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Abstract: The appearance of pest insects can lead to a loss in yield if farmers do not respond in
a timely manner to suppress their spread. Occurrences and numbers of insects can be monitored
through insect traps, which include their permanent touring and checking of their condition. Another
more efficient way is to set up sensor devices with a camera at the traps that will photograph the
traps and forward the images to the Internet, where the pest insect’s appearance will be predicted
by image analysis. Weather conditions, temperature and relative humidity are the parameters that
affect the appearance of some pests, such as Helicoverpa armigera. This paper presents a model of
machine learning that can predict the appearance of insects during a season on a daily basis, taking
into account the air temperature and relative humidity. Several machine learning algorithms for
classification were applied and their accuracy for the prediction of insect occurrence was presented
(up to 76.5%). Since the data used for testing were given in chronological order according to the days
when the measurement was performed, the existing model was expanded to take into account the
periods of three and five days. The extended method showed better accuracy of prediction and a
lower percentage of false detections. In the case of a period of five days, the accuracy of the affected
detections was 86.3%, while the percentage of false detections was 11%. The proposed model of
machine learning can help farmers to detect the occurrence of pests and save the time and resources
needed to check the fields.

Keywords: machine learning; pest insect appearance; temperature and relative humidity sensors;
precision agriculture

1. Introduction

Determining and monitoring the values of factors that affect agricultural production is
of great importance for achieving the best possible quality and yield. These factors may be
related to sowing, harvesting, or the period in between when it is necessary to undertake
appropriate agro-technical measures. Such processes related to factor optimization in
agriculture belong to the research and development area known as precision agriculture.

The growth of information technologies has enabled the establishment of a more
precise farm management system. Precision agriculture represents the strategic application
of information technologies to gather data from multiple sources with the aim of making
decisions related to agricultural production, marketing, finance and personnel. Precision
agriculture aims to achieve increased crop quality, improved sustainability, environmental
protection and rural development through new skills [1].
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The expansion of wireless sensor networks (WSN) has greatly contributed to the
development of precision agriculture. The addition of appropriate sensors and software
could provide crops with exactly what they need, which leads to productivity optimization.
Sensors from a given location can obtain real-time data about the conditions of soil, crops
and weather. Information extracted from images of the area obtained by a satellite or an
airplane is also very helpful for decision-making [2].

With the further development of hardware and communication technologies, the
Internet of Things (IoT) technology has emerged as a continuation of WSN. IoT is also
applied in precision agriculture [3]. IoT enables the collection of sensor data and their
transmission to the Internet, where it is processed using machine learning and can provide
adequate information relevant to crop management [4].

The motivation comes from the need to predict pest insect appearance in a timely man-
ner at many different localities in a whole region, based on available data that are collected
on temperature and relative humidity. The goal was not to determine the insect population
density but to predict (using meteorological parameters) when the first insects would occur
in order to provide users sufficient time to react and reduce the pest insect population.

The sections in this paper are organized as follows. The second section presents the
state-of-the-art in the field. The third section describes the methodology applied to detect
and predict the development of pest insects in agricultural production. The fourth section
describes the hardware platform used for data collection and processing. A description of
the results and a discussion are presented in the fifth section. Finally, the paper ends with
concluding remarks.

2. State-of-the-Art

Applying the concepts of precision agriculture and the remote detection of pest
insects, farmers can undertake appropriate measures to suppress the appearance of insects
or reduce the insect population. Insect populations above the economic threshold can cause
substantial damage to plants and thus reduce yields. On the other hand, information on
the occurrence and number of pests is important to reduce the use of pesticides, decrease
inputs and protect the environment. The number of pests at an observed locality was
commonly checked by visual observation of sticky surfaces in insect traps and counting
the caught insects. Such an initial setup would require human engagement for the almost
daily or weekly checking of trap sticky bases, which is a highly time-consuming job and
requires some resources such as fuel and vehicles, because traps can be installed/located
over a wide geographical area. To overcome this problem, the technology on which precise
agriculture relies is beginning to be used for monitoring the situation inside the set insect
trap wherever it is located, from a remote position. Accordingly, article [5] shows an
overview of techniques as well as sensors for the automatic detection and monitoring of
pest insects. The main emphasis was on pest identification using infrared sensors, audio
sensors and image-based classification. Recent achievements regarding machine-learning
techniques were also presented.

The processing of large amounts of data obtained from remote sensing devices in
precision agriculture is increasingly oriented towards application of the machine learning
(ML) approach. One of the examples of the use of ML in agriculture is presented in [6],
where predictions of crop yield and predictions of nitrogen status, as the main mineral
nutrients required for plant growth and development, are presented.

There are many examples of predicting crop yields based on input parameters where
the basis is weather data. Article [7] presents different models of machine learning that
enabled the analysis of data obtained on soil, climatic conditions and water regime and, as
a result, crop yields were predicted and the applied machine learning approaches were
compared. In article [8], the input data of soil and crop properties were used to predict yield.
ML algorithms can be used to predict alfalfa yield [9], maize yield and nitrate loss [10],
and to assess the seasonal nitrogen status in maize [11,12], carrot yield mapping [13], soil
suitability for growing individual crops [14] and peach tree nutrients at the local level [15].
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A particularly significant application of ML models in the field of agronomy is found
in the derivation of new values based on the images of fields, plants and pests as input data.
Reference [16] uses ML models to classify crops and monitor plant growth status. Using
the ML approach, it is also possible to classify plant leaves based on image analysis [17],
plant segmentation [18] or palm tree classification, depending on whether they are infected
with plant diseases [19].

The estimation of new values based on available weather data using the ML model
is shown in [20], where soil temperature was determined. In Reference [21], the wheat
yield was also estimated using, in addition to climate data, satellite images provided in a
time series.

Reference [22] presents the use of data from various sources to make certain predictions
using the ML model to improve the management of a smart farm. In [23], deep learning
techniques were applied in the field of agronomy.

Machine learning can have significant applications in the identification of insects in
crops based on images from the site. Knowing the type and number of insects is of great
importance to protect crops and preserve yields. In [24], a description of research on the
topic of automatic insect detection using ML techniques is given. The paper [25] presents
the potential of ML for crop protection with the help of early detection of plant diseases or
harmful insects. An ML weed identification system is shown in [26] to increase the plant
protection potential.

Sticky traps can be used to detect and monitor the number of insects in a certain
locality, and in the paper [27] insects were recognized based on images of the current state
of the traps using convolutional neural networks.

Reference [28] presents a prediction model for Helicoverpa armigera, which represents
the number of insects weekly. The model is based on weather data, while its validation
was performed using data collected on insects caught in pheromone traps. Temperature,
relative humidity, and the number of hours of sunshine were singled out as weather factors
that influence the appearance of Helicoverpa armigera.

According to [29], the occurrence of Helicoverpa armigera insects was introduced by a
model based on satellite data of surface temperature, where the ML technique provided an
estimation of insect population dynamics after the first detection of their larvae. In [30], an
approach for the prediction of Helicoverpa armigera in future periods is presented according
to the expected climate changes.

Existing examples usually represent a total number of insects under certain conditions
observed for a longer time. The aim of this paper is the presentation of an ML model, which
can predict (with the help of meteorological data) the appearance of insects in a certain
region on daily basis. This paper presents an ML model that uses the relative humidity in
addition to temperature as input data to predict pest insect appearance and to optimize the
utilization of resources.

3. Methodology

We propose a methodology for the prediction of pest insect appearance, which uses
the environmental parameters (temperature and relative humidity) as input data and
machine learning for data processing and output generation. According to [28], we initially
determined our input parameters, the day of the year, temperature and relative humidity;
values that we can obtain in our region. The idea was (based on existing data and without
additional investments) to help users (owners of small plantations in different locations)
to predict insect appearance and allow them sufficient time to control the dynamics of
insect growth. Data on Helicoverpa armigera insects caught in traps with light lamps were
collected from 17 locations in the northern part of Serbia, Vojvodina province, during
2019 and 2020. In parallel, daily data on the number of trapped insects and data from
meteorological stations located in their immediate vicinity were collected [31]. From the
monitored environmental data, the temperature and relative humidity were recorded on a
daily basis during the season in successive series representing the input dataset.
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The three to five days observation period was selected according to pest development.
At the beginning of vegetation, adults (butterflies and moths) emerge for an extended
period of approximately three weeks. Oviposition begins two to six days later with the
expulsion of a single egg during the night. Female fecundity (the total number of eggs)
is around 3000. This species is highly polyphagous. Larval development is harmful
(detrimental) for cultivated plants. Larval feeding results in fruits boring, rotting and plant
decay. Therefore, it is extremely important to register the appearance of moths in the field
and suppress the occurrence of the insects by applying chemicals at two stages (moth and
egg). Larvae are usually hidden within stem or fruits and are protected by plant tissue,
which makes the spraying impossible. The suppression of moths and eggs will lower
the loss and damage in the field. This is the most important step of Helicoverpa armigera
population control and crop protection. Our approach predicts the appearance of insects in
a period of three to five days when the user can react and prevent the growth of the insect
population. It is a customized method guided by real requirements, which estimates the
accuracy of the proposed ML model for one, three, and five days in a row.

We consider the confusion matrix of our ML model and try predicting the insect
appearance (confirmed value ‘1’), similar to True Positive (TP) values on the given day, in
the next three, or the next five, days. If the pest insects appear in these periods, a prediction
hit is observed.

Examples of ML models were generated using the Scikit-learn package. Scikit-learn is
an open-source Python library that provides support for the implementation of machine
learning algorithms. It is based on NumPy and SciPy, which are Python libraries for
scientific computation. Due to the wide application of Python, Scikit-learn has gained more
popularity. Scikit-learn is characterized by comprehensive coverage of ML models. The
implementation of ML model algorithms is optimized for efficient execution on computing
resources. Scikit-learn also has great community support for documentation, bug tracking
and quality assurance. Within Scikit-learn, the presentation of input and output data is
uniform. There is also a fixed procedure for the fitting model so that it is possible to change
methods without excessive effort [32].

The ML algorithms used to form multiple model variants were K-Nearest Neighbors,
Support Vector Machines with kernel = ‘rbf’ (RBF SVM), Support Vector Machines with
kernel = ‘poly’ (Poly SVM), Decision Tree, Random Forest, Multi-layer Perceptron classifier
(Neural Net), Ada Boost, Gaussian Naive Bayes (G Naive Bayes), and Quadratic Discrimi-
nant Analysis (QDA) [33]. Table 1 shows the input variables and optimal parameter values
for individual ML models.

Based on the data collected from the analyzed locations, an overall dataset was formed,
which was used in the first step for the validation and comparison of ML algorithms. The
input variables, in addition to the day of the year, represent the values for temperature
(T) and relative humidity (RH) in the last ten days in a row. As shown in Table 1, twenty
input values are denoted by Tk and RHk, respectively, where the number k ranges from
day d to d-9 in the past (from k = d, k = d-1 . . . to k = d-9). Prior to the learning process, the
complete dataset was randomly divided into two parts: the first part of 75% for training
and the second part of 25% for validation. Since in the second case we would like to keep
the data form in a time series, we separated the two sets in the same proportions but so
that we kept the array of data in the same order as they appeared successively during the
season by days.

The accuracy score and confusion matrix are used as outputs to verify the results. The
accuracy score is a function that calculates the accuracy of correct predictions [33] and can
be represented as:

Accuracy =
1
n

n−1

∑
i=1

1(Pi = Ti), (1)

where Pi is the predicted value, Ti is the true value, n is the number of samples and 1(x) is
the indicator function.
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Table 1. Input variables and parameters in used ML models.

Input Variables Name Parameters

21 variables
(DayInYear, Td, Td-1, Td-2, Td-3, Td-4, Td-5,

Td-6, Td-7,
Td-8, Td-9, RHd, RHd-1, RHd-2, RHd-3,
RHd-4, RHd-5, RHd-6, RHd-7, RHd-8,

RHd-9)

K-Nearest Neighbors n_neighbors = 3, weights = ‘uniform’, algorithm = ‘auto’,
leaf_size = 30, metric = ‘minkowski’, p = 2

Poly SVM
C = 10, degree = 3, gamma = ‘scale’, break_ties = False,

cache_size = 200, decision_function_shape = ‘ovr’,
kernel = ‘poly’

RBF SVM
C = 1, degree = 3, gamma = 2,

break_ties = False, cache_size = 200,
decision_function_shape = ‘ovr’, kernel= rbf

Decision Tree
criterion = ‘gini’, splitter = ‘best’, max_depth = 5,

min_samples_split = 2, min_samples_leaf = 1,
class_weight = None

Random Forest
n_estimators = 10, criterion = ‘gini’, max_depth = 5,

min_samples_split = 2, min_samples_leaf = 1,
class_weight = None

Neural Net

hidden_layer_sizes = (100,), activation = ‘relu’, solver =
‘adam’, alpha = 1, batch_size = ‘auto’, learning_rate =
‘constant’, power_t = 0.5, learning_rate_init = 0.001,

max_iter = 1000, shuffle = True, early_stopping = False

AdaBoost
algorithm = ‘SAMME.R’, base_estimator = None,

learning_rate = 1.0, n_estimators = 50,
random_state = None

G Naive Bayes priors = None, var_smoothing = 1 × 10−9

QDA priors = None, reg_param = 0.0, store_covariance = False,
tol = 0.0001

The confusion matrix is one of the metrics used for determining the accuracy of
classification when training ML models. In the case of binary problems, the number of
true negatives, false positives, false negatives and true positives is obtained. Therefore,
Table 2 presents a confusion matrix of the size 2 × 2, that is, the case of classification into
two groups [34] is shown, where there are in fact two values, true (1) and false (0).

Table 2. The confusion matrix for binary classification.

Predicted Negative Predicted Positive

Actual Negative TN FP
Actual Positive FN TP

where: TN (True Negative) is the number of correct negative predictions, FP (False Positive) is the number of
incorrect positive predictions, FN (False Negative) is the number of incorrect negative predictions, and TP (True
Positive) is the number of correct positive predictions.

The accuracy of prediction can also be calculated using the confusion matrix as:

Accuracy =
TN + TP

TN + FP + FN+TP
. (2)

In addition to reaching the accuracy, the confusion matrix was used to represent
the validation of the results in the ML model, enabling the observation of how many
positive values were actually affected (TP) and how many positive values were incorrectly
detected (FP). This way of analyzing the results was convenient because the new correct
and false values can be calculated over an extended range that includes three and five
days. The obtained values represent the new parameters in Equation (2) for calculating the
new accuracy.
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In addition to accuracy, we also considered the F1 score since real data represents an
imbalanced dataset. The F1 score can be calculated according to Equation (3):

F1 score = 2 × Precision × Recall
Precision + Recall

, (3)

where Precision would be obtained by Equation (4)

Precision =
TP

TP + FP
(4)

and Recall would be obtained by Equation (5).

Recall =
TP

TP + FN
. (5)

We compared the presented ML models calculating the accuracy defined by Equa-
tion (2), which includes four elements of the confusion matrix (binary classification) and
also we took into consideration F1 scores defined by Equation (3).

4. Hardware Platform

The collection of temperature and relative humidity values was achieved using the
Pessl Instruments Hygroclip sensor, that is, via the PT1000 1/3 Class B temperature
sensor and the ROTRONIC Hygromer IN-1 humidity sensor. The accuracy with the
standard setting was ±0.8% RH/±0.1 ◦C, while the accuracy with high precision was
±0.5% RH/0.1 ◦C. The measuring range was from 0% to 100% RH and from 100 to 200 ◦C.
The output signal is intended for the serial port RS485 [35].

The presented sensor is a part of the iMeteos system, where iMeteos1 and iMeteos 3.3
meteorological stations were used at certain localities. The iMeteos 3.3 system, as well as
other products from the iMeteos group, are intended for monitoring data with the help
of various sensors by providing the possibility of measuring, logging and sending data
to platforms on the Internet. The basic unit of iMeteos 3.3 contains a box consisting of
electronic components, a battery, and with an attached solar panel and a dual antenna.
The basis of the system is the iMeteos 3.3 board, which contains a 32 bit ARM Cortex M3
processor and a Real Time Operating System (RTOS). One of its main features is operational
reliability as it has a flash memory of 8 MB and can store data for up to approximately a
month. A 6 V and 4 Ah battery is connected directly to the iMeteos 3.3 board, as well as a
solar panel to the appropriate connectors.

In addition to the role of the data logger, the system contains a UMTS/CDMA modem
and can send data to the FieldClimate platform. There is also a SIM card holder so that
data transfer to the platform on the Internet can be achieved via cellular base stations using
appropriate protocols. The iMeteos 3.3 board has 12 direct inputs and up to 600 sensors
can be connected. Certain types of sensors need to be connected to special dedicated
connectors, such as a wind speed sensor, leaf humidity sensor, or hygroclip sensors that
measure temperature and relative humidity [36,37].

5. Validation of ML Model

The proposed ML models for classification were compared after the training and
validation of the dataset that included the date, temperature, and relative humidity. The
output of the model has only two possible values, 1 and 0, whether there was a detection
or no detection of insects on an observed day. The entire dataset was first loaded and
randomly distributed to the training dataset and the dataset for its validation. The accuracy
of individual ML models is presented in Figure 1. It can be observed that the last two ML
models, Naive Bayes and QDA, have the lowest accuracy and therefore can be excluded
from further analyses.
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Figure 1. Accuracy of the used ML algorithms.

The number of days when insects are detected in the season is smaller than the number
of other days when there are no insects, so days with no insects have a significant influence
due to the higher prevalence on determining accuracy. It is much more important for users
to get information about the days when the prediction was performed, so it was necessary
to extract the results from the confusion matrix of the validated models. Based on the
confusion matrix, the results are shown in Figure 2, which represent the TP (True Positive)
when the prediction is confirmed and the FP (False Positive) when the false or incorrect
prediction is confirmed. The number of FPs in the two ML models, Naive Bayes and QDA,
which had the lowest accuracy, is higher than the number of TPs, which also excludes them
from the set of ML models. The ML model Random Forest, as well as the RBF SVM, have
low TP values, so they were not suitable for the prediction of pest insect appearance.
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After validation of the ML model, Nearest Neighbors, Poly SVM, Decision Tree, Neural
Net and AdaBoost were selected from the original set. To test the ML model that would
evaluate the occurrence of insects, a dataset was used, which consisted of several seasons
characterized by a smaller number of TPs, that is, a smaller number of days when the
occurrence was detected compared to the previous validation dataset. The test dataset
represented temperature and relative humidity by days, in time series, during the season
gathered from different locations. The testing dataset was not randomly extracted from the
whole dataset but represents the real situation at these locations, and there is a somewhat
smaller number of days when insects appeared compared to the dataset on which the
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validation was performed. Applying the proposed ML model over the testing dataset, we
have calculated the accuracy and elements of the confusion matrix. The FP has higher
values than in the validation process (Table 3).

Table 3. Accuracy and elements of the confusion matrix after checking the ML model on the
testing dataset.

ML Model Accuracy TN FP FN TP

K-Nearest
Neighbors 84.2% 1536 243 67 116

Poly SVM 87.3% 1589 190 59 124
Decision Tree 86.6% 1553 226 37 146
Neural Net 87.1% 1587 192 61 122
AdaBoost 87.1% 1569 210 43 140

Precisely because we took the testing dataset in the time series, it is possible to adjust
the presented models so that we can use them to predict the day when the insects will
appear. Prediction of Helicoverpa armigera (DHA) appearance in one day was counted if there
was a real occurrence of an HA insect on that day (RHA = 1) and if there was a prediction
for insect occurrence (PHA = 1), where the total number of DHA, marked as numDHA, is
equal to TP. The daily prediction accuracy of ADHA can be calculated according to:

ADHA = numDHA/numRHA, (6)

where ADHA is the prediction accuracy on a daily basis, numDHA is the number of days
when the prediction of the insect occurrence was confirmed and numRHA is the number of
days when the insects appeared.

We can extend our model by observing three days in one variant or even five days in
another solution. First, using the selected ML models, we predicted the output data for
the selected test dataset, the metrics of which are shown in Table 1. After that, we checked
the predicted results using an extended test range of three and five days. To validate our
model, we exported the predicted values for every day into a series and compared them
with the real values of that day, and of the next three and five days.

The appearance of the HA insect can be considered confirmed if the predictive value
was indicated on that day and a real insect would appear on that day or in the next two
days. The pseudocode that shows the mentioned way of observing the results within three
days, which means enough time for user intervention, is:

IF Pd = 1 and (Rd = 1 or Rd+1 = 1 or Rd+2 = 1)
THEN DHA_3d = 1
ENDIF.

According to the previous pseudocode, Pd represents the predictive value of the insect
HA on day d. Rd is the real occurrence for day d, Rd+1 is the real occurrence for the next
day and Rd+2 is for the next two days. DHA_3d represents the prediction of the pest insect
appearance in the observed period of three days and has a positive value if there was a
prediction of the insect’s occurrence for that day and the actual occurrence of insects in that
or the next two days. The same principle was used for a period of five days and is shown
in the following pseudocode:

IF Pd = 1 and (Rd = 1 or Rd+1 = 1 or Rd+2 = 1 or Rd+3 = 1 or Rd+4 = 1)
THEN DHA_5d = 1
ENDIF.

The accuracy of the prediction of the pest insect appearance in a period of 3 days
ADHA_3d is calculated similarly according to:

ADHA_3d = numDHA_3d/numRHA, (7)
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where numDHA_3d is the number of days when the prediction of the appearance of HA
insects was confirmed within the observed period of three days and numRHA is the number
of days when the insects appeared.

The obtained values for the successful prediction of the pest insect’s appearance on
the same day, a period of three days, and a period of five days are presented in Figure 3.

A model based on the Decision Tree algorithm has shown the best results in the case
of successful detection on the same day, that is, the greatest value of TP, which is 79.8%.
After increasing the observation range, the accuracy of successful prediction also increases,
with the fact that for the mentioned Decision Tree algorithm it is a slightly higher value,
but for a period of five days, the new value of the accuracy is 83.1%. The largest increase in
accuracy after expanding the range is with models with the K-Nearest Neighbors algorithm,
where the new value is 84.2%. However, the biggest increase in the extended method was
obtained with AdaBoost, where for a period of three days the accuracy was 84.7%, and for
a period of five days 86.3%.
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Figure 3. Prediction of the pest insect appearance according to an extended method with selected
ML algorithms.

In addition to the accuracy of successful predictions, it is important to consider the
number of false predictions. Their value indicates the expectation of occurrences in a
certain locality, which in fact will not happen, and requires unnecessary user engagement.
Therefore, it is necessary to reduce the value of FP to a lower value within the ML model,
which can be achieved in some way if the same periods of three and five days are observed,
especially if false prediction occurs successively for several days in a row. The percentage
values of false predictions with the number of real insect occurrences are shown in Figure 4.
It can be observed that Poly SVM and AdaBoost have the lowest values for the proposed
ML algorithms.
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ML algorithms.

Since the number of days when insects appear is relatively smaller compared to the
number of days when they do not appear, which represents real data, such a dataset can be
considered unbalanced. Thus, in addition to accuracy, the F1 scores of selected ML models
with an extended method could also be considered (Figure 5).
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For the given application, and using the extended method, the K-Nearest Neighbors
and AdaBoost algorithms generate the highest scores. The ML model with AdaBoost
algorithm stands out, which, in addition to the highest accuracy of the extended ML model,
also has one of the smallest values of false detections; for AdaBoost, it is about 11% in the
observed period of five days.
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6. Discussion of Results

In addition to visiting the locations, one of the ways to detect insects is the use of
sensor-based equipment and advanced information and communication technologies.
Usually, such a system involves the use of a camera that would capture insects’ images
and whereby images from a remote location, with the support of WSN or IoT, would
be transferred to the Cloud platform where they would be analyzed. By applying ML
algorithms to the collected data, that is, to the images, certain insects can be recognized [27].
In the case when the equipment and required resources that would enable direct recognition
of insects are not available, other solutions could be considered. The ML model could be
used to perform predictions based on the values of temperature and relative humidity.
These are the values of weather data available at all meteorological stations and represent
the parameters that influence the appearance of pest insects such as Helicoverpa armigera.

In an interesting research paper [28], the number of HA at the weekly level was
predicted and it was shown that the important parameters of weather conditions that affect
the occurrence of HA are the number of sunshine hours, temperature, and relative humidity.
The mean values of small moths caught in sticky traps were recorded and compared with
output values predicted by the model on a weekly basis. The proposed model showed
satisfactory validation and that, in addition to temperature, a significant parameter that
affects the occurrence of HA is relative humidity.

In several previous studies [38–40], machine learning has been used for the prediction
of the insect population density or the number of trapped insects. The aim of this study
was to predict the appearance on the site of the insect species Helicoverpa armigera as an
economically highly significant pest. The advantage of the proposed model is in the early
detection of the presence of H. armiger, which provides the farmer with the opportunity
to monitor the insect population over the next three to five days, use an insecticide, and
reduce the population growth.

Since weather parameters can be collected from several localities, it is also important
to consider their application in the prediction of the pest insect’s appearance on a daily
basis, in addition to the possible prediction of their number for the observed period on a
weekly basis. It would be important for users to get an indication at which sites and on
which days the HA insects could potentially occur. In that way, special attention would be
paid to those places and timely reactions could be taken by users to prevent the spread of
pest insects.

The presented results were obtained based on models with ML algorithms, where
the prediction of the pest insect’s appearance for a certain day was performed based on
the values of temperature and relative humidity taken for the previous ten days in the
array. Testing of the model is performed with data that make up the days in the series
during one season, where it can happen that, in such a set, the number of insect occurrences
varies and is not so large compared to the total number of days in the season. Based on the
testing of the ML model, it could be noticed that, in such cases, the results are obtained
with satisfactory accuracy, but also with a larger number of false predictions of the pest
insect’s appearance. To make this case more acceptable, we presented the data in a time
series and introduced an extended method that observes several days in a row. In this way,
the model interprets the condition as true if there is a prediction for the insect occurrence
and the insects really appear in the next three days.

The input data to our ML model represent the temperature and relative humidity
over the last ten days. Future work may consider the model’s behavior when varying
importance for different days, as well as the application of ML models on sequences such
as HMM, semi-Markov CRF, RNN, and LSTM to preserve temporal dependence.

7. Conclusions

In this article, we presented a machine learning based prediction model that indicates
the possibility of pest appearance using the temperature and relative humidity as envi-
ronmental parameters. It reduces the number of terrain visits and saves human and other
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resources. On the other hand, the additional equipment to monitor volatile insect traps is
not necessary.

The advantages of the presented ML model for the prediction of the insect appearance
come from the fact that it uses easily accessible parameters (temperature and relative
humidity) as input values. In addition, the accuracy of the model increases as a period of
three or five days is observed when the predicted value can be expected, which gives users
sufficient time to organize their activities and reduce the insect population. The presented
model lacks flexibility, since input specifications depend on the observed insect. In other
words, it is necessary to take into account different conditions and specific data recognition
patterns for selected insects. The proposed ML model can indicate the potential situation
in the field and provide farmers an optimal platform for work. In addition, the farmers can
better plan their activities in a certain period (a few days or weeks). Then they will have
the opportunity to assess their priorities, to determine which sites to visit first, as well as to
postpone the application of insecticides in case precipitation is expected.

Author Contributions: Conceptualization, D.M. and S.T.; Data curation, D.V. and B.Ð.; Formal
analysis, D.M.; Methodology, D.M. and S.R.; Resources, S.T.; Software, B.Ð.; Supervision, Z.S.;
Validation, S.R.; Writing–original draft, D.M. and D.V.; Writing–review & editing, Z.S. All authors
have read and agreed to the published version of the manuscript.

Funding: The work presented in this paper was supported by the Ministry of Education, Science
and Technological Development of the Republic of Serbia, and these results are part of the Grant
with University of Kragujevac—Faculty of Agronomy Čačak, project ref. number 451-03-9/2021-
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