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Abstract. We establish quantitative properties of minimizers and stable sets for
nonlocal interaction functionals, including the s-fractional perimeter as a partic-
ular case.

On the one hand, we establish universal BV -estimates in every dimension n > 2
for stable sets. Namely, we prove that any stable set in B1 has finite classical
perimeter in B1/2, with a universal bound. This nonlocal result is new even in the
case of s-perimeters and its local counterpart (for classical stable minimal surfaces)
was known only for simply connected two-dimensional surfaces immersed in R3.

On the other hand, we prove quantitative flatness estimates for minimizers and
stable sets in low dimensions n = 2, 3. More precisely, we show that a stable set
in BR, with R large, is very close in measure to being a half space in B1 —with a
quantitative estimate on the measure of the symmetric difference. As a byproduct,
we obtain new classification results for stable sets in the whole plane.
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1. Introduction

In this paper we establish quantitative properties of minimizers and stable sets
of nonlocal interaction functionals of perimeter type. We consider very general —
possibly anisotropic and not scaling invariant functionals— including, as particular
cases, the fractional s-perimeter and its anisotropic version, introduced respectively
in [11] and [30].

The results that we obtain can be grouped, roughly speaking, into the following
categories:
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• Local BV -estimates (universal bounds for the classical perimeter) and sharp
energy estimates for minimizers and stable sets,
• Existence results and compactness of minimizers,
• Quantitative flatness results.

Before giving the most general statements of the results in the paper, we just state
them for the case of fractional s-perimeter. Even in this very particular case, the
results are new and interesting in themselves.

The precise setting of the (most general) nonlocal perimeter functionals that we
consider will be discussed in Subsection 1.1. In particular, in the forthcoming Defi-
nitions 1.5 and 1.6 we precise the notions of minimizers and stable sets. Our results
are stated in their full generality later on in Subsection 1.3 —after having given in
Subsection 1.2 several concrete motivations for the problems under consideration.

We next state, in the case of the s-perimeter, our main BV -estimate. This result
is a particular case of our Theorem 1.7. It gives a universal bound on the classical
perimeter in B1/2 of any stable minimal set in B1. As said above, the precise notion
of stable solution will be given in Definition 1.6, and it is an appropriate weak
formulation of the nonnegativity of the second variation of the functional.

Theorem 1.1. Let s ∈ (0, 1), R > 0 and E be a stable set in the ball B2R for the
nonlocal s-perimeter functional. Then, the classical perimeter of E in BR is bounded
by CRn−1, where C depends only on n and s.

Moreover, the s-perimeter of E in BR is bounded by CRn−s.

Moreover, as a consequence of Theorem 1.7, we establish the same result for the
anisotropic fractional perimeter considered in [30].

To better appreciate Theorem 1.1 let us compare it with the best known similar
results for classical minimal surfaces. A universal perimeter estimate for (local) sta-
ble minimal surfaces is only known for the case of two-dimensional stable minimal
surfaces that are simply connected and immersed in R3. Conversely, the perimeter
estimate in our Theorem 1.1 holds in every dimension and without topological con-
straints. The perimeter estimate for the classical case is a result due to Pogorelov
[35], and Colding and Minicozzi [18] —see also [32, Theorem 2] and [44, Lemma 34],
it reads as follows

Theorem 1.2 ([35, 18]). Let D be a simply connected, immersed, stable minimal
disk of geodesic radius r0 on a minimal (two-dimensional) surface Σ ⊂ R3, then

πr2
0 6 Area (D) 6 4

3
πr2

0.

As said above, our estimate for nonlocal perimeters is stronger in the sense that we
do not need ∂E to be simply connected and immersed. In fact, an estimate exactly
like ours can not hold for classical stable minimal surfaces since a large number
of parallel planes is always a classical stable minimal surface with arbitrarily large
perimeter in B1.
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The proof of Theorem 1.2 uses crucially the fact that for two-dimensional minimal
surfaces the sum of the squares of the principal curvatures κ2

1 + κ2
2 equals 2κ1κ2 =

−2K, where K is the Gauß curvature —since on a minimal surface κ1 + κ2 = 0.
Then, the stability inequality reads as

∫
D
|∇ξ|2 + 2Kξ2 > 0. By plugging a suitable

radial test function ξ in this stability inequality, using the Gauß-Bonnet formula to
relate

∫
Dr
K and d

dr
Length (∂Dr), and integrating by parts in the radial variable,

one proves the bound Area (D) 6 4
3
πr2

0. This elegant proof is unfortunately quite
rigid and only applies to two-dimensional surfaces.

Having a universal bound for the classical perimeter of embedded minimal surfaces
in every dimension n > 4 would be a decisive step towards proving the following
well-known and long standing conjecture: The only stable embedded minimal (hy-
per)surfaces in Rn are hyperplanes as long as the dimension of the ambient space
is less than or equal to 7. Indeed, it would open the door to use the monotonicity
formula to prove that blow-downs of stable surfaces are stable minimal cones —
which are completely classified. On the other hand, without a universal perimeter
bound, the sequence of blow-downs could have perimeters converging to ∞. In the
same direction, we believe that our result in Theorem 1.1 can be used to reduce the
classification of stable s-minimal surfaces in the whole Rn to the classification of
stable cones —although by now this classification of cones is only known for n = 2
(or for n 6 7, but s sufficiently close to 1, see [37] and [15]).

We note that our nonlocal estimate gives a control on the classical perimeter
(i.e. the BV -norm of the characteristic function), which is stronger —both from the
geometric and functional space perspective— than a control on the s-perimeter (i.e.
on the W s,1 norm of the characteristic function). The sharp s-perimeter estimate
stated in Theorem 1.1 is obtained as a consequence of the estimate for the classical
perimeter using a standard interpolation.

Since it is well-known [5, 19, 14, 2] that the classical perimeter is the limit as s ↑ 1
of the nonlocal s-perimeter (suitably renormalized), it is natural to ask whether our
results give some informations in the limit case s = 1. Unfortunately, our proof relies
strongly on the nonlocal character of the s-perimeter and the constant C appearing
in Theorem 1.1 blows up as s ↑ 1.

The more general forms of our BV -estimates have quite remarkable consequences
regarding the existence and compactness of minimizers —see Theorem 1.13 and
Lemma 6.7. These existence and compactness results are nontrivial since they ap-
ply in particular to some perimeter functionals that are finite on every measurable
set. Thus, although all the perimeter functionals that we consider are lower semi-
continuous, sequences of sets of finite perimeter are in principle not compact in L1.
Thanks to our BV -estimates, we can obtain robust compactness results that serve
to prove existence of minimizers in a very general framework.

We next give our quantitative flatness estimate in dimension n = 2 for the case of
the s-perimeter. This result is a particular case of our Theorem 1.14. It states that
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stable sets in a large ball BR are close to being a halfplane in B1, with a quantitative
control on the measure of the symmetric difference that decays to 0 as R→∞.

Theorem 1.3. Let the dimension of the ambient space be equal to 2. Let R > 2
and E be a stable set in the ball BR for the s-perimeter.

Then, there exists a halflplane h such that |(E4h) ∩B1| 6 CR−s/2.
Moreover, after a rotation, we have that E ∩ B1 is the graph of a measurable

function g : (−1, 1)→ (−1, 1) with osc g 6 CR−s/2 outside a “bad” set B ⊂ (−1, 1)
with measure CR−s/2.

The previous result provides a quantitative version of the classification result in
[37] which says that if E is a minimizer of the s-perimeter in any compact set of R2,
then it is necessarily a halfplane. Moreover, Theorem 1.3 extends this classification
result to the class of stable sets.

In Corollary 1.21 we will obtain also results in dimension n = 3 for minimizers
of anisotropic interactions with a finite range of dependence (i.e. for “truncated
kernels”).

The proofs of our main results have, as starting point, a nontrivial refinement of
the variational argument introduced by Savin and one of the authors in [37, 38] to
prove that halfplanes are the only cones minimizing the s-fractional perimeter in
every compact set of R2. Namely, we consider perturbations ER,t of a minimizer E
which coincide with E outside BR and are translations E + tv of E in BR/2 —with
“infinitesimal” t > 0. A first step in the proof is estimating how much PK,BR(ER,t)
differs from PK,BR(E) depending on R —this is done in Lemma 2.1. By exploiting
the nonlocality of the perimeter functional, the previous control on PK,BR(ER,t) −
PK,BR(E) is translated into a control on the minimum between |ER,t\E| and |E\ER,t|
—the crucial estimates for this are given in Lemmas 2.2 and 2.4. Then, a careful
geometric analysis allows us to deduce our main results —i.e. Theorems 1.7, 1.9,
1.14, 1.19 and their corollaries. We emphasize that we always use arbitrarily small
perturbations of our set E. That is why we can establish some results for stable
sets.

In the following subsections, we introduce the mathematical framework of nonlocal
perimeters, we discuss some motivations for this general framework, and we present
the main results obtained.

1.1. The mathematical framework of nonlocal perimeter functionals. The
notion of fractional perimeter was introduced in [11]. Let s ∈ (0, 1). Given a
bounded domain Ω ⊂ Rn, we define the fractional s-perimeter of a measurable set
E ⊂ Rn relative to Ω as

(1.1) Ps,Ω(E) := Ls(E ∩ Ω, CE ∩ Ω) + Ls(E ∩ Ω, CE \ Ω) + Ls(E \ Ω, CE ∩ Ω),
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where CE denotes the complement of E in Rn and the interaction Ls of two disjoint
measurable sets A,B is defined by

Ls(A,B) :=

∫

A

∫

B

dx dx̄

|x− x̄|n+s
.

Roughly speaking, this s-perimeter captures the interactions between a set E and
its complement. These interactions occur in the whole of the space and are weighted
by a (homogeneous and rotationally invariant) kernel with polynomial decay (see
Figure 1). Here, the role of the domain Ω is to “select” the contributions which arise
in a given portion of the space and to “remove” possible infinite contributions to the
energy which come from infinity but which do not change the variational problem.

Figure 1. Kernels for: the s-perimeter, the anisotropic s-perimeter,
more general L2 kernels.

A set E is said to minimize the s-perimeter in Ω if

(1.2) Ps,Ω(E) 6 Ps,Ω(F ), for all F with E \ Ω = F \ Ω.

The (boundaries of the) minimizers of the s-perimeter are often called nonlocal
minimal (or s-minimal) surfaces.

In this paper, we study a more general functional, in which the interaction kernel
is not necessarily homogeneous and rotational invariant. We consider a kernel K
satisfying

(1.3) K(z) > 0,

(1.4) K(z) = K(−z),

(1.5)

∫

Rn
K(z) min{1, |z|} dz < +∞

and

(1.6) K > 1 in B2.
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To prove our main results we will require the following additional assumption on
the first and second derivatives of the kernel K:

(1.7) max

{
|z| |∂eK(z)| , |z|2 sup

|y−z|6|z|/2
|∂eeK(y)|

}
6 K∗(z)

for all z ∈ Rn \ {0} and for all e ∈ Sn−1, for some kernel K∗.
Throughout the paper we will have one of the three following cases:

• K∗(z) = C1K(z);
• K∗(z) = C1

(
K(z) + χ{|z|<R0}(z)

)
for some R0 > 2;

• K∗(z) ∈ L1(Rn).

We emphasize that the kernels of the fractional s-perimeter and its anisotropic
version satisfy (1.7) with K∗(z) = C1K(z). Therefore, a reader interested in the
results for these particular cases, can mentally replace K∗ by C1K in all the paper.
We allow the second case of K∗ in order to obtain results for compactly supported
kernels, as for example (9 − |z|2)3

+|z|−n−s. With the third case, we will be able to

obtain strong results for nonsingular kernels like e9−|z|2 .
We set

LK(A,B) =

∫

A

∫

B

K(x− x̄) dx dx̄.

We define, for a measurable set E ⊂ Rn, the K-perimeter of E in Rn as

PK(E) = LK(E, CE).

We define the K-perimeter of E inside Ω, PK,Ω(E) similarly as in (1.1) with LK
replacing Ls. That is,

(1.8) PK,Ω(E) := LK(E ∩ Ω, CE ∩ Ω) + LK(E ∩ Ω, CE \ Ω) + LK(E \ Ω, CE ∩ Ω).

Note that our definition of PK,Ω(E) agrees with the one of PK(E,Ω) given in [24,
Section 3].

Remark 1.4. We observe that if K satisfies (1.5), then every Lipschitz bounded
domain U has finite K-perimeter in Rn. Indeed,

PK(U) =

∫

U

∫

CU
K(x̄− x)dxdx̄ =

∫

Rn
dz

∫

U∩(CU−z)
dxK(z)

=

∫

Rn
|U \ (U − z)|K(z)dz 6 C

∫

Rn
min{1, |z|}K(z)dz <∞,

where we have used the change of variables z = x̄− x and Fubini Theorem.

We next formally state the definition of minimizer of the K-perimeter.

Definition 1.5. We say that E is a minimizer for PK,Ω in an open bounded set Ω,
if PK,Ω(E) <∞ and

PK,Ω(E) 6 PK,Ω(F )

for any set F which coincides with E outside Ω, that is F \ Ω = E \ Ω.
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We also define the notion of stable set for the K-perimeter.

Definition 1.6. We say that E is a stable set for PK,Ω if PK,Ω(E) <∞ and for any
given vector field X ∈ C2

c (Ω; Rn) and ε > 0 there is t0 > 0 such that the following
holds. Denoting Ft = Ψt(E), where Ψt is the integral flow of X, we have

0 6 PK,Ω(Ft ∪ E)− PK,Ω(E) + εt2

and
0 6 PK,Ω(Ft ∩ E)− PK,Ω(E) + εt2

for all t ∈ (−t0, t0).

For our second theorem we will consider kernels K in the class L2(s, λ,Λ) intro-
duced by Caffarelli and Silvestre in [12] (see Figure 1). Namely, the kernels K(z)
satisfying (1.4),

(1.9)
λ

|z|n+s
6 K(z) 6 Λ

|z|n+s

and

(1.10) max
{
|z| |∂eK(z)| , |z|2|∂eeK(z)|

}
6 Λ

|z|n+s

for all z ∈ Rn \ {0} and for all e ∈ Sn−1. Note that, after multiplying a kernel
K ∈ L2 by a positive constant, we may assume that λ > 2n+s and hence K satisfies
(1.3)–(1.7) with K∗ = C1K.

A very relevant particular case to which our results apply is that of s-fractional
anisotropic perimeters, introduced in [30]. This case corresponds to the choice of
the kernel

(1.11) K(z) =
a(z/|z|)
|z|n ,

where a is some positive, even C2 function on the (n − 1)-dimensional unit sphere
Sn−1 (see Figure 1). The notion of anisotropic nonlocal perimeter was considered in
[30], where some asymptotic results for s→ 1− where established.

1.2. Motivations of nonlocal perimeters. To favor a concrete intuition of the
nonlocal perimeter functional, we now recall some practical applications of the non-
local perimeter functionals. In these applications, it is also natural to consider
interactions that are not homogeneous or rotationally invariant.

A. The first application that we present is related to image processing and
bitmaps.

Let us consider the framework of BMP type images with square pixels of (small)
size ρ > 0 (and suppose that 1/ρ ∈ N for simplicity). For simplicity, let us consider
a picture of a square of side 1, with sides at 45◦ with respect to the orientation of
the pixels and let us compare with the “version” of the square which is represented
in the image (see Figure 2).
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In this configuration, the classical perimeter functional provides a rather inaccu-
rate tool to analyze this picture, no matter how small the pixels are, i.e. no matter
how good is the image resolution.

Indeed, the perimeter of the ideal square is 4, while the perimeter of the picture
displayed by the monitor is always 4

√
2 (independently on the smallness of ρ), so

the classical perimeter is always producing an error by a factor
√

2, even in cases of
extremely high resolution.

Instead, the fractional perimeter (for instance with s = 0.95) or other nonlocal
perimeters would provide a much better approximation of the classical perimeter of
the ideal square in the case of high image resolution. Indeed, the discrepancy Ds(ρ)
between the s-perimeter of the ideal square and the s-perimeter of the pixelled square
is bounded by above by the sum of the interactions between the “boundary pixels”
with their complement: these pixels are the ones which intersect the boundary of
the original square, and their number is 4/ρ.

By scaling, the interaction of one pixel with its complement is of the order of ρ2−s,
therefore we obtain that Ds(ρ) 6 Cρ1−s, which is infinitesimal as ρ→ 0.

Since the fractional perimeter (suitably normalized) is close to the classical one as
s→ 1−, that the fractional perimeter provides in this case a more precise information
that the classical one.

Figure 2. Discrepancy of local/nonlocal perimeters in a bitmap.

B. Another main motivation for the study of nonlocal s-minimal surfaces, as ex-
plained in [11], is the understanding of steady states for nonlinear interface evolution
processes with Lévy diffusion. Namely let us think of u(t, · ) : Rn → [0, 1] as rep-
resenting the state at time t of some interface phenomenon where two stable states
u ≡ 1 and u ≡ 0 diffuse and “compete” to conquer the whole space. In concrete
applications u could be, for instance, the density of an invasive biological specie.

For a wide class of such situations, the evolution equation that governs u is of the
type

ut + Lu = f(u),
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where L is a “diffusion operator” —e.g. L = (−∆)s/2, s ∈ (0, 2]— and f is a
bistable nonlinearity with f(0) = f(1) = 0 and f(z) increasing (resp. decreasing)
near z = 0 (resp. z = 1).

An extreme version of this evolution process, heuristically corresponding to a huge
balanced f like f(u) = M

(
(2u− 1)− (2u− 1)3

)
with M � 1 is the following.

Given an open set E ⊂ Rn with smooth boundary we define its density function
u by

u(x) = lim
r↘0

|Br(x) ∩ E|
|Br(x)| .

That is u(x) takes the values 1, 1/2 or 0 depending on whether x belongs to E, ∂E
or the interior of CE

Let L be a “diffusion operator”, or more rigorously, an infinitesimal generator of
a Lévy process. For t ∈ τN∪{0}, where τ is a tiny time step, we define the discrete
in time evolution ΦLt (u) of the density function u of E as follows:

ΦLt+τ (u)(x) =





1 if v(ω, x) > 1/2

1/2 if v(ω, x) = 1/2

0 if v(ω, x) < 1/2,

where ω = ω(τ) is an appropriate time step depending on τ and v is the solution to

vt + Lv = 0 with initial condition v(0, ·) = ΦLt (u).

In this way ΦLt defines a discrete in time surface evolution of ∂E —excluding
patological cases in which thickening of the set {v = 1/2} might occur.

Heuristically, a set E with smooth enough boundary will be stationary under the
flow ΦLt (with infinitesimal τ) if and only if its density function u satisfies

(1.12) Lu(x) = 0 for all x ∈ ∂E = {u = 1/2}.
Indeed, in this way the evolution vt + Lv = 0 will be vt ≈ 0 on ∂E for 0 < t <
ω(τ)� 1, and the boundary points will not move. Note that this heuristic argument
is independent of the modulus of continuity ω.

In some cases, under an appropriate choice of ω = ω(τ) the discrete flow ΦLt can
be shown to converge to some continuous flow as τ ↘ 0.

When L = −∆ is the Laplacian, under the choice ω = τ the ΦLt converges
to the mean curvature flow. This classical result was conjectured by Merriman,
Bence, and Osher in [33], and proven to be true by Evans [22] and Barles and
Georgelin [3]. In [17], Chambolle and Novaga generalized this result to the case
of anisotropic and crystalline curvature motion. In [29] Ishii, Pires and Souganidis
study the convergence of general threshold dynamics type approximation schemes
to hypersurfaces moving with normal velocity depending on the normal direction
and the curvature tensor.

Finally, in [13], the case L = (−∆)s/2 was considered: in this case ΦLt still con-
verges to the mean curvature flow for s ∈ (1, 2) with ω = τ s/2 and for s = 1 with ω
implicitly defined ω2| logω| = τ for τ small.
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Instead, for s ∈ (0, 1) and ω = τ s/(1+s), the discrete flow ΦLt with L = (−∆)s/2

converges to a new geometric flow: the s-nonlocal mean curvature flow (see [13],
Theorem 1) —a flow where the normal displacement is proportional to the nonlocal
mean curvature; see also [16, 28, 36]. Fractional s-minimal surfaces are stationary
under this s-nonlocal mean curvature flow.

At the level of discrete flow, we can replace (−∆)s/2 with a more general elliptic
operator of form

(1.13) Lu(x) =

∫

Rn

(
u(x)− u(x̄)

)
K(x− x̄) dx̄

where K satisfies (1.3)-(1.6). Heuristically, minimizers of the K-perimeter should
be natural candidates to being stationary under the flow ΦLt as τ → 0.

C. Another motivation for the study of nonlocal s-minimal surfaces comes from
models describing phase-transitions problems with long-range interactions. In the
classical theory of phase transitions, one consider the energy functional

(1.14) E(u) =

∫

Ω

ε2|∇u|2 +W (u),

where W is a double well potential representing the dislocation energy, and the first
term, involving ∇u, penalizes the formation of unnecessary interfaces. The classical
Γ-convergence result by Modica and Mortola [34] states that the energy functional
ε−1E Γ-converges to the (classical) perimeter functional. A nonlocal analogue of
(1.14) is the following

Eσ(u) = ε2σKσ(u,Ω) +

∫

Ω

W (u),

where

Kσ(u,Ω) :=
1

2

∫

Ω

∫

Ω

|u(x)− u(x̄)|2
|x− x̄|n+2σ

dxdx̄+

∫

Ω

∫

CΩ

|u(x)− u(x̄)|2
|x− x̄|n+2σ

dxdx̄.

The previous energy functional models long range (or nonlocal) interactions between
the particles —the density of particles at a point is influenced by the density at
other points that may be not infinitesimally close. The minimizers of the functional
Eσ(u) have been studied in several recent papers [6, 7, 10, 8, 9, 42]. A list of
results established in these works includes: 1-D symmetry in low dimensions, energy
estimates, Hamiltonian identities, existence and decay properties of 1-D solutions,
etc.

In [39], Savin and one of the authors study the Γ-convergence of the energy func-
tional Eσ. In particular, they prove that when σ ∈ [1/2, 1), after a suitable rescal-
ing, Eσ Γ-converges to the classical perimeter functional. On the other hand, when
σ ∈ (0, 1/2) the functional ε−2σEσ Γ-converges to the nonlocal s-perimeter with
s = 2σ. Note that ε−2σEσ = Kσ + ε−2σ

∫
Ω
W (u) and thus, in this renormalization,

there is no small coefficients in front of the Dirichlet energy.
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Analogously, we could consider more energy functionals of the form

EK(u) =
1

2

∫

Ω

∫

Ω

|u(x)− u(x̄)|2K(x− x̄)dxdx̄

+

∫

Ω

∫

CΩ
|u(x)− u(x̄)|2K(x− x̄)dxdx̄+M

∫

Ω

W (u),

where M � 1 is a large real number.
Heuristically, similarly to the result of [39], minimizers of EK should “converge”

to minimizers of the K-perimeter PK as M →∞.

1.3. Statement of the main results. From now on, we will assume that K sat-
isfies assumptions (1.3)–(1.7).

We state our main results in the two following subsections. In the first one we give
the uniform BV -estimates for stable sets, and their consequence on existence and
compactness of minimizers of the K-perimeter —see [23, 27, 31]. In the second one
we state our quantitative flatness results and we comment on some corollaries and
some applications for specific choices of the kernels that are of independent interest.

1.3.1. Uniform BV -estimates. We recall the (classical) notion of BV -space and of
sets of finite perimeter. Let Ω be an open set of Rn. Given a function u in L1(Ω),
the total variation of u in Ω is defined as follows:

|∇u|(Ω) := sup

{∫

Ω

u divφ with φ ∈ C1
c (Ω,Rn), |φ| 6 1

}
.

Here, and throughout the paper, we denote C1
c (U ;A) the C1 vector fields compactly

supported in U and taking values in A.
The space BV (Ω) is defined as the space of functions which belong to L1(Ω) and

have |∇u|(Ω) finite. Moreover, we say that a set E ⊂ Rn has finite perimeter in Ω,
when the distributional gradient ∇χE of its characteristic function is a Rn-valued
Radon measure on Rn and |∇χE|(Ω) <∞. In this case, we define the perimeter of
E in Ω as:

PerΩ(E) = |∇χE|(Ω).

Finally, we define the reduced boundary ∂∗E of a set of finite perimeter E as follows:
∂∗E is the set of all points x such that |∇χE|(Br(x)) > 0 for any r > 0 and

(1.15) lim
r→0+

∇χE(Br(x))

|∇χE(Br(x))| exists and belongs to Sn−1.

For any x ∈ ∂∗E, we denote by −νE(x) the limit in (1.15) and we call the Borel
vector field νE : ∂∗E → Sn−1 the measure theoretic outer unit normal to E.

The following are our main results:

Theorem 1.7 (BV -estimates for stable sets). Let n > 2. Let E be a stable set
of the K-perimeter in B4, with K in L2(s, λ,Λ), that is, with K satisfying (1.4),
(1.9), and (1.10).
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Then, the classical perimeter of E in B1 is finite. Namely χE belongs to BV (B1)
with the following universal estimate

PerB1(E) = |∇χE|(B1) 6 C(n, s, λ,Λ).

Rescaling Theorem 1.7, and using an interpolation inequality that relates PK and
Per, we obtain

Corollary 1.8. Let n > 2. Let E be stable set of the K-perimeter in B4R, with K
in L2(s, λ,Λ), i.e. satisfying condition (1.4), (1.9) and (1.10). Then,

(1.16) PerBR(E) 6 C(n, s, λ,Λ)Rn−1.

As a consequence

(1.17) PK,BR(E) 6 C(n, s, λ,Λ)Rn−s.

We observe that the exponent n− s in (1.17) is optimal since it is achieved when
E is an halfspace. To prove (1.17) when E is minimizer, it is enough to compare the
K-perimeter of E with the K-perimeter of E ∪ BR. However, for stable stationary
sets this simple comparison argument can not be done and the proof is much more
involved —we need to prove our (stronger) uniform BV -estimates and deduce (1.17)
as a byproduct.

Theorem 1.7 follows from the following result for general kernels combined with
an appropriate scaling and covering argument.

Theorem 1.9. Let n > 2. Let E be a stable set of the K-perimeter in B4, with K
satisfying (1.3)– (1.7). If PK∗,B4(E) < ∞, then the classical perimeter of E in B1

is finite. Namely χE belongs to BV (B1) with the following estimate

PerB1(E) = |∇χE|(B1) 6
√

2n
√
PK∗,B4(E) + |Sn−1|.

Here, |Sn−1| denotes the (n− 1)-dimensional measure of the sphere Sn−1.

Theorem 1.9 can be applied to several particular cases. We state below the ones
which we consider more relevant.

Corollary 1.10. Let n > 2. Let E be a stable set of the K-perimeter in B4, with
K satisfying (1.3)– (1.7) and K∗ ∈ L1(Rn). Then,

PerB1(E) = |∇χE|(B1) 6
√

2n |B4|1/2 ||K∗||1/2L1(Rn) + |Sn−1|.
Recall that we denote the K-perimeter of a ball BR (relative to Rn) as

(1.18) PK(BR) =

∫

BR

∫

CBR
K(x̄− x) dx̄ dx.

We remark that for kernels as in (1.11) we have that PK(BR) = CRn−s. Notice also
that, by a simple comparison argument,

sup
{
PK,BR(E) : E minimizer of the K-perimeter in BR

}
6 PK(BR).
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Indeed, if E is a minimizer in BR, then PK,BR(E) 6 PK,BR(E ∪BR) 6 PK(BR).
When E is a minimizer andK∗ = C1(K+χ|z|<R0), then PK∗,BR(E) can be bounded

by above by CPK(BR). This is the content of the following proposition (which is
proven later on in Section 5).

Proposition 1.11. Let E be a minimizer of the K-perimeter in BR with R > 1 and
K satisfying (1.3)– (1.7), and K∗ = C1(K + χ|z|<R0) for some R0 > 2.

Then,
PK∗,BR(E) 6 CC1PK(BR),

where C is a constant depending only on n and R0.

As a consequence of Theorem 1.9 and Proposition 1.11, we deduce the following

Corollary 1.12 (BV -estimates for minimizers). Let E be a minimizer of the
K-perimeter in B4, with K satisfying (1.3)– (1.7), and K∗ = C1(K + χ|z|<R0) for
some R0 > 2.

Then,

PerB1(E) = |∇χE|(B1) 6 C
√
C1PK(B4),

where C is a constant depending only on n and R0.

Figure 3. A minimizer of the K-perimeter in BR has finite classical
perimeter in B1.

As explained in the beginning of the introduction, the “a priori” BV -estimate
established in Corollary 1.12 allows us to prove a very general existence result for
minimizers of PK,Ω. We state it next.

Theorem 1.13 (Existence of minimizers). Let Ω be a bounded Lipschitz domain,
and E0 ⊂ CΩ a given measurable set. Suppose that K satisfies assumptions (1.3)–
(1.7). Then, there exists a set E, with E ∩ CΩ = E0 that is a minimizer for PK,Ω
—in particular PK,Ω(E) <∞.
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Notice that when K belongs to L1(Rn), then PK,Ω(F ) < |Ω|
∫

Rn K < ∞ for all
measurable sets F . Thus, in principle, we do not have compactness for sequences of
sets with uniformly bounded K-perimeter.

The idea of the proof of Theorem 1.13 (which will be given in Section 4) consists
in considering the “singularized” kernel

Kε(z) := K(z) +
ε

|z|n+ 1
2

,

which, for every fixed ε, admits a minimizer Eε by the standard compactness of H
1
4

in L1. All the new kernels Kε satisfy assumptions (1.3)–(1.7) with constants that are
uniform in ε. Thus, Theorem 1.12 gives uniform BV -bounds for the characteristic
functions of the minimizers Eε. These bounds give the necessary compactness in
L1 to prove the existence of a limiting set as ε → 0. In order to prove that the
limiting set is a minimizer of PK,Ω, we use some other important ingredients (such
as a nonlocal coarea formula and a density result for smooth sets into sets of finite
K-perimeter) that will be established later on in Section 6.

1.3.2. Quantitative flatness results. Our quantitative flatness results in low dimen-
sions n = 2, 3 state that (under appropriate assumptions on the kernel K) a stable
set E of the K-perimeter in a very large ball BR is close to being a flat graph in B1.
Namely, for some ε = ε(R) that decreases to 0 when R increases to ∞, and after a
rotation of coordinates, the following three properties hold.

(F1) For some t ∈ [−1, 1],

|(E4{xn 6 t}) ∩B1| 6 ε,

where 4 denotes the symmetric difference.

(F2) There is a set B ⊂ B
(n−1)
1 = {x′ ∈ Rn−1 : |x′| 6 1} with |B| 6 ε such that

(E ∩B1) \ (B × R) =
{

(y, xn) ∈ B1 : xn 6 g(y), y ∈ (B
(n−1)
1 \ B)

}
.

for some measurable function g : B
(n−1)
1 → [−1, 1].

(F3) Denoting F ε = {(x′, xn/ε) : (x′, xn) ∈ F}, we have

PerBε1(Eε) 6 C(n),

where C(n) is a constant depending only on the dimension n ∈ {2, 3}.

Point (F1) says that the set E is close in the L1-sense to being a half-plane while
point (F2) says that ∂E ∩B1 is a graph after removing “vertical” cylinders of small
measure (see Figure 4). Moreover, (F3) gives a uniform bound for the classical
perimeter of rescalings of E in the vertical direction by a large factor 1/ε.

We give below our quantitative flatness result for stable sets in dimension n = 2.
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Figure 4. A minimizer or stable set of the K-perimeter in BR is
“almost” a flat graph in B1.

Theorem 1.14 (Flatness for stable sets in dimension two). Let n = 2. Let K
be a kernel belonging to the class L2(s, λ,Λ), i.e. satisfying conditions (1.4), (1.9),
and (1.10). Let E is a stable set of the K-perimeter in BR with R > 4.

Then, after a rotation, E satisfies (F1), (F2), and (F3) with

ε = CR−s/2,

where C is a constant depending only on s, n, λ, Λ.

Remark 1.15. We recall that Theorem 1.14 applies, in particular, to the fractional
anisotropic perimeter introduced in [30], where

K(z) =
a(z/|z|)
|z|n+s

,

with a ∈ C2(Sn−1) positive.

For the sake of clarity, let us rephrase the first conclusion of Theorem 1.14 in the
following way: Let K ∈ L2 and let E be a stable set of PK,BR. Then, there exists a
halfplane h such that

|(E4h) ∩B1| 6 CR−s/2.

Sending R→∞ in Theorem 1.14, we deduce the following

Corollary 1.16. For K ∈ L2, half-planes are the only stable sets in every compact
set of R2.

The local analogue of Corollary 1.16 was established in [20, 26], where the fol-
lowing statement is proved: Any complete stable surfaces in R3 is a plane. As said
above in the Introduction, this classification result for classical stable surfaces is still
open in dimensions n > 4.

As explained previously in the Introduction, our quantitative flatness result for
stable sets in Theorem 1.14 generalizes the classification theorem of [37], that we
recall next.
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Theorem 1.17. (Theorem 1 in [37]) Let E be a cone that is a minimizer of Ps in
every compact set of R2. Then E is a half-plane.

Using a blow-down argument and a monotonicity formula —see Remark 1.18—,
Theorem 1.17 implies that halfplanes are the only minimizers of the s-perimeter in
every compact set of R2.

Moreover, similarly as in the theory of classical minimal surfaces, this classification
result has important consequences in the regularity theory for nonlocal s-minimal
surfaces. In particular, combining Theorem 1.17 and the results contained in [4, 11],
one can deduce that any minimizer of the s-perimeter is smooth outside of a singular
set with Hausdorff dimension at most n− 3.

Our Theorem 1.14 generalizes Theorem 1.17 in three directions. First, our result
applies to the more general class of stable sets (we recall that any minimizer is a
stable set). Second, we can consider more general kernels in L2. Third, our result is
a quantitative version of Theorem 1.17 in the following sense: instead of assuming
that E is a minimizer in every compact set of R2, we assume that E is a stable set
for PK,BR with some large R and we obtain a quantitative control on the flatness of
E in B1, depending on R.

We point out that, using the C2 estimates for minimizers of the s-perimeter, and
scaling invariance, the distance of ∂E and some plane in B1 is bounded by CR−1,
when E is a minimizer of the s-perimeter in BR. However, since the C2 estimates are
proved by compactness, we have no explicit estimates for this constant C. Moreover,
such an approach clearly fails in case the problem is not scaling invariant or does
not have a regularity theory. Note that with the techniques of this paper we can
obtain results for general kernels that are not scaling invariant and for which the
existence of some regularity theory is unclear —see for instance Corollary 1.20.

Remark 1.18. We emphasize that for the specific case of K(z) = |z|−n−s, Caffarelli,
Roquejoffre and Savin proved a monotonicity formula for the local energy functional
associated to the s-perimeter via the so called Caffarelli-Silvestre extension. This
monotonicity formula allows them to use a blow-up argument to prove regularity
results once one knows that the only nonlocal minimal cones are halfplanes.

On the other hand, as explained above, using the monotonicity formula and The-
orem 1.17 one proves that halfplanes are the only minimizers of the s-perimeter in
every compact set of R2 —thus extending the classification result from cones to all
minimizers.

In our setting, monotonicity formulas are not available but still we can obtain
the same type of classification result as a consequence of our quantitative flatness
estimates.

We will deduce Theorem 1.14 from the following more general result.

Theorem 1.19. Let n = 2, 3. Assume that E is a stable set for the K-perimeter in
BR with R > 4 and K satisfying (1.3)–(1.7).
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Then, after some rotation, E satisfies (F1), (F2), and (F3) with

ε = ε(R) = C min





√
PK∗,BR(E)

R2
,

1√
logR

sup
ρ∈[1,R]

√
PK∗,Bρ(E)

ρ2



 ,

where C is a constant depending only on n.

The result contained in Theorem 1.19 is very general and it can be applied to sev-
eral choices of kernels. Below, we list some particular cases that are of independent
interest.

For kernels with K∗ ∈ L1(Rn), we have the following

Corollary 1.20. Let n = 2. Let E be a stable set of the K-perimeter in BR with
R > 4 and K satisfying (1.3)–(1.7) with K∗ ∈ L1(Rn).

Then, after some rotation, E satisfies (F1), (F2), and (F3) with

ε = ε(R) =
C√

logR
|B1|1/2| |K∗||1/2L1(Rn),

where C is a constant depending only on n.

Moreover, if E is a minimizer for the K-perimeter, combining Theorem 1.19 and
Proposition 1.11, we deduce

Corollary 1.21 (Flatness for minimizers in low dimensions). Let n = 2, 3.
Let E be a minimizer of the K-perimeter in BR with R > 4 and K satisfying (1.3)–
(1.7) with K∗ = C1(K + χ|z|<R0) for some R0 > 2.

Then, after some rotation, E satisfies (F1), (F2), and (F3) with

ε = ε(R) = C min

{√
C1
PK(BR)

R2
,

1

logR
sup
ρ∈[1,R]

√
C1PK(Bρ)

ρ2

}
,

where C is a constant depending only on n and R0.

Finally, as a particular case of Corollary 1.21, we consider the case of kernels with
compact support.

Corollary 1.22 (Quantitative flatness for truncated kernels). Let K satisfy
(1.3)–(1.7)and suppose that K has compact support. Let E be a minimizer of the
K-perimeter in BR with R > 4.

Then, after some rotation, E satisfies (F1), (F2), and (F3) with

(1.19) ε =

{
CR−

1
2 if n = 2,

C√
logR

if n = 3,

where C is a constant depending only on n and K.
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This result comes easily applying Corollary 1.21 and by the following energy
estimate which holds for the case of a compactly supported kernel K:

PK(BR) 6 CRn−1.

As a consequence of Corollaries 1.20 and 1.22 , we obtain the following

Corollary 1.23. For kernels K satisfying (1.3)–(1.7), halfspaces are the only min-
imizers in every compact set of Rn in the following cases:

• n = 2 and K∗ ∈ L1(Rn);
• n = 2, 3 and K with compact support.

The paper is organized as follows:

• In section 2, we establish some preliminary results that we will use in the
proof of our main theorems;
• In section 3, we prove Theorems 1.7 and 1.9 establishing the uniform BV -

bounds for stable sets and for minimizers;
• In section 4, we prove our quantitative rigidity result (Theorems 1.14 and

1.19);
• Section 5 is dedicated to some technical lemmas that we need in the proofs

of the main results;
• In section 6, we give the proof of the existence result (Theorem 1.13).

2. Preliminary results

Following an idea in [37], we want to consider perturbations of the minimizer E
which are translations of E in some direction v in BR/2 and coincide with E outside
BR. To build these perturbations, we consider the two following radial compactly
supported functions:

(2.1) ϕR(x) = ϕ(|x|/R) =





1 |x|/R < 1/2

2− 2|x|/R 1/2 6 |x|/R < 1

0 |x|/R > 1.

and

(2.2) ϕ̃R(x) = ϕ̃R(|x|) =





1 |x| <
√
R

2− 2 log(|x|)
logR

√
R 6 |x| < R

0 |x| > R.

For v ∈ Sn−1 and t ∈ [−1, 1] we define

(2.3) ΨR,t(x) := x+ tϕR(x)v.

We set

(2.4) ER,t = ΨR,t(E).

Throughout the paper, we denote
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(2.5) u = χE and uR,t(x) = χER,t = u
(
Ψ−1
R,t(x)

)
.

Note that these definitions depend upon a fixed unit vector v.
Likewise we define Ψ̃R,t, ẼR,t, ũR,t, with ϕ̃R replacing ϕR.
We prove now the following lemma, which is the appropriate analogue for the

nonlocal functional PK,BR of Lemma 1 in [37].

Lemma 2.1. Let n > 2, R > 4, and K a kernel satisfying (1.3)–(1.7). For every
measurable E ⊂ Rn with PK,BR(E) <∞ we have:

(a) For all t ∈ (−1, 1)

(2.6) PK,BR(ER,t) + PK,BR(ER,−t)− 2PK,BR(E) 6 32
t2

R2
PK∗,BR(E),

where K∗ is the kernel appearing in (1.7).
(b) For all t ∈ (−1, 1)

(2.7) PK,BR(ẼR,t) + PK,BR(ẼR,−t)− 2PK,BR(E) 6 (32πt)2

logR
sup
ρ∈[1,R]

PK∗,Bρ(E)

ρ2
,

where K∗ is as above.

Proof. We set AR := R2n \ (CBR × CBR).
Let us prove first point (a). We have

PK,BR(ER,±t) =
1

2

∫∫

AR

|u(Ψ−1
R,±t(x))− u(Ψ−1

R,±t(x̄))|2K(x− x̄) dx dx̄ .

Changing variables y = Ψ−1
R,±t(x), ȳ = Ψ−1

R,±t(x̄) in the integral we obtain
(2.8)

PK,BR(ER,±t) =
1

2

∫∫

AR

|u(y)− u(ȳ)|2K
(
ΨR,±t(y)−ΨR,±t(ȳ)

)
J±t(y) dy J±t(ȳ) dȳ ,

where J±t are the Jacobians which, as proven in Lemma 1 in [37], are

J±t(y) = det(DΨR,±t(y)) = 1± t∂vϕR(y).

We call

ε = ε(y, ȳ, R) :=
ϕ(y/R)− ϕ(ȳ/R)

|y − ȳ| .

Note that, since ‖ϕ‖C0,1(Rn) = 2, we have

(2.9) |ε| 6 2/R and |∂vϕR| 6 2/R.

Let
z = y − ȳ.

By taking R > 4 we may assume |ε| ∈ (0, 1/2]. Then, by the assumption (1.7) on
the second derivatives of the kernel we have

K
(
z ± tε|z|v

)
= K(z)± t∂vK(z)ε|z|+ e±(y, ȳ, r),
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where

(2.10)
∣∣e±
∣∣ 6 1

2
t2K∗(z)ε2

Therefore,

K
(
ΨR,t(y)−ΨR,t(ȳ)

)
Jt(y)Jt(ȳ) +K

(
ΨR,−t(y)−ΨR,−t(ȳ)

)
J−t(y)J−t(ȳ) =

=
(
K(z) + t∂vK(z)ε|z|+ e+

)(
1 + t∂vϕR(y)

)(
1 + t∂vϕR(ȳ)

)

+
(
K(z)− t∂vK(z)ε|z|+ e−

)(
1− t∂vϕR(y)

)(
1− t∂vϕR(ȳ)

)

= 2K(z) + e(y, ȳ, r)

(2.11)

where

∣∣e
∣∣ =

∣∣2t2∂vK(z)ε|z|
(
∂vϕR(y) + ∂vϕR(ȳ)

)
+ e+ + e−+

+ t(e+ − e−)
(
∂vϕR(y) + ∂vϕR(ȳ)

)∣∣+ t2∂vϕR(y)∂vϕR(ȳ)
[
2K(z) + e+ + e−

]

6 t2
(

2K∗(z)|ε| 4
R

+K∗(z)ε2 +K∗(z)ε2 4

R
+

4

R2
K∗(z)

(
2 + t2ε2

))

6 t2K∗(z)

(
16

R2
+

4

R2
+

16

R3
+

3

R2

)

6 32t2

R2
K∗(z).

(2.12)

Here we have used again the assumption (1.7) to estimate terms involving first
order derivatives of K. In addition, we have used the estimate (2.10) for e±, and
that R−3 6 R−2/4 since R > 4.

Thus, using (2.8), (2.11) and (2.12), we have

PK,BR(ER,t) + PK,BR(ER−t)− 2PK,BR(E) 6

6 16t2

R2

∫∫

AR

|u(y)− u(ȳ)|2K∗(y − ȳ) dy dȳ =
32t2

R2
PK∗,BR(E).

This finishes the proof of (a).
The proof of (b) —i.e. of (2.7)— is almost identical with the the difference that

we use the function ϕ̃R instead of ϕR. More precisely, we consider Ψ̃R,±t, ũR,±t,
ẼR±t instead of ΨR,±t, uR,±t, ER,±t. The only important difference is that now (2.9)
does not hold since

|∇ϕ̃R(x)| =
2χ{

√
R6|x|6R}

logR |x| .

Instead we use

ε(y, ȳ, R) 6 π
2

logR max{
√
R, ρ}

whenever (y, ȳ) ∈ R2n \ Aρ, 1 6 ρ 6 R.
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Note that R2n \ Aρ = {(y, ȳ) : y > ρ and ȳ > ρ}. The factor π appears because we
need to apply the mean value theorem connecting y and ȳ by a circular arc contained
in Rn \Bρ.

Similarly,

max
{
|∂vϕR(y)| , |∂vϕR(ȳ)|

}
6 2

logR max{
√
R, ρ}

for (y, ȳ) ∈ R2n \ Aρ, ρ > 1.

Hence, in place of (2.12) we obtain

(2.13)
∣∣e(y, ȳ, R)

∣∣ 6 32π2t2

(logR)2 max{R2, ρ2}K
∗(z) for (y, ȳ) ∈ R2n \ Aρ, ρ > 1.

Now, we decompose the domain AR in (2.8) as

AR = A√R ∪
2k⋃

i=k+1

Ãi,

where

k ∈ N, log2R 6 2k < log2R + 2, θ2k = R, and Ãi = Aθi \ Aθi−1 .

Note that θ ∈ (1, 2]. Using (2.13) and (2.8) with the previous domain decomposition
we obtain

PK,BR(ẼR,t) + PK,BR(ẼR,−t)− 2PK,BR(E) 6

6 32π2t2

(logR)2

(
1

R

∫∫

A√R

|u(y)− u(ȳ)|2K∗(y − ȳ) dy dȳ

+
2k∑

i=k+1

1

θ2(i−1)

∫∫

Ãi

|u(y)− u(ȳ)|2K∗(y − ȳ) dy dȳ

)

6 32π2t2

(logR)2

(
1

R
PK∗,B√R(E) +

2k∑

i=k+1

1

θ2(i−1)
PK∗,Bθi (E)

)
.

Thus denoting S := supρ∈[1,R]

PK∗,Bρ (E)

ρ2

PK,BR(Ẽt
R) + PK,BR(Ẽ−tR )− 2PK,BR(E) 6 32π2t2

(logR)2

(
S +

2k∑

i=k+1

θ2i

θ2(i−1)
S

)

6 32π2t2

(logR)2
θ2(k + 1)S

6 32π2t2

(logR)2
4
(
log2(4R) + 1

)
S

6 (32πt)2

logR
S.
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This finishes the proof of (2.7) —and thus of (b). �
The following lemma is a key step in the proof of our main results: given a

minimizer E and any possible competitor F , it allows to “measure” the interaction
between points in E \ F and points in F \E in terms of the difference between the
K-perimeter of F and the K-perimeter of E. Here we see that the nonlocality of
the functional plays a crucial role.

Lemma 2.2. Let E, F ⊂ Rn. Assume that E is a minimizer for PK,BR and that F
coincides with E outside of BR, that is, E \BR = F \BR. Assume moreover that

(2.14) PK,BR(F ) 6 PK,BR(E) + δ,

for some δ > 0.
Then,

2LK(F \ E,E \ F ) 6 δ.

Proof. Let C = E ∪ F and D = E ∩ F . Note that both C and D coincides with E
and F outside of BR. By a direct computation we find that

(2.15) PK,BR(C) + PK,BR(D) + 2LK(F \ E,E \ F ) = PK,BR(E) + PK,BR(F ).

Using (2.14) and the minimality of E, we deduce

PK,BR(E) + PK,BR(F ) 6 2PK,BR(E) + δ 6 PK,BR(C) + PK,BR(D) + δ,

which, together with (2.15), concludes the proof of the Lemma. �
It is worth to observe that, in spite of its simplicity, the identity in (2.15) has con-

sequences that seem to be interesting in themselves, such as the fact that minimizers
are included one in the other, as stated in the following result:

Lemma 2.3 (Mutual inclusion of minimizers). Assume that E and F are min-
imizers for PK,Ω, with E \ Ω = F \ Ω. Suppose that K(y) > 0 for |y| < diam(Ω).
Then, either E ⊆ F or F ⊆ E.

Proof. The minimality of the sets give that

PK,Ω(E) 6 PK,Ω(E ∪ F ) and PK,Ω(F ) 6 PK,Ω(E ∩ F ).

Then, using (2.15),

2LK(F \ E,E \ F ) = PK,Ω(E) + PK,Ω(F )− PK,Ω(E ∪ F )− PK,Ω(E ∩ F ) 6 0,

which implies that one between F \ E and E \ F has necessarily zero measure. �
The following lemma is the analogue of Lemma 2.2 but under the assumption

that E is a stable set (not necessarily a minimizer) for the K-perimeter.

Lemma 2.4. Let E ⊂ Rn. Assume that E is a stable set for PK,BR and that
Ft = Ψt(E), where Ψt is the integral flow of some vector field X ∈ C2

c (BR; Rn).
Assume moreover that

(2.16) PK,BR(Ft) + PK,BR(F−t) 6 2PK,BR(E) + ηt2, for t ∈ (−1, 1)
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for some η > 0.
Then, for any ε > 0 there exists t0 > 0 such that for t ∈ (−t0, t0)

min
{
LK(Ft \ E,E \ Ft) , LK(F−t \ E,E \ F−t)

}
6 (η/4 + ε)t2.

Proof. Let Ct = E ∪ Ft and Dt = E ∩ Ft. Note that both Ct and Dt coincides with
E and Ft outside of BR. We have

PK,BR(Ct) + PK,BR(Dt) + 2LK(Ft \ E,E \ Ft) = PK,BR(E) + PK,BR(Ft).

and

PK,BR(C−t) + PK,BR(D−t) + 2LK(F−t \ E,E \ F−t) = PK,BR(E) + PK,BR(F−t).

Using (2.16) and the stability of E, we deduce

PK,BR(Ct)+PK,BR(Dt) + PK,BR(C−t) + PK,BR(D−t)

+ 2LK(Ft \ E,E \ Ft) + 2LK(F−t \ E,E \ F−t) 6
6 4PK,BR(E) + ηt2

6 PK,BR(Ct) + PK,BR(Dt) + PK,BR(C−t) + PK,BR(D−t) + (η + 4ε)t2

for t ∈ (−t0, t0) with t0 > 0 small enough (depending on E and X). �
We remind that the definition of ER,t depends on the choice of the vector v ∈ Sn−1

along which we are translating the set E —see (2.3) and (2.4). In the sequel, we
will use the notion of directional derivative of a BV -function in the distributional
sense. Let u ∈ BV (Ω) and v ∈ Sn−1; we define:

(2.17) |∂vu|(Ω) := sup

{
−
∫

Ω

u(x)∂vφ(x)dx : φ ∈ C1
c (Ω, [−1, 1])

}
,

and

(2.18) (∂vu)±(Ω) := sup

{
∓
∫

Ω

u(x)∂vφ(x)dx : φ ∈ C1
c (Ω, [0, 1])

}
.

The following lemma will allow us to obtain geometric informations from the
conclusion of Lemma 2.4.

Lemma 2.5. Let n > 2, η > 0, E ⊂ Rn measurable. Assume that for all v ∈ Sn−1,
there exists a sequence tk → 0, tk ∈ (−1, 1) such that

(2.19) lim
k→∞

1

t2k

∣∣{(E + tkv) \ E} ∩B1

∣∣ ·
∣∣{E \ (E + tkv)} ∩B1

∣∣ 6 η

4
.

Then,
(a) The characteristic function u = χE has finite total variation in B1, that is,

u ∈ BV(B1).
(b) For all v ∈ Sn−1, the distributional derivative ∂vu is a signed measure on B1

of the form

∂vu = (∂vu)+ − (∂vu)−



24

with
(∂vu)± := (−νE · v)±H

n−1|∂∗E∩B1

where ∂∗E is the reduced boundary of E.
(c) For all v ∈ Sn−1

min

{∫

B1

(∂vu)+dx ,

∫

B1

(∂vu)−dx

}
6
√
η

2

and

max

{∫

B1

(∂vu)+dx ,

∫

B1

(∂vu)−dx

}
6 2|B(n−1)

1 |+
√
η

2
,

where |B(n−1)
1 | denotes the n− 1-dimensional volume of the ball B1 ⊂ Rn−1.

(d) PerB1(E) = Hn−1(∂∗E ∩B1) 6 |Sn−1|
(

1 +
√
η

2|B(n−1)
1 |

)
.

We next give the

Proof of Lemma 2.5. We have

(2.20)
1

|tk|
min

{∣∣{(E + tkv) \ E} ∩B1

∣∣ ,
∣∣{E \ (E + tkv)} ∩B1

∣∣
}
6
√
η

2
.

Denoting u = χE, (2.20) becomes

(2.21)
1

|tk|
min

{∫

B1

(
u(x− tkv)− u(x)

)
+
dx ,

∫

B1

(
u(x− tkv)− u(x)

)
− dx

}
6
√
η

2
.

Let us now denote the measures

µk,±(dx) =

(
u(x− tkv)− u(x)

−tk

)

±
dx

and µk = µk,+ − µk,−. Note that

µk(B1) =

∫

B1

u(x− tkv)− u(x)

−tk
dx =

∫
B1+tkv

udx−
∫
B1
udx

tk
.

Hence, since u is a characteristic function,

∣∣µk(B1)
∣∣ 6 2

∣∣(B1 + tkv) \B1

∣∣
|tk|

6 2|B(n−1)
1 |,

where |B(n−1)
1 | denotes the (n− 1)-dimensional volume of the ball B

(n−1)
1 ⊂ Rn−1.

Now, by (2.21) we have

(2.22) min
{
µk,+(B1) , µk,−(B1)

}
6
√
η

2
.

But then, since µk = µk,+ − µk,− we must have

(2.23) max
{
µk,+(B1) , µk,−(B1)

}
6 2|B(n−1)

1 |+
√
η

2
.
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This implies that both the (nonegative) measures µk,+, µk,− are bounded in B1

independently of k. Thus, up to extracting a subsequence, we have µk,+ ⇀ µ+ and
µk,− ⇀ µ− (weak convergence) for some bounded nonnegative measures µ+, µ−.

We have clearly that µk ⇀ µ+ − µ−. Moreover it is immediate to check that, for
every η ∈ C∞c (B1)

∫

B1

η(x)µk(dx) =

∫

B1

η(x+ tkv)− η(x)

−tk
u(x) dx

if tk is smaller than dist (spt η, ∂B1), where spt η denotes the support of η and
dist (A,B) the distance between the sets A and B. It follows that

(2.24) lim
k→∞

∫

B1

η(x)µk(dx) = −
∫

B1

∂vη(x)u(x)dx

and thus µ+ − µ− is the distributional derivative of u in the direction v restricted
to B1, which we denote ∂vu.

Moreover from (2.22) and (2.23) it follows that

min
{
µ+(B1) , µ−(B1)

}
6
√
η

2
and

max
{
µ+(B1) , µ−(B1)

}
6 2|B(n−1)

1 |+
√
η

2
.

The above inequalities hold for translations in any direction v ∈ Sn−1, and hence
we can choose v to be the coordinate unit vectors. We then obtain that there are n
signed measures µ = (µ1, µ2, . . . , µn) in B1 such that

|µi|(B1) 6 2|B(n−1)
1 |+

√
2η, for i = 1, . . . , n

Moreover, since by definition µi is the distributional derivative ∂iu we have
∑

i

∫

B1

Tiµi(dx) = −
∫

B1

(divT )u dx

for every vector field T ∈ C1
c (B1; Rn), where u = χE. This proves (a). Namely,

u ∈ BV(B1).
We next prove (b). Using that ∂vu is the distributional derivative of u = χE and

applying the divergence theorem for sets of finite perimeter —see [23]— we have,
for all ϕ ∈ C1

c (B1), ∫

B1

ϕ∂vu dx = −
∫

B1

∂vϕu dx

= −
∫

B1∩E
div(ϕv)ϕ

= −
∫

∂∗E
ϕ(νE · v) dHn−1,

(2.25)

where ∂∗E denotes the reduced boundary of E (in B1).
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The identity (2.25) gives the decomposition∂vu = (∂vu)+ − (∂vu)−. for

(∂vu)± = −(νE · v)±H
n−1|∂∗E∩B1

.

Note that the previous decomposition is the Hahn-Jordan decomposition of ∂vu
since (∂vu)+ and (∂vu)− are concentrated on disjoint subsets of ∂∗E. In particular
we deduce that (∂vu)± 6 µ±. Thus (b) and (c) follow. Namely, with the above
definitions we have

min

{∫

B1

(∂vu)+dx ,

∫

B1

(∂vu)−dx

}
6
√
η

2

and

max

{∫

B1

(∂vu)+dx ,

∫

B1

(∂vu)−dx

}
6 2|B(n−1)

1 |+
√
η

2
,

where |B(n−1)
1 | denotes the n− 1-dimensional volume of the ball B1 ⊂ Rn−1.

To prove (d) we integrate with respect to all directions v ∈ Sn−1 the inequality
∫

∂∗E
|νE(x) · v| dHn−1(x) 6 2 |B(n−1)

1 |+√η,

which follows from the previous steps. Using Fubini we find

Hn−1(∂∗E) 2|B(n−1)
1 | =

∫

∂∗E
dHn−1(x)

∫

Sn−1

dHn−1(v)|νE · v|

=

∫

Sn−1

dHn−1(v)

∫

∂∗E
dHn−1(x)|νE(x) · v|

6 |Sn−1|
(

2|B(n−1)
1 |+√η

)
,

concluding the proof of (d). �

3. Proof of Theorems 1.7 and 1.9

In this section we give the proof of our uniform BV -estimates.
We start with the proof of our general result Theorem 1.9.

Proof of Theorem 1.9. For the proof we just need to combine Lemma 2.1 (a), Lemma
2.4, and Lemma 2.5. More precisely, by Lemma 2.1 (a) (applied with R = 4), we
have that

PK,B4(E4,t) + PK,B4(E4,−t)− 2PK,B4(E) 6 2t2PK∗,B4(E).(3.1)

Hence, E satisfies the assumption in Lemma 2.4 and therefore, for any ε > 0 there
exists t0 such that for any t ∈ (0, t0)

(3.2) min{LK(Ft \ E,E \ Ft), LK(F−t \ E,E \ F−t)} 6 (η/4 + ε)t2,

with

η = 2PK∗,B4(E).
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Now using the assumption (1.6), namely that K > 1 in B2 and the definition of LK
we prove that there is a some sequece tk ∈ (−1, 1) with tk ↓ 0 such that

lim
k→∞

1

t2k

∣∣{(E + tkv) \ E} ∩B1

∣∣ ·
∣∣{E \ (E + tkv)} ∩B1

∣∣ 6 η

4
+ ε,

for all ε > 0.
After letting ε → 0, we apply Lemma 2.5 and, in particular, from point (d) we

deduce that

PerB1(E) 6 |Sn−1|
(

1 +

√
2PK∗,B4(E)

2|Bn−1
1 |

)
6
√

2n
√
PK∗,B4(E) + |Sn−1|,

as wanted. �
In the proof of Theorem 1.7 we will need the following abstract Lemma. Although

this useful abstract statement is due of L. Simon [41], the result was previously well-
known in concrete situations, such as in the context of adimensional Hölder norms
and their interpolation inequalities. We include its proof here for completeness.

Lemma 3.1. Let β ∈ R and C0 > 0. Let S : B → [0,+∞], be a nonnegative
function defined on the class B of open balls B ⊂ Rn and satisfying the following
subadditivity property

B ⊂
N⋃

j=1

Bj =⇒ S(B) 6
N∑

j=1

S(Bj).

Assume that
S(B1) <∞.

There is δ = δ(n, β) such that if

(3.3) ρβS
(
Bρ/4(z)

)
6 δρβS

(
Bρ(z)

)
+ C0 whenever Bρ(z) ⊂ B1

Then
S(B1/2) 6 CC0,

where C = C(n, β).

Proof. Define
Q := sup

Bρ(z)⊂B3/4

ρβS
(
Bρ/4(z)

)

We prove first that Q < ∞ since S(B1) < ∞. Take z ∈ B3/4. By subadditivity

S
(
B1/4(z)

)
6 S(B1) <∞. We define

S ′(B) =

(
diam(B)

2

)β
S(B).

Clearly, S ′
(
B1/4(z)

)
= (1/4)βS

(
B1/4(z)

)
6 4−βS(B1).

On the other hand, by (3.3) we have

S ′
(
B2−k−2(z)

)
6 δS ′(B2−k(z)) + C0
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and thus, if δ 6 1/2, iterating we obtain

S ′
(
B2−2k−2(z)

)
6 S ′(B1/4(z)) + C0 <∞,

for all k > 0. But for r ∈ (2−2(k+1)−2, 2−2k−2) we have

S ′
(
Br(z)

)
6 max{1, 4−β}S ′

(
B2−2k−2(z)

)

6 max{1, 4−β}
(
S ′(B1/4(z)) + C0

)

6 max{1, 4−β}
(
4−βS(B1) + C0

)

Thus,
Q 6 max{1, 4−β}

(
4−βS(B1) + C0

)
<∞.

Let us now fix a finite covering of B1/4 by a universal number M = M(n) of balls

of radius 1/32 centered at points of xi ∈ B1/4, that is

B1/4 ⊂
M⋃

i=1

B1/32(xi).

Now, using the subaditivity of S and assumption (3.3) we have

ρβS
(
Bρ/4(z)

)
6 8β

M∑

i=1

(ρ/8)βS
(
Bρ/32(z + ρxi)

)

6 8β
M∑

i=1

(
δ(ρ/8)βS

(
Bρ/8(z + ρxi)

)
+ C0)

= 2βδ
M∑

i=1

δ(4ρ/8)βS
(
Bρ/8(z + ρxi)

)
+ 8βMC0

6 2βδMQ+ 8βMC0,

where we have used that if Bρ(z) ⊂ B3/4 then also B4ρ/8(z+ ρxi) ⊂ B3ρ/4(z) ⊂ B3/4

and the definition of Q. Thus, taking supremum for all balls Bρ(z) ⊂ B3/4 in the
left hand side we obtain

Q 6 2βδMQ+ 8βMC0,

and for δ = 2β−1/M we obtain Q/2 6 8βMC0, which clearly implies the desired
bound on S(B1/2). �

We will also use the following standard fact.

Lemma 3.2. Let E ⊂ Rn be measurable and Ω ⊂ Rn be smooth. Let

(3.4) P̃s,B(E) :=

∫

E∩B

∫

B\E

dx dx̄

|x− x̄|n+s
.

Then,

(3.5) P̃s,Ω(E) 6 CPerΩ(E).
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Proof. By [21], Proposition 2.2 and applying the Poincaré-Wirtinger inequality we
have that

(3.6) ‖u− uΩ‖W s,1(Ω) 6 C‖u− uΩ‖W 1,1(Ω) 6 C

∫

Ω

|∇u|dx,

where u denotes the average of u in Ω.
By the density of W 1,1(Ω) in BV (Ω) (see Theorem 1.17 in [27]), (3.6) holds with

the right-hand side replaced by |∇u|(Ω). Therefore, for u = χE, we have

P̃s,Ω(E) =
1

2

∫

Ω

∫

Ω

|u(x)− u(x̄)|
|x− x̄|n+s

dxdx̄ 6 ‖u− uΩ‖W s,1(Ω) 6 C|∇u|(Ω) = CPerΩ(E),

as desired. �

Proof of Theorem 1.7. Multiplying the kernel K ∈ L2 by a positive constant, we
may assume that λ > 2n+s and hence K satisfies (1.3)–(1.7) with K∗ = C1K.

Therefore, by Theorem 1.9, we immediately deduce that

(3.7) PerB1(E) 6 C

(
1 +

√
PK,B4(E)

)
< +∞,

where PerB1 denotes the classical perimeter in B1 and C depends only on n, s, λ
and Λ —since C1 depends only on these constants.

Now, since K ∈ L2 and by Lemma 3.2, we deduce that

PK,B4(E) 6 ΛPs,B4(E)

6 Λ

∫

E∩B4

∫

B4\E

dx dx̄

|x− x̄|n+s
+ Λ

∫

B4

∫

Rn\B4

dx dx̄

|x− x̄|n+s

6 ΛP̃s,B4(E) + C

6 C (1 + PerB4(E)) ,

(3.8)

where P̃s,B4(E) is defined as in (3.4).
Hence, (3.7), (3.8) and Young’s inequality imply that

PerB1(E) 6 C
(
1 +

(
1 + PerB4(E)

)1/2)

6 C(1 + δ−1) + δ PerB4(E),
(3.9)

for all δ > 0, where C depends only on n, s, λ, and Λ.
Next, we observe that, since E is a stable minimal set for PK,B1 , with K ∈
L2(s, λ,Λ), given Br(z) ⊂ B1 then the rescaled set E ′ = (r/4)−1(E − z) is a stable
minimal set for PK′,B4 , where

K ′(y) := (r/4)n+sK(ry/4) belongs again to L2(s, λ,Λ).

Thus, rescaling the estimates (3.9) applied to E ′ we obtain, for E,

(3.10) r1−n PerBr/4(z)(E) 6 C(n, s, λ,Λ, δ) + δ r1−n PerBr(z)(E).
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Therefore, considering the subadditive function on the class of balls

S(B) := PerB(E),

and taking β := 1− n , and δ = δ(n, β) given by Lemma 3.1 we find that

S(B1/2) 6 C(n, s, λ,Λ).

since S(B1) < +∞ by (3.7) — note since E is a stable minimal set in B4 by definition
we have PK,B4(E) < +∞.

Thus, we have shown that

PerB1/4
(E) 6 C(n, s, λ,Λ),

where C(n, s, λ,Λ) is a universal constant depending only on n, s, λ,Λ.
By scaling and using a standard covering argument, we obtain

(3.11) PerB1(E) 6 C(n, s, λ,Λ),

which finishes the proof. �

Proof of Corollary 1.8. We combine the universal perimeter estimate in B1 of Theo-
rem 1.7 —see (3.11)— with the“interpolation inequality” PK,B1(E) 6 C

(
1+PerB1(E)

)
,

shown in (3.8), to obtain PK,B1(E) 6 C. The estimate for the K-perimeter in BR

then follows using the scaling invariance of the class L2(s, λ,Λ). �

4. Proof of Theorems 1.14 and 1.19

Before giving the proofs of Theorems 1.14 and 1.19, we give some preliminary
lemmas. We start with the following easy fact, that we state explicitly since we will
use it several times later on.

Remark 4.1. Let Φ be a continuous and odd function defined on the m-dimensional
sphere Sm, with m > 1.

Then, there exists v∗ ∈ Sm such that Φ(v∗) = 0.
The proof of this fact is obvious since Sm is connected when m > 1.

Lemma 4.2. Suppose that Φ+ and Φ− are two continuous functions defined on
Sn−1, which satisfy

(4.1) Φ+(−v) = Φ−(v) for any v ∈ Sn−1.

Assume moreover that there exists µ > 0 such that for any v ∈ Sn−1

(4.2) min{Φ+(v),Φ−(v)} 6 µ.

Then, after a rotation of coordinates, we have that

(4.3) max{Φ+(ei),Φ−(ei)} 6 µ for 1 6 i 6 n− 1,

where ei denote the standard basis of Rn,



31

Proof. For v ∈ Sn−1, we consider the function

Φ(v) = Φ+(v)− Φ−(v).

Using (4.1), it is easy to verify that Φ is odd and hence, using Remark 4.1, there
exists a vector v∗1 ∈ Sn−1 for which

Φ(v∗1) = Φ+(v∗1)− Φ−(v∗1) = 0.

This clearly implies that

Φ+(v∗1) = Φ−(v∗1) = min{Φ+(v∗1),Φ−(v∗1)} = max{Φ+(v∗1),Φ−(v∗1)}.
Hence, by (4.2), we deduce that

(4.4) max{Φ+(v∗1),Φ−(v∗1)} 6 µ.

Now we define Φ2 to be Φ restricted to the (n−2)-dimensional sphere given by Sn−1∩
(v∗1)⊥. By Remark 4.1 applied now to Φ2, there exists a vector v∗2 ∈ Sn−1∩ (v∗1)⊥ for
which (4.4) holds (with v∗1 replaced by v∗2). We can iterate this procedure (n − 1)
times: at each step we apply Remark 4.1 to the function Φi, that is the restriction
of Φ to the (n− i)-dimensional sphere Sn−1 ∩ (v∗1)⊥ ∩ · · · ∩ (v∗i−1)⊥. In this way we
get (n − 1) vectors v∗1, . . . ,v

∗
n−1 which are orthonormal and for which (4.4) holds

(with v∗1 replaced by v∗i , 1 6 i 6 n− 1). After some orthogonal transformation, we
may assume v∗i = ei, for i = 1, . . . , n− 1. �

To prove Theorems 1.14 and 1.19 we will use an argument with some flavor of
“integral geometry”. The use of a integral geometry approach for the study of
anisotropic nonlocal perimeter functionals turns out to be useful also in the recent
paper of Ludwig [30].

Let us introduce some notation. In the the sequel L ⊂ Rn denotes a linear
subspace with dimension m with 1 6 m 6 n−1. We let {vi}16i6m be a orthonormal
basis of L and denote

L⊥ = {y : vi · y = 0 for all 1 6 i 6 m}.
Let Ω ⊂ Rn be a bounded open set. Given a set E with finite perimeter in Ω, let

u = χE. Note that the distributional gradient ∇u is a vector valued measure in B1.
We will denote ∇Lu the projected (vector valued) measure

∇Lu =
m∑

i=1

(∇u · vi)vi.

For each (almost every) y ∈ L⊥ we denote IE,Ω(L, y) the total variation of u = χE
restricted to (y + L) ∩ Ω. That is, we define
(4.5)

IE,Ω(L, y) := sup

{
−
∫

(y+L)∩Ω

u(z)div φ(z) dHm(z) : φ ∈ C1
c

(
(y+L)∩Ω;L∩B1

)}
.
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Sometimes, when E and Ω are fixed and there is no misunderstanding, for the
sake of simplicity we will also use the notation

I(L, y) := IE,Ω(L, y).

When m = 1 and L = Rv for some v ∈ Sn−1 we will also denote I(L, y) as I(v, y).
In the case m = 1 we define also I(v, y)+ and I(v, y)− respectively as
(4.6)

I(v, y)± := sup

{
∓
∫

(y+Rv)∩Ω

u(z)φ′(z) dH1(z) : φ ∈ C1
c

(
(y + Rv) ∩ Ω; [0, 1]

)}
,

where φ′ = ∂vφ denotes the tangential derivative along the (oriented) line y + Rv.
This auxiliary function I(v, y)± is useful to detect the monotonicity of χE, as pointed
out in the following result:

Lemma 4.3. Let E be a set of finite perimeter in a convex open set Ω, v ∈ Sn−1

and y ∈ v⊥. Then:

(i) If I(v, y)+ = 0, then χE restricted to (y + Rv) ∩ Ω is nonincreasing;
(ii) If I(v, y)− = 0, then χE restricted to (y + Rv) ∩ Ω is nondecreasing;

(iii) If I(v, y) = 0, then (y + Rv) ∩ Ω is contained either in E or in CE.

Proof. To prove (i), we denote (a, b) ⊂ R the open interval {t ∈ R : y + tv ∈ Ω}
—here we use the convexity of Ω. Let us define ũ(t) := χE(y + tv) and we remark
that ũ is of bounded variation in [a, b] —see e.g. Corollary 6.9 of [1] or Theorem
2 in Section 5.10.2 of [23]. Then, given any φ ∈ C1

c

(
(y + Rv) ∩ Ω; [0, 1]

)
, we

define φ̃(t) := ϕ(y + tv) and we use (4.6) to find that

0 = I(v, y)+ > −
∫ b

a

u(y + tv)φ′(y + tv) dt = −
∫ b

a

ũ(t) φ̃′(t) dt

for all φ̃ ∈ C1
c

(
(a, b) ∩ Ω; [0, 1]

)
. As a consequence (see e.g. Corollary 9.91 in [40]),

we have that ũ is nonincreasing, which is (i).
The proof of (ii) is analogous. Now we prove (iii). By taking φ identically zero

in (4.6), we see that I(v, y)± > 0. Therefore, if I(v, y) = 0, then I(v, y)+ =
I(v, y)− = 0, and thus we can use (i) and (ii) to deduce that χE restricted to y+Rv
is constant, which gives (iii). �

The following proposition gives equivalent formulas to compute the total variation
of the projection of onto some linear subspace L of the measure ∇u, u being the
characteristic function of a set of finite perimeter.

Proposition 4.4. Let Ω ⊂ Rn be a bounded open set, E be a set of finite perimeter in
Ω, and u = χE. Let L ⊂ Rn be linear subspace with dimension m with 1 6 m 6 n−1.
We let {vi}16i6m be a orthonormal basis of L.
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Then, IE,Ω(L, y) > 0 is measurable in the variable y ∈ L⊥ and the following
identities hold

|∇Lu|(Ω) : = sup

{
−
∫

Ω

u(x)divφ(x) dx : φ ∈ C1
c (Ω;L ∩B1)

}

=

∫

∂∗E∩Ω

√√√√
m∑

i=1

(
vi · νE(x)

)2
dHn−1(x)

=

∫

L⊥
IE,Ω(L, y) dHn−m(y)

(4.7)

Moreover if m = 1 and L = Rv then

(4.8) |∂vu|(Ω) =

∫

∂∗E∩Ω

∣∣v · νE(x)
∣∣dHn−1(x) =

∫

v⊥
IE,Ω(v, y) dHn−1(y),

(4.9) (∂vu)±(Ω) =

∫

∂∗E∩Ω

(
−v · νE(x)

)
±dH

n−1(x) =

∫

v⊥
IE,Ω(v, y)± dH

n−1(y),

and for a.e. y ∈ v⊥ we have

(4.10) IE,Ω(v, y) = H0
(
∂∗E ∩ Ω ∩ (y + Rv)

)
,

(4.11) IE,Ω(v, y)± = H0
({
x ∈ ∂∗E ∩ Ω ∩ (y + Rv) : ∓v · νE(x) > 0

})
.

The proof of Proposition 4.4 relies on standard results from the theory of sets
of finite perimeter and functions of bounded variation (see [31, 23]), and will be
sketched in the Appendix. Note that if ∂E has smooth boundary in B1 then the
proof of Proposition 4.4 is rather elementary. For related results for m = 1 in the
context of integral geometry formulae for sets of finite perimeter see also [30, Section
1.1] and [45, Theorem 1].

The well-known Cauchy-Crofton formula (and indeed a generalized version of it)
can be obtained as a corollary of the previous proposition with m = 1, as pointed
out by the next result:

Corollary 4.5. Let E be a set of finite perimeter in B1 and v ∈ Sn−1. Let v⊥

denote the hyperplane {y : v · y = 0}.
Then

PerΩ(E) = c

∫

Sn−1

dHn−1(v)

∫

v⊥
dHn−1(y)H0

(
∂∗E ∩ Ω ∩ (y + Rv)

)

where H0
(
∂∗E ∩ Ω ∩ (y + Rv)

)
counts the number of intersections inside Ω of the

line y + Rv with the reduced boundary of E. The constant c = c(n) is given by

c =

(∫

Sn−1

|v ·w|dHn−1(v)

)−1

where w ∈ Sn−1 is any fixed unit vector —this value does not depend on w.
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Proof. Using (4.8) and (4.10), we have∫

∂∗E∩Ω

|v · νE(x)|dHn−1(x) =

∫

v⊥
H0
(
∂∗E ∩ Ω ∩ (y + Rv)

)
dHn−1(y).

The corollary follows integrating with respect to v ∈ Sn−1. �
The following observation will be crucial in the proof of our Theorems 1.14 and

1.19.

Remark 4.6. When m = 1, for a.e. y ∈ v⊥,

I(v, y), I(v, y)+ and I(v, y)− are nonnegative integers.

Indeed this follows from (4.10) and (4.11) since H0 is the counting measure.

In the rest of this section we will consider the functions

(4.12) Φ+(v) := (∂vu)+(B1) and Φ−(v) := (∂vu)−(B1),

where u = χE is the characteristic function of a set E of finite perimeter in B1. By
(4.9), we have

(4.13) Φ±(v) =

∫

v⊥
IE,B1(v, y)±dH

n−1(y).

With this observation, we can reformulate Lemma 4.3 in this way:

Lemma 4.7. Let E be a set of finite perimeter in B1, v ∈ Sn−1 and µ > 0. Then:

(i) If Φ+(v) 6 µ (resp. Φ−(v) 6 µ), then there exists B ⊆ v⊥ with Hn−1(B) 6 µ
and such that for any y ∈ v⊥ \B we have that χE restricted to (y+ Rv)∩B1

is nonincreasing (resp. nondecreasing);
(ii) If max

{
Φ+(v), Φ−(v)

}
6 µ, then there exists B ⊆ v⊥ with Hn−1(B) 6 µ

and such that for any y ∈ v⊥ \ B we have that (y + Rv) ∩ B1 is contained
either in E or in CE.

Proof. Since (ii) follows from (i), we focus on the proof of (i) and we suppose
that Φ+(v) 6 µ (the case Φ−(v) 6 µ is analogous). We set

B := {y ∈ v⊥ : IE,B1(v, y)+ 6= 0}.
By Remark 4.6, we have that

B = {y ∈ v⊥ : IE,B1(v, y)+ > 1}
and therefore, by (4.13),

µ > Φ−(v) =

∫

B
IE,B1(v, y)+dH

n−1(y) > Hn−1(B),

which is the desired estimate on B.
Notice that, by construction, if y ∈ v⊥ \ B, then IE,B1(v, y)+ = 0, and so

Lemma 4.3 gives that χE restricted to (y+ Rv)∩Ω is nonincreasing, as desired. �
With this, we obtain the following flatness result:
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Lemma 4.8. Let E be a set of finite perimeter in B1, u = χE, v ∈ Sn−1 and Φ±
be as in (4.12).

Suppose that for all v ∈ Sn−1,

(4.14) min
{

Φ+(v),Φ−(v)
}
6 µ,

for some µ > 0. Then, after some rotation the set E satisfies (F1), (F2) , and (F3)
on page 14, with

ε = C(n)µ,

where C(n) is a constant depending only on the dimension.

Proof. We first observe that, since E has finite perimeter in B1, for u = χE, ∇u is
a vector valued measure and

Φ±(v) = (∂vu)±(B1) = (∇u · v)±(B1).

Then,
Φ±(−v) = Φ∓(v).

In addition, we have

|Φ+(v)− Φ+(w)| 6 |v −w| |∇u|(B1)

and same holds for Φ−. Hence, in particular, Φ+ and Φ− are continuous functions
on Sn−1 satisfying the assumptions of Lemma 4.2.

Therefore, after some rotation we have

(4.15) max
{

Φ+(ei),Φ−(ei)
}
6 µ, for 1 6 i 6 n− 1

In addition, by (4.14), and possibly changing en by −en, we may assume that

(4.16) Φ+(en) 6 µ.

Using (4.15) and Lemma 4.7 we conclude that, for any i ∈ {1, . . . , n − 1}, there
exists Bi ⊆ e⊥i , with Hn−1(Bi) 6 µ, and such that for any y ∈ e⊥i \ Bi we have that

(4.17) (y + Rei) ∩B1 is contained either in E or in CE .

Similarly, by (4.16) and Lemma 4.7, we see that there exists Bn ⊆ e⊥n , withHn−1(Bn) 6
µ, and such that for any y ∈ e⊥n \ Bn we have that

(4.18) χE restricted to (y + Ren) ∩B1 is nonincreasing.

Notice that (4.18) implies (F2). Now we complete the proof of the desired result
in three steps: first, we establish (F1) in the two-dimensional case, then in the
three-dimensional case, and finally we prove (F3).

Step 1. Let us show that (F1) holds for ε = 2µ first in dimension n = 2. Let us
assume that µ < 2 since otherwise 2µ > π12 = |B1| and there is nothing to prove.

By (4.17), for any t outside the small set B1,

(4.19) the segment {x2 = t} ∩B1 is either contained in E or in CE;

here, we are identifying points y ∈ e⊥1 and points t ∈ (−1, 1) via y = (0, t).
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Therefore, we can define GE (resp., GCE) as the family of t ∈ (−1, 1) for which {x2 =
t} ∩B1 is contained in E (resp., in CE), and then (4.19) says that

(−1, 1) = GE ∪ GCE ∪ B1.

The fact that χE is nonincreasing along the vertical direction for a (nonvoid) set
of vertical segments (as warranted by (4.18)), implies that the sets GE and GCE are
ordered with respect to the vertical direction. More precisely, there exist t∗, t∗ ∈
[−1, 1], such that

ess supGE = t∗ 6 t∗ = ess inf GCE.
This implies that, for all t ∈ [t∗, t∗],

|(E \ {x2 6 t}) ∩B1|+ |({x2 6 t} \ E) ∩B1| 6
∣∣{x2 ∈ B1} ∩B1

∣∣
6 2
∣∣B1

∣∣ 6 2µ

and thus (F1) follows.
In dimension n = 2 we can obtain an even stronger information since

E ∩ {x1 /∈ B2} ∩B1 ⊃ {x2 6 t∗} ∩ {x1 /∈ B2} ∩B1

and

CE ∩ {x1 /∈ B2} ∩B1 ⊃ {x2 > t∗} ∩ {x1 /∈ B2} ∩B1.

Therefore, there exits g : B
(n−1)
1 → [−1, 1] such that

E ∩ {x1 /∈ B2} ∩B1 = {x2 6 g(x1)} ∩ {x1 /∈ B2}

with the oscillation of g bounded by (t∗ − t∗) 6 H1(B) 6 µ (see Figure 5).

Figure 5. The two-dimensional picture.
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Step 2. Let us show that (F1) holds for ε = C(n)µ in dimensions n > 3. For this,
we define L = e⊥n and we use (4.7) and (4.8) in Proposition 4.4 to estimate

|∇Lu|(B1) =

∫

∂∗E∩B1

√√√√
n−1∑

i=1

(
ei · νE(x)

)2
dHn−1(x)

6 1√
n− 1

n−1∑

i=1

∫

∂∗E∩B1

∣∣ei · νE(x)
∣∣dHn−1(x)

=
1√
n− 1

n−1∑

i=1

|∂eiu|(B1).

(4.20)

Now we observe that, by (4.12) and (4.15),

|∂eiu|(B1) = (∂eiu)+(B1) + (∂eiu)−(B1) = Φ+(ei) + Φ−(ei) 6 2µ,

which, together with (4.20), gives that

(4.21) |∇Lu|(B1) 6 2
√
n− 1µ.

Moreover, we note that there exists a small constant µ̄ = µ̄(n) > 0 —depending

only on n— such that for µ ∈ (0, µ̄) and r = µ
1

n+1 we have

(4.22) µ 6 cµ
n−1
n+1 6 1

4
Hn−1

(
B(n−1)
r

)
.

We now use that IE,B1(L, y) is the relative perimeter of (y+L)∩E in the (n−1)-
dimensional ball (y + L) ∩ B1 —recall (4.5). Thus, using the relative isoperimetric
inequality at each horizontal slice B1 ∩ {xn = t} we find that

min

{
Hn−1

(
E ∩B1 ∩ {xn = t}

)
, Hn−1

(
CE ∩B1 ∩ {xn = t}

)}

6 C min
{

1, IE,B1(L, y)
n−1
n−2

}
6 C̄IE,B1(L, y),

(4.23)

where C̄ > 0 is a suitable constant (depending only on n) and the last coordinate
of y equals to t.

Let us define the “horizontal bad set” as

B := B′ ∪ B′′,
where

B′ :=
{
t ∈ (−1, 1) : |t| >

√
1− r2

}

and B′′ :=
{
t ∈ (−1, 1) : |t| <

√
1− r2 and C̄IE,B1(L, y) > µ̄

}
.

We also define GE as the family of t ∈ (−1, 1) for which |t| <
√

1− r2 and

(4.24) Hn−1
(
{xn = t} ∩B1 ∩ CE

)
6 µ.
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Similarly, we define GCE as the family of t ∈ (−1, 1) for which |t| <
√

1− r2 and

(4.25) Hn−1
(
{xn = t} ∩B1 ∩ E

)
6 µ.

By(4.23), it follows that

(4.26) (−1, 1) \ B ⊆ GE ∪ GCE.
In addition, by (4.7) and (4.21),

2
√
n− 1µ > |∇Lu|(B1) >

∫

B′′
IE,Ω(L, y) dH1(y) > µ̄

C̄
H1(B′′).

Therefore H1(B′′) 6 C0 µ and then

(4.27) Hn
(
{(x′, t) ∈ B1 : t ∈ B′′}

)
6 C1H

1(B′′) 6 C2 µ,

for some constants C0, C1, C2 > 0.
Furthermore, if (x′, t) ∈ B1 and t ∈ B′, then

|x′|2 = |x′|2 + t2 − t2 6 1− (1− r2) = r2,

which implies that x′ ∈ B(n−1)
r , and so that

Hn
(
{(x′, t) ∈ B1 : t ∈ B′}

)
6 C3 r

n−1
(
1−
√

1− r2
)
6 C4 r

n+1 = C4 µ,

for some C3, C4 > 0. This and (4.27) give that

Hn
(
{(x′, t) ∈ B1 : t ∈ B}

)
6 C5 µ,

for some C5 > 0.
Now we claim that the sets GE and GCE are ordered with respect to the vertical

direction, namely there exist t∗, t∗ ∈ [−1, 1], such that

(4.28) ess supGE = t∗ 6 t∗ = ess inf GCE.
For this, let t1 < t2 ∈ (−1, 1) \ B. We show that

(4.29) if t1 ∈ GCE then t2 ∈ GCE.

We argue by contradiction, assuming that t2 6∈ GCE. Then, by (4.26), we obtain
that t2 ∈ GE. Consequently, by (4.24), we have that t22 < 1− r2 and

Hn−1
(
{xn = t2} ∩B1 ∩ CE

)
6 µ.

We can write this as χE(x′, t2) = 1 for any x′ in the ball B
(n−1)√

1−t22
outside a set

of (n − 1)-dimensional measure less than µ (so, in particular, for any x′ in the

smaller ball B
(n−1)
r outside a set of (n− 1)-dimensional measure less than µ).

Also, the condition t1 ∈ GCE and (4.25) give that t21 < 1− r2 and

Hn−1
(
{xn = t1} ∩B1 ∩ E

)
6 µ.

We can write this as χE(x′, t1) = 0 for any x′ ∈ B
(n−1)√

1−t21
outside a set of (n − 1)-

dimensional measure less than µ (so, in particular, for any x′ ∈ B(n−1)
r outside a set

of (n− 1)-dimensional measure less than µ).
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By (4.18), we also know that χE(x′, t) is nonincreasing in t outside Bn, which is
another set of (n− 1)-dimensional measure less than µ.

This means that, for x′ ∈ B(n−1)
r outside a set of (n− 1)-dimensional measure less

than 3µ, we have that

(4.30) 1 = χE(x′, t2) 6 χE(x′, t1) = 0.

We stress the fact that this set to which x′ belongs is nonvoid, since Hn−1B
(n−1)
r ) is

strictly bigger than 3µ, thanks to (4.22). Therefore, the inequality in (4.30) provides
a contradiction. This proves (4.29). Similarly, one proves that

(4.31) if t2 ∈ GE then t1 ∈ GE.

By putting together (4.29) and (4.31), one obtains (4.28).
Then it readily follows that (F1) is satisfied with ε = C(n)µ.
Step 3 We show that (F3) with ε = µ in any dimension n > 2.
Recall that we denote F ε = {(x′, xn/ε) : (x′, xn) ∈ F}. Using Proposition 4.4

we estimate

PerBε1(Eε) = sup

{
−
∫

Bε1

χEε div φ dx : φ ∈ C1
c (Bε

1; Rn), |φ| 6 1

}

6
n−1∑

i=1

sup

{
−
∫

Bε1

χEε∂iψ dx : ψ ∈ C1
c (Bε

1), |ψ| 6 1

}
+

+ sup

{
−
∫

Bε1

χEε∂nψ dx : ψ ∈ C1
c (B1), |ψ| 6 1

}

Then, using the change of variables y′ = x′ and yn = εxn, we have

PerBε1(Eε) 6
n−1∑

i=1

sup

{
−
∫

B1

χE ∂iψ̄
dx

ε
: ψ̄ ∈ C1

c (B1), |ψ̄| 6 1

}
+

+ sup

{
−
∫

B1

χE ε∂nψ̄
dx

ε
: ψ̄ ∈ C1

c (B1), |ψ̄| 6 1

}

6 2

ε

n−1∑

i=1

max
{

Φ+(ei),Φ−(ei)
}

+

+ min
{

Φ+(en),Φ−(en)
}

+ 2
∣∣Φ+(en)− Φ−(en)

∣∣

Now we use that

Φ+(en)− Φ−(en) =

∫

B1

∂enu =

∫

∂B1

u(x)νn(x)dHn−1(x).

Hence,

|Φ+(en)− Φ−(en)| 6
∫

∂B1

|νn(x)|dHn−1(x) = 2|B(n−1)
1 |.
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Thus, taking ε = µ and using (4.15) and (4.16), we obtain

PerBε1(Eε) 6 2(n− 1) + ε+ 4 |B(n−1)
1 | 6 c(n)

and (F3) follows. �
We now give the

Proof of Theorem 1.19. For the proof we need to combine Lemmas 2.1, 2.4, 2.5 and
4.8.

More precisely, using Lemma 2.1, point (a), and Lemma 2.4, we find that for any
ε > 0 there exists t0 such that for t ∈ (0, t0)

min
{
LK(ER,t \ E,E \ ER,t) , LK(ER,−t \ E,E \ ER,−t)

}
6 (η/4 + ε)t2,

where ER,t is defined as in (2.4) and

η =
32

R2
PK∗,BR(E).

This implies that for all v there is some sequence tk → 0, tk ∈ (−1, 1) such that

lim
k→∞

t−2
k LK(ER,tk \ E,E \ ER,tk) 6 η/4.

Now, by definition of ER,t we have

ER,t ∩B1 = (E + tv) ∩B1.

and thus using the assumption (1.6) —i.e. K > 1 in B2— we obtain

lim
k→∞

t−2
k |(E + tkv) \ E| · |E \ (E + tkv)| 6 η/4.

Therefore, applying Lemma 2.5 we obtain

min{Φ+(v),Φ−(v)} 6 √η/2,
where Φ±(v) = (−∂vu)±(B1).

Then, applying Lemma 4.8 we obtain that E satisfies (F1), (F2), and (F3) with

ε = C(n)
√
η = C(n)

√
PK∗,BR(E)

R2
.

The same inequality for ε = C(n)√
logR

supρ∈[1,R]

√
PK∗,Bρ (E)

ρ2
is proved likewise using

ẼR,t instead of ER,t and part (b) of Lemma 2.1 instead of part (a). �
Theorem 1.14 and Corollaries 1.20, 1.21, 1.22 all follow by Theorem 1.19 and

estimate for the quantity PK∗,BR(E).

Proof of Theorem 1.14. Multiplying the kernel K ∈ L2 by a positive constant, we
may assume that λ > 2n+s and hence K satisfies (1.3)–(1.7) with K∗ = C1K.
Applying Corollary 1.8, we deduce that

(4.32) PK∗,BR(E) = C1PK,BR(E) 6 CRn−s.

Thus, Theorem 1.14 follows by Theorem 1.19 and estimate (4.32) above. �
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Proof of Corollary 1.20. The proof follows by Theorem 1.19, after observing that if
K∗ ∈ L1(Rn) and E is a minimizer, then

PK∗,Bρ(E) 6 |Bρ|
∫

R2

K∗ = ρ2|B1|
∫

R2

K∗.

�

Proof of Corollary 1.21. The proof follows by Theorem 1.19 and by Proposition 1.11.
�

Proof of Corollary 1.22. The proof follows by Corollary 1.21 using that for com-
pactly supported kernels K, we have

PK(BR) ∼ Rn−1. �

5. Energy estimates with perturbed kernels

Lemma 5.1. Let R0 > 1. Assume that K > 1 in B1. Let Q = (−3R0/2, 3R0/2)n

and E ⊂ Rn is measurable. Then,

LK(E ∩Q, CE ∩Q) > c(n,R0) min{|E ∩Q|, |CE ∩Q|}.
Proof. Since the statement is invariant when we swap E and CE we may assume
|E ∩Q| 6 |Q|/2 6 |CE ∩Q|.

Split Q into a regular grid composed by kn open cubes of side r = 3R0/k with
r ∈ (n−1/2/8, n−1/2/4]. We call these small cubes Qi, i ∈ I. Let Ĩ = {i : |Qi ∩E| >
1
2
|Qi|}.
We have Ĩ 6= I since |E ∩ Q| 6 |Q|/2. There are now two cases Ĩ nonempty or

empty.
On the one hand, if Ĩ is nonempty then there are i1 ∈ Ĩ and i2 ∈ I \ Ĩ such that

Qi1 and Qi2 are adjacent cubes. Then, since r 6 n−1/2/4 we have diam (Qi) 6 1/2
for all i and thus diam (Qi1 ∪Qi2) 6 1. Since K > 1 in B1 we then have

LK(E ∩Q, CE ∩Q) > LK(E ∩Qi1 , CE ∩Qi2) >
∣∣E ∩Qi1

∣∣ ·
∣∣CE ∩Qi2

∣∣

> 1

2
|Qi1 | ·

1

2
|Qi2| > c(n).

On this case the estimate of the lemma follows since |E ∩Q| 6 (3R0)n.
On the other hand, if Ĩ is empty then |Qi ∩ E| 6 1

2
|Qi| for all i and

LK(E ∩Q, CE ∩Q) >
∑

i

LK(E ∩Qi, CE ∩Qi) >
∑

i

|E ∩Qi| ·
1

2
|Qi|

> c(n)|E ∩Q|,
as desired. �
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Lemma 5.2. Let R0 > 1. Let K be some kernel satisfying K > 1 in B1. Let E ⊂ Rn

measurable and R ∈ 3R0N and QR = (−R/2, R/2)n. Denote K0(z) = χ{|z|6R0}(z).
Then,

LK0(E ∩QR, CE ∩QR) 6 C(n,R0)LK(E ∩QR, CE ∩QR).

Proof. Let us cover the full measure of QR by cubes belonging to the grid of disjoint
open cubes of size R0 given by {Qi} ⊂ R0

(
Zn + (−1/2, 1/2)n

)
. Let us consider also

the covering of QR by cubes in the overlapping grid of side 3R0 given by {Q̄i} ⊂
R0

(
Zn + 3(−1/2, 1/2)n

)
. Note that (up to sets of measure zero) each point of QR

belongs to exactly one cube in {Qi} and 3n cubes in {Q̄i}.
Notice that for every pair of points x, x̄ ∈ QR such that |x − x̄| 6 R0 there is

some large cube Q̄i containing at the same time both points. Indeed, x will belong
to some small cube Qi but then if Q̄i is the large cube with the same center it will
also be y ∈ Q̄i. Hence,

{(x, x̄) ∈ QR ×QR : |x− x̄| 6 R0} ⊂
⋃

i

Q̄i × Q̄i.

This implies that

LK0(E ∩QR, CE ∩QR) =

∫∫

(E∩QR)×(CE∩QR)

χ{|x̄−x|6R0} dx dx̄

=

∫∫
S
i(E∩Q̄i)×(CE∩Q̄i)

χ{|x̄−x|6R0} dx dx̄

6
∑

i

∫∫

(E∩Q̄i)×(CE∩Q̄i)
χ{|x̄−x|6R0} dx dx̄

=
∑

i

LK0(E ∩ Q̄i, CE ∩ Q̄i).

Now, using Lemma 5.1 we obtain that, for all i,

LK0(E ∩ Q̄i, CE ∩ Q̄i) 6 |E ∩ Q̄i| · |CE ∩ Q̄i|
6 (3R0)n min

{
|E ∩ Q̄i| · |CE ∩ Q̄i|

}

6 C(n,R0)LK(E ∩ Q̄i, CE ∩ Q̄i).

But then, using that each point of BR belongs to at most 3n cubes Q̄i we can
estimate

LK0(E ∩QR, CE ∩QR) 6
∑

i

LK0(E ∩ Q̄i, CE ∩ Q̄i)

6
∑

i

C(n,R0)LK(E ∩ Q̄i, CE ∩ Q̄i)

6 C(n,R0)3nLK(E ∩QR, CE ∩QR),

as stated in the Lemma. �
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We finally give the

Proof of Proposition 1.11. Note first that all R > 1 we have PK(BR) > c(n)Rn−1

since K > 1 in B2 by (1.6). On the other hand it is clear that by definition PK(BR)
is monotone in R.

Thus, if k is the smallest integer such that 3R0k/2 > R, denoting R̄ = 3R0k/2,
ER = E ∩BR. Denote K0(z) = χ{|z|6R0}(z). Using Lemma 5.2 we obtain

PK0(E,BR) 6 LK0(E ∩BR, CE ∩BR) + LK0(BR, CBR)

6 LK0(ER ∩QR̄, CER ∩QR̄) +

∫

BR

∫

CBR
χ{|x̄−x|6R0} dx̄ dx

6 C(n,R0)LK(ER ∩QR̄, CER ∩QR̄) + C(n,R0)Rn−1

6 C(n,R0)
(
LK(E ∩BR, CE ∩BR) + LK(BR, CBR) +Rn−1

)

6 C(n,R0)
(
PK,BR(E) + PK(BR) +Rn−1

)
,

6 C(n,R0)PK(BR)

where we have used that E is a minimizer PK,BR and hence PK,BR(E) 6 PK(BR).
Then the proposition follows. �

6. Existence and compactness of minimizers

To prove Theorem 1.13 we need some preliminary results. First we prove exis-
tence of minimizers among “nice” sets (more precisely among sets with finite 1/2-
perimeter); this is done in Proposition 6.6, where a crucial ingredient in the proof
is given by the uniform BV -bound established in Theorem 1.12 which provides the
necessary compactness in L1. Second, we establish a density result (see Proposition
6.4) which allows to approximate any set of finite K-perimeter, with sets that has
also finite 1/2-perimeter; the proof of this density result uses a generalized coarea
formula that we establish in Lemma 6.2.

We start with a simple remark which will be useful in the sequel.

Proposition 6.1 (Lower semicontinuity of K-perimeter). Let χEk → χE in
L1

loc(Rn), then

lim inf
k→∞

PK,Ω(Ek) > PK,Ω(E).

Proof. The result follows, exactly as in Proposition 3.1 in [11], by Fatou Lemma.
Indeed, recall that

LK(A,B) =

∫

Rn

∫

Rn
χA(x)χB(x̄)K(x− x̄)dxdx̄.

If χAk → χA, χBk → χB in L1
loc(Rn), then for each sequence there exists a subse-

quence kj, such that for a.e. (x, x̄)

χAkjχBkj → χAχB.



44

Therefore, by Fatou Lemma, we have

lim inf
j→∞

LK(Akj , Bkj) > LK(A,B).

�
In the next lemma we establish a generalized coarea formula for the K-perimeter.

The analogue result for the fractional s-perimeter is contained in [43]. For the sake
of completeness, we reproduce here the simple proof, which does not dependent on
the choice of the kernel. For a measurable function u, we set:

FK,Ω(u) :=
1

2

∫

Ω

∫

Ω

|u(x)−u(x̄)|K(x− x̄)dxdx̄+

∫

Ω

∫

CΩ
|u(x)−u(x̄)|K(x− x̄)dxdx̄.

Lemma 6.2 (Coarea formula). Let u : Ω→ [0, 1] be a measurable function. Then,
we have

FK,Ω(u) =

∫ 1

0

PK,Ω(Et)dt,

where Et = {u > t}.
Proof. We start by observing that the function t 7→ χEt(x) − χEt(x̄) takes values
in {−1, 0, 1} and it is different from zero in the interval having u(x) and u(x̄) as
extreme points, therefore

|u(x)− u(x̄)| =
∫ 1

0

|χEt(x)− χEt(x̄)|dt.

Hence, by Fubini Theorem, we deduce

FK,Ω(u) =

∫ 1

0

[
1

2

∫

Ω

∫

Ω

|χEt(x)− χEt(x̄)|K(x− x̄)dxdx̄

]
dt

+

∫ 1

0

[∫

Ω

∫

CΩ
|χEt(x)− χEt(x̄)|K(x− x̄)dxdx̄

]
dt

=

∫ 1

0

[∫

Et∩Ω

∫

CEt∩Ω

K(x− x̄)dxdx̄+

∫

Et∩Ω

∫

CEt∩CΩ
K(x− x̄)dxdx̄

+

∫

CEt∩Ω

∫

Et∩CΩ
K(x− x̄)dxdx̄

]
dt

=

∫ 1

0

[LK(Et ∩ Ω, CEt ∩ Ω) + LK(Et ∩ Ω, CEt \ Ω) + LK(Et \ Ω, CEt ∩ Ω)]dt

=

∫ 1

0

PK,Ω(Et)dt,

as desired. �
In the following lemma we establish a density result for smooth functions in the

space of functions with finite FK,Ω. For the sake of completeness we reproduce here
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the simple proof, which follows the one in [25], Lemma 11, for the case of the all
space.

Lemma 6.3. Let Ω be a bounded Lipschitz domain and u be a function defined on
Rn with u ∈ L1(Ω) and FK,Ω(u) <∞. Then, for any fixed sufficiently small δ > 0,
there exists a family (uε) of smooth functions such that:

i) ‖u− uε‖L1(Ωδ) → 0 as ε→ 0,
ii) FK,Ωδ(u− uε)→ 0 as ε→ 0.

Proof. For any 0 < ε < δ, we consider the convolution kernel

ηε(x) := ε−nη
(x
ε

)
,

where η ∈ C∞0 (B1), η > 0,
∫

Rn η = 1, and we set

uε(x) := (u ∗ ηε)(x).

Since u ∈ L1(Ω) we immediately have ||u − uε||L1(Ωδ) → 0 as ε → 0. It remains to
prove ii).

Using the definition of uε and the triangle inequality, we have that

2FK,Ωδ(uε − u) =

∫∫

R2n\(CΩδ×CΩδ)
|uε(x)− u(x) + u(x̄)− uε(x̄)|K(x− x̄)dxdx̄

=

∫∫

R2n\(CΩδ×CΩδ)
K(x− x̄)

∣∣∣∣
∫

B1

(u(x− εz)− u(x̄− εz)− u(x) + u(x̄))η(z)dz

∣∣∣∣ dxdy

6
∫

B1

∫∫

R2n\(CΩδ×CΩδ)
K(x− x̄)|u(x− εz)− u(x̄− εz)− u(x) + u(x̄)|η(z)dxdydz.

Now, by the continuity of translations in L1(R2n \ (CΩδ × CΩδ)) applied to the
function

v(x, x̄) = (u(x)− u(x̄))K(x− x̄),

(which is in L1(R2n \ (CΩδ × CΩδ)), since FK,Ω(u) <∞), we deduce that for every
fixed z ∈ B1,
∫∫

R2n\(CΩδ×CΩδ)
K(x− x̄)|u(x− εz)−u(x̄− εz)−u(x) +u(x̄)|dxdy → 0, as ε→ 0.

Moreover, for a.e. z ∈ B1, we have

η(z)

∫∫

R2n\(CΩδ×CΩδ)
K(x− x̄)|u(x− εz)− u(x̄− εz)− u(x) + u(x̄)|dxdy

6 2 max η

∫∫

R2n\(CΩδ×CΩδ)
K(x− x̄)|u(x)− u(x̄)|dxdy <∞.

Hence, the conclusion follows by the dominated convergence Theorem. �
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The following density result will be useful in the proof of existence of minimizers.
The proof follows the one for the classical approximation result for sets of finite
perimeter by smooth sets, and uses the generalized coarea formula of Lemma 6.2.

Proposition 6.4 (Density of sets with finite 1/2-perimeter). Let Ω be a
bounded Lipschitz domain. Let F be a set with finite K-perimeter in Ω. Then,
there exists a sequence (Fj) of open sets satisfying the following properties:

(1) P1/2,Ω(Fj) <∞,
(2) Fj \ Ω = F \ Ω,
(3) limj→∞ |Fj4F | = 0,
(4) limj→∞ PK,Ω(Fj) = PK,Ω(F ).

To prove Proposition 6.4, we need the following preliminary result.
Let Ω be a Lipschitz domain and let d(x, ∂Ω) denote the distance of the point x

from the boundary ∂Ω. We define

(6.1) Ωt := {x ∈ Ω : d(x, ∂Ω) > t} and

Note that for a sufficiently small δ0 > 0, where t ∈ (0, δ0) all the domains Ωt are
Lipschitz with uniform constants depending only on Ω. We will need the following
lemma.

Lemma 6.5. Let Ω ⊂ Rn be a Lipschitz domain and suppose that K > 0 satisfies
assumption (1.5). There exists δ0 > 0 depending only on Ω such that for any
t ∈ (0, δ0) we have

(6.2) LK(Ω \ Ωt,Ωt) 6 C

∫

Rn
min{t, |z|}K(z)dz,

and

(6.3) LK(Ω \ Ωt, CΩ) 6 C

∫

Rn
min{t, |z|}K(z)dz,

where the constants C and δ depend only on Ω.

Proof. Performing the change of variables z = x̄− x and using Fubini Theorem, we
have

LK(Ω \ Ωt,Ωt) =

∫

Ωt
dx

∫

Ω\Ωt
dx̄K(x̄− x) =

∫

Rn
dzK(z)

∫

Ωt∩
(

(Ω\Ωt)−z
) dx

6 C

∫

Rn
min{t, |z|}K(z)dz,

since for a Lipschitz set Ω, we have

|Ωt ∩
(
(Ω \ Ωt)− z

)
| 6 min

{
|Ω \ Ωt| , |Ωt \ (Ωt − z)|

}
6 min{t, |z|}.

The proof of (6.3) follows likewise. �
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Proof of Proposition 6.4. As it will become clear in the proof, actually we prove
more than property (1): we will show that for any j, on the one hand ∂Fj is smooth

in Ω
1
j (and up to the boundary of Ω

1
j ), and on the other hand Fj ∩ Ω \ Ω

1
j . Recall

that Ω
1
j was defined in (6.1). Since Ω is Lipschitz, these two properties imply that

Fj satisfies (1), for j large enough.
For a fixed sufficiently small δ, we consider Ωδ —as in (6.1). Let εk ∈ (0, δ) be a

sequence such that εk ↓ 0, and let uk be the mollified functions

uk := χF ∗ ηεk .
By Lemma 6.3 we know that

(6.4) ‖uk − χF‖L1(Ωδ) → 0, as k →∞,
and

lim
k→∞
FK,Ωδ(uk) = FK,Ωδ(χF ) = PK,Ωδ(F ).

We define now the sets

F k
t := {uk > t}.

By the coarea formula of Lemma 6.2, we have that

PK,Ωδ(F ) = lim
k→∞
FK,Ωδ(uk)

>
∫ 1

0

lim inf
k→∞

PK,Ωδ(F
k
t )dt.

Sard’s Theorem implies that for L1-a.e. t ∈ (0, 1), all the sets F k
t have smooth

boundary, therefore we can choose t with this property and such that

L := lim inf
k→∞

PK,Ωδ(F
k
t ) 6 PK,Ωδ(F ).

Let now (Fh) = (F
k(h)
t ) be a subsequence with finite K-Perimeter in Ωδ converging

to L. By Chebyshev inequality and (6.4) we deduce that

(6.5) |(Fh4F ) ∩ Ωδ| → 0, as h→∞.
Moreover by the lower semicontinuity of the K-Perimeter, we deduce that

(6.6) lim
h→∞

PK,Ωδ(Fh) = PK,Ωδ(F ).

We define now the sequence of sets

(6.7) F δ
h := (Fh ∩ Ωδ) ∪ Aδ ∪ (F \ Ω).

We start by observing that, by definition, F δ
h satisfies

(6.8) F δ
h \ Ω = F \ Ω, and F δ

h is smooth in Ωδ.

Moreover, using Lemma 6.3 and that |Aδ| = Cδ, we see that

(6.9) lim
h→∞
|F δ
h4F | = Cδ.
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Here and in the sequel C denotes possibly different positive constant (uniform in h
and δ). We estimate now how much the K-perimeters of F and F δ

h differs. By the
triangle inequality, we have that

|PK,Ω(F δ
h)− PK,Ω(F )| 6 |PK,Ω(F δ

h)− PK,Ωδ(F δ
h)|+ |PK,Ωδ(F δ

h)− PK,Ωδ(Fh)| +

+ |PK,Ωδ(Fh)− PK,Ωδ(F )|+ |PK,Ωδ(F )− PK,Ω(F )|
= I1 + I2 + I3 + I4.

(6.10)

We readiy show that, for i = 1, 2, 4,

(6.11) Ii 6 LK(Ω \ Ωδ,Ωδ) + LK(Ω \ Ωδ, CΩδ).

Using Lemma 6.5 we deduce that

Ii 6 C

∫

Rn
K(z) min{δ, |z|}dz,

where C depends only on Ω. Finally, by point (4) in Proposition 6.4, we have that
for any fixed δ,

(6.12) I3 → 0 as h→∞.
Let now j be given. We choose δ = δ(j) such that Ii 6 1/(4j), for i = 1, 2, 4.

Moreover, by (6.12), we can choose h = h(j) such that I3 6 1/(4j). Finally we set

Fj := F
δ(j)
h(j) . With this choices, plugging (6.11),(6.12) in (6.10) we deduce that

|PK,Ω(Fj)− PK,Ω(F )| 6 1

j
.

In addition, by (6.8) and (6.9), we have that F j has smooth boundary in Ω
1
j and is

such that

Fj \ Ω = F \ Ω, |Fj4F | 6
1

j
.

To conclude the proof, it remains therefore to show (1). This is an easy conse-

quence of the fact that Fj has smooth boundary in Ω
1
j . Indeed, given any set F̃

with smooth boundary in Ω
1
j , and using again Lemma 6.5, we have

P1/2,Ω(F̃ ) = P
1/2,Ω

1
j
(F̃ ) + C

∫

Rn
K(z) min

{
1

j
, |z|
}
dz

=

∫

F̃∩Ω
1
j

∫

CF̃∩Ω
1
j

1

|x− x̄|n+s
dxdx̄+ 2

∫

Ω
1
j

∫

CΩ
1
j

1

|x− x̄|n+s
dxdx̄+ C <∞,

as desired. �
Proposition 6.6 (Existence of minimizers among “nice” sets). Let Ω be a
bounded Lipschitz domain, and E0 ⊂ CΩ a given set. Then, there exists a set E,
with E∩CΩ = E0 that is a minimizer for PK,Ω among all sets F with P1/2,Ω(F ) 6 C.
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Proof. Let ε > 0. We introduce the following regularized kernel:

Kε(z) := K(z) +
ε

|z|n+ 1
2

.

For any ε fixed, the associated perimeter PKε,Ω admits a minimizer Eε with Eε ∩
CΩ = E0. This follows as in the proof of Theorem 3.2 in [11] by L1-compactness of

H
1
4 and the lower semicontinuity of PKε,Ω (that follows by Proposition 6.1 applied

to PKε,Ω in place of PK,Ω). Indeed given Fε,k a sequence of sets such that

PKε,Ω(Fε,k) −→
k→∞

inf
F∩CΩ=E0

PKε,Ω(F ),

then the H
1
4 -norm of the characteristic functions of Fε,k ∩ Ω are bounded (by a

constant depending on ε), thus, by compactness, there exists a subsequence which
converges to a set Eε ∩ Ω in L1(Rn), which is a minimizer of PKε,Ω by lower semi-
continuity.

Now we observe that the new kernel Kε satisfies all assumptions (1.3)–(1.6) and
(1.7), therefore, by Theorem 1.12 and a standard covering argument, we have a
uniform BV -bound (uniform in ε!) for the characteristic functions of the minimizers
Eε in any subdomains Ω′, with Ω′ ⊂ Ω. We set, as above, Ωδ = {x ∈ Ω : d(x, ∂Ω) >
δ}.

Using that BV is compact in L1 and the standard diagonal argument, we can
extract a subsequence εj such that

χEεj , → χE in L1(Ωδ) for all δ > 0.

It remains to prove that E is a minimizer for PK,Ω. On one hand, by definition
of Kε and by the lower semicontinuity of PK,Ω, we have

(6.13) lim inf
ε→0

PKε,Ωδ(Eε) > lim inf
ε→0

PK,Ωδ(Eε) > PK,Ωδ(E).

On the other hand, by minimality of Eε, we have that

(6.14) PKε,Ω(Eε) 6 PKε,Ω(F ),

for any measurable set F with F ∩ CΩ = E0.
Hence, we deduce that

PK,Ωδ(E) 6 lim inf
ε→0

PKε,Ωδ(Eε)

6 PKε,Ω(F )

= PK,Ω(F ) + εP1/2,Ω(Fδ)

When a P1/2,Ω(F ) <∞, the conclusion then follows by sending first ε to zero and
then δ to zero. �

We can now give the proof of our existence result.

Proof of Theorem 1.13. The theorem follows combining Propositions 6.6 and 6.4.
�
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Lemma 6.7 (Compactness). Let Ω be a Lipschitz domain in Rn. Assume that
K satisfies (1.3),(1.4),(1.5) and (1.6). Let {En} be a minimizing sequence for PK,Ω
and

χEk → χE in L1
loc(Rn).

Then, E is a minimizer for PK,Ω and

lim
k→∞

PK,Ω(Ek) = PK,Ω(E).

Proof. We follow the proof of Theorem 3.3 in [11].
Assume that F = E outside Ω. We set

Fk := (F ∩ Ω) ∪ (Ek \ Ω),

then, by minimality of Ek, we have

PK,Ω(Fk) > PK,Ω(Ek).

Moreover, by definition of Fk

|PK,Ω(F )− PK,Ω(Fk)| 6 LK(Ω, (Ek4E) \ Ω).

We denote:

bk := LK(Ω, (Ek4E) \ Ω),

and we get

PK,Ω(F ) + bk > PK,Ω(Ek).

To conclude we just need to prove that bk → 0 as k → ∞, indeed, by lower semi-
continuity, we would deduce that

PK,Ω(F ) > lim sup
k→∞

PK,Ω(Ek) > lim inf
k→∞

PK,Ω(Ek) > PK,Ω(E).

Finally we observe that, by Remark 1.4, we have that the function

φ(x̄) :=

∫

Ω

K(x− x̄)dx

belongs to L1(CΩ). Then, using that χEk → χE in L1
loc as k → ∞, the dominated

convergence theorem implies

bk =

∫

(Ek4E)\Ω

∫

Ω

K(x− x̄)dx→ 0, as k →∞,

which concludes the proof. �
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Appendix: Integral formulas for sets of finite perimeter

We sketch here the

Proof of Proposition 4.4. We follow Section 5.10.2 in the book of Evans and Gariepy
[23].

Step 1. We show that the map L⊥ → R

y 7→ IE,Ω(L, y)

is Hn−m measurable. This follows exactly as in the proof of [23, Lemma 1 §5.10.2]
using that the supremum in the definition of IE,Ω(L, y) in (4.5) is actually the supre-
mum φ belonging to a countable dense subset of C1

c

(
(y + L) ∩ Ω;L ∩B1

)
.

Step 2. We prove that

(6.15)

∫

L⊥
IE,Ω(L, y) dHn−m(y) 6 |∇Lu|(Ω),

where we recall that u = χE is a function in BV(Ω) and

|∇Lu|(Ω) := sup

{∫

Ω

u(x) div φ(x) dx : φ ∈ C1
c (Ω;L ∩B1)

}

is the total variation of the projection of the (vector valued) measure ∇u onto L.
Let Ω′ ⊂⊂ Ω. Define given r > 0 define ur = u ∗ ηr where ηr = r−n

( ·
r

)
> 0 is

a standard smooth mollifier. Note that for r small enough (depending on Ω′ ) we
have ∫

Ω′
|∇Lur| dx 6 |∇Lu|(Ω),

where ∇L denotes the projection of the gradient onto L.
Similarly as in the proof of [23, Theorem 2 §5.10.2], for Hn−m a.e. y ∈ L⊥, we

have ur → u in L1 when the two functions are restricted to the cap Ω ∩ (y + L).
Hence, for Hn−m a.e. y we have

IE,Ω′(L, y) 6 lim inf
r→0

∫

Ω′∩(y+L)

|∇Lur| dz.

Thus, Fatou’s Lemma implies
∫

L⊥
IE,Ω′(L, y) dy 6 lim inf

r→0

∫

L⊥
dy

∫

Ω′∩(y+L)

dz |∇Lur|(z)

=

∫

Ω′
|∇Lur| dx 6 |∇Lu|(Ω).

Then, (6.15) follows by monotone convergence letting Ω′ ↑ Ω.
Step 3. We prove that

(6.16) |∇Lu|(Ω) 6
∫

L⊥
IE,Ω(L, y) dHn−m(y).
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Indeed, using the definition of IE,Ω(L, y) we find that for every given φ ∈ C1
c (Ω;L∩

B1) we have ∫

Ω

u(x) div φ(x) dx 6
∫

L⊥
IE,Ω(L, y) dHn−m(y).

Taking the supremum in φ we obtain (6.16).
Step 4. We show that

(6.17) |∇Lu|(Ω) =

∫

∂∗E∩Ω

√√√√
m∑

i=1

(
vi · νE(z)

)2
dHn−1(z).

To prove (6.17) we use the divergence theorem for the set of finite perimeter E
and with a vector field φ ∈ C1

c (Ω;L ∩B1). We obtain
∫

Ω

u(x)div φ(x) dx =

∫

∂∗E∩Ω

φ(z) · νE(z) dHn−1(z)

6
∫

∂∗E∩Ω

√√√√
m∑

i=1

(
vi · νE(z)

)2
dHn−1(z).

(6.18)

From this, taking supremums in the left hand side, it easily follows that (6.17) is
satisfied with the equality sign replaced by 6. To prove the equality we may use
the structure theorem for sets of finite perimeter to build a sequence φk that attain,
in the limit, the equality case in (6.18). More precisely, this follows in a rather
straightforward way from the fact that ∂∗E is Hn−1 rectifiable —see statements (i)
and (ii) of Theorem 2 in Section 5.7.3 of [23].

Step 4. In the case of m = 1 the formulas for IE,Ω(L, y) and IE,Ω(L, y)± follow
by inspection using the fact that a set of finite perimeter in dimension one is (up to
negligible sets) a finite union of disjoint closed intervals. �
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[6] X. Cabré and E. Cinti, Sharp energy estimates for nonlinear fractional diffusion equations,
Calc. Var. Partial Differential Equations 49 (2014), no. 1-2, 233–269.
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