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CONSISTENCY AND CONVERGENCE FOR A FAMILY OF FINITE VOLUME
DISCRETIZATIONS OF THE FOKKER–PLANCK OPERATOR

Martin Heida* , Markus Kantner and Artur Stephan

Abstract. We introduce a family of various finite volume discretization schemes for the Fokker–Planck
operator, which are characterized by different Stolarsky weight functions on the edges. This family
particularly includes the well-established Scharfetter–Gummel discretization as well as the recently
developed square-root approximation (SQRA) scheme. We motivate this family of discretizations both
from the numerical and the modeling point of view and provide a uniform consistency and error analysis.
Our main results state that the convergence order primarily depends on the quality of the mesh and
in second place on the choice of the Stolarsky weights. We show that the Scharfetter–Gummel scheme
has the analytically best convergence properties but also that there exists a whole branch of Stolarsky
means with the same convergence quality. We show by numerical experiments that for small convection
the choice of the optimal representative of the discretization family is highly non-trivial, while for large
gradients the Scharfetter–Gummel scheme stands out compared to the others.
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1. Introduction

The Fokker–Planck equation (FPE), also known as Smoluchowski equation or Kolmogorov forward equation,
is one of the most important equations in theoretical physics and applied mathematics with application in
physical chemistry, protein synthesis, plasma physics, semiconductor device simulation and others. Originally,
it was introduced to describe the time evolution of the probability density function of a particle exposed to
fluctuating forces (e.g., Brownian motion). There is a huge interest in the development of efficient and robust
numerical methods for the FPE. In the context of finite volume (FV) methods, the central objective is a robust
and accurate discretization of the (particle or probability) flux implied by the FPE.

A particularly important discretization scheme for the flux was derived by Scharfetter and Gummel [47] (in
the context of the drift-diffusion model for electronic charge carrier transport in bipolar semiconductor devices
[49]) and independently by Allan and Southwell [1] and Il’in [29]. The typically exponentially varying carrier
densities at 𝑝-𝑛 junctions lead to unphysical results (spurious oscillations), if the flux is discretized in a naive
way using standard finite difference schemes [45]. The problem was overcome by considering the flux expression
as a one-dimensional boundary value problem along each edge between adjacent mesh nodes. The resulting
Scharfetter–Gummel (SG) scheme provides a robust discretization of the flux as it asymptotically approaches the
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numerically stable discretizations in the drift- (upwind scheme) and diffusion-dominated (central finite difference
scheme) limits. The SG-scheme and its several generalizations are nowadays widely used in semiconductor device
simulation [21,38] and have been extensively studied in the literature [4, 18,20,31].

Recently, an alternative flux discretization method, called square-root approximation (SQRA) scheme, has
been derived explicitly for high dimensional problems in molecular dynamics [33]. It was independently obtained
from a maximum entropy path principle [13] and from discretizing the Jordan–Kinderlehrer–Otto variational
formulation of the FPE [40]. In Section 3.2, we derive the SQRA from the theory of gradient flows. In contrast
to the SG-scheme, the SQRA is very recent and only sparsely investigated.

We point out that the SG and the SQRA schemes as well as others (e.g., the Chang–Cooper scheme [9])
are special cases of a family of discretization schemes based on weighted Stolarsky means [48], see Section 3.1,
allowing for a unified analysis. We provide further mathematical context in Section 1.2 below.

1.1. The FPE and the SG and SQRA discretization schemes

In this work, we consider the stationary Fokker–Planck equation in the formulations

−∇ · (𝜅∇𝑢)−∇ · (𝜅𝑢∇𝑉 ) = 𝑓, (1.1)
or div J(𝑢, 𝑉 ) = 𝑓 (1.2)

using the flux J(𝑢, 𝑉 ) = −𝜅(∇𝑢+ 𝑢∇𝑉 ), where 𝜅 > 0 is a (possibly space-dependent) diffusion coefficient and
𝑉 : Ω → R is a given potential. For simplicity of presentation, we study the case 𝜅 ≡ 1 but emphasize that
the results also hold for 𝜅 ∈ 𝐶2

(︀
Ω
)︀

with constants 0 < 𝜅 < 𝜅 < ∞ and 𝜅 ≤ 𝜅 ≤ 𝜅. The flux J consists of a
diffusive part 𝜅∇𝑢 and a drift part 𝜅𝑢∇𝑉 , which compensates for the stationary density 𝜋 = e−𝑉 (Boltzmann
distribution) as J(e−𝑉 , 𝑉 ) = 0. The right-hand side 𝑓 describes possible sink or source terms.

In what follows, we assume for simplicity of presentation 𝜅 ≡ 1 but we emphasize that the calculations hold
true also for the general case. However, super convergence of order 2 on cubic meshes only holds for 𝜅 ≡ const.

Assumption 1.1. Unless stated otherwise, we assume Ω ⊂ R𝑑 to be a polygonal convex bounded domain,
𝑉 ∈ 𝐶2

(︀
Ω
)︀
, 𝑓 ∈ 𝐿2(Ω) real-valued functions. The standard boundary conditions in (1.1) are the homogeneous

Dirichlet boundary conditions.

The assumption 𝑉 ∈ 𝐶2
(︀
Ω
)︀

implies strict positivity 𝜋 > 0. Using a transformation 𝑈 = 𝑢/𝜋 we find that
(1.1) is equivalent with

−∇ · (𝜋∇𝑈) = 𝑓. (1.3)

Discretizing (1.3) on an admissible mesh in the sense of Definition 10.1 in Chapter 3 of [17] or in [24] we write
𝒯 = (𝒱, ℰ ,𝒫) for the mesh consisting of convex polytope control volumes 𝒱 := {Ω𝑖, 𝑖 = 1, . . . , 𝑁} with mass
𝑚𝑖,(𝑑− 1)-dimensional flat interfaces ℰΩ = {𝜎𝑖,𝑗} with measure 𝑚𝑖,𝑗 and points 𝒫Ω = {𝑥𝑖, 𝑖 = 1, . . . , 𝑁} which
we sometimes call the cell centers. Two cells Ω𝑖, Ω𝑗 are neighbors if 𝜎𝑖,𝑗 := 𝜕Ω𝑖 ∩ 𝜕Ω𝑗 has positive measure and
we write 𝑖 ∼ 𝑗. If 𝑖 ∼ 𝑗, the distance of the cell centers is ℎ𝑖,𝑗 := |𝑥𝑖 − 𝑥𝑗 |.

In order to formulate discrete Dirichlet conditions, we follow [24] and enrich the mesh with finitely many points
𝒫𝜕Ω = (𝑦𝑘)𝑘 ⊂ 𝜕Ω and virtual interfaces ℰ𝜕Ω = {𝜎𝑖,𝑘 flat : ∃𝑖 with 𝜎𝑖,𝑘 ⊂ 𝜕Ω ∩ 𝜕Ω𝑖} i.e., for every flat segment
𝜎𝑖,𝑘 ⊂ 𝜕Ω∩ 𝜕Ω𝑖 we chose 𝑦𝑘 ∈ 𝜎𝑖,𝑘 such that (𝑦𝑘 − 𝑥𝑖)⊥𝜎𝑖,𝑘 and denote 𝑚𝑖,𝑘 := |𝜎𝑖,𝑘| with ℎ𝑖,𝑘 := |𝑦𝑘 − 𝑥𝑖|. We
further generalize the notation 𝑖 ∼ 𝑗 if 𝜎𝑖,𝑗 ⊂ 𝜕Ω𝑖 or 𝜎𝑖,𝑗 ⊂ 𝜕Ω𝑗 . Then, when summing up over the interfaces
in the calculations below, we do not have to distinguish between inner interface of type 𝜕Ω𝑖 ∩ 𝜕Ω𝑗 and outer
interfaces of type 𝜕Ω ∩ 𝜕Ω𝑖.

We finally denote 𝒫 = 𝒫Ω∪𝒫𝜕Ω and ℰ = ℰΩ∪ℰ𝜕Ω and write
∑︀

𝑗:𝑗∼𝑖 for the sum over all interfaces belonging
to Ω𝑖 and

∑︀
𝑗∼𝑖 for the sum over all interfaces ℰ .

Remark 1.2. Since Ω𝑖 are convex polytopes, the cones defined by 𝑥𝑖 and 𝜎𝑖,𝑗 are mutually disjoint. Hence,
writing ℰ(𝑥𝑖) = {𝜎𝑖,𝑗 ∈ ℰ : 𝜎𝑖,𝑗 ⊂ Ω𝑖} for 𝑑 ≥ 2 there exists a constant 𝐶𝑑 depending only on the dimension
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Table 1. Several mean values expressed as Stolarsky means 𝑆𝛼,𝛽 with corresponding weight
functions 𝐵𝛼,𝛽 , see equation (1.7). The geometric mean corresponds to the SQRA scheme, the
𝑆0,−1-mean to the Scharfetter–Gummel discretization.

Mean 𝛼 𝛽 𝛼 + 𝛽 𝑆𝛼,𝛽(𝑥, 𝑦) 𝐵𝛼,𝛽(𝑥)

Max +∞ 1 +∞ max (𝑥, 𝑦)

{︃
e−𝑥, 𝑥 ≤ 0

1, 𝑥 > 0

Quadratic mean 4 2 6
√︁

1
2
(𝑥2 + 𝑦2)

√︁
1
2
(1 + e−2𝑥)

Arithmetic mean 2 1 3 1
2
(𝑥 + 𝑦) 1

2

(︀
1 + e−𝑥

)︀

Logarithmic mean 1 0 1 (𝑥− 𝑦)/ log (𝑥/𝑦) 1
𝑥

(︀
1− e−𝑥

)︀

Geometric mean (SQRA) 1 −1 0
√

𝑥𝑦 e−𝑥/2

Scharfetter–Gummel mean 0 −1 −1 𝑥𝑦 log (𝑥/𝑦)/(𝑥− 𝑦) 𝑥/(e𝑥 − 1)

Harmonic Mean −2 −1 −3 2𝑥𝑦/(𝑥 + 𝑦) 2/(e𝑥 + 1)

Min −∞ 1 −∞ min (𝑥, 𝑦)

{︃
e𝑥, 𝑥 ≤ 0

1, 𝑥 > 0

such that
∀𝑖 : 𝐶−1

𝑑 𝑚𝑖 ≤
∑︁

𝜎𝑖,𝑗∈ℰ(𝑥𝑖)

𝑚𝑖,𝑗ℎ𝑖,𝑗 ≤ 𝐶𝑑𝑚𝑖.

Definition 1.3. Given a family of admissible meshes 𝒯ℎ = (𝒱ℎ, ℰℎ,𝒫ℎ) we denote for Ω𝑖 ∈ 𝒱ℎ the diameter
ℎ𝑖 = diamΩ𝑖. The family of meshes is called quasi uniform if for every 𝑥𝑖, 𝑥𝑗 ∈ 𝒫ℎ, 𝑖 ∼ 𝑗, it holds ℎ𝑖,𝑗 < ℎ and if
there exists 𝑅, 𝑟 > 0 independent from 𝒯ℎ such that the following holds: For every Ω𝑖 ∈ 𝒱ℎ there exists 𝑥 ∈ Ω𝑖

such that B𝑟ℎ𝑖
(𝑥) ⊂ Ω𝑖 ⊂ B𝑅ℎ𝑖

(𝑥).

We make the following proposal for a discretization of (1.3)

∀𝑥𝑖 ∈ 𝒫Ω −
∑︁
𝑗:𝑗∼𝑖

𝑚𝑖,𝑗

ℎ𝑖,𝑗
𝑆𝑖,𝑗(𝑈𝒯 ,𝑗 − 𝑈𝒯 ,𝑖) = 𝑚𝑖𝑓𝒯 ,𝑖, (1.4)

where 𝜋𝑖 = e−𝑉𝑖 , 𝑉𝑖 = 𝑉 (𝑥𝑖) resp. 𝑉𝑖 = 𝑉 (𝑦𝑖), 𝑓𝒯 ,𝑖 =
ffl
Ω𝑖
𝑓 is the average of 𝑓 over Ω𝑖,

∑︀
𝑗:𝑗∼𝑖 denotes the sum

over all neighbors of cell 𝑖 and 𝑆𝑖,𝑗 = 𝑆𝛼,𝛽(𝜋𝑖, 𝜋𝑗) is a Stolarsky mean of 𝜋𝑖 and 𝜋𝑗 [48]

𝑆𝛼,𝛽(𝑥, 𝑦) =
(︂
𝛽(𝑥𝛼 − 𝑦𝛼)
𝛼(𝑥𝛽 − 𝑦𝛽)

)︂ 1
𝛼−𝛽

, 𝛼 ̸= 0, 𝛽 ̸= 0, 𝛼 ̸= 𝛽, 𝑥 ̸= 𝑦. (1.5)

Stolarsky means can be extended to the critical points 𝛼 = 0, 𝛽 = 0, 𝛼 = 𝛽, 𝑥 = 𝑦 in a continuous way and
generalize the logarithmic mean and other means, see Table 1.

It is well known that (1.3) has a unique solution 𝑈 ∈ 𝐻2(Ω) ∩ 𝐻1
0 (Ω) satisfying homogeneous Dirichlet

boundary conditions and we demand that 𝑈𝒯 : 𝒫 → R as a solution of (1.4) satisfies discrete Dirichlet boundary
conditions. Then, the discrete linear operator in the above schemes is an 𝑀 -matrix and (1.4) with discrete
homogeneous Dirichlet conditions has a unique solution 𝑈𝒯 : 𝒫 → R.

Finally, we reverse the above discretization 𝑈 = 𝑢/𝜋 and obtain that 𝑢𝒯 ,𝑖 := 𝑈𝒯 ,𝑖𝜋𝑖 solves the discrete FPE

∀𝑥𝑖 ∈ 𝒫Ω −
∑︁
𝑗:𝑗∼𝑖

𝑚𝑖,𝑗

ℎ𝑖,𝑗
𝑆𝑖,𝑗

(︂
𝑢𝒯 ,𝑗

𝜋𝑗
− 𝑢𝒯 ,𝑖

𝜋𝑖

)︂
= 𝑚𝑖𝑓𝒯 ,𝑖, (1.6)
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Figure 1. (a) Weight functions 𝐵𝛼,𝛽 of the discrete flux scheme for different Stolarsky means
𝑆𝛼,𝛽 according to equation (1.7), cf. Table 1. (b) Weight functions for 𝛼 + 𝛽 = −1 using the
parametrization 𝛼 = −(1− 𝛿)/2, 𝛽 = −(1 + 𝛿)/2 for 𝛿 ≥ 0. The SG-mean (𝛼, 𝛽) = (0,−1) is
obtained for 𝛿 = 1. The grey shaded region indicates the full range 𝛿 = [0,∞), where the limit
𝛿 →∞ is given by the weight function e−𝑥/2 of the SQRA scheme.

To highlight the relation to the Scharfetter–Gummel (SG) scheme, we use the relation 𝑆𝛼,𝛽(𝑥, 𝑦) =
𝑥𝑆𝛼,𝛽(1, 𝑦/𝑥) and introduce the weight function

𝐵𝛼,𝛽(𝑥) = 𝑆𝛼,𝛽

(︀
1, e−𝑥

)︀
with 𝐵𝛼,𝛽(−𝑥) = e𝑥𝐵𝛼,𝛽(𝑥), (1.7)

such that equation (1.6) can equally be reformulated as

−
∑︁
𝑗:𝑖∼𝑗

𝑚𝑖,𝑗

ℎ𝑖,𝑗
(𝐵𝛼,𝛽(𝑉𝑖 − 𝑉𝑗)𝑢𝑗 −𝐵𝛼,𝛽(𝑉𝑗 − 𝑉𝑖)𝑢𝑖) = 𝑚𝑖𝑓𝒯 ,𝑖.

Two special cases of particular interest are

𝐵0,−1(𝑉𝑖 − 𝑉𝑗) =
𝑉𝑖 − 𝑉𝑗

e𝑉𝑖−𝑉𝑗 − 1
= 𝑆0,−1(𝜋𝑖, 𝜋𝑗)𝜋−1

𝑗 , (1.8)

𝐵1,−1(𝑉𝑖 − 𝑉𝑗) = e−
1
2 (𝑉𝑖−𝑉𝑗) = 𝑆1,−1(𝜋𝑖, 𝜋𝑗)𝜋−1

𝑗 . (1.9)

With regard to Table 1, these coefficients are known as the Bernoulli function 𝐵0,−1 (for SG) and the SQRA-
coefficient 𝐵1,−1. FV schemes with general weight functions 𝐵 have been investigated in [7, 35] (𝐵-schemes).
We emphasize here that the case 𝛼 = 0 and 𝛽 = −1 is indeed very special in the analysis but all schemes with
𝛼+ 𝛽 = −1 behave very similar.

To make this more clear, we write 𝐽𝑖,𝑗 := 𝑆𝑖,𝑗

ℎ𝑖,𝑗

(︁
𝑢𝒯 ,𝑗

𝜋𝑗
− 𝑢𝒯 ,𝑖

𝜋𝑖

)︁
. In the diffusion regime 𝑉 ≈ const we observe

for fixed 𝛼, 𝛽 that 𝐵𝛼,𝛽(𝑉𝑖 − 𝑉𝑗) ≈ e0𝑆𝛼,𝛽(1, 1) = 1 and 𝐽𝑖,𝑗 ≈ (𝑢𝑖 − 𝑢𝑗)/ℎ𝑖,𝑗 is reduced to the discrete diffusive
flux (Fig. 1).

In the drift-dominated regime, i.e., for |𝑉𝑗 − 𝑉𝑖| ≫ 1, the various 𝐵𝛼,𝛽 behave differently. While
𝐵1,−1(𝑉𝑖 − 𝑉𝑗) cannot be controlled in a reasonable way, we may introduce

𝐽∞𝑖,𝑗 := −𝑉𝑗 − 𝑉𝑖

ℎ𝑖,𝑗

{︃
𝑢𝑗 if 𝑉𝑗 > 𝑉𝑖

𝑢𝑖 if 𝑉𝑗 < 𝑉𝑖
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which is a robust discretization of the drift part of the flux, with 𝑢 being evaluated in the donor cell of the flux.
For 𝛼 = 0, 𝛽 = −1 we recover the upwind scheme, i.e.,⃒⃒

𝐽∞𝑖,𝑗
⃒⃒−1⃒⃒

𝐽𝑖,𝑗 − 𝐽∞𝑖,𝑗
⃒⃒
→ 0 as |𝑉𝑗 − 𝑉𝑖| → ∞. (1.10)

Hence, the Bernoulli function 𝐵0,−1 interpolates between the appropriate discretizations for the drift- and
diffusion-dominated limits, which is why the SG scheme is the preferred FV scheme for Fokker–Planck type
operators. Mathematically, this is formulated in Section 5.2.

For convenience, we often write 𝑂(ℎ𝑘) which means

there exists a constant 𝐶 not depending on ℎ, 𝒯 , 𝜋 s.t.
⃒⃒
𝑂(ℎ𝑘)

⃒⃒
≤ 𝐶|ℎ|𝑘 for ℎ→ 0. (1.11)

In this introduction, 𝐶 in (1.11) also depends on ‖𝑓‖𝐿2 and ‖𝜋‖𝐶2 . In recent years, convergence order has
been derived for many different schemes. In [32], quantitative convergence of order 𝑂(ℎ2) for several upwind
schemes on rectangular grids has been shown. In [2] the finite volume Scharfetter–Gummel discretization (of
steady convection diffusion equations) is connected to a finite element method and convergence of order 𝑂(ℎ) is
obtained by using results from [53]. Investigating general 𝐵-schemes, Chainais-Hillairet and Droniou [7] proved
strong convergence in 𝐿2 for the solutions of the FV scheme to the continuous solution. Recently, convergence
of order 𝑂(ℎ) for general 𝐵-schemes including SG, SQRA as well as Stolarsky means has been proved in 1D
[35]. Independently, convergence for the SQRA discretization has been investigated in [40] in 1D, Donati et al.
[14] (formally, rectangular meshes) and [26] using G-convergence on grids with random weights.

1.2. Major contributions of this work

We derive the order of convergence in the energy norm for general Stolarsky schemes benefiting from analytical
properties of Stolarsky means and using consistency theory in the sense of [11]. The error naturally splits into
the consistency error for the discretization of the Laplace operator (the consistency of the elliptic operator) plus
an error which is due to the convective part. Clearly, we have the possibility to study the error in terms of 𝑈 and
of 𝑢. While the error in terms of 𝑈 can be directly inferred from the diffusive estimate in Lemma 2.6, one can
also apply a splitting into diffusion- and convection-part of the error in terms of 𝑢. The order of convergence is in
general limited by the consistency of the mesh but can be improved up to order 𝑂(ℎ) in 𝑢 (on all Voronöı grids),
resp. 𝑂(ℎ2) in 𝑈 (on cubic grids). It is interesting to observe that the optimal Stolarsky mean can be different
in the variables 𝑢 and 𝑈 for the same problem on the same mesh. This is indicated by the numerical experiment
of Example 7.2.

The choice of the Stolarsky mean does basically not affect the rate of convergence in the variable 𝑈 . However,
in the variable 𝑢 the scheme 𝑆0,−1 (SG scheme) is special among all schemes as the additional error term which
is solely due to the convection and not the consistency of the grid is of order 𝑂(ℎ2) (Thm. 1.5), compared to
𝑂(ℎ) for the other schemes. Due to a perturbation result (Cor. 4.2), the good convergence properties of the
SG scheme carry over to every Stolarsky scheme where 𝛼 + 𝛽 = −1. However, in our 1-dimensional sample
calculations, this effect cannot be seen due to part 2 of Theorem 5.2 and the relation (1.16) below. On the other
hand, extensive 2d or 3d studies are beyond the scope of this work.

In what follows, we denote 𝐿2(𝒫) := {𝑈 : 𝒫Ω → R} and 𝐻𝒯 := {𝑈 : 𝒫 → R | 𝑈 |𝒫𝜕Ω ≡ 0} with the natural
imbedding 𝐻𝒯 →˓ 𝐿2(𝒫) and introduce the norms

∀𝑣 ∈ 𝐿2(𝒫), 𝑣 ∈ 𝐻:𝒯 : ‖𝑣‖2𝐻𝒯 :=
∑︁
𝑖∼𝑗

𝑚𝑖,𝑗

ℎ𝑖,𝑗
(𝑣𝑗 − 𝑣𝑖)

2
, ‖𝑣‖2𝐿2(𝒫) :=

∑︁
Ω𝑖

𝑚𝑖𝑣
2
𝑖 . (1.12)

We recall the discrete Poincaré inequality for zero boundary values ([17], Sect. 10.2)

∀𝑣 ∈ 𝐻𝒯 : ‖𝑣‖𝐿2(𝒫) ≤ 𝐶‖𝑣‖𝐻𝒯
, (1.13)
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where 𝐶 depends only on Ω but not on 𝒯 . Now, the discrete Poincaré inequality applied to (1.4) implies that
the solution 𝑈𝒯 satisfies uniformly the discrete a priori estimate

‖𝑈𝒯 ‖𝐻𝒯
≤ 𝐶‖𝑓𝒯 ‖𝐿2(𝒫Ω). (1.14)

Of course we cannot expect solutions of (1.4) to approximate solutions of (1.3) better than in the case 𝜋 = const.
We will acknowledge this in terms of 𝜙-consistency in Definition 2.8 below in a rigorous way. For the moment,
the reader may refer to 𝜙(ℎ)‖𝑈‖𝐻2(Ω) as the speed of convergence of the scheme (1.4) for constant 𝜋 = 1 and
continuous solution 𝑈 ∈ 𝐻2(Ω). Then, as we will see, we can express the general order of convergence for 𝑢𝒯
(sol. of (1.6)) towards 𝑢 (sol of (1.1)) in terms of 𝜙 plus some correcting terms.

Finally, given 𝑢 ∈ 𝐻2(Ω) in the following we set (ℛ𝒯 𝑢)(𝑦𝑗) = 𝑢(𝑦𝑗) for 𝑦𝑗 ∈ 𝒫𝜕Ω and

(ℛ𝒯 𝑢)𝑖 := 𝑢(𝑥𝑖) is the pointwise evaluation of 𝑢 in the centers of the cells Ω𝑖.

As a consequence of the Poincaré inequality (1.13) we can transfer order of convergence estimates on 𝑢𝒯
directly to 𝑈𝒯 and vice versa through the following relations: for 𝑈̃ ∈ 𝐻𝒯 with 𝑢̃ = 𝑈̃ℛ𝒯 𝜋

𝑈̃𝑗 − 𝑈̃𝑖 =
𝑢̃𝑗

𝜋𝑗
− 𝑢̃𝑖

𝜋𝑖
=

1
2

(𝑢̃𝑗 − 𝑢̃𝑖)
(︂

1
𝜋𝑗

+
1
𝜋𝑖

)︂
+

1
2

(𝑢̃𝑗 + 𝑢̃𝑖)
(︂

1
𝜋𝑗
− 1
𝜋𝑖

)︂
, (1.15)

𝑢̃𝑗 − 𝑢̃𝑖 = 𝜋𝑗𝑈̃𝑗 − 𝜋𝑖𝑈̃𝑖 =
1
2

(︁
𝑈̃𝑗 − 𝑈̃𝑖

)︁
(𝜋𝑗 + 𝜋𝑖) +

1
2

(︁
𝑈̃𝑗 + 𝑈̃𝑖

)︁
(𝜋𝑗 − 𝜋𝑖), (1.16)

which imply with help of Remark 1.2 that:⃦⃦⃦
𝑈̃
⃦⃦⃦

𝐻𝒯
≤
⃦⃦
𝜋−1

⃦⃦
∞‖𝑢̃‖𝐻𝒯

+ 2𝐶𝑑

⃦⃦
∇𝜋−1

⃦⃦
∞‖𝑢̃‖𝐿2(𝒫), (1.17)

‖𝑢̃‖𝐻𝒯
≤ ‖𝜋‖∞

⃦⃦⃦
𝑈̃
⃦⃦⃦

𝐻𝒯
+ 2𝐶𝑑‖∇𝜋‖∞

⃦⃦⃦
𝑈̃
⃦⃦⃦

𝐿2(𝒫)
. (1.18)

Hence it is, in principle, sufficient to derive order of convergence estimates in 𝑈 for (1.4) and transfering these
estimates to the solutions of (1.6).

Theorem 1.4. Let 𝑑 ≤ 3 and 𝒯ℎ = (𝒱ℎ, ℰℎ,𝒫ℎ) be a quasi uniform family of admissible meshes and let 𝑉
satisfy Assumption 1.1. Moreover, let 𝒯ℎ be 𝜙-consistent (Def. 2.8). If 𝑈 ∈ 𝐻2(Ω) ∩ 𝐻1

0 (Ω) is the solution of
(1.3) and 𝑈𝒯ℎ

the solution of (1.4) with discrete homogeneous Dirichlet boundary conditions then

‖𝑈𝒯ℎ
−ℛ𝒯ℎ

𝑈‖2𝐻𝒯ℎ
≤ 𝐶1‖𝜋‖2∞𝜙(ℎ)2 + 𝐶2ℎ

𝑘,

where 𝑘 = 2 in general and 𝑘 = 4 if the grid is cubic or 𝑑 = 1. Here, 𝐶1 and 𝐶2 depend only on 𝑑 and Ω, 𝑟
and 𝑅.

We provide a proof of Theorem 1.4 at the end of Section 6.
The convergence rate of 𝑈 is directly related to the convergence rate of the flux since J(𝑢, 𝑉 ) = −𝜋∇𝑈 .

Through (1.18) and the Poincaré inequality, we also get a rate of convergence for the variable 𝑢. However,
the second term on the right hand side of (1.16) is non-local since the 𝐿2(𝒫)-norm is controlled by the 𝐻𝒯 -
norm. Furthermore, we want to track the influence of the choices of the Stolarsky mean onto the quality of
convergence of 𝑢𝒯 . Also the proof of convergence of 𝑈𝒯 cannot explain the observed supremacy of the SG
coefficient. Therefore, we spend some effort in direct calculations based on 𝑢, despite the calculations in 𝑈 are
much easier. The result is the following

Theorem 1.5. Let 𝑑 ≤ 3 and 𝒯ℎ = (𝒱ℎ, ℰℎ,𝒫ℎ) be a quasi uniform family of admissible meshes and let 𝑉
satisfy Assumption 1.1. Moreover, let 𝒯ℎ be 𝜙-consistent (Def. 2.8). If 𝑢 ∈ 𝐻2(Ω) ∩ 𝐻1

0 (Ω) is the solution of
(1.1) and 𝑢𝒯ℎ

the solution of (1.6) with discrete homogeneous Dirichlet boundary conditions then

‖𝑢𝒯ℎ
−ℛ𝒯ℎ

𝑢‖2𝐻𝒯ℎ
≤ 𝐶1

(︁
‖𝑢‖2𝐻2 + ‖𝑢‖2∞‖𝑉 ‖

2
𝐻2

)︁
𝜙(ℎ)2 + 𝐶2ℎ

𝑘,
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where 𝑘 = 2 in general and 𝑘 = 4 if 𝛼 + 𝛽 = −1 and where 𝐶1 depends on Ω,𝑑, 𝑟 and 𝑅 and 𝐶2 additionally
depends on ‖𝑉 ‖𝐶2 and ‖𝑢‖𝐻2 .

We provide a proof of Theorem 1.5 at the end of Section 5.2.
This theorem compared to Theorem 1.4 shows that for non-cubic grids, the “higher order” error, which is

not due to the grid consistency, can be of one order smaller for the SG scheme than for the other schemes. This
is an information which was not possible to obtain from the considerations in 𝑈 .

Remark 1.6. As a consequence of former works (see Props. 2.9 and 2.10) it holds 𝜙(ℎ) = |ℎ| on Voronöı grids
and 𝜙(ℎ) = ℎ2 on cubic grids. This explains the next result.

Theorem 1.7. Let 𝑑 ≤ 3 and 𝒯ℎ = (𝒱ℎ, ℰℎ,𝒫ℎ) be a sequence of cubic grids ℎZ𝑑 and let 𝑉 satisfy Assump-
tion 1.1. If 𝑢 ∈ 𝐻2(Ω)∩𝐻1

0 (Ω) is the solution of (1.1) and 𝑢𝒯ℎ
the solution of (1.6) with discrete homogeneous

Dirichlet boundary conditions then
‖𝑢𝒯ℎ

−ℛ𝒯ℎ
𝑢‖2𝐻𝒯ℎ

≤ 𝐶ℎ𝑘,

where 𝑘 = 2 in general and 𝑘 = 4 if 𝛼+ 𝛽 = −1 and where 𝐶 depends on on Ω, 𝑑, ‖𝑉 ‖𝐶2 and ‖𝑢‖𝐻2 .

We provide a proof of Theorem 1.7 at the end of Section 6.
We note at this point, that these estimates are only “worst case” estimates, while the true rate of convergence

could also be better. In Section 4 we will see that the rate of convergence is close for different Stolarsky schemes
that share the same value of 𝛼+𝛽. i.e., the difference in the error due to switching 𝑆𝛼,𝛽 with 𝑆𝛼̃,𝛽 is of order ℎ3

if 𝛼̃+ 𝛽 = 𝛼+ 𝛽, see Proposition 4.1. This explains the shape of the error graphs in Figures 2a, 2c and 3a, 3c.
Furthermore, we observe that in case 𝑑 = 1 we always get order 2 convergence.
Although we treat the Stolarsky means as an explicit example, note that some of the main results also hold

for other smooth means.

1.3. Outline of this work

We recall the consistency theory of [11] in Section 2 and afterwards present two different points of view on
the derivation of the above numerical scheme in Section 3.

The mathematical investigation starts in Section 4. In Section 4 we observe that the variational consistency
error is close for two different Stolarsky means when they share the same value for 𝛼+𝛽. In Section 5 we prove
Theorem 1.5 in a version that uses the language of the variational consistency error and in Section 6 we do the
same with Theorem 1.7.

Finally, our main results are illustrated in Section 7 by numerical simulations.

2. Consistency and inf-sup stability

We use the framework of [11] and consider on an admissible mesh 𝒯 = (𝒱, ℰ ,𝒫) the space

𝐻𝒯 :=
{︀
𝑣 ∈ 𝐿2(𝒫) : 𝑣 satisfies hom. Dir. b.c.

}︀
with the norm ‖ · ‖𝐻𝒯

given in (1.12). We sometimes later also use the following notation for some positive
coefficient field Ω on ℰ :

‖𝑣‖𝐻𝒯 ,𝜔 :=

⎛⎝∑︁
𝑖∼𝑗

𝑚𝑖,𝑗

ℎ𝑖,𝑗
𝜔𝑖,𝑗(𝑣𝑗 − 𝑣𝑖)

2

⎞⎠ 1
2

.

Definition 2.1 (inf-sup stability). Let 𝒯ℎ = (𝒱ℎ, ℰℎ,𝒫ℎ) be a quasi uniform family of admissible meshes. A
family of bilinear forms 𝑎ℎ on 𝐻𝒯ℎ

is called uniformly inf-sup stable with respect to two norms ‖·‖ℎ,1, ‖·‖ℎ,2 if
there exists 𝛾 > 0 (independent from ℎ) such that

∀𝑢 ∈ 𝐻𝒯ℎ
: 𝛾‖𝑢‖ℎ,1 ≤ sup

𝑣∈𝐻𝒯ℎ

𝑎ℎ(𝑢, 𝑣)
‖𝑣‖ℎ,2

·
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Throughout this paper we write ℛℎ := ℛ𝒯ℎ
for simplicity and sometimes 𝑢𝑖 = (ℛ𝒯 𝑢)𝑖 if the meaning is clear

and no confusion with discrete variables occurs. For a continuous and coercive bilinear form 𝑎 : 𝐻1
0 (Ω)×𝐻1

0 (Ω) →
R, the associated linear operator 𝐴 : 𝐻2(Ω) → 𝐿2(Ω) is defined by

∀𝑢 ∈ 𝐻2(Ω) ∩𝐻1
0 (Ω), 𝑣 ∈ 𝐻1

0 (Ω) : 𝑎(𝑢, 𝑣) =
ˆ

Ω

𝑣 𝐴𝑢. (2.1)

Definition 2.2 (Consistency). Let 𝑎 : 𝐻1
0 (Ω) × 𝐻1

0 (Ω) → R be bilinear and continuous with linear operator
𝐴 such that (2.1) holds and let 𝒯ℎ = (𝒱ℎ, ℰℎ,𝒫ℎ) be a family of admissible meshes with 𝑎ℎ : 𝐻𝒯ℎ

×𝐻𝒯ℎ
→ R

continuous bilinear forms. The variational consistency error of 𝑎ℎ in 𝑢 ∈ 𝐻2(Ω) ∩ 𝐻1
0 (Ω) is the linear form

Eℎ(𝑢; · ) : 𝐻𝒯ℎ
→ R where

∀𝑣 ∈ 𝐻𝒯ℎ
: Eℎ(𝑢; 𝑣) :=

∑︁
𝑖

𝑣𝑖

ˆ
Ω𝑖

𝐴𝑢− 𝑎ℎ(ℛℎ𝑢, 𝑣). (2.2)

We say for the norm ‖ · ‖ℎ,2 on 𝐻𝒯ℎ
and 𝑢 ∈ 𝐻2(Ω) ∩𝐻1

0 (Ω) that consistency holds if

‖Eℎ(𝑢; · )‖ℎ,2,* := sup
𝜐∈𝐻𝒯ℎ

∖{0}

|Eℎ(𝑢; 𝜐)|
‖𝜐‖ℎ,2

→ 0 as ℎ→ 0.

Proposition 2.3 ([11], Thm. 10). Let 𝑎 : 𝐻1
0 (Ω) × 𝐻1

0 (Ω) → R be bilinear and continuous with 𝐴 such that
(2.1) holds and let 𝒯ℎ = (𝒱ℎ, ℰℎ,𝒫ℎ) be a family of admissible meshes with 𝑎ℎ : 𝐻𝒯ℎ

× 𝐻𝒯ℎ
→ R bilinear and

uniformly inf-sup stable forms. If 𝑢 ∈ 𝐻2(Ω) ∩𝐻1
0 (Ω) and 𝑢ℎ ∈ 𝐻𝒯ℎ

are solutions to

∀𝑣 ∈ 𝐻1
0 (Ω) : 𝑎(𝑢, 𝑣) =

ˆ
𝑓 𝑣 =

ˆ
𝐴𝑢𝑣; ∀𝑣 ∈ 𝐻𝒯ℎ

: 𝑎ℎ(𝑢ℎ, 𝑣) =
∑︁

𝑖

𝑣𝑖

ˆ
Ω𝑖

𝐴𝑢,

then it holds
‖𝑢ℎ −ℛℎ𝑢‖ℎ,1 ≤ 𝛾−1‖Eℎ(𝑢; · )‖ℎ,2,*. (2.3)

Using the above general insights, we introduce for 𝒯ℎ = (𝒱ℎ, ℰℎ,𝒫ℎ) the bilinear forms

𝑎FPE : 𝐻1
0 (Ω)×𝐻1

0 (Ω) → R (𝑢, 𝑣) ↦→
ˆ

Ω

∇𝑢 · ∇𝑣 + 𝑢∇𝑉 · ∇𝑣,

𝑎ℎ,FPE(𝑢, 𝑣) : 𝐻𝒯ℎ
×𝐻𝒯ℎ

→ R (𝑢, 𝑣) ↦→
∑︁
𝑖∼𝑗

𝑚𝑖,𝑗

ℎ𝑖,𝑗
𝑆𝑖,𝑗

(︂
𝑢𝑗

𝜋𝑗
− 𝑢𝑖

𝜋𝑖

)︂
(𝑣𝑗 − 𝑣𝑖),

with 𝐴FPE 𝑢 := −∇ · (∇𝑢+ 𝑢∇𝑉 ) and following (2.2)

∀𝑣 ∈ 𝐻𝒯ℎ
: Eℎ,FPE(𝑢; 𝑣) :=

∑︁
𝑖

𝑣𝑖

ˆ
Ω𝑖

𝐴FPE 𝑢− 𝑎ℎ,FPE(ℛℎ𝑢, 𝑣). (2.4)

Lemma 2.4. Under the Assumption 1.1 let 𝒯ℎ = (𝒱ℎ, ℰℎ,𝒫ℎ) be a quasi uniform family of admissible meshes.
Then 𝑎ℎ,FPE is uniformly inf-sup stable for ‖·‖ℎ,1 = ‖·‖ℎ,2 = ‖·‖𝐻𝒯ℎ

, where 𝛾 depends on Ω, inf|𝜋|, ‖𝜋‖∞ and
‖∇𝜋‖∞.

Remark 2.5. We could also consider inf-sup stability of 𝑎ℎ,FPE for ‖𝑢‖ℎ,1 :=
(︂∑︀

𝑖∼𝑗
𝑚𝑖,𝑗

ℎ𝑖,𝑗

(︁
𝑢𝑗

𝜋𝑗
− 𝑢𝑖

𝜋𝑖

)︁2
)︂ 1

2

and

‖·‖ℎ,2 = ‖·‖𝐻𝒯ℎ
. This will first lead to an estimate of ‖𝑈𝒯 −ℛ𝒯 𝑈‖𝐻𝒯ℎ

which then has to be transformed into
one on ‖𝑢𝒯 −ℛ𝒯 𝑢‖𝐻𝒯ℎ

using (1.17) and the Poincaré inequality. However, the speed of convergence for 𝑈 and
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𝑢 may be different, which is why we study both separately in Sections 5.1 and 5.2. Hence in what follows, we
will always consider for 𝑢𝒯 ∈ 𝐻𝒯ℎ

and E ∈ 𝐻*
𝒯ℎ

‖·‖ℎ,1 = ‖·‖ℎ,2 = ‖·‖𝐻𝒯ℎ
, ‖E‖𝐻*𝒯ℎ

:= sup
𝑣∈𝐻𝒯ℎ

∖{0}
‖𝑣‖−1

𝐻𝒯ℎ
|E(𝑣)|.

Proof of Lemma 2.4. Introducing 𝑢̄𝑖,𝑗 := 1
2 (𝑢𝑖 + 𝑢𝑗) and using (1.15), we obtain with the triangle inequality

2
∑︁
𝑖∼𝑗

𝑚𝑖,𝑗

ℎ𝑖,𝑗
𝑆𝑖,𝑗

(︁
(𝑈𝑗 − 𝑈𝑖)(𝑈𝑗 − 𝑈𝑖) + 𝑢̄2

𝑖,𝑗

(︀
𝜋−1

𝑗 − 𝜋−1
𝑖

)︀2)︁ ≥∑︁
𝑖∼𝑗

𝑚𝑖,𝑗

ℎ𝑖,𝑗
𝑆𝑖,𝑗

1
4

(︂
(𝜋𝑖 + 𝜋𝑗)
𝜋𝑖𝜋𝑗

)︂2

(𝑢𝑗 − 𝑢𝑖)
2
. (2.5)

Observing that ∑︁
𝑖∼𝑗

𝑚𝑖,𝑗

ℎ𝑖,𝑗
𝑆𝑖,𝑗 𝑢̄

2
𝑖,𝑗

(︀
𝜋−1

𝑗 − 𝜋−1
𝑖

)︀2 ≤ 2
∑︁

𝑖

𝑈2
𝑖

∑︁
𝑗:𝑗∼𝑖

𝑚𝑖,𝑗

ℎ𝑖,𝑗
𝑆𝑖,𝑗𝜋

2
𝑖

(︀
𝜋−1

𝑗 − 𝜋−1
𝑖

)︀2
and exploiting the discrete Poincaré inequality we observe that∑︁

𝑖∼𝑗

𝑚𝑖,𝑗

ℎ𝑖,𝑗
𝑆𝑖,𝑗(𝑈𝑗 − 𝑈𝑖)(𝑈𝑗 − 𝑈𝑖) ≥ 𝐶‖𝑢‖2𝐻𝒯ℎ

,

where 𝐶 depends on Ω, 0 < 𝑟 < 𝑅, inf|𝜋|, ‖𝜋‖∞ and ‖∇𝜋‖∞. On the other hand∑︁
𝑖∼𝑗

𝑚𝑖,𝑗

ℎ𝑖,𝑗
𝑆𝑖,𝑗(𝑈𝑗 − 𝑈𝑖)(𝑈𝑗 − 𝑈𝑖) = 𝑎ℎ,FPE(𝑢, 𝑈) ≤ sup

𝑣∈𝐻𝒯ℎ

𝑎ℎ,FPE(𝑢, 𝑣)
‖𝑣‖𝐻𝒯ℎ

‖𝑈‖𝐻𝒯ℎ
,

which together with (1.17) and (2.5) and the Poincaré inequality implies uniform inf-sup stability. �

Next we derive an estimate for ‖Eℎ,FPE(𝑢; · )‖𝐻*𝒯ℎ

. We introduce the diffusive part

𝑎D(𝑢, 𝑣) =
ˆ

Ω

∇𝑢 · ∇𝑣, 𝑎ℎ,D(𝑢, 𝑣) =
∑︁
𝑖∼𝑗

𝑚𝑖,𝑗

ℎ𝑖,𝑗
(𝑢𝑗 − 𝑢𝑖)(𝑣𝑗 − 𝑣𝑖),

with 𝐴D𝑢 := −∇ · (∇𝑢) and Eℎ,D(𝑢; · ) according to (2.2).

Lemma 2.6. Under the Assumption 1.1 let 𝒯ℎ = (𝒱ℎ, ℰℎ,𝒫ℎ) be a quasi uniform family of admissible meshes.
It holds

Eℎ,FPE(𝑢; 𝑣) = Eℎ,D(𝑢; 𝑣) + Eℎ,conv(𝑢; 𝑣), (2.6)

where the convective part of the consistency error is given by

Eℎ,conv(𝑢; 𝑣) =
∑︁
𝑖∼𝑗

(𝑣𝑗 − 𝑣𝑖)

(︃ˆ
𝜎𝑖,𝑗

𝑢∇𝑉 · 𝜈𝑖,𝑗 −
𝑚𝑖,𝑗

ℎ𝑖,𝑗

(︂
𝑆𝑖,𝑗 − 𝜋𝑗

𝜋𝑗
𝑢𝑗 −

𝑆𝑖,𝑗 − 𝜋𝑖

𝜋𝑖
𝑢𝑖

)︂)︃
. (2.7)

In particular, we obtain

‖Eℎ,FPE(𝑢; · )‖2𝐻*𝒯ℎ

≤ 2‖Eℎ,D(𝑢; ·)‖2𝐻*𝒯ℎ

+ 2‖Eℎ,conv(𝑢; ·)‖2𝐻*𝒯ℎ

,

‖Eℎ,D(𝑢; · )‖2𝐻*𝒯ℎ

≤
∑︁
𝑖∼𝑗

ℎ𝑖,𝑗

𝑚𝑖,𝑗

(︃ˆ
𝜎𝑖,𝑗

∇𝑢 · 𝜈𝑖,𝑗 −
𝑚𝑖,𝑗

ℎ𝑖,𝑗

(︁
(ℛℎ𝑢)𝑗 − (ℛℎ𝑢)𝑖

)︁)︃2

, (2.8)

‖Eℎ,conv(𝑢; · )‖2𝐻*𝒯ℎ

:=
∑︁
𝑖∼𝑗

ℎ𝑖,𝑗

𝑚𝑖,𝑗

(︃ˆ
𝜎𝑖,𝑗

𝑢∇𝑉 · 𝜈𝑖,𝑗 −
𝑚𝑖,𝑗

ℎ𝑖,𝑗

(︂
𝑆𝑖,𝑗 − 𝜋𝑗

𝜋𝑗
𝑢𝑗 −

𝑆𝑖,𝑗 − 𝜋𝑖

𝜋𝑖
𝑢𝑖

)︂)︃2

. (2.9)
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We remark that estimate (2.8) was explicitly proved in [11].

Proof. In what follows, we combine ideas of the proofs of Theorem 27 and 33 in [11]. However, since our grid
and our coefficients have a simple structure, our calculations are much shorter. Then we obtain

𝑆𝑖,𝑗

(︂
𝑢𝑗

𝜋𝑗
− 𝑢𝑖

𝜋𝑖

)︂
= (𝑢𝑗 − 𝑢𝑖) +

(︂
𝑆𝑖,𝑗 − 𝜋𝑗

𝜋𝑗
𝑢𝑗 −

𝑆𝑖,𝑗 − 𝜋𝑖

𝜋𝑖
𝑢𝑖

)︂
and hence

Eℎ,FPE(𝑢; 𝑣) =
∑︁
𝑖∼𝑗

(𝑣𝑗 − 𝑣𝑖)

(︃ˆ
𝜎𝑖,𝑗

∇𝑢 · 𝜈𝑖,𝑗 −
𝑚𝑖,𝑗

ℎ𝑖,𝑗
(𝑢𝑗 − 𝑢𝑖)

)︃

+
∑︁
𝑖∼𝑗

(𝑣𝑗 − 𝑣𝑖)

(︃ˆ
𝜎𝑖,𝑗

𝑢∇𝑉 · 𝜈𝑖,𝑗 −
𝑚𝑖,𝑗

ℎ𝑖,𝑗

(︂
𝑆𝑖,𝑗 − 𝜋𝑗

𝜋𝑗
𝑢𝑗 −

𝑆𝑖,𝑗 − 𝜋𝑖

𝜋𝑖
𝑢𝑖

)︂)︃
.

From here we conclude by the definition of Eℎ(𝑢; · ) and a direct calculation. �

A particular focus of the calculations below will lie on the following structure. For a functions 𝑔 ∈ 𝐶
(︀
Ω
)︀

and
𝑔𝒯 : ℰℎ → R with 𝑔𝒯 (𝜎𝑖,𝑗) = 𝑔𝑖,𝑗 = 𝑔𝑗,𝑖, we introduce

𝑎𝑔(𝑢, 𝑣) =
ˆ

Ω

∇𝑢 · 𝑔∇𝑣, 𝑎ℎ,𝑔(𝑢, 𝑣) =
∑︁
𝑖∼𝑗

𝑚𝑖,𝑗

ℎ𝑖,𝑗
𝑔𝑖,𝑗(𝑢𝑗 − 𝑢𝑖)(𝑣𝑗 − 𝑣𝑖),

with 𝐴𝑔𝑢 := −∇ · (𝑔∇𝑢) and Eℎ,𝑔(𝑢; · ) accordingly.

Lemma 2.7. Let 𝒯 = (𝒱, ℰ ,𝒫) be a mesh and 𝑑 ≤ 3. Let 𝑔 ∈ 𝐶
(︀
Ω
)︀

and let 𝑔𝒯 ∈ ℰ* with 𝑔𝒯 (𝜎𝑖,𝑗) = 𝑔𝑖,𝑗 = 𝑔𝑗,𝑖.
Then for every 𝑢 ∈ 𝐻2(Ω) it holds

‖Eℎ,𝑔(𝑢; · )‖2𝐻*𝒯 ≤
(︂

sup
𝑖,𝑗
|𝑔𝑖,𝑗 |

)︂
‖Eℎ(𝑢; · )‖2𝐻*𝒯 +

∑︁
𝑖∼𝑗

ℎ𝑖,𝑗

𝑚𝑖,𝑗

(︃ˆ
𝜎𝑖,𝑗

(𝑔 − 𝑔𝑖,𝑗)∇𝑢 · 𝜈𝑖,𝑗

)︃2

.

Proof. This follows from decomposing 𝑔∇𝑢 · 𝜈𝑖,𝑗 = 𝑔𝑖,𝑗∇𝑢 · 𝜈𝑖,𝑗 + (𝑔 − 𝑔𝑖,𝑗)∇𝑢 · 𝜈𝑖,𝑗 on 𝜎𝑖,𝑗 . �

With regard to (2.3), the above considerations motivate the following definition.

Definition 2.8 (𝜙-consistency). Let 𝒯ℎ = (𝒱ℎ, ℰℎ,𝒫ℎ) be a quasi uniform family of admissible meshes. We say
that 𝒯ℎ is 𝜙-consistent if for every 𝑢 ∈ 𝐻2(Ω) ∩𝐻1

0 (Ω) there exists 𝐶 ≥ 0 such that for every ℎ > 0

‖Eℎ,D(𝑢; · )‖𝐻*𝒯ℎ

≤ 𝐶‖𝑢‖𝐻2𝜙(ℎ).

Hence, we immediately obtain the following.

Proposition 2.9 (A consistency result [24]). Let 𝑑 ≤ 3 and 𝒯ℎ = (𝒱ℎ, ℰℎ,𝒫ℎ) be a family of admissible meshes.
Then (𝒯ℎ)ℎ>0 is 𝜙-consistent with 𝜙(ℎ) = ℎ, i.e.,

‖Eℎ,D(𝑢; · )‖𝐻*𝒯ℎ

≤ 𝐶‖𝑢‖𝐻2ℎ,

where 𝐶 depends only on Ω and 𝑑. We say that the mesh is ℎ-consistent.

Proposition 2.10 ([50]). Let 𝑑 ≤ 3 and let the mesh 𝒯ℎ be cubic with all cubes of equal size ℎ. Then the family
of meshes is ℎ2-consistent with 𝜙(ℎ) = ℎ2, i.e.,

‖Eℎ,D(𝑢; · )‖𝐻*𝒯ℎ,1
≤ 𝐶‖𝑢‖𝐻2ℎ

2.
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The following proposition explains why we can expect order 2 convergence in the 1d case when the grid is
Voronoi.

Proposition 2.11. Let 𝑑 = 1 such that 𝜎𝑖,𝑗 = 𝑥𝑖,𝑗 is one single point. Let then the mesh 𝒯ℎ be Voronoi, i.e.,
|𝑥𝑖 − 𝑥𝑖,𝑗 | = |𝑥𝑗 − 𝑥𝑖,𝑗 | for every neighboring pair 𝑖, 𝑗. Then

‖Eℎ,D(𝑢; · )‖2𝐻*𝒯ℎ

≤ 𝐶

{︃
‖𝑢‖2𝐻2

∑︀
𝑖∼𝑗 ℎ

4
𝑖,𝑗 if 𝑢 ∈ 𝐻2(Ω)

‖𝑢‖2𝐶2

∑︀
𝑖∼𝑗 ℎ

5
𝑖,𝑗 if 𝑢 ∈ 𝐶2

(︀
Ω
)︀ , (2.10)

where 𝐶 > 0 depends only on Ω, 𝑑. Furthermore,

∑︁
𝑖∼𝑗

ℎ𝑖,𝑗

𝑚𝑖,𝑗

(︃ˆ
𝜎𝑖,𝑗

(𝑔 − 𝑔𝑖,𝑗)∇𝑢 · 𝜈𝑖,𝑗

)︃2

≤ 𝐶‖𝑢‖2𝐻2‖𝑔‖2𝐻2

∑︁
𝑖∼𝑗

ℎ5
𝑖,𝑗 (2.11)

provided 𝑔 ∈ 𝐻2(Ω) and 𝑔𝑖,𝑗 = 𝑆𝛼,𝛽(𝑔𝑖, 𝑔𝑗) for some 𝛼, 𝛽 and for 𝑔𝑖 = (ℛ𝒯 𝑔)𝑖, 𝑔𝑗 = (ℛ𝒯 𝑔)𝑗 and where
𝑆𝛼,𝛽 is twice boundedly differentiable on 𝑅𝑔 :=

{︀
(𝑔(𝑥), 𝑔(𝑦)) ∈ R2 : 𝑥, 𝑦 ∈ Ω

}︀
. The constant 𝐶 then depends on

‖𝑆𝛼,𝛽‖𝐶2(𝑅𝑔).

Remark. We observe that 𝑆𝛼,𝛽 is not twice differentiable in (0, 0) for most choices of 𝛼 and 𝛽. However, for
𝛼 = 2, 𝛽 = 1 this is the case.

Proof. Throughout this proof, 𝐶(𝛼, 𝛽,𝑅𝑔) is a constant changing from line to line depending only on (𝛼, 𝛽,𝑅𝑔).
Note that 𝑚𝑖,𝑗 = 1 and 𝜎𝑖,𝑗 = 𝑥𝑖,𝑗 consists of one single point. Furthermore, since 𝑆𝛼,𝛽 is twice boundedly
differentiable on 𝑅𝑔 we find sup𝑖,𝑗

⃒⃒
𝐷2𝑆𝛼,𝛽(𝑔𝑖, 𝑔𝑗)

⃒⃒
≤ 𝐶(𝛼, 𝛽,𝑅𝑔).

Step 1. We first prove the second statement. Since

𝑔𝑖 − 𝑔(𝑥𝑖,𝑗) = 𝑔′(𝑥𝑖,𝑗) · (𝑥𝑖 − 𝑥𝑖,𝑗) +
ˆ 𝑥𝑖−𝑥𝑖,𝑗

0

𝑠2𝑔′′(𝑠+ 𝑥𝑖,𝑗) d𝑠 (2.12)

and 𝑥𝑖 − 𝑥𝑖,𝑗 = 𝑥𝑖,𝑗 − 𝑥𝑗 it follows⃒⃒⃒⃒
1
2

(𝑔𝑖 − 𝑔(𝑥𝑖,𝑗)) +
1
2

(𝑔𝑗 − 𝑔(𝑥𝑖,𝑗))
⃒⃒⃒⃒
≤

⃒⃒⃒⃒
⃒
ˆ ℎ𝑖,𝑗/2

−ℎ𝑖,𝑗/2

𝑠2𝑔′′(𝑠+ 𝑥𝑖,𝑗) d𝑠

⃒⃒⃒⃒
⃒. (2.13)

Furthermore, since 𝑔𝑖,𝑗 = 𝑆𝛼,𝛽(𝑔𝑖, 𝑔𝑗) and 𝑔(𝑥𝑖,𝑗) = 𝑆𝛼,𝛽(𝑔(𝑥𝑖,𝑗), 𝑔(𝑥𝑖,𝑗)) and for every 𝑥 > 0 it holds
𝜕𝑥𝑆𝛼,𝛽(𝑥, 𝑥) = 𝜕𝑦𝑆𝛼,𝛽(𝑥, 𝑥) = 1

2 and 𝑆𝛼,𝛽 is twice boundedly differentiable on 𝑅𝑔 we find from Taylors
formula for some constant 𝐶(𝛼, 𝛽,𝑅𝑔)⃒⃒⃒⃒

𝑔𝑖,𝑗 − 𝑔(𝑥𝑖,𝑗)− 1
2

(𝑔𝑖 − 𝑔(𝑥𝑖,𝑗))− 1
2

(𝑔𝑗 − 𝑔(𝑥𝑖,𝑗))
⃒⃒⃒⃒
≤ 𝐶(𝛼, 𝛽,𝑅𝑔)

⃒⃒⃒⃒(︂
𝑔𝑖 − 𝑔(𝑥𝑖,𝑗)
𝑔𝑗 − 𝑔(𝑥𝑖,𝑗)

)︂⃒⃒⃒⃒2
, (2.14)

From (2.12) to (2.14) we conclude (2.11) using 𝜎𝑖,𝑗 = 𝑥𝑖,𝑗 and

|𝑔(𝑥𝑖,𝑗)− 𝑔𝑖,𝑗 | ≤
⃒⃒⃒⃒
𝑔𝑖,𝑗 − 𝑔(𝑥𝑖,𝑗)− 1

2
(𝑔𝑖 − 𝑔(𝑥𝑖,𝑗))− 1

2
(𝑔𝑗 − 𝑔(𝑥𝑖,𝑗))

⃒⃒⃒⃒
+
⃒⃒⃒⃒
1
2

(𝑔𝑖 − 𝑔(𝑥𝑖,𝑗)) +
1
2

(𝑔𝑗 − 𝑔(𝑥𝑖,𝑗))
⃒⃒⃒⃒
.

Step 2. In view of (2.8) the first statement follows from⃒⃒⃒⃒
∇𝑢 · 𝜈𝑖,𝑗 −

1
ℎ𝑖,𝑗

(︁
(ℛℎ𝑢)𝑗 − (ℛℎ𝑢)𝑖

)︁⃒⃒⃒⃒
≤ ℎ−1

𝑖,𝑗

ˆ ℎ𝑖,𝑗/2

−ℎ𝑖,𝑗/2

𝑠2𝑢′′(𝑠+ 𝑥𝑖,𝑗) d𝑠

and a similar argument as in Step 1.

�
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3. Derivation of the methods and heuristic comparison

In this section, we repeat the original derivation of the Scharfetter–Gummel scheme in a more general way
and show that both the SG and the SQRA scheme are members of a huge family of discretization schemes. Then
we provide a physically motivated derivation of the SQRA scheme which assigns the SQRA a special place in
the family of Stolarsky discretizations.

3.1. A family of discretization schemes

In one dimension, the Scharfetter–Gummel scheme for the discrete flux on the interval [0, ℎ] is derived in [47]
under the assumption of constant flux 𝐽 and constant diffusion coefficient 𝜅 on [0, ℎ]. In particular, we consider
the two-point boundary value problem

𝐽 = −𝜅(𝑢′(𝑥) + 𝑢(𝑥)𝑉 ′(𝑥)) on [0, ℎ], 𝑢(0) = 𝑢0, 𝑢(ℎ) = 𝑢ℎ, (3.1)

for a general potential 𝑉 : [0, ℎ] → R. The solution reads

𝑢(𝑥) = −
(︂

1
𝜅
𝐽

ˆ 𝑥

0

e𝑉 + 𝑢0e𝑉 (0)

)︂
e−𝑉 (𝑥).

The flux can be computed explicitly under the assumption 𝐽 = const and setting 𝑥 = ℎ in the above formula.
Writing 𝑉0 = 𝑉 (0) and 𝑉ℎ = 𝑉 (ℎ) this yields

𝐽 = −𝜅𝑢ℎe𝑉ℎ − 𝑢0e𝑉0´ ℎ

0
e𝑉

= −𝜅 1
ℎ

(︃
1
ℎ

ˆ ℎ

0

𝜋−1

)︃−1(︂
𝑢ℎ

𝜋ℎ
− 𝑢0

𝜋0

)︂
= −𝜅𝜋mean

1
ℎ

(︂
𝑢ℎ

𝜋ℎ
− 𝑢0

𝜋0

)︂

for the averaged 𝜋mean =
(︁

1
ℎ

´ ℎ

0
𝜋−1

)︁−1

. In particular, for affine 𝑉 (𝑥) = 𝑉ℎ−𝑉0
𝑥ℎ−𝑥0

(𝑥− 𝑥0)+𝑉0, one easily calculates

𝜋mean = (𝑉ℎ − 𝑉0)/
(︀
e𝑉ℎ − e𝑉0

)︀
, which yields the Scharfetter–Gummel discretization. However, a potential can

also be approximated not by piecewise affine interpolation but in other ways, resulting in different means 𝜋mean.
We provide an example of such an approximation for the SQRA in the Appendix A.2.

Generalizing the later considerations to higher dimensions, we find for the flux on the edge between two
neighboring points in the discretization the expression

𝐽𝑆
𝑖,𝑗𝑢

𝒯 := −
ℎ𝑖,𝑗

𝑆𝑖,𝑗

(︃
𝑢𝒯𝑗
𝜋𝑗

− 𝑢𝒯𝑖
𝜋𝑖

)︃
, (3.2)

where relates to 𝜅 and 𝑆𝑖,𝑗 relates to 𝜋mean.
We aim to express 𝜋mean by means of the values 𝜋0 and 𝜋ℎ at the boundaries. The choice of this average is

non-trivial and determines the quality of the discretization scheme, as we will see below. In the present work,
we focus on the (weighted) Stolarsky mean, putting 𝜋mean = 𝑆(𝜋𝑖, 𝜋𝑗) although there are also other means like
general 𝑓 -means (𝑀𝑓 (𝑥, 𝑦) = 𝑓

(︀[︀
𝑓−1(𝑥) + 𝑓−1(𝑦)

]︀
/2
)︀

for a strictly increasing function 𝑓). The Stolarsky mean
has the advantage that it is a closed formula for a broad family of popular means and that its derivatives can
be computed explicitly. Moreover, we can – at least in theory – choose different 𝑆𝛼,𝛽 on each interface.

Interestingly, the derivation of the SQRA in Section 2.2 of [33] relies on the assumption that the flux through
a FV-interface has to be proportional to

(︀
𝑢𝒯𝑗 /𝜋𝑗 − 𝑢𝒯𝑖 /𝜋𝑖

)︀
with the proportionality factor given by a suitable

mean of 𝜋𝑖 and 𝜋𝑗 . The choice of 𝑆−1,1 in [33] seems arbitrary, yet it yields very good results [14,19,51].

3.2. The Wasserstein gradient structure of the Fokker–Planck operator and the SQRA
method

The choice of 𝑆𝛼,𝛽 is crucial for the convergence properties but also from a physical point of view. A physically
reasonable discretization is not necessarily the best from the rate of convergence point of view and vice versa,
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compare with numerical simulations in Section 7. However, the physical consideration is helpful to understand
the family of discretizations from a different point of view.

In [30] it was proved that the Fokker–Planck equation

𝑢̇ = ∇ · (𝜅∇𝑢+ 𝜅𝑢∇𝑉 ) (3.3)

has the gradient flow formulation 𝑢̇ = 𝜕𝜉Ψ*(𝑢,−D𝐸(𝑢)) where

𝐸(𝑢) =
ˆ

Ω

𝑢 log 𝑢+ 𝑉 𝑢− 𝑢+ 1 =
ˆ

Ω

𝑢 log
(︁𝑢
𝜋

)︁
− 𝑢+ 1, Ψ*(𝑢, 𝜉) =

1
2

ˆ
Ω

𝜅𝑢|∇𝜉|2, (3.4)

and 𝜋 = e−𝑉 is the stationary solution of (3.3). Indeed, one easily checks that D𝐸(𝑢) = log 𝑢 + 𝑉 = log(𝑢/𝜋)
and 𝜕𝜉Ψ*(𝑢, 𝜉) = −∇ · (𝜅𝑢∇𝜉) such that it formally holds

𝜕𝜉Ψ*(𝑢, 𝜉)|𝜉=−D𝐸(𝑢) = −∇ · (𝜅𝑢∇𝜉)|𝜉=−D𝐸(𝑢) = ∇ ·
(︂
𝜅𝑢

(︂
∇𝑢
𝑢

+∇𝑉
)︂)︂

= ∇ · (𝜅∇𝑢+ 𝜅𝑢∇𝑉 ) = 𝑢̇.

However, the simple parabolic equation 𝜕𝑡𝑢 = 𝛥𝑢 can be described either by (3.4) with 𝑉 = 0 or by the choice
𝐸(𝑢) =

´
𝑢2 with Ψ*(𝜉) =

´
|∇𝜉|2, which plays a role in phase field modeling (see [28] and references therein)

or 𝐸(𝑢) = −
´

log 𝑢 with Ψ*(𝜉) =
´
𝑢2|∇𝜉|2.

Due to this non uniqueness, one might pose the question about “natural” gradient structures of the dis-
cretization schemes that incorporate the underlying physical principles in a discretized way. The discrete energy
functional is clearly prescribed by (3.4) with the natural discrete analogue

𝐸𝒯 (𝑢) =
∑︁

𝑖

𝑚𝑖

(︂
𝑢𝑖 log

(︂
𝑢𝑖

𝜋𝑖

)︂
− 𝑢𝑖 + 1

)︂
. (3.5)

Since we identified the continuous flux to be J = −𝜅𝜋∇𝑈 with 𝑈 = 𝑢/𝜋, we expect the form

𝑢̇𝑖𝑚𝑖 = 𝜕𝜉Ψ*𝒯 (𝑢,−D𝐸𝒯 (𝑢)) =
∑︁
𝑗:𝑖∼𝑗

𝑚𝑖,𝑗

ℎ𝑖,𝑗
𝜋𝑖,𝑗

(︂
𝑢𝑗

𝜋𝑗
− 𝑢𝑖

𝜋𝑖

)︂
(3.6)

for some suitably averaged 𝜋𝑖,𝑗 . Equation (3.6) can be understood as a time-reversible (or detailed balanced)
Markov process on the finite state space 𝒫. Recently, various different gradient structures have been suggested
for (3.6): [10, 16, 36, 39, 40] for a quadratic dissipation as a generalization of the Jordan–Kinderlehrer–Otto
approach; and [43,44], where a dissipation of cosh-type was appeared in the large deviation rate functional for
a hydrodynamic limit of an interacting particle system. All of them can be written in the abstract form

Ψ*𝒯 (𝑢, 𝜉) =
1
2

∑︁
𝑖

1
𝑚𝑖

∑︁
𝑗:𝑖∼𝑗

𝑚𝑖,𝑗

ℎ𝑖,𝑗
𝑆𝑖,𝑗𝑎𝑖,𝑗(𝑢, 𝜋)𝜓*(𝜉𝑖 − 𝜉𝑗), (3.7)

𝑎𝑖,𝑗(𝑢, 𝜋) =
(︂
𝑢𝑖

𝜋𝑖
− 𝑢𝑗

𝜋𝑗

)︂
𝜕𝜉𝜓

*
(︂

log
(︂
𝑢𝑖

𝜋𝑖

)︂
− log

(︂
𝑢𝑗

𝜋𝑗

)︂)︂−1

. (3.8)

Any positive, normalized and convex function 𝜓* defines a mathematically valid dissipation functional Ψ* by
(3.7) and (3.8). A special case is when choosing for 𝜓* and exponentially fast growing function 𝜓*(𝑟) := C*(𝑟) :=
2(cos ℎ(𝑟/2)− 1). Then 𝑎𝑖,𝑗 simplifies to

𝑎𝑖,𝑗(𝑢, 𝜋) =
√︂
𝑢𝑖𝑢𝑗

𝜋𝑖𝜋𝑗
,

and hence, providing the square roots. Choosing 𝑆𝑖,𝑗 = √
𝜋𝑖𝜋𝑗 , we obtain the form

Ψ*𝒯 (𝑢, 𝜉) =
∑︁

𝑖

∑︁
𝑗:𝑖∼𝑗

𝑚𝑖,𝑗ℎ𝑖,𝑗
√
𝑢𝑖𝑢𝑗

1
ℎ2

𝑖,𝑗

C*(𝜉𝑖 − 𝜉𝑗). (3.9)
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The gradient structure of discrete equations has recently attracted a lot of interest. An intense research has
developed after [5, 6], first highlighting the benefit of gradient structures for the convergence analysis. Besides
the classical convergence analysis, further benefits are, e.g., the preservation of the large time behavior [8]. A
further recent study on the discrete gradient flows from the more analytical point of view is [46]. There are
(at least) three further good reasons why choosing this gradient structure and modeling fluxes in exponential
terms: a historical, a mathematical and a physical:

(1) Already in Marcelin’s Ph.D. thesis from 1915 [37] exponential reaction kinetics have been derived, which
are still common in chemistry literature.

(2) Recently, convergence for families of gradient systems has been derived based on the energy-dissipation
principle (the so-called EDP-convergence [15,34,41]). Vice versa, the above cosh-gradient structure appears
as an effective gradient structure applying EDP-convergence to Wasserstein gradient flow problems [23,34].

(3) The dissipation mechanism Ψ* of (3.4) is totally independent of the particular form of the energy ℰ ,
which is determined by the potential 𝑉 . This is physically understandable, since a change of the potential
energy should not influence the dissipation structure. The same holds for the discretized version (3.9). In
fact it was shown in [42] (with a similar proof in an earlier version of our paper), that the only discrete
gradient structure, where the dissipation does not depend on 𝑉 , is the cosh-gradient structure with 𝑆𝑖,𝑗 =
𝑆−1,1(𝜋𝑖, 𝜋𝑗).

Remark 3.1 (Convergence of energy and dissipation functional). Γ-convergence of 𝐸𝒯
Γ→ 𝐸 can be shown if

the fineness of 𝒯 tends to 0 since 𝑢 ↦→ 𝑢 log(𝑢/𝜋)−𝑢 is convex. For the dissipation potentials Ψ*𝒯 (𝑢, 𝜉) we observe

for smooth functions 𝑢 and 𝜉 that 1
ℎ2

𝑖,𝑗
C*(𝜉𝑖 − 𝜉𝑗) = 1

2

(︁
x𝑖−x𝑗

|𝑥𝑖−𝑥𝑗 | · ∇𝜉
)︁2

+𝑂(ℎ2
𝑖,𝑗) and √𝑢𝑖𝑢𝑗 ≈ 𝑢

(︀
1
2 (𝑥𝑖 + 𝑥𝑗)

)︀
. For

small mesh size, we get approximately Ψ*𝒯 (𝑢, 𝜉) ≈ 1
2

´
Ω
𝜅𝑢|∇𝜉|2.

For quadratic dissipation, qualitative convergence results using the underlying gradient structure and the
energy-dissipation principle are obtained in [12] in 1D, and in [22] for multiple dimensions. In [25] convergence
of the associated metric is proved.

4. Comparison of discretization schemes

We consider two different smooth mean coefficients 𝑆𝑖,𝑗 = 𝑆(𝜋𝑖, 𝜋𝑗) and 𝑆𝑖,𝑗 = 𝑆(𝜋𝑖, 𝜋𝑗) for two different
Stolarsky means 𝑆 and 𝑆. In view of (2.4) they both come up with their own consistency E𝑆

ℎ,FPE(𝑢; · ) resp.

E𝑆
ℎ,FPE(𝑢; · ) from Lemma 2.6 and a short calculation reveals that

E𝑆
ℎ,FPE(𝑢; 𝑣) = E𝑆

ℎ,FPE(𝑢; 𝑣) +
∑︁
𝑖∼𝑗

𝑚𝑖,𝑗

ℎ𝑖,𝑗

(︁
𝑆𝑖,𝑗ℛℎ

𝑢

𝜋
− 𝑆𝑖,𝑗ℛℎ

𝑢

𝜋

)︁
(𝑣𝑗 − 𝑣𝑖). (4.1)

Relating to (1.11) we introduce 𝑂𝜋(𝑥𝑘) through

there exists 𝐶 depending only on 𝑑,Ω, 𝛼, 𝛽 and ‖𝜋‖∞ s.t.
⃒⃒
𝑂𝜋(𝑥𝑘)

⃒⃒
≤ 𝐶|𝑥|𝑘.

The derivatives of a general Stolarsky mean 𝑆𝛼,𝛽 satisfy in 𝑥 = 𝑦 ̸= 0 (see Appendix A.1)

𝜕𝑥𝑆𝛼,𝛽(𝑥, 𝑥) = 𝜕𝑦𝑆𝛼,𝛽(𝑥, 𝑥) =
1
2
,

𝜕2
𝑥𝑆𝛼,𝛽(𝑥, 𝑥) = 𝜕2

𝑦𝑆𝛼,𝛽(𝑥, 𝑥) = −𝜕2
𝑥𝑦𝑆𝛼,𝛽(𝑥, 𝑥) = −𝜕2

𝑦𝑥𝑆𝛼,𝛽(𝑥, 𝑥) =
1

12𝑥
(𝛼+ 𝛽 − 3), (4.2)

so we have the following expansion of 𝑆𝑖,𝑗 : writing 𝜋𝑖,𝑗 = 1
2 (𝜋𝑖 + 𝜋𝑗), 𝜋+ = 𝜋− = 1

2 (𝜋𝑖 − 𝜋𝑗) and 𝜋𝑖 = 𝜋0 + 𝜋+

and 𝜋𝑗 = 𝜋0 − 𝜋− we obtain from Taylor’s formula

𝑆𝑖,𝑗 = 𝑆𝛼,𝛽(𝜋𝑖,𝑗 , 𝜋𝑖,𝑗) +
1
2

(𝜋+ − 𝜋−) +
1
2
𝜕2

𝑥𝑆𝛼,𝛽(𝜋𝑖,𝑗 , 𝜋𝑖,𝑗)(𝜋+ + 𝜋−)2 +𝑂𝜋

(︀
𝜋3
±
)︀
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= 𝜋𝑖,𝑗 +
1
3 (𝛼+ 𝛽)− 1

8𝜋𝑖,𝑗
(𝜋𝑖 − 𝜋𝑗)2 +𝑂𝜋(𝜋𝑖 − 𝜋𝑗)3, (4.3)

and hence

𝑆𝑖,𝑗 − 𝑆𝑖,𝑗 =
(𝛼+ 𝛽)−

(︁
𝛼̃+ 𝛽

)︁
24𝜋𝑖,𝑗

(𝜋𝑖 − 𝜋𝑗)2 +𝑂𝜋(𝜋𝑖 − 𝜋𝑗)3. (4.4)

Proposition 4.1. Let 𝒯 be an admissible mesh. Then

⃒⃒
E𝑆

ℎ,FPE(𝑢; 𝑣)
⃒⃒
≤
⃒⃒⃒
E𝑆

ℎ,FPE(𝑢; 𝑣)
⃒⃒⃒

+ 2

⎛⎝
⃒⃒⃒
(𝛼+ 𝛽)−

(︁
𝛼̃+ 𝛽

)︁⃒⃒⃒
24𝜋𝑖,𝑗

(𝜋𝑖 − 𝜋𝑗)2 +𝑂𝜋(𝜋𝑖 − 𝜋𝑗)3
⎞⎠‖𝑢‖𝐻2(Ω)‖𝑣‖𝐻𝒯

.

In particular, the last result shows that convergence rates are similar up to order three for different 𝛼, 𝛽 which
satisfy 𝛼+ 𝛽 = const.

Corollary 4.2. Let 𝒯ℎ be a quasi uniform family of admissible meshes and let 𝑆𝑖,𝑗 = 𝑆𝛼,𝛽(𝜋𝑖, 𝜋𝑗) and 𝑆𝑖,𝑗 =
𝑆𝛼̃,𝛽(𝜋𝑖, 𝜋𝑗) with 𝛼+𝛽 = 𝛼̃+𝛽 be two different Stolarsky mean coefficients. Then there is a constant 𝐶 depending
only on 𝑑, Ω and ‖𝜋‖𝐶2(Ω) such that

⃦⃦
E𝑆
𝒯 ,FPE(𝑢; 𝑣)

⃦⃦2

𝐻*𝒯
≤ 2
⃦⃦⃦
E𝑆
𝒯 ,FPE(𝑢; 𝑣)

⃦⃦⃦2

𝐻*𝒯

+ 𝐶ℎ6.

Proof. This follows from (4.1) and (4.4). �

5. Convergence of the discrete FPE

Throughout this section, we assume that the mesh satisfies the consistency property of Definition 2.8 with a
suitable consistency function 𝜙 : R≥0 → R≥0 and discretization operator ℛℎ : 𝐻2(Ω) → 𝐿2(𝒫ℎ) as introduced
in Section 2. The parameters 𝜋𝑖 and 𝑢𝑖 below are then given in terms of

𝜋𝑖 = (ℛℎ𝜋)𝑖, 𝑢𝑖 = (ℛℎ𝑢)𝑖, 𝑈𝑖 = (ℛℎ𝑈)𝑖. (5.1)

We derive consistency errors for 𝑈 in Section 5.1 and consistency errors for 𝑢 in Section 5.2. For both calculations
we will need the following result.

Lemma 5.1. Let 𝑑 ≤ 3, 𝒯ℎ be a quasi uniform family of meshes on a polygonal domain Ω ⊂ R𝑑 and let 𝑆𝛼,𝛽 be
a Stolarsky mean, 𝜛 ∈ 𝐻2(Ω) and let 𝑅𝜛 :=

{︀
(𝜛(𝑥), 𝜛(𝑦)) : 𝑥, 𝑦 ∈ Ω

}︀
such that 𝑆𝛼,𝛽 ∈ 𝐶2(𝑅𝜛). Then there

exists 𝐶 > 0 depending on Ω, 𝑑, 𝛼, 𝛽 and 𝜛such that for every ℎ it holds: for every functions 𝑈 ∈ 𝐻2(Ω) with
𝜛𝑖 := 𝜛(𝑥𝑖) and 𝑆𝑖,𝑗 := 𝑆𝛼,𝛽(𝜛𝑖, 𝜛𝑗)⃒⃒⃒⃒

⃒
ˆ

𝜎𝑖,𝑗

(𝜛 − 𝑆𝑖,𝑗)∇𝑈 · 𝜈𝑖,𝑗

⃒⃒⃒⃒
⃒ ≤ 𝐶

⎧⎨⎩
∑︀

𝑘=𝑖,𝑗‖∇𝜛‖𝐻1(Ω𝑘)‖∇𝑈‖𝐻1(Ω𝑘)∑︀
𝑘=𝑖,𝑗 ℎ

1
2
𝑘 ‖∇𝜛‖𝐻1(Ω𝑘)

(︁´
𝜎𝑖,𝑗
|∇𝑈 |2

)︁ 1
2 . (5.2)

In particular, we find

∑︁
𝑖∼𝑗

ℎ𝑖,𝑗

𝑚𝑖,𝑗

(︃ˆ
𝜎𝑖,𝑗

(𝜛 − 𝑆𝑖,𝑗)∇𝑈 · 𝜈𝑖,𝑗

)︃2

≤ 𝐶ℎ2‖∇𝜛‖2𝐻1‖∇𝑈‖2𝐻1(Ω). (5.3)
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Proof. Due to Definition 1.3, i.e., the condition B𝑟ℎ𝑖
(𝑥) ⊂ Ω𝑖 ⊂ B𝑅ℎ𝑖

(𝑥) uniformly over all cells, and the convex
polytope shape of the (Ω𝑖)𝑖 we find 𝐶 > 0 such that for every cell Ω𝑖

∀𝑓 ∈ 𝐻1(Ω𝑖) : ‖𝑓‖2𝐿2(𝜎𝑖,𝑗)
≤ 1
ℎ𝑖
𝐶2‖𝑓‖2𝐻1(Ω𝑖)

, (5.4)

∀𝑓 ∈ 𝐻2(Ω𝑖) : ‖𝑓 − 𝑓𝑖‖2𝐿2(𝜎𝑖,𝑗)
≤ ℎ𝑖𝐶

2‖∇𝑓‖2𝐻1(Ω𝑖)
. (5.5)

Here, equation (5.4) follows e.g., from Section 2.1 of [27] and (5.5) follows from ‖𝑓 − 𝑓𝑖‖2𝐶(Ω𝑖)
≤ ℎ𝑖𝐶

2‖∇𝑓‖2𝐻1(Ω𝑖)
.

Observe that

ˆ
𝜎𝑖,𝑗

|𝜛 − 𝑆𝑖,𝑗 ||∇𝑈 · 𝜈𝑖,𝑗 | ≤

(︃ˆ
𝜎𝑖,𝑗

|𝜛 − 𝑆𝑖,𝑗 |2
)︃ 1

2
(︃ˆ

𝜎𝑖,𝑗

|∇𝑈 · 𝜈𝑖,𝑗 |2
)︃ 1

2

. (5.6)

Using (5.4), (5.5) and the 𝐶2-regularity of 𝑆𝛼,𝛽 and 𝑅𝜛 we obtain (5.2). Equation (5.3) follows from summing
up. �

5.1. Error analysis in 𝑈

In view of (2.6) and (2.8) we observe that the natural variational consistency error for a given Stolarsky mean
𝑆 equivalently takes the form

Eℎ,FPE(𝑢; 𝑣) = ̃︀Eℎ,FPE(𝑈 ; 𝑣) :=
∑︁
𝑖∼𝑗

(𝑣𝑗 − 𝑣𝑖)

(︃ˆ
𝜎𝑖,𝑗

𝜋∇𝑈 · 𝜈𝑖,𝑗 − 𝑆𝑖,𝑗
𝑚𝑖,𝑗

ℎ𝑖,𝑗

(︁
(ℛℎ𝑈)𝑗 − (ℛℎ𝑈)𝑖

)︁)︃
.

And as a consequence of Lemma 2.7 we find⃦⃦⃦̃︀Eℎ,FPE(𝑈 ; ·)
⃦⃦⃦2

𝐻*𝒯ℎ,𝑆

≤ ‖𝜋‖2∞‖Eℎ,𝐷(𝑈 ; ·)‖2𝐻*𝒯ℎ,𝑆
+
∑︁
𝑖∼𝑗

ℎ𝑖,𝑗

𝑚𝑖,𝑗

−1

𝑆−1
𝑖,𝑗

(︃ˆ
𝜎𝑖,𝑗

(𝜋 − 𝑆𝑖,𝑗)∇𝑈 · 𝜈𝑖,𝑗

)︃2

. (5.7)

Using the strict positivity of 𝜋 on Ω we may apply Lemma 5.1 for 𝜛 = 𝜋 for every 𝑑 ≤ 3 or Proposition 2.11
for strictly positive 𝑔 = 𝜋 and 𝑑 = 1. Then we immediately infer from (5.7) the main result of the section.

Proposition 5.2 (Localized order of convergence). Let 𝑑 ≤ 3 and the mesh 𝒯ℎ be a quasi uniform family of
admissible meshes and 𝜙-consistent in sense of Definition 2.8. Then for every 𝑈 ∈ 𝐻2(Ω) ∩𝐻1

0 (Ω) it holds

‖Eℎ,FPE(𝑈 ; ·)‖2𝐻*𝒯 ,𝑆
≤ ‖𝜋‖2∞‖Eℎ,𝐷(𝑈 ; ·)‖2𝐻*𝒯ℎ,𝑆

+ 𝐶(𝜋, 𝑑, ‖∇𝑈‖𝐻1)× ℎ2.

If 𝑑 = 1 and the mesh 𝒯ℎ is Voronoi and 𝑈 ∈ 𝐶2
(︀
Ω
)︀
, then

‖Eℎ,FPE(𝑈 ; ·)‖2𝐻*𝒯 ,𝑆
≤ 𝐶(𝜋, 𝑑, ‖𝑈‖𝐶2)ℎ4.

5.2. Error analysis in 𝑢

We will now derive an alternative estimate for the consistency error which accounts more for the convective
aspect of the FPE and which directly aims at 𝑢 instead of 𝑈 . In Lemma 2.6 we have split the consistency error
Eℎ,FPE(𝑢; ·) into the two parts Eℎ(𝑢; ·) and Eℎ,conv(𝑢; ·).

Proposition 5.3. Let 𝑑 ≤ 3 and 𝒯ℎ = (𝒱ℎ, ℰℎ,𝒫ℎ) be a quasi uniform family of admissible meshes and let
the assumptions of Lemma 5.1 hold. Using the notation of Lemma 2.6 let 𝑢𝑖,𝑗 := 1

2 (𝑢𝑖 + 𝑢𝑗). Then for some
constant 𝐶 depending on 𝑆𝛼,𝛽 and ‖𝑉 ‖𝐶2

‖Eℎ,conv(𝑢; · )‖2𝐻*𝒯 ≤ 2‖𝑢‖∞ ‖Eℎ,𝐷(𝑉 ; · )‖2𝐻*𝒯ℎ

+ 2
∑︁
𝑖∼𝑗

ℎ𝑖,𝑗

𝑚𝑖,𝑗

(︃ˆ
𝜎𝑖,𝑗

(𝑢− 𝑢𝑖,𝑗)∇𝑉 · 𝜈𝑖,𝑗

)︃2

+ 𝐶ℎ2.
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In case 𝛼+ 𝛽 = −1 the above can be improved to

‖Eℎ,conv(𝑢; · )‖2𝐻*𝒯 ≤ 2‖𝑢‖∞ ‖Eℎ,𝐷(𝑉 ; · )‖2𝐻*𝒯ℎ

+ 2
∑︁
𝑖∼𝑗

ℎ𝑖,𝑗

𝑚𝑖,𝑗

(︃ˆ
𝜎𝑖,𝑗

(𝑢− 𝑢𝑖,𝑗)∇𝑉 · 𝜈𝑖,𝑗

)︃2

+ 𝐶ℎ4.

Proof. Following (4.2) we find

𝑆𝑖,𝑗 − 𝜋𝑗

𝜋𝑗
𝑢𝑗 −

𝑆𝑖,𝑗 − 𝜋𝑖

𝜋𝑖
𝑢𝑖 =

1
2
𝑆𝑖,𝑗

𝜋𝑖𝜋𝑗
(𝜋𝑖 − 𝜋𝑗)(𝑢𝑖 + 𝑢𝑗) +

1
2

1
𝜋𝑖𝜋𝑗

(𝑆𝑖,𝑗𝜋𝑖 + 𝑆𝑖,𝑗𝜋𝑗 − 2𝜋𝑖𝜋𝑗)(𝑢𝑖 − 𝑢𝑗)

(𝑆𝑖,𝑗𝜋𝑖 + 𝑆𝑖,𝑗𝜋𝑗 − 2𝜋𝑖𝜋𝑗) =
(︂

1
2

+ 𝐶𝛼,𝛽

(︂
𝜋𝑗

𝜋𝑖
+
𝜋𝑖

𝜋𝑗

)︂)︂
(𝜋𝑖 − 𝜋𝑗)2 +𝑂𝜋(𝜋𝑖 − 𝜋𝑗)3

for 𝐶𝛼,𝛽 = 1
12 (𝛼+ 𝛽 − 3). Hence, we conclude from

Eℎ,conv(𝑢; 𝑣) =
∑︁
𝑖∼𝑗

(︃
𝑚𝑖,𝑗

ℎ𝑖,𝑗

1
2
𝑆𝑖,𝑗

𝜋𝑖𝜋𝑗
(𝜋𝑖 − 𝜋𝑗)(𝑢𝑖 + 𝑢𝑗)−

ˆ
𝜎𝑖,𝑗

𝑢∇𝑉 · 𝜈𝑖,𝑗

)︃
(𝑣𝑗 − 𝑣𝑖)

+
∑︁
𝑖∼𝑗

(︂
𝑚𝑖,𝑗

ℎ𝑖,𝑗

1
2

1
𝜋𝑖𝜋𝑗

(︂(︂
1
2

+ 𝐶𝛼,𝛽

(︂
𝜋𝑗

𝜋𝑖
+
𝜋𝑖

𝜋𝑗

)︂)︂
(𝜋𝑖 − 𝜋𝑗)2(𝑢𝑖 − 𝑢𝑗) +𝑂𝜋(𝜋𝑖 − 𝜋𝑗)3

)︂)︂
(𝑣𝑗 − 𝑣𝑖)

that there is a constant 𝐶 depending on ‖𝜋‖∞, ‖∇𝜋‖∞, ‖𝑢‖∞, ‖∇𝑢‖∞ such that we have

‖Eℎ,conv(𝑢; · )‖2𝐻*𝒯 ≤
∑︁
𝑖∼𝑗

ℎ𝑖,𝑗

𝑚𝑖,𝑗

(︃ˆ
𝜎𝑖,𝑗

𝑢∇𝑉 · 𝜈𝑖,𝑗 −
𝑚𝑖,𝑗

ℎ𝑖,𝑗

1
2
𝑆𝑖,𝑗

𝜋𝑖𝜋𝑗
(𝜋𝑖 − 𝜋𝑗)(𝑢𝑖 + 𝑢𝑗)

)︃2

+ 𝐶 ℎ4.

To estimate the right-hand side, we use that for a general Stolarsky mean we have

𝑆𝑖,𝑗

𝜋𝑖𝜋𝑗
(𝜋𝑖 − 𝜋𝑗) =

1
2
𝑆𝑖,𝑗

(︂
1
𝜋𝑖

+
1
𝜋𝑗

)︂
(𝑉𝑗 − 𝑉𝑖) +𝑂(ℎ).

Defining 𝑔 := 𝑢 and 𝑔𝑖,𝑗 := 1
4𝑆𝑖,𝑗

(︁
1
𝜋𝑖

+ 1
𝜋𝑗

)︁
(𝑢𝑖 + 𝑢𝑗) and applying Lemma 2.7 we now obtain

‖Eℎ,conv(𝑢; · )‖2𝐻*𝒯 ≤ 2
(︂

sup
𝑖,𝑗
|𝑔𝑖,𝑗 |

)︂
‖Eℎ(𝑉 ; ·)‖2𝐻*𝒯ℎ

+ 2
∑︁
𝑖∼𝑗

ℎ𝑖,𝑗

𝑚𝑖,𝑗

(︃ˆ
𝜎𝑖,𝑗

(𝑢− 𝑔𝑖,𝑗)∇𝑉 · 𝜈𝑖,𝑗

)︃2

+ 𝐶ℎ2.

We observe that 1
2𝑆𝑖,𝑗

(︁
1
𝜋𝑖

+ 1
𝜋𝑗

)︁
= 1 +𝑂(ℎ|∇𝜋|), which implies that⃒⃒⃒⃒

⃒
ˆ

𝜎𝑖,𝑗

(𝑢− 𝑔𝑖,𝑗)∇𝑉 · 𝜈𝑖,𝑗

⃒⃒⃒⃒
⃒ ≤

⃒⃒⃒⃒
⃒
ˆ

𝜎𝑖,𝑗

(𝑢− 𝑢𝑖,𝑗)∇𝑉 · 𝜈𝑖,𝑗

⃒⃒⃒⃒
⃒+ 𝐶|ℎ|.

So, the first claim now follows for general 𝑆𝛼,𝛽 .
For the case 𝑆𝛼,𝛽 = 𝑆0,−1, we have 𝑆0,−1(𝑥, 𝑦) = 𝑥𝑦

𝑥−𝑦 log(𝑥/𝑦). Hence, we observe that

𝑆𝑖,𝑗

𝜋𝑖𝜋𝑗
(𝜋𝑖 − 𝜋𝑗) = (𝑉𝑗 − 𝑉𝑖).

For general 𝑆𝛼,𝛽 with 𝛼+ 𝛽 = −1, we apply Corollary 4.2, which proves the second estimate. �

We conclude the section by the following proof.

Proof of Theorem 1.5. Using the Definition 2.8, the result is an immediate consequence of Lemma 2.6, Propo-
sition 5.3 and Lemma 5.1. �
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6. Cubic Meshes

Throughout this section we consider 𝑑 ≤ 3 and a polygonal domain Ω ⊂ R𝑑 with a cubic mesh where
Ω𝑖 = 𝑥𝑖 + [−ℎ/2, ℎ/2]𝑑, 𝑥𝑖 ∈ ℎZ ∩ Ω.

Lemma 6.1. Let Ω ⊂ R𝑑 be a polygonal domain with 𝑑 ≤ 3 and a cubic mesh where Ω𝑖 = 𝑥𝑖 + [−ℎ/2, ℎ/2]𝑑,
𝑥𝑖 ∈ ℎZ∩Ω. Then for every functions 𝑉 ∈ 𝐶1

(︀
Ω
)︀

and 𝜛 ∈ 𝐶2 with 𝜛𝑖 := 𝜛(𝑥𝑖) and 𝑆𝑖,𝑗 := 𝑆𝛼,𝛽(𝜛𝑖, 𝜛𝑗) there
exist 𝐶𝜛, 𝐶𝑉 > 0 depending only on ‖𝜛‖𝐶2 and ‖∇𝑉 ‖𝐶1 respectively, such that for every 𝑈, 𝑢 ∈ 𝐻2(Ω)∩𝐻1

0 (Ω)
it holds ⃒⃒⃒⃒

⃒
ˆ

𝜎𝑖,𝑗

(𝜛 − 𝑆𝑖,𝑗)∇𝑈 · 𝜈𝑖,𝑗

⃒⃒⃒⃒
⃒
2

≤ 𝐶𝜛ℎ
𝑑+2‖∇𝑈‖2𝐻1(Ω𝑖)

, (6.1)⃒⃒⃒⃒
⃒
ˆ

𝜎𝑖,𝑗

(𝑢− 𝑢𝑖,𝑗)∇𝑉 · 𝜈𝑖,𝑗

⃒⃒⃒⃒
⃒
2

≤ 𝐶𝑉 ℎ
𝑑+2‖∇𝑢‖2𝐻1(Ω𝑖)

, (6.2)

where 𝑢𝑖,𝑗 = 1
2 (𝑢𝑖 + 𝑢𝑗).

Proof. Let 𝑄 = [0, 1]𝑑 with midpoint 𝑥. There exists 𝐶 > 0 such that for every 𝑓 ∈ 𝐻1(𝑄) with
´

𝑄
𝑓 = 0 and

every 𝑔 ∈ 𝐻2(𝑄) it holds
ˆ

𝜕𝑄

𝑓2 ≤ 𝐶

ˆ
𝑄

|∇𝑓 |2,
ˆ

𝜕𝑄

(𝑔 − 𝑔(𝑥))2 ≤ 𝐶

ˆ
𝑄

(︁
|∇𝑔|2 +

⃒⃒
∇2𝑔

⃒⃒2)︁
.

Hence for each Ω𝑖 ∈ 𝒱ℎ and 𝐺𝑈,𝑖 :=
ffl
Ω𝑖
∇𝑈 we find by a scaling argument

ˆ
𝜕Ω𝑖

|∇𝑈 −𝐺𝑈,𝑖|2 ≤ ℎ𝐶

ˆ
Ω𝑖

|∇(∇𝑈)|2, (6.3)
ˆ

𝜕Ω𝑖

|𝑢− 𝑢𝑖|2 ≤ ℎ𝐶

ˆ
Ω𝑖

(︁
|∇𝑢|2 +

⃒⃒
∇2𝑢

⃒⃒2)︁
. (6.4)

Proof of (6.1): We first observe⃒⃒⃒⃒
⃒
ˆ

𝜎𝑖,𝑗

(𝜛 − 𝑆𝑖,𝑗)∇𝑈 · 𝜈𝑖,𝑗

⃒⃒⃒⃒
⃒ ≤

⃒⃒⃒⃒
⃒
ˆ

𝜎𝑖,𝑗

(𝜛 − 𝑆𝑖,𝑗)𝐺𝑈,𝑖

⃒⃒⃒⃒
⃒+

⃒⃒⃒⃒
⃒
ˆ

𝜎𝑖,𝑗

|𝜛 − 𝑆𝑖,𝑗 ||∇𝑈 −𝐺𝑈,𝑖|

⃒⃒⃒⃒
⃒.

We then find for some 𝐶 depending on 𝑑 that |𝜛 − 𝑆𝑖,𝑗 | ≤ 𝐶‖∇𝜛‖∞ℎ and hence using also (6.3)⃒⃒⃒⃒
⃒
ˆ

𝜎𝑖,𝑗

|𝜛 − 𝑆𝑖,𝑗 ||∇𝑈 −𝐺𝑈,𝑖|

⃒⃒⃒⃒
⃒
2

≤

(︃ˆ
𝜎𝑖,𝑗

|𝜛 − 𝑆𝑖,𝑗 |2
)︃(︃ˆ

𝜎𝑖,𝑗

|∇𝑈 −𝐺𝑈,𝑖|2
)︃

≤ 𝐶ℎ𝑑+2

ˆ
Ω𝑖

|∇(∇𝑈)|2.

We have for 𝑥 ∈ 𝜎𝑖,𝑗 and 𝜉𝑥 ∈
{︀
∇2𝜛(𝑦) : 𝑦 ∈ Ω

}︀
, 𝜉𝑥,𝑖,𝑗 , 𝜉𝑥 ∈

{︀
∇2𝑆(𝜛(𝑦), 𝜛(𝑦))) : 𝑦 ∈ Ω

}︀
with

|𝜉𝑥,𝑖,𝑗 |∞ ≤ 𝐶𝛼,𝛽,𝜛 := sup
𝑦∈Ω

⃦⃦
∇2𝑆(𝜛(𝑦), 𝜛(𝑦)))

⃦⃦
∞,

|𝜉𝑥| ≤ ‖𝜛‖𝐶2

that for 𝐺𝜛,𝑖 :=
ffl
Ω𝑖
∇𝜛 it holds

𝑆𝑖,𝑗 −𝜛(𝑥) =
1
2

(𝜛𝑖 −𝜛(𝑥)) +
1
2

(𝜛𝑗 −𝜛(𝑥)) +
(︂
𝜛𝑖 −𝜛(𝑥)
𝜛𝑗 −𝜛(𝑥)

)︂
· 𝜉𝑥,𝑖,𝑗

(︂
𝜛𝑖 −𝜛(𝑥)
𝜛𝑗 −𝜛(𝑥)

)︂
,
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𝜛𝑖 −𝜛(𝑥) = 𝐺𝜛,𝑖 · (𝑥𝑖 − 𝑥) + (∇𝜛(𝑥)−𝐺𝜛,𝑖)(𝑥𝑖 − 𝑥) + (𝑥𝑖 − 𝑥)𝜉𝑥(𝑥𝑖 − 𝑥).

Thus we find ⃒⃒⃒⃒
⃒
ˆ

𝜎𝑖,𝑗

(𝜛 − 𝑆𝑖,𝑗)𝐺𝑈,𝑖

⃒⃒⃒⃒
⃒ ≤ ∑︁

𝑘=𝑖,𝑗

⃒⃒⃒⃒
⃒
ˆ

𝜎𝑖,𝑗

(𝜛 −𝜛𝑘)𝐺𝑈,𝑖

⃒⃒⃒⃒
⃒+ 𝐶‖∇𝜛‖2∞ℎ

𝑑+1|𝐺𝑈,𝑖|,

where 𝐶 = 𝐶𝛼,𝛽,𝜛 in general and 𝐶𝛼,𝛽,𝜛 = 0 if 𝑆𝛼,𝛽(𝑎, 𝑏) = 1
2 (𝑎+ 𝑏). Due to the anti symmetry of 𝐺𝜛,𝑖 ·(𝑥𝑖−𝑥)

on 𝜎𝑖,𝑗 , |∇𝜛(𝑥)−𝐺𝜛,𝑖| ≤ ‖𝜛‖𝐶2ℎ and |𝜉𝑥| ≤ ‖𝜛‖𝐶2 we obtain⃒⃒⃒⃒
⃒
ˆ

𝜎𝑖,𝑗

(𝜛 − 𝑆𝑖,𝑗)𝐺𝑈,𝑖

⃒⃒⃒⃒
⃒ ≤ ℎ𝑑+1‖𝜛‖𝐶2 |𝐺𝑈,𝑖|

Now with |𝐺𝑈,𝑖| ≤ ℎ−
𝑑
2 ‖∇𝑈‖𝐿2(Ω𝑖)

it follows in total⃒⃒⃒⃒
⃒
ˆ

𝜎𝑖,𝑗

(𝜛 − 𝑆𝑖,𝑗)∇𝑈 · 𝜈𝑖,𝑗

⃒⃒⃒⃒
⃒
2

≤ 𝐶ℎ𝑑+2‖∇𝑈‖2𝐻1(Ω𝑖)
.

Proof of (6.2): We start from⃒⃒⃒⃒
⃒
ˆ

𝜎𝑖,𝑗

(𝑢− 𝑢𝑖,𝑗)∇𝑉 · 𝜈𝑖,𝑗

⃒⃒⃒⃒
⃒ ≤

⃒⃒⃒⃒
⃒
ˆ

𝜎𝑖,𝑗

(𝑢− 𝑢𝑖,𝑗)𝐺𝑉,𝑖

⃒⃒⃒⃒
⃒+

⃒⃒⃒⃒
⃒
ˆ

𝜎𝑖,𝑗

|𝑢− 𝑢𝑖,𝑗 ||∇𝑉 −𝐺𝑉,𝑖|

⃒⃒⃒⃒
⃒.

We find for some 𝐶 depending on 𝑑 that |∇𝑉 −𝐺𝑉,𝑖| ≤ 𝐶‖∇(∇𝑉 )‖∞ℎ and using (6.4)⃒⃒⃒⃒
⃒
ˆ

𝜎𝑖,𝑗

|𝑢− 𝑢𝑖,𝑗 ||∇𝑉 −𝐺𝑉,𝑖|

⃒⃒⃒⃒
⃒
2

≤ 𝐶ℎ𝑑+2

ˆ
Ω𝑖

|∇𝑢|2.

For the second term, we make use of 𝐺𝑢,𝑖 :=
ffl
Ω𝑖
∇𝑢 and

𝑢𝑖 − 𝑢(𝑥) = 𝐺𝑢,𝑖 · (𝑥𝑖 − 𝑥) + (∇𝑢(𝑥)−𝐺𝑢,𝑖)(𝑥𝑖 − 𝑥) +
ˆ 1

0

(𝑥𝑖 − 𝑥)∇2𝑢(𝑡𝑥+ (1− 𝑡)𝑥𝑖)(𝑥𝑖 − 𝑥) d𝑡.

By anti-symmetry of 𝐺𝑢,𝑖 · (𝑥𝑖 − 𝑥) on 𝜎𝑖,𝑗 we obtain using (6.3)⃒⃒⃒⃒
⃒
ˆ

𝜎𝑖,𝑗

(𝑢− 𝑢𝑖)𝐺𝑉,𝑖

⃒⃒⃒⃒
⃒ ≤ ℎ1+ 𝑑−1

2 |𝐺𝑉,𝑖|

(︃ˆ
𝜎𝑖,𝑗

|∇𝑢(𝑥)−𝐺𝑢,𝑖|2
)︃ 1

2

+ ℎ|𝐺𝑉,𝑖|
ˆ

Ω𝑖

⃒⃒
∇2𝑢

⃒⃒
≤ ℎ1+ 𝑑

2 |𝐺𝑉,𝑖|
(︂ˆ

Ω𝑖

⃒⃒
∇2𝑢

⃒⃒2)︂ 1
2

.

Together, this implies (6.2). �

Proposition 6.2 (Consistency on cubic meshes). Let Ω ⊂ R𝑑 with 𝑑 ≤ 3 be a polygonal domain with a family
of cubic meshes where for each ℎ we set Ω𝑖 = 𝑥𝑖 + [−ℎ/2, ℎ/2]𝑑, 𝑥𝑖 ∈ ℎZ ⊂ Ω. Then for some constant 𝐶
depending only on 𝑑, Ω and ‖𝜋‖𝐶2(Ω)

‖Eℎ,𝑆(𝑢; · )‖2𝐻*𝒯 ,𝑆
≤ 𝐶ℎ4‖𝑢‖2𝐻2(Ω).

Proof. The statement follows from the application of Lemma 2.7 twice for 𝑔 = 𝑆 together with Lemma 6.1 and
Proposition 2.10. �
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In view of Theorem 5.3 combined with Theorem 6.2 and Lemma 6.1 with 1
2 (𝑢𝑖 + 𝑢𝑗) = 𝑆2,1(𝑢𝑖, 𝑢𝑗) we also

obtain the following.

Proposition 6.3. Let 𝑑 ≤ 3. On a polygonal domain Ω ⊂ R𝑑 with a cubic mesh where Ω𝑖 = 𝑥𝑖 + [−ℎ/2, ℎ/2]𝑑,
𝑥𝑖 ∈ ℎZ ⊂ Ω, it holds: Using the notation of Lemma 2.6 it holds for some constant 𝐶 depending only on 𝑑, Ω
and ‖𝜋‖𝐶2(Ω)

‖Eℎ,conv(𝑢; ·)‖2𝐻*𝒯 ,𝑆
≤ 𝐶ℎ𝑘‖𝑢‖2𝐻2(Ω),

where 𝑘 = 2 in general and 𝑘 = 4 in case 𝛼+ 𝛽 = −1.

Proof of Theorem 1.4. The claim follows from Proposition 5.2 (general case) or Proposition 2.10 together with
twice application of Lemma 6.1 in the cubic case. �

Proof of of Theorem 1.7. This is a consequence of Lemma 2.6, Propositions 2.10 (resp. Prop. 6.2) and 6.3. �

7. Numerical tests and convergence analysis

In this section, we provide a numerical convergence analysis of the discretization schemes based on Stolarsky
means described above. As the central problem of flux discretization is in the context of the finite volume method
essentially one-dimensional (cf. Sect. 3), we restrict ourselves to the analysis of one-dimensional test problems
on iteratively refined grids, for which already non-trivial results can be observed. We consider non-equidistant
grids in order to rule out possible cancellation effects and spurious convergence properties which might occur
on uniform grids.

In the examples below, the non-equidistant grids are generated with the help of a mesh density function
𝜌 : [0, 1] → [0, 1]. We choose

𝜌(𝑥) =
1

1 +
(︀

1−𝑥
𝑥

)︀𝑎 , (7.1)

where 𝑎 > 0 is a shape parameter. The mesh density function equation (7.1) transforms an equidistant mesh
{𝑥𝑖}𝑖=1...𝑁 with 𝑥𝑖 = (𝑖− 1)ℎ and ℎ = 1/(𝑁 − 1) into a non-equidistant one {𝜌(𝑥𝑖)}𝑖=1...𝑁 , where 𝑁 is the
number of nodes. For 𝑎 > 1, the mesh density function is 𝑆-shaped, which implies small grid spacings close to
the boundaries and larger grid spacings in the center of the computational domain. Note that the grids satisfy
the quasi uniformity condition given in Definition 1.3. The example calculations described below are carried out
for 𝑎 = 1 (equidistant grid, 𝜌(𝑥)|𝑎=1 = 𝑥) and 𝑎 = 4 (non-equidistant grid).

Example 7.1. We consider the potential 𝑉 (𝑥) = 30𝑥(1 + 𝑥) and the right hand side 𝑓(𝑥) = 𝑥(1− 𝑥) on the
domain (0, 1) with diffusion coefficient 𝜅 = 1 and homogeneous Dirichlet boundary conditions 𝑢(0) = 𝑢(1) = 0.
The numerical solutions obtained using the Stolarsky mean discretizations are compared point-wise with the
exact solution 𝑢ref (involving the imaginary error function) that has been obtained analytically with the help
of Mathematica [52].

The numerical results for Example 7.1 are summarized in Figure 2. In Figure 2a, the logarithmic error
log10(‖𝑢− 𝑢ref‖𝐻𝒯 ) is shown in the (𝛼, 𝛽)-plane of the Stolarsky-mean parameters for an equidistant grid with
210 + 1 = 1025 nodes. First, we note that the accuracy for a mean 𝑆𝛼,𝛽 is indeed practically invariant along
𝛼+𝛽 = const., which supports Corollary 4.2 in Section 4 and our main theorems (see Sect. 1.2), respectively. In
the present example, we observe optimal accuracy around 𝛼+𝛽 = −1, which includes the SG-scheme (Stolarsky
mean 𝑆0,−1) as a special case. Figure 2b shows the convergence behavior under iterative mesh refinement,
where the fastest convergence in the 𝐻𝒯 -norm is indeed observed for the SG-scheme. Note that, however, also
the other schemes considered in the comparison show a quadratic convergence behavior (as predicted in for
one-dimensional problems by Thm. 5.2), but with a larger constant. The results for the non-equidistant grid
(shape parameter 𝑎 = 4) shown in Figures 2c and 2d are qualitatively the same as in the equidistant case. We
observe that the optimum around 𝛼 + 𝛽 = −1 becomes sharper in the case of non-equidistant grids (compare
Figs. 2a and 2c), which we interpret as a result of the improved grid resolution at the domain boundaries.
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Figure 2. Numerical results for Example 7.1. (a) Discretization error log10(‖𝑢− 𝑢ref‖𝐻𝒯 ) in
the (𝛼, 𝛽)-plane on an equidistant grid (𝑎 = 1) with 210 + 1 nodes. The error is color-coded and
is minimal around 𝛼+ 𝛽 = −1. Several special Stolarsky means (cf. Tab. 1) are highlighted by
crosses. Note the symmetry 𝑆𝛼,𝛽(𝑥, 𝑦) = 𝑆𝛽,𝛼(𝑥, 𝑦). (b) Quadratic convergence of the discrete
solution to the exact reference solution 𝑢ref under mesh refinement in the 𝐻𝒯 -norm. See the
inset for a legend and color-coding of the considered means 𝑆𝛼,𝛽 . In the present example, the
SG scheme 𝑆0,−1 provides the fastest convergence under mesh refinement. (c), (d) Same as in
panels (a), (b) but on a non-equidistant mesh with shape parameter 𝑎 = 4.

Example 7.2. We consider the potential 𝑉 (𝑥) = 2 exp (2𝑥) and keep the right hand side, diffusion constant and
boundary conditions as in Example 7.1. The reference solution was computed numerically to a high precision
using a shooting method (involving a fourth order Runge–Kutta method together with Brent’s root finding
algorithm [3]) on a fine grid with 7937 nodes.

The results of the numerical convergence analysis for Example 7.2 are presented in Figure 3. The plot of the
discretization errors ‖𝑢−𝑢ref‖𝐻𝒯 in the (𝛼, 𝛽)-plane of the Stolarsky-mean parameters shows a minimum around
𝛼+ 𝛽 = 0, see Figures 3a and 3c. This optimum includes the SQRA scheme with geometric mean 𝑆1,−1 and is
qualitatively the same in the case of equidistant and non-equidistant grids. Just as in the previous example, we
observe quadratic convergence for all considered Stolarsky-mean schemes under iterative mesh refinement, see
Figures 3b and 3d. Note that the potential gradient 𝑉 ′(𝑥), which acts as a driving force for the drift-like flux
component, in Example 7.2 (4 ≤ 𝑉 ′(𝑥) < 30) is smaller than in Example 7.1 (30 ≤ 𝑉 ′(𝑥) ≤ 90). Hence, our
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Figure 3. Discretization errors and convergence behavior of the numerically computed solution
𝑢 in the 𝐻𝒯 -norm for Example 7.2 using the Stolarsky-mean schemes. The errors in (a) and
(c) are color-coded (as before, on grids with 210 + 1 = 1025 nodes). The coloring of the means
in (b) and (d) is the same as in Figure 2b. For the considered example, the results indicate a
superior performance of the SQRA scheme (geometric mean 𝑆1,−1) on the equidistant as well
as on the non-equidistant grid (shape parameter 𝑎 = 4).

results obtained for Example 7.2 indicate that away from the drift-dominated regime, the SG-scheme might be
outperformed by other Stolarsky-mean schemes (e.g., the SQRA scheme). This legitimizes the use of alternative
flux discretizations for problems with moderate potential gradients, as carried out in reference [14].

Finally, Figure 4 shows the discretization error log10 (‖𝑈 − 𝑈ref‖𝐻𝒯 ) obtained using the Stolarsky-mean
schemes for Example 7.2. We observe that the optimal parameters are 𝛼 + 𝛽 = 0.6 in the equidistant case,
see Figure 4a, and 𝛼 + 𝛽 = −0.2 in the non-equidistant case, see Figure 4b, which is clearly different from the
optimal parameter set required to obtain maximum accuracy of 𝑢, cf. Figures 3a and 3c.

8. Outlook

The results of this work suggest to search for “optimal” parameters 𝛼 and 𝛽 in the choice of the Stolarsky
mean in order to reduce the error of the approximation as much as possible. However, from an analytical point
of view, the quest for such optimal 𝛼 and 𝛽 is quite challenging. Moreover, since the optimal choice might vary
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Figure 4. Comparison of the discretization errors log10 (‖𝑈 − 𝑈ref‖𝐻𝒯 ) for Example 7.2 on a
grid with 1025 nodes with (a) equidistant and (b) non-equidistant spacing (shape parameter
𝑎 = 4). The optimum Stolarsky-mean parameters (𝛼, 𝛽) for minimum error in 𝑈 are different
from those required for minimum error in 𝑢, cf. Figure 3.

locally, depending on the local properties of the potential 𝑉 , we suggest to implement a learning algorithm that
provides suitable parameters 𝛼 and 𝛽 depending on the local structure of 𝑉 and the mesh.

Appendix A.

A.1. Properties of the Stolarsky mean

Lemma A.1. For every of the above Stolarsky means 𝑆*(𝑥, 𝑦) it holds

𝜕𝑥𝑆*(𝑥, 𝑥) = 𝜕𝑦𝑆*(𝑥, 𝑥) =
1
2

and 𝜕2
𝑥𝑆*(𝑥, 𝑥) = 𝜕2

𝑦𝑆*(𝑥, 𝑥) = −𝜕2
𝑥𝑦𝑆*(𝑥, 𝑥) = −𝜕2

𝑦𝑥𝑆*(𝑥, 𝑥).

Proof. Since 𝑆*(𝑥, 𝑥) = 𝑥 and 𝑆* is symmetric in 𝑥 and 𝑦, we find from differentiating 𝜕𝑥𝑆* = 𝜕𝑦𝑆* = 1
2 . From

the last equality, we find 𝜕𝑥𝑆*(𝑥, 𝑥)− 𝜕𝑦𝑆*(𝑥, 𝑥) = 0 as well as 𝜕𝑥𝑆*(𝑥, 𝑥) + 𝜕𝑦𝑆*(𝑥, 𝑥) = 1 and differentiation
yields

𝜕2
𝑥𝑆*(𝑥, 𝑥)− 𝜕2

𝑦𝑆*(𝑥, 𝑥)− 𝜕2
𝑥𝑦𝑆*(𝑥, 𝑥) + 𝜕2

𝑦𝑥𝑆*(𝑥, 𝑥) = 0, (A.1)

𝜕2
𝑥𝑆*(𝑥, 𝑥) + 𝜕2

𝑦𝑆*(𝑥, 𝑥) + 𝜕2
𝑥𝑦𝑆*(𝑥, 𝑥) + 𝜕2

𝑦𝑥𝑆*(𝑥, 𝑥) = 0. (A.2)

Since −𝜕2
𝑥𝑦𝑆*(𝑥, 𝑥) + 𝜕2

𝑦𝑥𝑆*(𝑥, 𝑥) = 0, equation (A.1) yields 𝜕2
𝑥𝑆*(𝑥, 𝑥) = 𝜕2

𝑦𝑆*(𝑥, 𝑥). Inserting the last two
relations into (A.2) yields 𝜕2

𝑥𝑦𝑆*(𝑥, 𝑥) = 𝜕2
𝑦𝑥𝑆*(𝑥, 𝑥) = −𝜕2

𝑥𝑆*(𝑥, 𝑥). �

Lemma A.2. It holds 𝜕2
𝑥𝑆𝛼,𝛽(𝜋, 𝜋) = 1

12𝜋 (𝛼+ 𝛽 − 3).

Proof. We know from Lemma A.1 that 𝜕𝑥𝑆𝛼,𝛽(𝑥, 𝑥) = 1
2 and 𝜕2

𝑥𝑆𝛼,𝛽(𝑥, 𝑥) = −𝜕𝑦𝜕𝑥𝑆𝛼,𝛽(𝑥, 𝑥). Given a fixed 𝑦,
we define 𝑧 = 𝑥/𝑦 and find

𝑓(𝑧) := 𝑦𝑧𝑆𝛼,𝛽(1, 𝑧) = 𝑆𝛼,𝛽(𝑦𝑧, 𝑦)

satisfies
𝜕𝑧𝑓(𝑧) = 𝑦𝜕𝑥𝑆𝛼,𝛽(𝑦𝑧, 𝑦), 𝜕𝑧𝑧𝑓(𝑧) = 𝑦2𝜕𝑥𝑥𝑆𝛼,𝛽(𝑦𝑧, 𝑦),
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and hence 𝜕𝑧𝑧𝑓(1) = 𝑦2𝜕𝑥𝑥𝑆𝛼,𝛽(𝑦, 𝑦). In 𝑧 ̸= 1 it holds

𝜕𝑧𝑓(𝑧) = 𝑦

(︂
𝛽

𝛼

)︂ 1
𝛼−𝛽 (𝑧𝛼 − 1)

1
𝛼−𝛽−1

(𝑧𝛽 − 1)
1

𝛼−𝛽−1

𝛼
(︀
𝑧𝛽 − 1

)︀
𝑧𝛼 − 𝛽(𝑧𝛼 − 1)𝑧𝛽

(𝛼− 𝛽) 𝑧 (𝑧𝛽 − 1)2

and in 𝑧 = 1 we find 𝜕𝑧𝑓(1) = 𝑦 1
2 . Using an expansion 𝑧 = 1 + ℎ in

lim
ℎ→0

ℎ−1

(︂
𝑦−1𝜕𝑧𝑓(1 + ℎ)− 1

2

)︂
= 𝑦𝜕𝑥𝑥𝑆(𝑦, 𝑦)

we conclude with (4.2). �

A.2. Approximation of potential to get the SQRA mean

The aim of this section is to provide a class of potentials which are easy to handle and which generate the

SQRA-mean 𝑆−1,1(𝜋0, 𝜋ℎ) by 𝜋mean =
(︁

1
ℎ

´ ℎ

0
𝜋−1

)︁−1

. Clearly, choosing the constant potential 𝑉 (𝑥) := 𝑉𝑐 :=
− log𝑆−1,1(𝜋0, 𝜋ℎ) we obtain right mean. Although this works for any means, this has two drawbacks

(1) The potential jumps and hence the gradient is somewhere infinite, which means that at these points the
force on the particles is infinitely high which is not physical.

(2) Approximating a general function by piecewise constants, on each interval the accuracy is only of order ℎ.
However, approximating a function by affine interpolation the accuracy is of order ℎ2 on each interval (see
below for the calculation).

So we want to get a potential which may be used as a good approximation (i.e., approximating of order ℎ2),
is physical (i.e., continuous) and generates the SQRA-mean. Note, that most considerations below also work
for other Stolarsky means. For simplicity we focus on the SQRA mean 𝑆−1,1.

We consider a piecewise affine potential of the form

𝑉 (𝑥) =

⎧⎪⎨⎪⎩
𝑉𝑐−𝑉0

𝑥1
𝑥+ 𝑉0, 𝑥 ∈ [0, 𝑥1]

𝑉𝑐, 𝑥 ∈ [𝑥1, 𝑥2]
𝑉ℎ−𝑉𝑐

ℎ−𝑥2
(𝑥− 𝑥2) + 𝑉𝑐, 𝑥 ∈ [𝑥2, ℎ]

where 𝑥1, 𝑥2 ∈ [0, ℎ] are firstly arbitrary and 𝑉𝑐 = − log𝑆−1,1(𝜋0, 𝜋ℎ) = 1
2 (𝑉ℎ + 𝑉0). The potential is clearly

continuous. Then
1
ℎ

ˆ ℎ

0

e𝑉 (𝑥)d𝑥 =
𝑥1

ℎ

e𝑉𝑐 − e𝑉0

𝑉𝑐 − 𝑉0
+
𝑥2 − 𝑥1

ℎ
e𝑉𝑐 +

ℎ− 𝑥2

ℎ

e𝑉ℎ − e𝑉𝑐

𝑉ℎ − 𝑉𝑐
·

Introducing the ratios 𝛼 = 𝑥1
ℎ and 𝛽 = ℎ−𝑥2

ℎ (which are in [0, 1/2]), we want to solve 1
ℎ

´ ℎ

0
e𝑉 (𝑥)d𝑥 = e

1
2 (𝑉ℎ+𝑉0).

Indeed, introducing the difference of the difference of the potentials 𝑉 = 𝑉ℎ − 𝑉0, we obtain

𝜆 =
𝛼

𝛽
=

e𝑉 /2 − 𝑉 /2− 1
e−𝑉 /2 + 𝑉 /2− 1

≈ 1 +
1
3
𝑉 +

1
18
𝑉 2.

Hence, any value 𝛼, 𝛽 satisfying this ratio generates a potential with the SQRA-mean.
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