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Neural network learns physical rules for copolymer
translocation through amphiphilic barriers
Marco Werner1,2,4✉, Yachong Guo2,3,4✉ and Vladimir A. Baulin 2✉

Recent developments in computer processing power lead to new paradigms of how problems in many-body physics and especially
polymer physics can be addressed. Parallel processors can be exploited to generate millions of molecular configurations in complex
environments at a second, and concomitant free-energy landscapes can be estimated. Databases that are complete in terms of
polymer sequences and architecture form a powerful training basis for cross-checking and verifying machine learning-based
models. We employ an exhaustive enumeration of polymer sequence space to benchmark the prediction made by a neural
network. In our example, we consider the translocation time of a copolymer through a lipid membrane as a function of its sequence
of hydrophilic and hydrophobic units. First, we demonstrate that massively parallel Rosenbluth sampling for all possible sequences
of a polymer allows for meaningful dynamic interpretation in terms of the mean first escape times through the membrane. Second,
we train a multi-layer neural network on logarithmic translocation times and show by the reduction of the training set to a narrow
window of translocation times that the neural network develops an internal representation of the physical rules for sequence-
controlled diffusion barriers. Based on the narrow training set, the network result approximates the order of magnitude of
translocation times in a window that is several orders of magnitude wider than the training window. We investigate how prediction
accuracy depends on the distance of unexplored sequences from the training window.
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INTRODUCTION
Polymers are many-body physical objects; in order to describe
their equilibrium state and dynamics, it is often required to
translate chemical sequence information into free-energy land-
scapes in three-dimensional space. Rigorous theoretical descrip-
tions can capture only special cases such as homopolymers or
multiblock copolymers by following bottom–up approaches that
start with interactions on the monomer level or considering the
self-similarity of self-avoiding walks on the largest scales. The
sequence space available by current polymer chemistry1–3 or in
biopolymers exceeds the limits for closed physical descriptions
and is not accessible for complete scans by molecular simulation
techniques. A new paradigm of data-driven polymer science is
increasingly encouraged by parallel sampling methods4,5 and the
advances in machine learning (ML)6–14 and has the potential to
explore yet undiscovered patterns in sequence–property
relationships.
A prominent problem for sequence-controlled polymers is their

transport through lipid membranes and biological barriers, which
is linked to a wide field of potential biomedical and biotechno-
logical applications. The translocation time of polymer chains
through a narrow nano-pore on the scale of one monomer has
been described for homopolymers15,16 by means of scaling
relations and, later on, extended the theory to block copoly-
mers17,18. As soon as local conformation entropy of the polymer
comes into play by widening the pore to a finite diameter and
length19,20, a general expression as a function of the sequence
seems challenging in the moment for both charged and
uncharged polymers. The absence of a closed analytic theory for
sequence-controlled translocation meanwhile does not exclude
technical applications of nano-pores for DNA sequencing21–23.

The picture is similar when considering the translocation of a
polymer through a lipid membrane by direct penetration of the
membrane’s core. Here polymer translocation can be considered
as the diffusion of its center of mass along an effective free-energy
landscape determined by the self-assembled membrane environ-
ment24–26. Translocation of homopolymers through bilayer
membranes was recently described theoretically by means of
propagators as the solution of Edwards equation27 in good
agreement with coarse grained simulations28. Simulation results
on random copolymers indicate that the main factors for
copolymer translocation are their average hydrophobicity as well
as their degree of adsorption29,30 at the membrane–solvent
interfaces31, which shall be reflected in the main modes of their
potential of mean force. Experimentally, the passive translocation
of synthetic random copolymers into mammalian cells in the
absence of cytotoxic effects was discovered32 and confirmed
recently33,34. A rigorous theoretical description as a function of
sequence, however, is missing to date. The lack of theory does
meanwhile not exclude the recent progress in finding artificial
cell-penetrating peptides and antimicrobial peptides by high-
throughput screening35–38 that may even outperform evolutionary
highly conserved Tat- or Penetratin-based sequences for biome-
dical application. Wimley et al. found that fine-tuned differences in
short-block amphiphilic sequences have a significant effect on
peptide translocation rates following rules that seems not obvious
at the moment37. In turn, sequences leading to optimal points in
their biomedical performance can be found in unexpected corners
of sequence space that are potentially accessed by
sequence–cargo co-evolution38. In this work, we make use of a
massively parallel sampling of polymer conformations while
scanning the full sequence space of a short copolymer and see
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that the intricacies of polymer sequence–property relationships
can be subtle and unexpected already when considering relatively
simple environments.
The laws of physics are, however, normally simple by means of

requiring a relatively small number of parameters that can be
extracted efficiently from high-dimensional data by ML methods.
Artificial neural networks (NNs) have been successfully applied in
the dimensionality reduction from chemical monomer composi-
tion of polymers to their material properties, such as glass
transition temperature39–43, viscosity44, solvation free energies45,
and electronic properties13,14 depending on the repeat units.
When addressing long polymer chains, the training and test data
are fundamentally limited to a fraction of sequences due to the
exponential increase of sequence space. Any restriction or bias in
the training data has yet undefined consequences for the NN’s
projection into unexplored parts of sequence space. Efficient
classification and optimization algorithms, such as based on
artificial NNs, are in fact “black boxes” and their results therefore
need better understanding and explanation. Theoretically, an NN
can approximate any continuous mapping given that at least one
hidden layer of neurons with sigmoid activation functions is
contained46,47. Beyond that, the stacking of non-linear filters
seems to mark a qualitative difference as compared to shallow ML
algorithms such that they may develop internal representations of
the input information that correspond to a hierarchy of
abstraction levels. The distinguished generalization performance
makes so-called deep neural nets particularly efficient when
confronted with multiple tasks48 simultaneously, for instance, in
finding quantitative structure–property or structure–activity rela-
tionships49–52. Recent advances in exploiting NNs for physical
problems show that they can help to determine the essential
order parameters necessary for predicting a mechanical state in
future10 or classifying a magnetic phases8.
In this work, we have the luxury to access a complete sequence-

to-property map available for training and testing NN algorithms
thanks to the graphics processing unit (GPU)-accelerated4

sampling of random polymer configurations for a given sequence.
GPU-accelerated Rosenbluth–Rosenbluth53 sampling of a copoly-
mer in an external field modeling a lipid membrane allowed us to
generate a significant number of configurations for all possible
binary sequences for chain length up to N= 16. Based on this
unbiased data, a NN is trained to predict mean first escape times of
the polymer through the layer. By systematic selection of a
training set, we tested the NN’s performance of projection into
unseen parts of the complete sequence space.
The rest of the paper is structured as follows: In section

“Results,” we introduce the sequence-complete sampling data set
based on the Rosenbluth–Rosenbluth method for translocation
time prediction. By comparison with free-energy estimates of self-
avoiding walks near interfaces, we underline the physical meaning
and richness of the results. We also analyze the performance of NN
based on translocation time prediction for two different training
schemes. In section “Discussion,” we summarize the results. In
section “Methods,” we describe the polymer conformation
sampling for estimating its translocation time through a
membrane as well as the NN model applied.

RESULTS
Rosenbluth–Rosenbluth sampling
Let us consider the inverse mean first escape time 1/τ as a
measure for the frequency of translocation of a polymer through
the membrane, which is presented in Fig. 1 as a function of the
mean hydrophobic fraction along a backbone of N= 12 mono-
mers. Results for all sequences are shown and grouped into point
clouds centered at the corresponding ratios NT/N. The point
clouds are shaped according to the number, nb, of blocks of H and

T species along the sequence in a way that the points on the right
hand side of a cloud represent a polymer with a larger number of
blocks.
The results in Fig. 1 confirm earlier predictions28 that a

maximum of translocation frequency is found near a point of
balanced hydrophobicity of the polymer as given by a balanced
fraction of H and T units NT/N ~ 1/2, in case that the typical block
size is in the order of the Kuhn segment of the polymer31.
In Fig. 2, we show the monomer sequences leading to the

largest and lowest translocation frequency 1/τ as well as the
results for triblock copolymers as a function of chain length for the
balanced ratio NT/N= 1/2 of hydrophobic beads. For alternating
sequences, the re-scaled translocation frequency (see Eq. (7))
remains in the same order of magnitude showing that the
polymers are below the adsorption threshold for the given chain
lengths. For polymers that are significantly localized at the
membrane–solvent interface, one would expect that the deso-
rption to be the rate-limiting process for translocation. Adsorption
effect is clearly visible for diblock copolymers showing a nearly
exponential decay of translocation frequency as a function of

Fig. 1 Translocation frequency vs. fraction of hydrophobic
monomers. Inverse mean first escape times (Eq. (7)) as a function
of the fraction of hydrophobic monomers of a polymer of length
N= 12. Results are shown for all sequences containing between two
and nine T-type monomers. Results sharing the same number of
T-type monomers are spread within windows of width 0.04 along
the ordinate according to the number, nb, of H and T blocks within
the sequence. The exact position along the ordinate is calculated as
NT/N+0.04×[nb/N−1/2]. Results for seven sequences are highlighted
by labels.

Fig. 2 Translocation frequency vs. chain length. Inverse mean first
escape times as a function of the chain length for fractions of
hydrophobic monomers of 1/2. We show results for sequences
leading to maximal (minimal) inverse escape times.
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chain length. For diblock copolymers, we expect that the
desorption of the hydrophobic block from the membrane is the
most significant rate-limiting process, and consequently diblock
sequences lead to minimal translocation frequencies. It is
important to notice that, for hydrophilic blocks larger than the
membrane width, the switch of a hydrophilic end from one
solvent side to the opposing solvent does only require a limited
number of hydrophilic beads to be in contact with the lipid core at
the same time, whereas the escape of the hydrophobic block into
the solvent requires all monomers of the block to be displaced
into solvent environment. Dynamic barriers such as the steric
hindrance of the polymer backbone by lipid tails, is, however, not
included in the mean-field environment.
In Fig. 2, it becomes visible that the symmetry of the polymer

sequence with respect to hydrophilic ends adds an important
factor to the desorption probability, in particular when comparing
results for triblock copolymers where the longest chains show a
more than one decade larger translocation frequency as
compared to diblocks. The difference can be understood
qualitatively by estimating the adsorption free energy in the
strong segregation limit as

ΔFadsðNÞ ¼ �cϵNT þ ΔFel (1)

where c is the average number of favored contacts a T monomer
finds in the lipid environment (coordination number) and
ΔFel ¼ �kBT ln ½Zsurf=Zfree� is an elastic contribution due to the
reduction of the partition function from Zfree to Zsurf upon
localization at the surface. The partition sum for a self-avoiding
walk takes the form58–60

ZðNÞ � qμNNγ�1 (2)

where q is a non-universal amplitude that may depend on the
particular form of short-range interactions and μ is the effective
coordination number for the given random walk logic and lattice.
The exponent γ depends on the topology of the polymer that is
either in free solution or attached to a surface. One applies γ≡
γ1 ≈ 0.67861–63 for strands having one end grafted, and γ≡ γ11 ≈
−0.3962,63 for strands having both ends surface attached. The
partition sum in free solution scales as Zfree � μNNγ0�1 with γ0 ≈
1.156764–66. Since we further compare only ratios of partition sums
for given total chain length, we assume that q- and μ-dependent
contributions cancel up to a factor of the order unity.
The probability density to find a symmetric diblock copolymer

in bulk solvent as compared to a state adsorbed at an interface as
illustrated in Fig. 3 then reads

pdiðNÞ ¼ expðβΔFadsÞ ¼ e�βcϵN=2 Nγ0�1

ðN=2Þ2ðγ1�1Þ

Now, assuming that the desorption is the rate-limiting process, we

write the estimate for the translocation frequency as

Tdi ¼ T0pdi (3)

In Fig. 2, we show the results for Eq. (3), where T0= 0.123 and
c= 19.6 have been adjusted for obtaining least-squared differ-
ences from the diblock Rosenbluth-Rosenbluth sampling (RS)
results. The results confirm the dominance of the exponential
factor resulting from pair interactions of the hydrophobic block.
The ratio between partition sums for interface-adsorbed

diblocks and triblocks allows to project from diblock to triblock
predictions for translocation frequencies,

T tri ¼ 22ðγ1�1Þ N
2

� �1�γ11

Tdi (4)

which is plotted in Fig. 2 for comparison. The resulting up-shift
catches up to the RS diblock results up to a factor corresponding
to a remaining free-energy difference of 1.4kBT that is missing in
Eq. (4). Note that we did not consider finite chain length effects in
Eq. (2) in scope of this qualitative comparison.
With this discussion in mind, it is interesting to have a look back

to Fig. 1 for understanding surprising features observed in the
sequence maps of slightly hydrophilic polymers. By the example
of a fraction of 4/12 of hydrophobic monomers, we demonstrate
that the polymers comprising the shortest amphiphilic blocks
(labelled by “(a)” and “(b)” in Fig. 1) are found in a middle range of
translocation frequencies, while triblock copolymers similar as
those discussed in Figs. 2 and 3 lead to the largest translocation
frequencies. A comparison of the free-energy profiles shown as an
inset in Fig. 1 underlines the interplay between surface adsorption
and hydrophobic/hydrophilic balance that leads to the result.
Polymers that contain short blocks (“(a)” and “(b)” in Fig. 1) are
mainly subject to an effective free-energy barrier for insertion into
the bilayers, which is the rate-limiting factor for translocation. The
result reflects the fact that the polymer is effectively hydrophilic
and shows negligible surface adsorption effects. Combining T-
type monomers into a larger center block, however, allows for
anchoring of the polymer at bilayer–solvent interfaces and
thereby effectively reduces the rate-limiting repulsion from the
membrane environment. On the other hand, for the diblock
copolymers with NT/N= 4/12, adsorption at the bilayer–solvent
interface turns over to dominate the free-energy profiles and leads
to the largest escape times found for the given hydrophilic/
hydrophobic ratio.
From the comparison between RS results for τ and previous

work26,28,31 we therefore conclude that the dynamic interpretation
of the sampling results is justified.

Machine-learned translocation times
The complete data set generated by GPU-accelerated RS sampling
forms a powerful basis for benchmarking the ML-based search for
sequences fulfilling given criteria. A network similar to Fig. 4 can
be designed in order to predict sequence-determined properties
of a polymer39,44,45. In this work, we stick to the example of
logarithmic translocation times log(τ), and refer to a chain length

Fig. 3 Free-energy profiles. Free-energy profiles for various
polymer architectures (N= 12, NT= 6) and corresponding relevant
states for estimating desorption probabilities.

Fig. 4 Architecture of the neural network. Neural network
architecture for translocation time prediction of a polymer as a
function of H/T sequence.
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of N= 14 monomers. The total number of sequences excluding
the mirror-symmetric ones is S= 8256. The fraction of sequences
within the training set we fix to ftrain ≡ Strain/S= 1/7. The ratio
between training to the remaining test set results in 1:6. However,
we follow two distinct schemes for the distribution of training
sequences within the sequence space: In the uniform scheme, we
define equidistant intervals of size 1/ftrain, along the τ-sorted
sequences (id-space), and select the central sequences within
each interval as the training set. In contrast, in the τ-window
scheme we select every second sequence within a window S/2 <
id ≤ S/2+ 2Strain, where “id” is a τ-sorted unique index in sequence
space (section “Methods”). Note that thereby we select sequences
within a narrow window in the upper half of translocation times.
In Figs. 5 and 6, we summarize the results of the training, and

the performance of the resulting network with respect to the test
set. In Fig. 5a, the development of the mean squared error (MSE)
between NN- and RS-based log ðτÞ values for all test sequences
(unseen) is presented. We note a reliable convergence of MSE
values for both uniform and τ-window training sets toward a
horizontal line indicating that training was stopped early enough
for not running into over-training. In the case of the uniform
training set, MSE results typically end up more than one order of

magnitude lower as compared to the τ-window training set. The
corresponding root mean squared deviation from the expected
value typically reduces by a factor of

ffiffiffi
2

p
8 � 5. For the uniform

training set, the root mean squared relative deviation from the RS-
based log ðτÞ value points to a typical error of 1.0%, whereas for
the τ-window training set we observe values of 7.3%.
In Fig. 5b, we show the corresponding mean relative error for

the back-converted (not logarithmic) time τ according to

Δτ

τ
¼ exp½Δlog ðτÞ� � 1 (5)

where Δlog ðτÞ is the absolute difference between the RS- and NN-
based log ðτÞ values. For the uniform training set, the relative error
scatters between −23% and +43% as found for the largest index
idtest (largest τ), whereas for the fastest polymers 90% of
sequences stay within an error of −6% to +15%. For this training
set, equivalent to a random selection of sequences, such high
accuracy of the network prediction is remarkable when seeing
that the RS-based values of τ are spread by a maximum factor of
τmax/τmin ~ 2 × 1011. For the τ-window training set, the relative
error far away from the training window increases as compared to
the uniform set. Nevertheless, as the maximum range of relative
errors is found in the interval of −0.87 ≤ Δτ/τ ≤ 1.25 for the largest
index idtest, we conclude that typically the prediction hits the right
order of magnitude for τ despite the fact that we used only the
narrow sequence window for training. It is interesting to note that
the translocation times of the fastest sequences is typically
predicted correctly by a factor of ~3 despite the large distance
from the training window. Qualitatively, we expect that, when
shifting the τ-window to smaller (larger) values of τ, the prediction
accuracy for the smallest τ values will increase (decrease) while
accuracy for the largest values of τ will decrease (increase), which
is supported by preliminary data (not shown).
Absolute values are not always the main question for the

modeled mapping; in some cases it is enough to obtain a decision
statement upon the performance of two structures. When
comparing two polymer sequences, for instance, we may ask
which of those translocates faster. In Fig. 5c, we therefore show
the performance of the trained network to give the right answer
for this question as a function of sequence idtest. For this purpose,
we calculated for each NN result τ1 for a given test sequence the
fraction of all other test sequences leading to an NN output τ2 that
holds the same relation τ1 > τ2 or τ1 < τ2 as the corresponding pair
of RS sampling results. In case of uniform training, 98:7þ1:1

�1:6% of
other sequences are correctly attributed as slower or faster (with a
confidence of 90%), and for the τ-window training set 96:8þ2:8

�4:5% of
pairs are correctly labeled. For the τ-window training set, the
performance far away from the training window is reduced, in
particular for sequences with a lower idtest index. However, the
average fraction of correct decisions does not drop below 94.3%
for the selected bin size.
By Fig. 5, we therefore demonstrated that a quantitative

prediction of translocation times is possible by the applied ML
model, and the accuracy depends crucially on the distribution of
training sequences.
In Fig. 6, we outline more details of the training result by

showing the predicted value of log ðτÞ for the whole test sets of
uniform and τ-window in Figs. 6a and 6b, respectively. The
monotony of the predicted data points for both training sets
follows the base data line despite the scattering of the data as
discussed for Fig. 5. In particular, for the τ-window training set, we
emphasize that the order of translocation times is predicted
correctly for the fastest sequences although the training set covers
only a narrow window within the slower half of sequences.
Another interesting observation is the prediction of step-like

features in translocation time (arrows in Fig. 6b) as function of
idtest that are reproduced throughout the test set although
located outside of the τ-window training range. Thus even the

Fig. 5 Performance of the neural network predictions. a Evolution
of the mean squared error (MSE) of neural network-based log ðτÞ
estimates for the test data set as a function of training epoch.
b Relative error of the predicted value of τ according to Eq. (5) as a
function of sequence index idtest in the test set. The result is
averaged for 17 groups (bins) of sequences along the RS-τ sorted
test set (idtest). Error bars denote a confidence interval of 90% by
excluding the highest and lowest 5% of the data. The blue box
labels the range of sequences of the training set in case of τ-
window. c Percentage of correctly predicted faster or slower other
sequences as a function of sequence index. Here we use the same
binning and error bar definition as in b.
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relatively simple network seems capable of finding a generic rule
that links sequence and translocation time and thereby expresses
the rather rich result based on Eqs. (7) and (8) without knowledge
of conformation entropy nor the escape times. In view of the
generalization performance observed for the τ-window training
set, it therefore seems that the network developed an implicit
internal representation approximating the mathematical rules
linking copolymer sequence and translocation time.

DISCUSSION
We apply a massively parallel sampling of the conformations of
amphiphilic copolymers by means of self-avoiding random walks
within a given density field representing a model for amphiphilic
bilayer membranes. We estimated the free-energy profiles of the
polymers composed of hydrophilic (H) and hydrophobic beads (T)
with respect to distance from the membrane as a reaction
coordinate. We calculated the mean first escape time τ as a
measure for polymer translocation time through the model
membrane all 2N binary sequences up to chain length N ≤ 16.
Our results confirm that polymer translocation is controlled by a
balance of the overall hydrophobicity of the polymer and is
inhibited by adsorption at the bilayer–solvent interfaces26–28,31,
which is consistent with the picture for small solutes67 and larger
solid objects such as carbon nanotubes68.
Amphiphilic polymers at a balanced hydrophobicity show the

smallest translocation times when the sequence exposes small
repeating amphiphilic features, while longest waiting times are
associated with a diblock structure of the whole chain. The
different translocation rates between diblock and triblock
copolymers as well as their chain-length dependence can be
explained qualitatively when comparing adsorption-free energies
at the bilayer–solvent interface involving surface-critical expo-
nents. The relatively weak dependence of the translocation time
of balanced hydrophobicity small-block alternating copolymers
from chain length indicates that local amphiphilic features are
only weakly interacting with the bilayer–solvent interfaces and the

copolymer effectively resembles a homopolymer chain for which
the membrane is energetically transparent. Chain-length depen-
dence in this case is expected to increase when effective
monomer association constants are stronger than in the present
model. When considering slightly hydrophilic backbones, larger
hydrophobic blocks start to become more prominent in
sequences leading to smallest translocation times as they promote
the association of the net-repulsive backbone with the hydro-
phobic membrane core.
The extensive database generated by RS sampling has been

used to feed a multi-layer artificial NN with four hidden layers in
order to explore the capability of so-called deep learning
approaches for finding a general rule of how copolymer sequence
translates into translocation times through biological barriers. The
aim of this work is to test the meaningful interpretation of the
“dirty work” of NNs provided by a complete data set of polymer
sequences. We demonstrate that, even by using a low fraction 1/7
of uniformly selected training examples as compared to the total
number 2N of binary sequences for N= 14, the NN achieves a root
mean squared relative deviation in the order of 1% for the
logarithmic mean first escape time log ðτÞ: In order to test the
generalization performance of the network, we implemented a
second training scheme, where training examples have been
selected from a narrow window of sequences with respect to
translocation times τ covering a factor of ≈30 between maximum
and minimum translocation times contained in the training set. In
this case, the network approximates the order of magnitude of the
test data set covering a window being more than nine orders of
magnitude wider. We conclude that the NN developed an internal
representation of the mathematical rules linking sequence and
translocation times, which involve a precise estimate of rate-
limiting energy barriers. The network thereby encodes a complex
interplay between polymer net hydrophobicity and sequence-
dependent adsorption at the bilayer–solvent interfaces that to
date can be treated in a theoretically closed form only for special
cases as it involves the sequence-dependent polymer conforma-
tion entropy and solving the diffusion problem in inhomogeneous

Fig. 6 Unseen data predictions. Neural network prediction (dots) for the mean first escape time τ for unseen data (test set) are compared to
RS-based results (gray line). Data are shown as a function of a unique identifier idtest for sequences in the test set that is sorted according to
the RS-based result for τ. The ratio between training and test set sizes is 1:6. The number of hydrophobic units, NT, is shown as color-coded
halos. In a, the uniform training set distributed homogeneously along the full RS τ-sorted sequence list. In b, we chose every second sequence
within the blue labeled τ-windows range between idtest= 4128 and idtest= 5305. Training set sequences are skipped in this plot such that the
slope is doubled as compared to the full sequence set within the labeled interval. The insets show details in the fields of lowest τ. The blue
horizontal line in b inset labels the RS-based τ-value at the lower bound of the τ-window.
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free-energy landscapes. Our results indicate a systematic decrease
of prediction accuracy when moving into unexplored corners of
sequence space and challenge future investigation on the relation
between training data bias and prediction accuracy.

METHODS
Rosenbluth–Rosenbluth sampling
We consider the diffusive transport of a polymer through a lipid
membrane resembling a homogeneous oil slab as shown in Fig. 7. In
particular, we are interested in mean first escape time of a polymer
through the membrane as a function of length, N, sequence of hydrophilic
head (H) and hydrophobic tail monomers (T). Coarse grained polymers are
embedded into an external concentration field that represents bilayer
membrane on a mean-field level composed of an hydrophilic region (H)
and a hydrophobic core (T), as well as solvent (S). The hydrophobic core
has a thickness of six lattice units.
Monomers are represented as single-cell occupations on a simple cubic

lattice, and bond vectors are taken from a set of 26 vectors with lengths of
1,

ffiffiffi
2

p
, and

ffiffiffi
3

p
lattice units. Double occupancy of lattice sites is forbidden,

and the monomers have excluded volume. This set of static rules
corresponds to those of Shaffer’s Bond Fluctuation Model54.
Between hydrophilic sites (H and S), and hydrophobic sites (T), we

implement short-range repulsive interactions. We write the internal
energies of H and T monomers of the polymer as

UHð r!Þ ¼ ϵcTð r!Þ; UTð r!Þ ¼ ϵðcSð r!Þ þ cHð r!ÞÞ (6)

where cxð r!Þ are the number of lattice occupancies by species x on the 26
nearest neighbor sites55. In order to keep the model simple, we use only a
single interaction parameter defined as ϵ= 0.1kBT with kB being
Boltzmann’s constant and T the absolute temperature. For the enumera-
tion of cx, the occupancy of the lattice by a given external concentration
field (Fig. 7) is counted, and monomer–monomer contacts are taken into
account in a way that contacts with the external field are screened by
surrounding monomers. Thereby solvent-induced effects on polymer
conformations are represented by the model.
For a given amphiphilic sequence, we aim to calculate the mean first

escape time of a polymer between a repulsive boundary at z=−a and an
absorbing boundary at z=+a, (Fig. 7)56,

τ ¼ 1
D

Z þa

�a
dzp�1ðzÞ

Z z

�a
dz0pðz0Þ (7)

where D is the diffusion constant of the polymer and p(z) is the probability
distribution to find the center of mass of the polymer at a given distance, z,
from the bilayer’s mid-plane. We define a= 22 lattice units, and D= 1
(lattice unit)2, such that the dimensionless number of τ does not include
the chain-length dependence of diffusion time.
The probability distribution p(z) is calculated by generating M polymer

conformations R
!¼ ð r!1; r

!
2; ¼ ; r!NÞ according to the RS scheme53. For

each conformation R
!
, the contact energy Uð R!Þ is calculated according to

Uð R!Þ ¼ PN
i¼1 UXð r!iÞ in units of kBT according to Eq. (6) depending on the

species X of the monomer X= H or X= T. The center of mass zð R!Þ ¼
ð1=NÞPN

i¼1 r!i e
!

z is evaluated with e!z being the lattice unit vector along

the membrane’s normal direction. The distribution p(z) is then written as

pðzÞ ¼ 1
M

PM

i;zð R
!

iÞ’z
Wie�βUð R

!
iÞ (8)

where the condition below the sum illustrates that only those conforma-
tions contribute whose center of mass is found within a grid distance
ðz � 1=2Þ < z � ðz þ 1=2Þ from z, and β≡ 1/(kBT). In Eq. (8), Wi is the
Rosenbluth weight of the ith conformation.
For a given sequence of H and T monomers in a polymer backbone, we

calculate the mean first escape time according to Eq. (7) based on the
generation of M= 1.5 × 107 RS-generated chains at uniformly distributed
random positions within a periodic lattice of 64 × 64 × 64 lattice sites. The
algorithm is implemented for GPUs4. In order to analyze how the mean
first escape time depends on the amphiphilic sequence of the polymer, we
perform the procedure for all 2N sequences for various degrees of
polymerization N ≤ 16.

Artificial NN
We employ a fully connected NN involving tanh-activation as sketched in
Fig. 4. The network is composed by 2 hidden layers with 64 nodes each
followed by 2 hidden layers with 32 nodes each. The input layer
corresponds to a vector of values 0 and 1 representing the considered
amphiphilic sequence of hydrophobic (0) and hydrophilic (1) monomers.
The output layer consists of one neuron whose output is compared to the
RS-based τ value for this sequence. The total network depth is n= 5, where
only the output activation, tanh½P32

i¼1ðwn;ihn�1;i þ bÞ�, includes a bias, b.
Since absolute values of τ spread over several orders of magnitude, we
perform the training with respect to its logarithm. The RS-based values of
log ðτÞ are further linearly normalized and centralized into an interval
[−0.9, 0.9] by defining Iðlog ðτÞÞ ¼ 1:8 ´ ½ðlog ðτÞ �
log ðτminÞÞ=ðlog ðτmaxÞ � log ðτminÞÞ � 1

2� in order to be conveniently
expressible by the tanh-activation output. NN-based estimates for log ðτÞ
are obtained by the back projection, I−1, of output neuron activations.
All weights are initialized with uniform random numbers in an interval

[−0.3, 0.3]. The feed-forward (ff) back-propagation (bp)57 algorithm is
employed for training. Error bp is performed after each ff cycle for a
randomly selected sequence taken from the training set (stochastic
gradient descent). The squared difference between the resulting activation
of the output neuron and the RS-based Iðlog ðτÞÞ value is used as the cost
function for weight and bias adjustment. We set the initial training rate to
η= 0.02, which gets reduced by a factor of (1/1.3) every 103 epochs in
order to avoid frustration or early over-training effects. One epoch is
defined as the average number of ff-bp cycles per sequence–τ pair. We set
the total number of epochs to 104.
For each sequence, we define an unique integer identifier, 1 ≤ id ≤S, that

is sorted according to the RS-based τ value. A lower id means a lower τ. The
whole of S sequences is divided into a training set of size Strain and a test
set of the size Stest= S− Strain. For the test set, we define a unique identifier
idtest for each sequence that is the analog to id for the total sequence
space. The index idtest labels sequences that are unseen by the network
during training.
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