting the toric boundary as prescribed by 5, and in addition meeting the fixed
point in the toric boundary for each entry of 8,. We define the intersection number on Mg 1 ¢(5)(Ss, 8):

6) <Tk](pt)...Tkn(pt»ad,usu,g:J Wl‘[w evipt) [ evilipt).

i=n+1
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In Equation (6), the quantity £(5) denotes the number of vectors in the Newton fan 5, and for each vector in
& we have an evaluation morphism to the corresponding torus invariant divisor.

3. TROPICAL DESCENDANTS OF HIRZEBRUCH SURFACES

3.1. Tropical preliminaries. An (abstract) tropical curve is a connected metric graph I' with un-
bounded rays or “ends” and a genus function g : I' — N which is nonzero only at finitely many
points. Locally around a point p, I' is homeomorphic to a star with r half-rays. The number 1 is
called the valence of the point p and denoted by val(p). We require that there are only finitely
many points with val(p) # 2. The points of nonzero genus, valence larger than 2 and a finite sub-
set of the bivalent points will be called vertices. By abuse of notation, the underlying graph with
this vertex set is also denoted by I'. Correspondingly, we can speak about edges and flags of I'. A
flag is a tuple (V, e) of a vertex V and an edge e with V € de. It can be thought of as an element in
the tangent space of ' at V, i.e. as a germ of an edge leaving V, or as a half-edge (the half of e that
is attached to V). Edges which are not ends have a finite length and are called bounded edges.

A marked tropical curve is a tropical curve such that some of its ends are labeled. An isomor-
phism of a tropical curve is a homeomorphism respecting the metric, the markings of ends, and
the genus function. The genus of a tropical curve is the first Betti number b' (T") plus the genera of
all vertices. A curve of genus 0 is called rational.

The combinatorial type of a tropical curve is obtained by dropping the information on the
metric.

Let L be a complete fan in R?.

Definition 3.1. A tropical stable map to X is a tuple (T, f) where I is a marked abstract tropical curve
and f: T — X is a piecewise integer-affine map of polyhedral complexes satisfying:

e On each edge e of T, f is of the form

t— a+t-vwithv e Z?,

where we parametrize e as an interval of size the length 1(e) of e. The vector v, called the direction,
arising in this equation is defined up to sign, depending on the starting vertex of the parametrization
of the edge. We will sometimes speak of the direction of a flag v(V,e). If e is an end we use the
notation v(e) for the direction of its unique flag.

o The balancing condition holds at every vertex, i.e.

Y v(Vie) =0.
ecoV
o The stability condition holds, i.e. for every 2-valent vertex v of T', the star of v is not contained in

the relative interior of any single cone of X.

For an edge with direction v = (v1,v) € 72, we call w = ged(vq,v;) the expansion factor and
% -v the primitive direction of e.

An isomorphism of tropical stable maps is an isomorphism of the underlying tropical curves
respecting the map. The degree of a tropical stable map is the Newton fan given as the multiset of
directions of its ends. The combinatorial type of a tropical stable map is the data obtained when
dropping the metric of the underlying graph. More explicitly, it consists of the data of a finite
graph I, and (1) for each vertex v of ', the cone o, of X to which this vertex maps, and (2) for each
edge e of I, the expansion factor and primitive direction of e.
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Convention 3.2. We consider tropical stable maps to Hirzebruch surfaces, i.e. the degree is a Newton fan
dual to the polygons of Figure 2. Furthermore, we require the vertical and diagonal ends to be non-marked
and of expansion factor 1. The horizontal ends can have any expansion factor, and are marked.

In what follows, we fix conditions for tropical stable maps — the degree, the genus, point con-
ditions, high valency (\p-power) conditions, and end conditions — and then count tropical stable
maps satisfying the conditions, with multiplicity. We consider degrees containing integer multi-
ples of (1,0). An end whose direction vector is a multiple of (1,0) is mapped to a line segment of
the form {(a,b) +t - (+1,0)}, where (a,b) € R?. The unique b appearing here is the y-coordinate
of the respective end. Our end conditions fix some of the y-coordinates of ends.

Definition 3.3. Fix discrete invariants as in Notation 2.2. Let

A=dpu u{o™}

B

identify a degree for tropical stable maps. Fix m points p1,...,pn € R? in general position, and two
sets Eo and B of pairwise different real numbers together with bijections B¢ — {@il@i < O} (resp.
Eeo = {@ilepi > 0.

The tropical descendant Gromov—Witten invariant

(O™, 1), (P1) - T, (P, 1)) g
is the weighted number of marked tropical stable maps (T, f) of degree A and genus g satisfying:

e Forj=1,...,n, the marked end j is contracted to the point p; € R?.
e The end j is adjacent to a vertex V in T of valence val(V) = k; + 3 — g(V).
e by and Eo, are the y-coordinates of ends marked by the set .

Each such tropical stable map is counted with multiplicity mult(T, ), to be defined in Definition 3.7.

3.2. Tropical moduli, evaluations, and rigid curves. Fixinga combinatorial type of tropical stable
maps, the set of tropical stable maps of this type can be parametrized by a polyhedral cone in a
real vector space see. In the present generality and notation, a proof is recorded in [37], though
the main ideas can be found in [21, 22, 32]. The expected dimension of the cone associated to the
type of a map (I, f) is

#{ends}+b' (M) —1— ) ki— ) (val(V) —3) = #{bounded edges} — 2b' (I"),
\

see for instance [37, Section 2.2]. When a combinatorial type has this expected dimension, it is
said to be non-superabundant. In the non-superabundant cases, a tropical curve meeting general
point constraints will always be rigid. In superabundant cases, there may be nontrivial families
even when the expected dimension is zero, so we require the above notion of rigidity to reduce to
a finite combinatorial count.

The following result follows from a simple adaptation of the proof of [31, Lemma 4.20].
Lemma 3.4. Let (T, f) be a rigid stable map satisfying the conditions of Definition 3.3. Then every con-

nected component of I' minus the marked ends is rational and contains exactly one end with a non-fixed
end.

Ranging over combinatorial types, these cones may be glued to form a (generalized) cone com-
plex Tgnini+n,(Zk, 8(¢,u)), constructed in [37, Section 2]. As in the algebraic case, there exist
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evaluation morphisms

evi ! Tg,n+n1+nz(zk> 5($’E)) — Ly,
and

6/\711 : Tg,n+n1+nz(zk> 6($»E)) — R,
to the surface and boundary strata respectively.

We will use the following definition to identify tropical curves that have been “fixed” by the
stationary constraints.

Definition 3.5. Choose general points p1,...,pn € R2, a degree, genus, incidence, and descendant con-
straints defining a tropical descendant Gromov—Witten invariant. Let (T, f) be a tropical stable map satis-
fying these chosen constraints. The map (T, f) is said to be rigid if (T, f) is not contained in any nontrivial
family of tropical curves having the same combinatorial type.

It should be noted that the notion of rigid that we use here is in line with the virtual decompo-
sition theorem [2], but is weaker than the notion of rigidity used in [28].

3.3. The multiplicity of a tropical curve. In this section, we record the multiplicity of rigid tropi-
cal curves that will be used to establish the correspondence theorem. The main content of the sec-
tion is to separately extract the various combinatorial and algebro-geometric multiplicities from
the logarithmic decomposition formula. In Section 4, we exploit the specific combinatorics of our
situation to give a vastly simplified method to compute these invariants using floor diagram cal-
culus.

Let (T, f) be a tropical stable map of combinatorial type ©. There is a cone 0g parametrizing
tropical stable maps of type ©, see for instance [37, Proposition 2.2.6]. We require a numerical in-
variant from this construction — the saturation index — defined as follows. To describe a particular
map [f] of type © we must assign to each vertex v; a point f(v;) in the associated cone o,,, dictated
by ©. Similarly, we must assign to each edge e;, a length {¢;. Since these assignments must define
a continuous balanced map to A, we need that for each edge e between vertices v and v’

f(v) — f(v') = Lewe,

where, as in previous notation, we is the vector slope given by ©. In other words,

0o = {((f(v)v, (Le)e) € H oy X HR>0 :Foralle =w/' f(v) —f(v/) = Bewe} .

vev eckE

Since we work with toric surfaces, all the cones o, appearing above are orthants. Thus, g is cut
out of an orthant R; o by a collection of linear equations, thus defining a cone.

Definition 3.6. In the notation of the paragraph above, the saturation index meg of the type © is the
index of the lattice og N Z;O inside the integral points of og. Given a tropical stable map of type ©, define
mr, ) to be me.

Definition 3.7. Let (T, f) be a tropical stable map meeting the constraints of a tropical descendant invariant
(7 1), (P1) -+« - Tiw (Pr)I( T, 1)) g P as in Definition 3.3.

If (T, ) is not rigid, set mult (T, f) = 0. Otherwise, orient the edges of " minus the marked ends in each
component towards the unique end with a non-fixed end.

From oriented edges to boundary incidence conditions. Locally around each vertex V of T, the direc-
tions of the adjacent flags define a Newton fan &v,. If for a vertex, all incoming ends have distinct directions,
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we let 84, be the subset given by all entries of &y corresponding to edges which are oriented towards V, and
d,, consist of the vectors in &y oriented away from V. If a vertex has multiple incoming ends with the same
direction, then choose one of these to be in &4, and the remaining in 5.

Define the local multiplicity at V to be
multy (T, f) = (i, (Pt))s,Us,,9v
if the marked end 1 is adjacent to V and
multy (I, f) = (}5,05,,9v

otherwise. Here gy denotes the genus of I at V. Since we require the marked ends to meet distinct points,
there cannot be more than one end adjacent to a vertex V.

Given a rigid tropical stable map (T, f) of type ©, let
eve : 0 — (RH)™ x (R)#,

be the product of all evaluation morphisms (both interior and boundary). The multiplicity of (T, f) is
defined to be
1

mult (T, f) := TAat ™0 [ [ multy (1, ) - det(eve)
\%

where the product runs over all vertices V of T.

A note on the orientation. Given a vertex v of a rigid tropical stable map (T, f), the multiplicity of
v is a combination of local multiplicities and logarithmic Gromov-Witten invariants. The discrete
invariants of this Gromov-Witten invariant are determined by the local picture (i.e. the star) of
vin I'. In order to make this determination, it is necessary to know whether any given outgoing
direction at v meets the boundary of the corresponding toric surface at a fixed point or a moving
point. The need for this can be understood as follows. If v and v’ are adjacent via an edge e, let
t and t’ be the flags along e based at t and t’ respectively. In order to glue a map dual to v and
a map dual to v/, one of the nodes dual to the flags t and t’ must be constrained (i.e. incident
to a fixed marked point) while the other is is unconstrained. Further, the dimension count for
the virtual dimension of the moduli spaces of logarithmic stable maps shows that for a vertex
containing a marked point, all boundary conditions must be unconstrained, while for a vertex
that does not host a marking exactly one boundary condition must be moving, as we show in
Remark 3.8. The orientation above determines the unique way to make a consistent choice of
boundary conditions, whereby incoming flags correspond to fixed conditions while outgoing flags
correspond to moving conditions.

Remark 3.8. The only possibly non-vanishing local vertex multiplicities happen when the virtual
dimension of the moduli space of logarithmic stable maps equals 0 in the case of an unmarked
vertex, and ki + 2 for a vertex adjacent to the i-th mark. Let v denote a vertex whose star gives
the Newton fan 6. Let 64 U 6,, = 0 be an arbitrary two-part partition of 3, and let M,, the moduli
space of logarithmic stable maps identified by this data. The virtual dimension is:

(7) virdim(M,,) = g — 1 + val(v) — ()

If v is an unmarked vertex, using val(v) = €(¢$) + £(p), it follows that for the virtual dimension
of M, to equal 0,

U =1-g.
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FIGURE 3. A  tropical stable map to [F; contributing  to
(((=2), (=2, =1))lto(p1) - .- To(ps)I((1), (1)) as in Example 3.11.

We showed in Lemma 3.4 that unmarked vertices are rational, and therefore ¢(p) = 1.

If v is adjacent to the i-th marked leg, recall that val(v) = ki + 3 — g. Therefore, for the virtual
dimension of M,, to be ki + 2 it must be that £(¢) = 0.

Remark 3.9. It may happen that the multiplicity of a rigid tropical stable map (T, f) is zero. This
is the case if a vertex multiplicity multy (T, f) is zero, because the corresponding Gromov-Witten
invariant is. An example of such a behaviour can be found in Example 4.16.

Remark 3.10. Definition 3.3 does not depend on the position of the pi, nor on the sets Eg and E.
This follows from the Correspondence Theorem 3.14 below, using the analogous invariance in the
algebro-geometric setting. We therefore also use the notation

(o7, 1w )l (pt) ... T, (PO (DT, 7)) §P

to emphasize that we deal with fixed but arbitrary point conditions.

Example 3.11. We show two examples. The point conditions p; € R? are chosen to be in horizon-
tally stretched position, see [18, Definition 3.1].

(1) Letk =1, (¢) = (-2,1), (W) = (=2,—1,1). Then S @i + Y pi +3-1=0,50 a = 3.
Lletg =0,n=8 and k; = ... = kg =0. Sincen, =3and3+2-3—1 = 8§, this
choice satisfies the condition of Definition 3.3. Figure 3 shows the image of a tropical stable
map contributing to (((—2), (—2,—1))Ito(p1) ... To(ps)l((1), (1))>g°p with multiplicity 72
(see Remark 3.15 (1)). The Figure reflects the image of the map, decorated by some data of
the parametrization — for that reason, the picture indicates a crossing instead of a 4-valent
vertex. We draw the fixed y-coordinates as points at the end of an end. Expansion factors
bigger one are written next to the edges, so that the direction is visible from the picture.

(2) As before, letk =1, () = (—2,1), (0) = (=2,—1,1), a =3 and g = 0. Letn = 4 and
k1 =0,k =1,k3 =3and kg = 0. Then3+2-3—1=14+1+ 3, so the condition of Def-
inition 3.3 is satisfied for this choice. Figure 4 shows a tropical stable map contributing to
(((=2), (=2, =10 (p1) 71 (P2)T3(P3)T0(Pa)l((1), (1)))g™F with multiplicity 4 (see Remark
3.15 (2)).

Remark 3.12. The image f(I') C R? of a tropical stable map is a tropical plane curve as considered
e.g.in [31, 38]. We assume that the reader is familiar with basic concepts concerning tropical plane
curves, in particular their duality to subdivisions of the Newton polygon. In our situation, the
image of any tropical stable map contributing to the count above is dual to a subdivision of the
polygon dual to the Newton fan 64, ), which defines the Hirzebruch surface [y as a projective
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.
~_

FIGURE 4. A tropical stable map to F; contributing to the invariant
(((=2), (=2, =)o (p1)T1(P2)T3(P3)TO(PA)I((1), (1)) mp as in Example 3.11.

b B

FIGURE 5. The dual subdivisions of the images of the stable maps of Example 3.11.

toric surface with hyperplane section the class of a curve of bidegree (a, 3 ;|,.~0 @i+ 2 i =0 Hi)-
Figure 5 shows the dual Newton subdivisions of the images of the stable maps of Example 3.11.

Remark 3.13. Assume a tropical stable map (I, f) meets the contraints of a tropical descendant
invariant (¢, u )|ty (p1) ... Tk, (pn)l(d)+, u )>tr°p as in Definition 3.3. The multiplicity with
which it contributes contains the factors mr ¢)-det(evg) according to Definition 3.7. Assume away
from marked points I'" has only trivalent vertices. Then the factor above equals the product of all
(normalized) areas of triangles dual to the trivalent non-marked vertices in the dual subdivision,
divided by the weights of fixed ends [22, 30, 29].

Theorem 3.14 (Correspondence theorem). Fix a Hirzebruch surface IFy and discrete data as in Notation
2.2. The tropical stationary descendant log Gromov—Witten invariant coincides with its algebro-geometric
counterparts , i.e. we have

(07, 1)ty (pt) . T, (PO, 1F)) g = (7, ), (pt) - e, (POI( T, 1)) 5P

Proof. As mentioned in the introduction, this result can in principle be deduced from the results of
the following sections of the paper — since the Gromov-Witten invariants are unchanged by vari-
ation of the point constraints, we may choose the constraints in such a way that the contributing
tropical curves become floor decomposed. By a combinatorial argument to follow this is equal to
the corresponding floor diagram count, via a degeneration to be implemented in the next section.

We sketch a direct proof, without specializing conditions, implementing the recent decomposi-
tion formula for virtual classes in Gromov-Witten theory, due to Abramovich, Chen, Gross, and
Siebert [2]. We explain the geometric setup, and how to deduce the multiplicity above from the
formulation in loc. cit. We assume that there are no fixed boundary conditions to lower the burden
of the notation; the general case is no more complicated.

Consider the moduli space Mg,nm +n;, (Fiy 8(¢, 1)), and on it, the descendant cycle class given

by 1|)]f‘ -+ -p¥kn. We compute the invariant by degenerating the point conditions, and cutting down
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the class

Pk IV
by evaluation morphisms. Working over Spec(C((t))), choose points p1,...,pn € T C F, whose
tropicalizations pJ]cmp, ..., Pa are in general position in R2. Since the tropical moduli space with

the prescribed discrete data has only finitely many cones, it follows that there are finitely many
rigid tropical stable maps meeting the stationary constraints. Suppose (T, f) is a tropical stable
map with an end p; incident to a vertex V. Since a point p; must support the descendant class 1])]?,
a dimension argument forces that the valency of V is k; + 3 — g(V). In other words, the tropical
curves contributing to the count are precisely the ones outlined in Definition 3.3.

Enumerate the finitely many tropical stable maps (I'1, f1),..., (I, fr) contributing to the invari-
ant

(7 1)ty (PP - - T, (PP (T, wH)) P

Choose a polyhedral decomposition & of R? such that every tropical stable map " factors
through the one-skeleton of & and that the fan of unbounded directions of & (i.e. the recession
fan) is the fan Zy.. Note that & can always be chosen to be a common refinement of the images of

f{"°P. The contact order conditions on the tropical maps ensure that the recession fan is Zy.

The polyhedral decomposition & determines a toric degeneration 2" of Fy, over Spec(C[t]),
see [26]. By the deformation invariance property of logarithmic Gromov-Witten invariants, we
may compute (¢, w7 )|y, (pt) ... Tk, (P)|( Q+, E+ )) g on the central fiber of this degeneration, as

eV (p) NPy - N [V,

where
ev: Mg,nJrTl]Jrle(‘%')é(Q,E)) N </(Ollf'ﬂ.)

is the product of all evaluation morphisms, and p is the specialization of the point (p1,...,pn)
chosen above.

By applying the decomposition formula for logarithmic Gromov-Witten invariants for point
conditions [2, Theorem 6.3.9], this invariant can be written as a sum of the invariants associated to
each tropical curve. In order to calculate these, we now use the special choice of degeneration 2.
Fix a rigid tropical stable map (T, f) and let v be a vertex of I'. Consider the tropical map

Star(v,I") — Star(f(v), £2).

This determines the discrete data of a logarithmic stable map space to the toric variety X, dual to
Star(f(v), #2). Denote this moduli space by .Z'(v). Given logarithmic stable maps C, — X, for
each vertex v, the underlying maps can be glued. We claim that every such glued map can be
enhanced to a logarithmic map. To see this, observe that after possibly performing a logarithmic
modification of Z°, we can arrange that in any such glued map

@ Uy, Gy — Uy Xy,

each irreducible component is torically transverse to the strata of .2 and the nodes of C are pre-
deformable. That is, for any point p € C that is a node mapping to a double curve D of the special
fiber 2y, the intersection multiplicity of the two branches of C with D are equal. That such maps
lift to logarithmic morphisms is now immediate from [33, Proposition 7.1] or [2, Theorem 5.4.1].
Note that by virtual birational invariance [3], the logarithmic modifications made in the process of
ensuring toric transversality have no effect on the argument. By our choice of degeneration, given
any such map C, — X,, C, is torically transverse to the codimension 2 strata of the degeneration.
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Gluing the curves C, — X, ranging over all v, the transversality implies that there exist logarith-
mic lifts of all such stable maps. To count the number of such logarithmic lifts we may apply [2,
Theorem 5.5.1]. The fact that this number is equal to the product

mr ) - det(eve)

is a well-known but tedious calculation in tropical geometry. A careful proof is recorded in [33,
Proposition 8.8] and [19, Section 5]. Since we will provide a more practical formula in a later
section, we leave these details to the reader. Taking into account the automorphism factors and
summing over all tropical curves, the result follows. 0

Remark 3.15. The multiplicity in Definition 3.3 and the correspondence principle in Theorem 3.14
collapses substantially in special cases to the following two tropical curve counts studied in [30,
31].

(1) If all \p-powers are O, i.e. k1 = ... = kn = O: the valency condition implies that the ver-
tex adjacent to end 1 is trivalent and of genus 0. Since the end i is contracted, the image
of a neighbourhood of this vertex just looks like an edge passing through p;. We thus
count plane tropical curves passing through the points (and possibly with some fixed y-
coordinates for the ends). An example can be found in Example 3.11, see Figure 3. They
are counted with multiplicity equal to the product of the normalized areas of the triangles
in the dual subdivision (notice that all vertices are trivalent and of genus 0 for dimension
reasons). In case of fixed y-coordinates, the product above has to be multiplied in addi-
tion with [, 77, where the product goes over all fixed ends e and w(e) denotes their

expansion factor [20] This equals the multiplicity defined in Definition 3.7 because of Re-
mark 3.13. That all local Gromov—Witten invariants are 1 follows from the correspondence
theorem proved in [33, 36].

(2) If the genus g = 0: just as in [30], we count stable maps satisfying point (and end) condi-
tions, and higher valency conditions according to the \-powers. In [30], they are counted
with multiplicity equal to the product of the normalized areas of the triangles (dual to non-

marked vertices) in the dual subdivision as above, with a factor of [ [ ;7 for fixed ends,
see [6]. The correspondence theorem for such invariants is proved in the papers [23, 36]
and [28].

4. FLOOR DIAGRAMS

Floor diagrams provide a combinatorial connection between the classical and tropical compu-
tations of descendant Gromov-Witten invariants of Hirzebruch surfaces. On the tropical side, the
images of tropical stable maps become floor decomposed by choosing horizontally stretched point
conditions. On the classical side, floor diagrams naturally organize the computation of a Gromov-
Witten invariant via degeneration formula. We make here a definition of floor diagrams which is
especially adapted to our context and needs, and follow it by a brief discussion of its connection to
previous work on the subject (Section 4.1). We prove correspondences of floor diagram weighted
counts with classical descendant Gromov-Witten invariants in Section 4.2, and with tropical maps
counts in Section 4.3.

Definition 4.1. Let D be a loop-free connected graph on a linearly ordered vertex set. D has two types of
edges: compact edges, composed of two flags (or half-edges), adjacent to different vertices, and unbounded
edges, also called ends, with only one flag. D is called a floor diagram for F\ of degree (¢, 1) if:
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2
&. 2
2
2
ki 0 1 3 0
Si 0 1 2 0

FIGURE 6. An example of a floor diagram. The genus at all vertices is 0.

(1) Three non-negative integers are assigned to each vertex V: gy (called the genus of V), sv (called
the size of V) and kv (called the Pp-power of V).

(2) Each flag may be decorated with a thickening. We require that for each compact edge precisely one
of its two half-edges is thickened.

(3) At each vertex V, ky + 2 — 2sy — gv adjacent half-edges are thickened.

(4) Each edge e comes with an expansion factor w(e) € N~ o.

(5) At each vertex V, the signed sum of expansion factors of the adjacent edges (where we use negative
signs for edges pointing to the left and positive signs for edges pointing to the right) equals —k - sv,.

(6) The sequence of expansion factors of non-thick ends (where we use negative signs for the ends
pointing to the left and positive signs for the ends pointing to the right) is (), and the sequence of

expansion factors of thickened ends (with the analogous sign convention) is ().
(7) The ends of the graph are marked by the parts of ($, ).

The genus of a floor diagram is defined to be the first Betti number of the graph plus the sum of the genera
at all vertices.

Example 4.2. Figure 6 shows a floor diagram for F of degree ((—2,1),(—2,—1,1)) and genus 0.

Definition 4.3. Given a floor diagram for Fy, let V be a vertex of genus gy, size s and with p-power k.
Let (&, 1, ) denote the expansion factors of the flags adjacent to V; the first sequence encodes the normal
half edges, the second the thickened ones. We define the multiplicity mult(V) of V to be the one-point
stationary descendant invariant

mult(V) = ((dy,, 1y )Tk, (POI(DY, 1)) gy -

Definition 4.4. Fix discrete data as in Notation 2.2. We define:

(@7 1 )iy (PE) - T, (PO, 1t )) 6O

to be the weighted count of floor diagrams D for Fy of degree (¢, u) and genus g, with n vertices with
P-powers K1, ..., kn, such that a equals the sum of all sizes of vertices, a =) \,_; Sv.

Each floor diagram is counted with multiplicity
mult(D) = [ wi(e) ] [mult(V),
ecC.E. \%

where the second product is over the set C.E. of compact edges and w(e) denotes their expansion factors;
the third product ranges over all vertices V and mult(V) denotes their multiplicities as in Definition 4.3.
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FIGURE 7. The subdivision of a floor decomposed tropical curve refines the sliced
Newton polygon. Each strip corresponds to a floor, and the integral width of the
strip is called the size of the floor.

FIGURE 8. The floors in the tropical stable map of Example 3.11(1), and the corre-
sponding floor diagram.

4.1. Motivation and relation to other work. Floor diagrams were introduced for counts of curves
in P? by Brugallé-Mikhalkin [9], and further investigated by Fomin-Mikhalkin [18], leading to new
results about node polynomials. The results were generalized to other toric surfaces, including
Hirzebruch surfaces, in [4].

The main observation is that by picking horizontally stretched point conditions, the images of tropi-
cal stable maps contributing to a Gromov-Witten invariant become floor decomposed: this means
that the dual subdivision of the Newton polygon is sliced (i.e. a refinement of a subdivision of the
trapezoid by parallel vertical lines — see Figure 7). Floor diagrams are then obtained by shrinking
each floor (i.e. a part of the plane tropical curve which is dual to a (Minkowski summand of a) slice
in the Newton polygon) to a white vertex. Each floor contains precisely one marked point. Fur-
ther marked points lie on horizontal edges which connect floors, the so-called elevators', and are
represented with black vertices. Fixed horizontal ends are given a (double circled) vertex, while
other horizontal ends are shrunk so that the diagram has no unbounded edges.

Example 4.5. In Figure 8 we revisit the tropical stable map observed in the first part of Example
3.11. The floors are circled by dashed lines. On the right-hand side we have the corresponding
floor diagram. Following the convention in [6], fixed ends terminate with a double circle, and
other ends are contracted to the corresponding black vertex.

For rational stationary descendant Gromov—-Witten invariants, the floor diagram technique was
studied by Block, Gathmann and the third author [6] (the diagrams are called \-floor diagrams).
There are two main difference with respect to the primary case:

e descendant insertions force us to consider floor decomposed curves with floors of size
larger than one. The size of a floor thus becomes part of the data of a floor diagram: each

IThe bizarre nomenclature makes intuitive sense if everything is rotated by 20°.
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! ki 1 3

FIGURE 9. The floors in the tropical stable map of Example 3.11(2), and the cor-
responding floor diagram. The numbers below the white vertices indicate the 1-
power k; of the marked point in the floor, and the size s; of the floor.

floor vertex comes with two numbers, the \-power k; of the corresponding marked point,
and the size of the floor;

¢ marked points may now be supported at a vertex of the tropical stable map, and horizontal
edges incident to such vertex are fixed by the point condition. This condition is encoded
by thickening the corresponding half-edges in the floor diagram.

Example 4.6. Figure 9 illustrates the second part of Example 3.11. Some half-edges are thickened,
indicating that the corresponding edge in the tropical curve leading to this diagram is adjacent to
the marked point in the floor.

The language in [6] was modeled after the work by Fomin-Mikhalkin [18], which was moti-
vated by a computational approach aiming at new results about node polynomials. Our current
motivation to study floor diagrams comes from their connections to degeneration techniques and
Fock space formalisms to enumerative geometry. Hence our definitions introduce the following
modifications with respect to [18, 6]:

(1) The distinction between floors and marked points on elevators is not needed anymore (to
the contrary, it only complicates the combinatorics and clouds the connection to the Fock
space). We do away with bi-colored vertices by considering marked points on elevators as
floors of size zero. The adjacent half-edges have to be thickened, since they are adjacent to
the marked point.

(2) We thicken ends that correspond to a tangency at a non-fixed point, have unthickened ends
for tangency to a fixed point (rather than marking the end with a double circle) and remove
the vertices at the end of these edges.

(3) We draw all elevator edges adjacent to marked points, as that allows us to record the com-
plete tangency data for the invariant we are trying to compute (in the convention of [18, 6],
obvious continuations of edges in the tropical curve are dropped in the floor diagram).

As an example, the floor diagram of Figure 9 becomes with our conventions the diagram in Figure
6.

4.2. Floor Diagrams and Degeneration. While the classical/tropical correspondence theorem re-
lies on maximal degenerations and the logarithmic degeneration formula, the correspondence to
floor diagrams follows from the simpler “accordion” degeneration, as originally observed and dis-
cussed in [8, 5]. We note here a choice is present in which enumerative problem to study. One may
study the geometry Fy relative to the toric boundary, fixing transverse contact orders along 0 and



COUNTING CURVES ON SURFACES: TROPICAL GEOMETRY & THE FOCK SPACE 19

oo fibers, and use the decomposition formula in [2]. Alternatively, one may study the geometry
of Fy relative only to the 0 and oo sections, rather than the full toric boundary. In the latter case,
since the relative conditions are at smooth divisors, the simpler degeneration formula due to Jun
Li [27] is sufficient. We record a proof in the latter case, noting that the proof in the former case
follows mutatis mutandis. We recall Li’s theorem, stated in the specific geometric context that is
of interest to us.

Theorem 4.7. Let 2% be a flat family of surfaces such that the general fiber is a smooth Hirzebruch surface
Fy and the central fiber is the union of two surfaces S1 Up Sy both isomorphic to Fy, meeting transversely
along the divisor D = Es, = Bs,. Fix a two part partition of the set [n + ml]: without loss of generality we
may choose {1,...nyU{n+1,...,n+ m}. Set discrete invariants g,n,K1,...,Kkn, (¢, i) as in Notation
2.2.

Then:

<($7)E7)|Tk1 (pt), .. .,Tkn+m(Pt)‘(9+»E+)>; = Z |Aut(A)||AU.t(L])|

(7w ), (pt), -y i, (PO MDY, (=11 ATy (P ey T (PO, F))E,s

where A = A1y ...,Ary,1 =M1, ...,Ns are an r-tuple and and an s-tuple of positive integers and the sum is
over all discrete data (g1, g2, (m,A)) such that:

(8)

(1 (", A)y (17ym)) (resp. ((—, Q*), (—A, u))) determines an effective curve class a1Bs, +b1Fs,
(resp. a;Bs, + byFs,) in Ha(Fy, Z) with aj,a; >0, a1 + a2 =a, by =ak+b, by =b;
2)g=g1+g2+r+s—1

Remark 4.8. The following details are important in parsing Equation (8):

(1) The formula is organized as a sum over the gluing data (A,n). Each term in the summand is

. 1 . . .
however weighted by a factor of rz AT, Which corrects the overcounting coming

from different labelings of points that give rise to the same gluing. More geometrically, one
may think that in Equation (8) the sum is over the distinct topological types of maps (where
the points that get glued are unlabeled), and the multiplicity of each summand omits the
above factor.

(2) The switching of the roles of A and n on the two sides of the product comes from the
Kunneth decomposition of the class of the diagonal in P! = D.

To realize the hypotheses of the theorem, one may start from a trivial family Fy, x A' — A' to-
gether with n +m non intersecting sections s,,, the first n staying away from E, the last m meeting
but not tangent to E at t = 0; one obtains 2} by blowing up E x {0} and considering the proper
transforms of the sections. This construction may be iterated a finite number of times, and Theo-
rem 4.7 applies with the appropriate bookkeeping. This is what gives rise to the correspondence
with the floor diagram count, as we make explicit in the next theorem.

Theorem 4.9. Fix a Hirzebruch surface Fy and discrete data as in Notation 2.2. The descendant log
Gromov-Witten invariant coincides with the weighted count of floor diagrams from Definition 4.4

@) (7,1 )T, (P - oy Tiey (PO T, )™ = (&7, 1 )T, (PU), -y T, (POI(D T, 1 h)) -

Proof. As with many proofs based on iterated applications of the degeneration formula, a com-
pletely explicit and accurate bookkeeping would be extremely cumbersome and cloud the actual
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simplicity of the argument. We choose therefore to carefully outline the construction, and omit the
bookkeeping.

Iterate the construction from the previous paragraph n — 1 times, each time separating exactly
one section from all others. In the end one obtains a family 2} such that the general fiber is a
smooth Hirzebruch surface Fy and the central fiber is the union of n surfaces Xo = S7 Up, S2 Up,
...Up,_, Sn, where all surfaces S; are isomorphic to Fy, and S; and S;, 1 meet transversely along
the divisor D; = Es, = Bs,,,. For V = 1,...,n the section sy is obtained as the proper transform
of the original section.

Applying the appropriately iterated version of Theorem 4.7, the stationary descendant invariant
is expressed as a sum over the topological types of maps from nodal curves to the central fiber,
weighted by the appropriate (disconnected) relative Gromov-Witten invariants. Since each S;
contains exactly one marked point, the disconnected maps to S; have one connected component
hosting the marked point; by dimension reasons, the other components consist of rational curves
mapping with degree dF (multiple of the class of a fiber), and in fact mapping as a d-fold cover of
a fiber, fully ramified at the points of contact with D;_1 and D;. Further, the relative conditions
at the boundary must have one fixed point on one side, and a moving point on the other. The
contribution of any such component to the disconnected invariant is 1/d.

For every summand in the degeneration formula, consider the dual graph of the source curve,
label each edge with the ramification order of the corresponding point, and thicken half edges
corresponding to moving boundary point conditions. For every two-valent vertex adjacent to two
flags of opposite thickening, contract the vertex and the two neighboring flags. We claim (and
leave the verification to the patient reader) that the object thus obtained is a floor diagram for
the stationary descendant invariant we are trying to compute, and further that this construction
establishes a bijection between the summands in the degeneration formula and the floor diagrams
described in Definition 4.4.

The proof is concluded by showing that each floor diagram is counted with the same multi-
plicity. The degeneration formula assigns the same vertex and compact edge multiplicities to the
dual graphs of maps as the floor diagram enumerative count. The proof is then concluded by
noticing that the operation of removing a two-valent vertex (which contributes with multiplicity
1/d) and its two adjacent flags does not alter the multiplicity of the graph: for each such vertex
removed we lose a compact edge of weight d, which contributes a factor of d to the multiplicity of
the graph. O

Since the proof of the correspondence is based on a bijection between dual graphs of maps and
floor diagrams that preserves connectedness, one immediately obtains the following corollary.

Corollary 4.10. The version of Theorem 4.9 for connected invariants also holds:
(10) <($7)E7)|Tk1 (Pt)) ceey Ty (pt)|($+)ﬂ+)>1;100r = <(97)E7)|Tk1 (Pt)» ceoy Tk (pt)|(9+aﬂ+)>g-

4.3. Floor diagrams and tropical curves. In this section, we present a direct weighted bijection
between the counts of tropical stable maps and floor diagrams (relying on Theorem 3.14). Even
though such equality is a corollary of Theorems 3.14 and 4.9, the direct proof provides valuable
intuition on the connection between tropical stable maps and floor diagrams.

Theorem 4.11. Fixing all discrete invariants as in Notation 2.2, the weighted count of floor diagrams
equals the tropical descendant log Gromov—Witten invariant, i.e. we have

A1) (&7 ) (PY) T, (PO, 1) §% = (&7, 1) T (P T, (P, ) P
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Proof. The proof of this theorem is in two parts. Construction 4.12 associates a floor diagram to a
floor decomposed tropical stable map contributing to (¢, u™ )|k, (pt) ... T, (pt)l(Q*, B*)>g°p.
By Proposition 4.20, the weighted number of tropical stable maps yielding the same floor diagram

D under this procedure equals the multiplicity mult(D) from Definition 4.4. O

Let (T, f) be a rigid floor decomposed tropical stable map contributing to
(@7, 1 )i (pt) - i, (PO, ) P

Because of the horizontally stretched point conditions, each marked point is either on a hori-
zontal edge (resp. elevator edge) of f(I") (i.e. an edge of primitive direction (1,0)) or on a part dual
to a slice in the Newton subdivision. On each part dual to a slice, there is exactly one marked
point. Consider the preimage in I under f of a part dual to a slice, this is a subgraph that we call
I'". Assume the slice in the Newton polygon has width s > 0 (i.e. in plane coordinates, it is a slice
between the lines {x = i} and {x = i + s} for some i). Since the image of I'’ is fixed by exactly
one point (and conditions on the coordinates of its horizontal edges), '’ consists of only rational
connected components. Furthermore, all but one of these components is just one edge which is
mapped horizontally. This connected component (which contains s ends of direction (0, —1) and
s ends of direction (k, 1)) is called a floor of size s. We refer to other connected components as
horizontal edges passing through the floor. For an example, see Figures 8 and 9.

Construction 4.12. Let (T, f) be a (non-superabundant) floor decomposed tropical stable map contributing
to (&, 1)ty (PH) - T, (PO T, 1 H)) g™

We associate a floor diagram D contributing to (¢, u= )Tk, (pt) ... T, (pt)l@*,hﬁ))g"m to (T, f)
by contracting each floor to a vertex; also marked points adjacent to only horizontal edges are considered
vertices. The vertices are equipped with:

o the \p-power ki of the adjacent marked point 1,

o the size s; (i.e. the width) of the dual slice of the Newton polygon for vertices corresponding to a
floor; si = 0 for marked points on elevators,

o the genus gi of the vertex adjacent to the marked end i in the tropical curve.

We thicken flags if they come from half-edges of f(I") which are adjacent to a marked point.

Proof. We show that Construction 4.12 yields a floor diagram of the right degree and genus. Be-
cause of the horizontally stretched point conditions, we obtain a graph D on a linearly ordered
vertex set.

The balancing condition satisfied by (T, f) implies that the signed sum of expansion factors of
edges adjacent to vertex i of the floor diagram equals —k - s;.

By Lemma 3.4, removing from the subgraph underlying a floor of size s; the marked end i
together with its end vertex yields connected components each containing at most one of the 2s;
ends of direction (0,—1) resp. (k, 1). It follows that the valence of the vertex adjacent to the i-th
mark is 2s; plus one (for the marked end itself) plus the number of adjacent horizontal edges. The
latter correspond to the thick flags in the floor diagram D. Thus at vertexiof D, (ki—gi+3)—1—2s;
edges are thickened, as required. Furthermore, each horizontal edge of I' must be fixed, either by
a condition on the y-coordinates of ends, or by a marked point. It cannot be fixed more than
once because of the genericity of the conditions. It follows that every edge of the associated floor
diagram D has precisely one thickened flag, as required. Since all floors of (T, f) are rational, the
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genus of D is g. Obviously, the degree of D is (¢, u). Thus D is a floor diagram contributing to
(07, 1), (pt) ... T, (P (DT, ut)) 5o
O

Remark 4.13. If we consider the case ki = 0 for all i, then the tropical descendant invariant con-
sidered above is nothing but a count of tropical plane curves satisfying point conditions. For such
a count, it is well-known, see for instance [31], that all tropical stable maps (T, f) that contribute
with nonzero multiplicity have g cycles which are visible in the image f(I") and have only trivalent
vertices. It then follows that their spaces of deformation have the expected dimension, because
the g visible cycles impose 2g linearly independent conditions in the orthant parametrizing all
lengths on bounded edges. Hence superabundancy is no issue for tropical plane curve counts.

When descendant insertions are allowed, this is no longer true: even if all cycles are visible
in the image, they do not need to impose linearly independent conditions.The existence of su-
perabundant tropical stable maps satisfying the conditions implies the existence of rigid tropical
stable maps with “additional overvalency”, e.g. a 4-valent vertex which is not adjacent to a marked
point (see Example 3.10 in [21]).

In the following, we exclude such behavior for the case of floor-decomposed tropical stable
maps. This is needed when considering the equality of the count of floor diagrams to the corre-
sponding tropical descendant Gromov-Witten invariant.

Lemma 4.14. Let (T, f) be a rigid floor decomposed tropical stable map, satisfying horizontally stretched
conditions. Assume g’ independent cycles are visible in the image f(I') C R?, then these cycles impose 2g’
linearly independent conditions, i.e. the space of deformations of (T, f) is of codimension 2g’ in the orthant
parametrizing all lengths on bounded edges of T.

Proof. Since (T, f) is rigid, there cannot be cycles contained in a floor (each floor is fixed by only one
point condition). The g’ cycles thus have to be between two floors each, and thus each involve at
least two elevator edges. We can put an arbitrary order on the pairs of floors, and then on the cycles
involving the same two floors as imposed by the maximal y-coordinates of the elevator edges.
In this way, we can produce an upper triangular matrix cutting out the space of deformations
of (T, f) from the orthant parametrizing all lengths of bounded edges, which consequently is of
codimension 2g’ as expected. O]

Lemma 4.15. If a floor decomposed (T, f) contributes with non-zero multiplicity to a descendant Gromov—
Witten invariant, then all cycles of T are visible in f(T') (i.e. no cycles are mapped to a line segment or
contracted to a point).

Proof. Since we assume that (T, f) contributes with non-zero multiplicity, it has to be rigid. If a
cycle of I was contracted to a point, then (I, f) would not be rigid because the lengths of edges of
the contracted cycle can be varied without changing the image f(I"). We could vary (T}, f) in an at
least one-dimensional family still meeting the point and y-coordinate conditions.

If a cycle of " is mapped to a line segment S, it has to be an elevator (floors are rational for
rigid stable maps, they are fixed by just one point). Let V be a vertex of the cycle mapping to an
endpoint of S. We may assume that no marking is incident to the vertex V: by the genericity of the
incidence conditions at most one cycle vertex may be marked, and since we ruled out completely
contracted cycles, the segment S has two distinct endpoints.

Now we argue that I" does not contribute to the descendant Gromov-Witten invariant. If V is
trivalent, it follows by the balancing condition that all three edges are mapped to the same line.
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FIGURE 10. Tropical maps with a trivalent vertex at the end of a hidden cycle are
not rigid.

\\ %

FIGURE 11. A rigid superabundant tropical stable map of multiplicity zero.

The lengths of the three edges may be varied in such a way that the image f(V) moves along the
line, but f(I') remains unchanged (see Figure 10). The resulting tropical stable maps would still
satisfy all the conditions. Thus (T} f) is not rigid.

If val(V) > 4, the local multiplicity at V is 0 by the dimension count in Remark 3.8, since there
are at least two legs giving unconstrained boundary conditions. Hence for (T, f) to contribute with
a non-zero multiplicity, it cannot have a cycle which is mapped to a line segment: all cycles of I’
are visible in f(T").

0

Example 4.16. Figure 11 shows an example of a rigid superabundant tropical stable map which
has multiplicity zero. This is the case because the multiplicity of the vertex V is zero for dimension
reasons. The Figure is supposed to reflect both the image of the stable map and the parametrizing
abstract graph — we draw two edges close together if their images in R? coincide.

Combining Lemmas 4.14 and 4.15, we deduce the following non-trivial fact:

Corollary 4.17. For horizontally stretched point conditions leading to floor-decomposed tropical stable
maps, any (I, f) that contributes with non-zero multiplicity to a tropical descendant Gromov-Witten in-
variant is not superabundant.

Proof. From Lemma 4.15 we can conclude that all cycles of I are visible in the image f(I"). From
Lemma 4.14 we can conclude that they form independent conditions. It follows that the space of
deformations of (T, f) is of the expected dimension, and hence (T, f) is not superabundant. O

Remark 4.18. For tropical stable maps to R™ with n > 3, there is no analogous statement known,
i.e. it is not known whether there is a configuration of points such that all tropical stable maps
(of non-zero multiplicity) satisfying the conditions are not superabundant, or even if there is a
configuration of points forcing all cycles to be visible, which is a much weaker condition. In fact,
analogous geometries for the Gromov-Witten theory of P3 suggest that no such configurations
exist.
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Lemma 4.19. Let (T, f) be a floor-decomposed tropical stable map contributing to a tropical descendant
Gromov-Witten invariant with non-zero multiplicity. Then every vertex of I' which is not adjacent to a
marked end is trivalent.

Proof. Let (T, f) be a floor-decomposed tropical stable map with non-zero multiplicity. Assume the
marked points with \-conditions k1,...,ky are at vertices of genus g1,..., gn, and accordingly,
of valence k; + 3 — gi.

By Corollary 4.17, (T, f) is not superabundant. The number of edges in the graph T is
n+ny+ny+2a—3+3(g—g1—...—gn) —Z(Val(V) —3),
%
which follows from an Euler characteristic computation. The space of deformations of (T, f) has
dimension:
2 + #{edges} — 2 - #{visible cycles}

=n+n;+n2+2a—1+(g—9g; —...—gn)—Z(val(V)—.’))
\%

=ntm bt Y (ki—gi) =) (val(V)—3)
i %
by the requirement on the conditions. Since ) \ (val(V) —3) = > ;(ki — gi) + >y~ (val(V’) — 3)
(where now the sum goes over all vertices V' which are not adjacent to one of the marked ends
i) by the valency conditions, and since the y-coordinates of ny ends are fixed and n generic point
conditions are satisfied, the dimension has to be at least nj +2n, which can only be satisfied if any
vertex besides the ones adjacent to the marked ends, is trivalent. O

Proposition 4.20. Let D be a floor diagram contributing to
(71 )t (pt) -+ T, (PO (T, 1)) 6o

The weighted number of tropical stable maps contributing to

(0 1)y (PY) . T, (PO ) P
that yield D under the procedure described in Construction 4.12 equals mult(D).

Proof. Let (T, f) be a tropical stable map that yields D using Construction 4.12.

Notice first that if (T, f) contributes with multiplicity 0 (as e.g. the one in Figure 11), then also D
contributes with multiplicity 0: the floor containing the vertex of multiplicity 0 also has multiplic-
ity 0. Vice versa, if D has a floor of multiplicity 0, any tropical stable map producing D must have
a vertex of multiplicity 0.

So we can assume now that (T, f) is of non-zero multiplicity. In particular it is rigid, and not
superabundant, and all its non-marked vertices are trivalent by the above. Using our convention
of marking horizontal ends, it follows also that (T, f) has no nontrivial automorphisms, since it
cannot have edges which are not distinguishable.

Following Definition 3.7 and using Remark 3.13, (T, f) contributes a product of
(1) areas of triangles dual to non-marked vertices and factors % for the weights of fixed ends,

and
(2) local vertex multiplicities multy/ (T}, f).
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Every compact edge e of D of weight w(e) comes from a bounded edge e’ of I" of weight w(e).
Since e has precisely one non-thickened flag, e’ is adjacent to precisely one trivalent vertex V not
adjacent to a marked point (see Lemma 4.19). Denote by e” an edge in the floor which is adjacent
to V. Every non-horizontal edge in a floor is of direction (0,1) + ¢ - (1,0) for some c (by the
balancing condition, the fact that the floor is rational, and since we can connect every edge to an
end of direction (0,—1)), and so the area of the triangle dual to V (formed by the duals of e’ and
e’)isw(e).

A non-fixed end of T has to be adjacent to a marked point by rigidity, so it is not adjacent to a
trivalent vertex as above. A fixed end of I' is adjacent to a trivalent vertex whose dual triangle has
area w(e) by the above.

Altogether we can see that the first item above — the product over all areas of triangles dual to
non-marked vertices in the dual subdivision of (T, f) divided by factors w for fixed ends — equals
the product of weights of the compact edges of D.

We cut (T, f) into floors. Each floor (I'’, f') can be viewed as a tropical stable map contributing
to the count

((bys )ity (POI(DY, 1Y) gy

which gives the multiplicity of the floor viewed as a vertex V of D. As such, the floor contributes
its tropical multiplicity, which is again a product as above.

Let v be a vertex of D. By Theorem 3.14, mult(v) equals the weighted sum of all floors (T, f’)
of some (T, f) that map to v under Construction 4.12. In this weighted count, each summand
contributes with its tropical multiplicity as above. Since every end of I'" which is not adjacent
to the marked point in I'” has to be fixed by rigidity, the only contribution we have for the whole
floor is the local vertex multiplicity multy (I, f’) of the vertex V of '’ adjacent to the marked point.
Thus, mult(v) equals the weighted sum over all floors that can possibly be inserted, each counted
with the factor multy (I'’, f’) where V is the vertex adjacent to the marked point.

Since we can freely combine floors by gluing them to elevator edges as imposed by D, mult(D)
equals the weighted count of all tropical stable maps contributing to the invariant

(07 1), (pt) ... T, (PO, wF))§oP

and yielding D under the procedure described in Construction 4.12, where by Definition 4.4,
each tropical stable map is counted with a product of weights for the compact edges of D times
multy (I, f) where V is the vertex adjacent to the marked point. We have seen above that the
product of weights for the compact edges of D equals the product of the areas of triangles dual to
non-marked edges, divided by the weights of the fixed ends. Thus mult(D) equals the weighted
count of all tropical stable maps yielding D, each weighted with its tropical multiplicity. The
statement follows.

0

5. THE FOCK SPACE APPROACH

In this section we build on work of Cooper and Pandharipande [17] and Block and Géttsche [7]
and express relative descendant Gromov-Witten invariants of Hirzebruch surfaces as matrix ele-
ments for an operator on a Fock space. We begin the section by reviewing the formalism of Fock
spaces in our context.
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Let H denote the algebra presented with generators an, by, for n € Z satisfying the commutator
relations
(12) l[an,aml =0, [bn,b] =0, [an,bml=n" dn,—m,
where 8, is the Kronecker symbol. We let ag = by = 0.

The Fock space F is the vector space generated by letting the generators an, by for n < 0 act
freely (as linear operators) on the so-called vacuum vector vy. We define a, - vy = by, - vy = 0 for
n > 0. For a pair of partitions ¢ = (@1,...,@n,) and p = (u1,..., un,), we denote

1
(13) Vo,u = Au- |Aut(u)|a_(p‘ Tl by b .

The vectors {VQ , E} indexed by pairs of partitions ¢, u form a basis for F. We define an inner product
on F by declaring (vylvyp) = 1 and an, to be the adjoint of a_,,, by of b_;,. The structure constants
for the inner product in the two-partition basis are:

1
(14) o,ulvg ) = Tee-TTw- |Aut TAut(w)] D Oyg

Following standard conventions, for «, 3 € F and an operator A € 3, we write (x|A|p) for
(x|AB). Such expressions are referred to as matrix elements. We write (A) for (vy|Alvy); such a
value is called a vacuum expectation.

We also introduce normal ordering of operators in H. If ¢i,1 = 1,...,n are operators in J(, then
the normally ordered product: [ ; c; : reorders the c; so that any ci with i > 0 occurs after the
¢j with j < 0. For example, we have: a;b_jaa_7 :=b_za_jazas.

As before, we fix k € N to identify a Hirzebruch surface Fy.
Definition 5.1. Let m € Noo, |, sand g € N be given. Let z € (Z ~ {0})™ satisfy > ",z = —k-s.

Denote w = (z1,...,Z142-2s—¢g) and ¢ = (Z142-25—g41---,2Zm), and let superscripts £ denote the
subsets of positive (resp. negative) entries.
Define

d, = uan 1:fn<0 and b — ubn, z:fn<0.
an  ifn>0 b,  ifn>0

We define the following series of operators in H[t,u], indexed by 1 € N:

M= w 'y e Y 5 (o u mpolehu),
geN seN  meN.yzezZ™

: bZ1 Teees bZ1+272579 ’ le+272579+1 ’ ’ dZm :
where the fourth sum is taken over all z satisfying ) ; zi = —k - s (where s is the index of the second sum),

and where the log descendant one-point Gromov-Witten invariant (Ti(pt)) (¢, ), depends on the indices
1, g and z as above.

Remark 5.2. Consider the operator My. It has only two summands for s, s = 0 and s = 1,
since 2 —2s —g < O fors > 1. If s = 0, the curve class in the Gromov-Witten invariant
(¢~ u)Itolpt)l (cb*, ")) g is a multiple of the class of a fiber. This implies that the moduli space
of maps is non-empty only if g = 0 and m = 2. The invariant (u™|to(pt)lu*)o, for p = (d, —d) is
readily seen to be 1: there is a unique map of degree d from a rational curve to the fiber identified
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by the point condition, fully ramified at 0 and oo (the intersections of the sections with the given
fiber). Such a map has no automorphisms because we have marked one point on the rational
curve.

If s = 1, we must have g = 0 and no b factors. The invariants (Q_Iro(pt)@ﬂo are all 1 by the
genus 0 correspondence theorem and a tropical computation, see [33, 36].

So we have
Mo = Z bz, bz, + Z t‘u#@_}_]az] R« PSRN
z1+2z2=0 de(z~{o}Hm
where the second sum goes over all z € (Z ~ {0})™ satisfying )} z; = —k. Here the normal

ordering is unnecessary since the a; commute amongst themselves, as do the bj. Since the genus
can be computed from the Euler characteristic of the underlying Feynman graphs, the variable u
is superficial in this scenario. Setting u = 1, we obtain the operator Hy (t) defined in [7], Theorem
1.1. Our family of operators M; generalizes the operator of Block-Gottsche to one operator for
each power of descendant insertions.

Theorem 5.3. With discrete data fixed and denoted as in Notation 2.2, the disconnected log descendant
Gromov-Witten invariant (¢, u )Tk, (pt) ... T, (pt)l(@ﬂ Eﬂ); equals the matrix element

(@7 )i (pt) T, (PO, 7))
(15) | Aut(p)l | Aut(@)| -
- [Tl T1Id:l wyb | COOff pay vt et (E Mki> Vit ot )
where the operators My, are as defined in Definition 5.1, and for a series of operators M € FH[t,u]
Coeff,a,n (M) € H denotes the t*u"-coefficient.

Important detail. Notice the order of the partitions is switched on the two sides of Equation (15),
thus the y; entries are associated to a variables and vice-versa.

Before we start a formal proof of Theorem 5.3, we make a relevant definition and recall an
important tool for the proof.

After translating the matrix element in Equation (15) to a vacuum expectation, we compute
it as the weighted sum over Feynman graphs associated to each monomial contributing to the
expectation. This can be viewed as a variant of Wick’s theorem [39] and is proved in Proposition
5.2 of [7]. Generalizing the situation in [7], the Feynman graphs in question are essentially floor
diagrams and Theorem 5.3 follows because of a natural weighted bijection of Feynman graphs
and floor diagrams.

Definition 5.4. Let P =m, -my -...- My - m_ be a product of monomials in the variables as or bs, such
that:

o for each monomial, all operators with negative indices stand left of all operators with positive indices;
e m. contains only positive factors (with s > 0);
e m_ contains only negative factors (with s < 0).

We associate graphs to P called Feynman graphs for P, via the following algorithm.

Step 1: local pieces. To any monomial m, associate a star graph with vertex denoted vi: for each factor
as appearing in my, draw a (non-thickened) edge germ of weight |s| which is directed to the left if s < 0 and
to the right if s > 0. For each factor b, draw a thickened edge germ of weight |s| which is directed to the
left if s < 0 and to the right if s > 0.
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FIGURE 12. The weighted, directed, possibly thickened edge germs corresponding
to the product P in Example 5.5. (We drop the marking of edge germs in the pic-
ture.)

FIGURE 13. A Feynman graph completing the edge germs associated to the prod-
uct P in Example 5.5.

To the special monomials m,., m_ associate a collection of disconnected, marked edge germs of weight
equal to the absolute value of the index of each operator appearing in the monomials. Thicken the germs
corresponding to the operators by.

Step 2: Feynman fragment. We call the Feynman fragment associated to P the disconnected graph
obtained by linearly ordering the union of all the local pieces: first come the edge germs relative to m., then
vertices v; (ordered according to their index i, and finally the edge germs corresponding to m_.

Step 3: filling the gaps. A Feynman graph completing the Feynman fragment is any (marked, weighted,
ordered) graph obtained by promoting edge germs to half edges, and gluing pairs of half edges until there is
none left. A pair of half edges may be glued if:

e one is directed to the right and the other to the left, and the vertex adjacent to the germ directed to
the right is smaller than the one adjacent to the germ directed to the left,

e the two edge germs have the same weight, and

e one edge germ is thickened and one is not.

Example 5.5. Let P be the product
P=(b2-aj-az)-(b2-bzp)-(a2-b7-az2)-(b2-az-aj-aj)-(b_y-by)-(b_q-a_1),

where the factors m; are separated by parentheses. Following Definition 5.4, a Feynman graph
for P is any graph completing the Feynman fragment depicted in Figure 12. In Figure 13, the
dotted lines suggest a way to complete the fragment to a Feynman graph for P. After removing
all external half edges, we recognize the floor diagram depicted in Figure 6.

Proposition 5.6 (Wick’s Theorem, see Proposition 5.2 of [7]). The vacuum expectation (P) for a product
P as in Definition 5.4 equals the weighted sum of all Feynman graphs for P, where each Feynman graph is
weighted by the product of weights of all edges (interior edges and ends).

Proof. A detailed proof of this proposition may be found in [7]. Here we provide an intuitive
and informal description of the mechanism that underlies the proof, as we feel this will be more
beneficial to a reader who is not already an expert on these techniques.

In the product P, we take the right most factor a; or b; with i > 0, and try to move it to the right.
To simplify notations, let us assume that this right most factor is a; for some i > 0. If this factor a;
reaches the very right in a contribution we produce in this way (i.e. ends up being the right most
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factor of a contributing term), then we obtain zero since by definition a; - vy = b; - vy = 0 for i > 0.
The commutator relations produce several contributing terms for (P) when moving a; to the right.
We can make a; jump over any aj, or by with k # —i. If a; is the left neighbour of b_; however,
the commutator relation replaces aib_; by b_;a; +1i. That is, we get two summands, one in which
we manage to move a; further to the right, and one where we cancel this factor together with its
neighbour b_;.

With both summands, we continue moving the right most factor with positive index right. For
the summand in which we cancel a; together with a factor of b_; appearing right of a; in P, we
add to the Feynman fragment of P by drawing an edge connecting the germ corresponding to a;
and the germ corresponding to b_;

By following this procedure we draw all Feynman graphs completing the Feynman fragment
for P. Each Feynman graph corresponds to a way to group the factors of P in pairs {a;, b_i} corre-
sponding to edges completing the corresponding marked edge germs. Each such pair produces a
contribution of i because of the commutator relations, so altogether each Feynman graph should
be counted with weight equal to the product of its edge weights to produce (P). O

Proof of Theorem 5.3: First we express the matrix element in Equation (15) as a vacuum expectation:

| Aut(p)| [ Aut(¢)] _
[Tlwil ITleil <VE_’97 |M|VE+’$+> a
| Aut(p)| [ Aut(¢)] 1 1 .
[Tiil TTleil [Aut(d™)llAut(pt)] | Aut(d™)l Aut(p)]

<V@ [T awr T1 boa M I au IT oo Vw>:

HiEpR Pied™ piept piedp”

= HI@IIHIM < IT aws IT b M IT @ T1 b@l>

HiCp™ eiEd™ piept PiEPT

By Theorem 4.9 (resp. Theorems 3.14 and 4.11), the left-hand side in Equation (16) equals an
appropriate count of floor diagrams. By Proposition 5.6, each term contributing to the right-hand
side can be expressed in terms of a weighted count of suitable Feynman diagrams. We show that
the floor diagrams contributing to the left-hand side are essentially equal to the Feynman graphs
contributing to the right, and that they are counted with the same weight on both sides.

Expand the left-hand side so that it becomes a sum of vacuum expectations, where each sum-
mand is of the form wp - P such that wp isanumber and P = m_ -...-m_ a monomial as described
in Definition 5.4. For each summand,

H Ayl H bl‘Pil and m_ = H Ay H b_g,.

HiEpR™ QiEP™ piept piedp™

A factor m; fori=1,...,n comes from a summand of My, i.e. is of the form
T + .t i a A A -
«Q yH )|Tki (pt)|($ K )>91' : bZ1 Tt bzki+2728179 ’ azki+27251791+1 Ceeet Uz

where s; is encoded in the power of t and g; in the power of u.

Enrich the Feynman fragment for P by adding three numbers to each vertex i, namely the 1-
power k; (imposed by the operator My, of which the factor corresponding to vertex 1 is taken),
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the size s; (imposed by the power of t) and the genus g; (imposed by the power of u). Any
Feynman diagram completing this Feynman fragment is by definition a weighted loop-free graph
with ends on the linearly ordered vertex set vq,...,v,. After removing all external half edges,
the conditions (1), (2) and (3) we impose in the definition of a floor diagram (Definition 4.1) are
satisfied. By definition of the operator M, (see Definition 5.1), the signed sum of weights of edges
adjacent to a vertex equals —k - si, so condition (5) is satisfied. By definition of the operator My, in
each factor my, exactly ki + 2 — 2s; — g factors are b-operators and thus correspond to thickened
edge germs, so condition (4) is satisfied.

Since we take the t¢ coefficient of the product My, -...- My for the operator in Equation (15),
we obtain floor diagrams satisfying a = ) s;. The degree (¢, i) is determined by the boundary
conditions. To see that the floor diagram is of the right genus, notice that the variable u is in
charge of genus. Let us build a Feynman graph from the left to the right, starting with the left
ends, and adding in vertex after vertex from 1 to n, taking the change in genus into account in
each step. The genus of the graph consisting of {(¢ ™) + £(n™) left ends (at first disconnected) has
genus —{(¢ ) —€(n~) + 1. For the vertex i of local genus g3, by definition of the operator My, we
get a contribution of u9:~1, and we get as many additional factors of 1 as the vertex has incoming

edges (by the d; resp. b; convention). Since h incoming edges potentially close up h — 1 cycles,
the vertex i increases the genus by g; + hi — 1, where h; denotes the number of incoming edges.

By taking the u9+¢® )+tr)=1 coefficient in total, we thus obtain floor diagrams of genus g.

Each Feynman graph for P can thus be viewed (after removing external half edges) as a floor
diagram contributing to the left-right-handhand side, and vice versa, each floor diagram gives a
Feynman graph.

It remains to show that a Feynman graph and the corresponding floor diagram contribute to
Equation (15) with the same multiplicity. For the right-hand side, note that a Feynman graph con-
tributes with the product of the weight of all of its egdes times the coefficient wp of the product P

in the expansion of the product of the My-operators. Dividing by the factor ‘:ﬁ ﬁ (see the right-

hand side of Equation (16)), we see that we are giving the Feynman graph weight equal to the prod-
uct of the weights of its internal edges times the factor wp = []}_; ((9;, E\j)l’rkv (pt)l(ﬁj, Ej»gv-
This is precisely the weight of the corresponding floor diagram in Equation (4.4).

n
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