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Aqueous zinc-ion batteries (ZIBs) have obtained increasing attention owing to the high
safety, material abundance, and environmental benignity. However, the development of
cathode materials with high capacity and stable cyclability is still a challenge. Herein,
the polypyrrole (PPy)-wrapped V2O5 nanowire (V2O5/PPy) composite was synthesized
by a surface-initiated polymerization strategy, ascribing to the redox reaction between
V2O5 and pyrrole. The introduction of PPy on the surface of V2O5 nanowires not
only enhanced the electronic conductivity of the active materials but also reduced
the V2O5 dissolution. As a result, the V2O5/PPy composite cathode exhibits a high
specific capacity of 466 mAh g−1 at 0.1 A g−1 and a superior cycling stability with 95%
capacity retention after 1000 cycles at a high current density of 5 A g−1. The superior
electrochemical performance is ascribed to the large ratio of capacitive contribution
(92% at 1 mV s−1) and a fast Zn2+ diffusion rate. This work presents a simple method
for fabricating V2O5/PPy composite toward advanced ZIBs.

Keywords: V2O5 nanowires, surface-initiated polymerization, polypyrrole, cathode material, aqueous zinc-ion
battery

INTRODUCTION

The ever-increasing energy consumption, and limited fossil fuels, necessitates effective utilization
of renewable energy resources (Xu F. et al., 2020). For that purpose, large-scale efficient energy
storage systems are desired (Shao et al., 2021). Although lithium-ion battery has found widespread
applicability, it suffers from safety issues caused by flammable organic electrolytes as well as the
availability of Li source (Dong et al., 2020; Lu et al., 2020). Aqueous zinc-ion batteries (ZIBs) are
regarded as a suitable alternative for scalable energy storage systems, due to the usage of zinc metal
anode which, apart from high abundance and environmental friendliness, has a large theoretical
capacity (820 mAh g−1) and a low redox potential [−0.76 V vs. SHE (Wang F. et al., 2018;
Wang et al., 2020b; Zhang et al., 2019a). Furthermore, the possibility of an aqueous electrolyte
endows an intrinsic non-flammability and high ionic conductivity (Wang et al., 2020a). However,
corresponding ZIB cathode materials with high capacity and stable cyclability need to be further
explored (Zhang et al., 2019b).

Manganese oxides (Khamsanga et al., 2019; Wang J. et al., 2019), Prussian blue analogs (Liu
et al., 2020; Zampardi and La Mantia, 2020), vanadium-based compounds (Yang et al., 2020), and
some organic materials (Wang et al., 2020c) have been investigated as cathode materials for aqueous

Frontiers in Energy Research | www.frontiersin.org 1 August 2020 | Volume 8 | Article 199

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2020.00199
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fenrg.2020.00199
http://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2020.00199&domain=pdf&date_stamp=2020-08-27
https://www.frontiersin.org/articles/10.3389/fenrg.2020.00199/full
http://loop.frontiersin.org/people/1010314/overview
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/
https://www.frontiersin.org/journals/energy-research#articles


fenrg-08-00199 August 27, 2020 Time: 11:51 # 2

Qin et al. Polypyrrole Wrapped V2O5 Nanowires Composite

ZIBs. Among those, vanadium-based materials, particularly
vanadium oxides, are very attractive because of the advantage
of high theoretical capacities due to multiple oxidation states
of vanadium. Unfortunately, the electrochemical performance of
vanadium oxides in ZIBs is hindered by their poor electronic
conductivity and noticeable solubility in the electrolyte (Zhang
et al., 2020). To address these issues, various strategies have
been applied, such as using pre-insertion materials (V2O5·H2O)
(Wang X. et al., 2019), integration with carbon materials (Yan
et al., 2018), as well as electrolyte modifications (Wan et al., 2018).
Another viable approach is to incorporate conducting polymers
along with V2O5 (Du et al., 2020). Polypyrrole (PPy) is a widely
used conductive polymer, and V2O5/PPy composites have been
shown to exhibit enhanced performance in supercapacitors and
LIBs (Wang J.G. et al., 2018). Therefore, with regard to aqueous
ZIBs, an effective PPy coating can aid in enhancing the electronic
conductivity of V2O5 as well as help to reduce the solubility in
the electrolyte.

Herein, V2O5 nanowires were synthesized by a facile
hydrothermal method, and a surface-initiated polymerization
method was utilized to fabricate a PPy-wrapped V2O5
nanowire composite. V2O5 served as the initiator to induce
the polymerization reaction of pyrrole monomer at room
temperature due to the strong oxidizing property of V5+.
Benefiting from the improved electronic conductivity and
restricted V2O5 dissolution due to the PPy layer, V2O5/PPy
cathode delivered a higher specific capacity and rate performance
in comparison to the pristine V2O5 nanowire cathode. Therefore,
the V2O5/PPy composite is a promising high-performance
cathode material for aqueous ZIBs toward large-scale energy
storage applications.

EXPERIMENTAL SECTION

V2O5 nanowires were synthesized by a facile hydrothermal
method according to previously reported literature (Wang J.G.
et al., 2018). 200 mg of obtained V2O5 nanowires was dispersed
into deionized water. Then, pyrrole (0.1 ml) dissolved in DMF
(4 ml) was slowly added to the above V2O5 nanowire suspended
solution and stirred for 24 h. The obtained V2O5/PPy was washed
carefully and dried in a vacuum oven.

More detailed synthesis and characterization processes are
available in electronic Supplementary Information.

RESULTS AND DISCUSSION

V2O5 nanowires were synthesized by the hydrothermal
method. The as-obtained V2O5 nanowires show a diameter
of approximately 15 nm with a cable-like nanostructure
(Supplementary Figure S1A). The V2O5/PPy composites were
prepared using a surface-initiated polymerization strategy, as
shown in Figure 1A. Owing to the strong oxidizing property
of V2O5, the pyrrole monomer can be polymerized with V2O5
initiation, resulting in the surface coating of V2O5 with PPy.
The morphology of V2O5 nanowires was well-maintained after

PPy coating, indicating that the wrapping procedure has no
significant influence on the V2O5 morphology (Figure 1B).
The TEM image also confirms the nanowire morphology of the
V2O5/PPy composite (Figure 1D). EDS elemental mappings
show the homogeneous distribution of C, O, V, and N throughout
the entire V2O5/PPy composite, indicating the presence of PPy
(Figure 1C and Supplementary Figure S1B).

The XRD data of the V2O5 nanowires mainly fit with the
layered orthorhombic structure (JCPDS no. 40-1296), and typical
(001) and (003) reflection peaks are present (Figure 1E). A little
amount of V4O7 was also indexed and may be assigned to
the reduction of P123. The interlayer distance is estimated to
be 0.96 nm by Bragg’s law from the (001) peak. This large
distance is beneficial for Zn2+ insertion/extraction during the
electrochemical process. After the PPy coating, no significant
change is observed in the XRD data, indicating that the layered
structure was well maintained after the polymerization process.
In order to confirm the PPy coating and identify the valence state
of vanadium in the V2O5/PPy composite, XPS was carried out.
Figure 1F shows the survey spectrum with the clear presence
of N 1s and C 1s, confirming the polymeric coating (see also
Supplementary Figure S2). Figure 1G shows the V 2p spectrum,
with strong V 2p3/2 and V 2p1/2 peaks of V5+ located at 517.6 eV
and 525 eV, along with shoulder peaks at 516 eV and 523.8 eV,
corresponding to V4+ (Liu et al., 2019). The presence of a small
amount of V4+ (9.3 at.%) corresponds to the oxygen vacancies
generated in the V2O5 surface due to the redox reaction between
V2O5 and pyrrole. Previous studies on V2O5 demonstrated
that such vacancies enhance the electrochemical performance
(Liao et al., 2020).

The electrochemical performance of pristine V2O5 and
V2O5/PPy composites is evaluated in aqueous ZIBs. Figure 2A
presents the rate capability of the pristine V2O5 cathode and
V2O5/PPy composite cathode. The V2O5/PPy composite cathode
delivers a high initial capacity of 466 mAh g−1 at 0.1 A g−1,
as compared to the V2O5 nanowire electrodes (425 mAh g−1).
Even at a very high current density of 5.0 A g−1, the V2O5/PPy
composite cathode still possesses a higher discharge capacity of
174 mAh g−1 than that observed for the V2O5 nanowire cathode
(142 mAh g−1). The results point to the better rate performance
of V2O5/PPy composite in comparison to non-modified V2O5
nanowire electrodes. The voltage-capacity plots for the V2O5/PPy
composite at different current rates demonstrate that the redox
plateaus are well maintained even at a high current density of
5.0 A g−1 (Figure 2B). In comparing to voltage-capacity plots
for pristine V2O5, the overpotentials are slightly lower suggesting
improved kinetics due to the higher electrical conductivity of the
composite (Supplementary Figure S3).

Based on the voltage profiles, the energy/power densities
of the batteries were calculated and are shown in the Ragone
plot (Figure 2C). Impressively, the batteries base on the
V2O5/PPy composite cathode display a high energy density of
235 Wh kg−1 at a power density of 56 W kg−1 and exhibit
a relatively high energy density of 100 Wh kg−1 even at a
high power density of 2335 W kg−1. Moreover, the V2O5/PPy
composite cathodes are highly competitive among the aqueous
ZIBs based on the different cathodes: V2O5 (Hu et al., 2017),
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FIGURE 1 | (A) Schematic illustrating the preparation of V2O5/PPy composite. Characterizations of the V2O5/PPy composite. (B) SEM image and (C) Corresponding
elemental mappings, (D) TEM image, (E) XRD patterns, (F) XPS survey spectrum, and (G) V 2p spectrum with fitting showing mixed valence of V after PPy coating.

FIGURE 2 | Electrochemical performance of V2O5/PPy composites cathode in aqueous ZIBs. (A) Rate performance in comparison to pristine V2O5. (B) Voltage
profile plots at different current rates. (C) Ragone plot. (D) Cycling performance at 1A g-1 and (E) Long-term cycling performance at 5A g-1, in comparison to
pristine V2O5.
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TABLE 1 | Comparison of the initial capacity and cycling stability of V2O5/PPy
composite with recent literature data on vanadium oxide-based cathodes
in aqueous ZIBs.

Electrodes Rate
(mA g−1)

Initial
capacity

(mAh g−1)

Capacity
Retention

References

V2O5/PPy 1000 329 94% (100
cycles)

This work

5000 174 95% (1000
cycles)

K0 .25V2O5 1000 205 83% (50 cycles) Li S. et al.,
2019

Na1 .25V3O8 1000 280 75% (50 cycles) Xie et al., 2020

α-Zn2V2O7 4000 163 85% (1000
cycles)

Sambandam
et al., 2018

V2O5·nH2O 6000 281.7 71% (900
cycles)

Yan et al., 2018

H2V3O8 5000 173.6 94.3% (1000
cycles)

He et al., 2017a

LixV2O5·nH2O 5000 252 92.1% (500
cycles)

Yang Y. et al.,
2018

(NH4)2V6O16 1000 361.6 76.1% (100
cycles)

Xu L. et al.,
2020

NH4V4O10 (Yang G. et al., 2018), Na3V2(PO4)3 (Li et al., 2016),
heterogeneous vanadium oxide nanowire with V2O5·nH2O shell
and V3O7·H2O core (h-VOW) (Li X. et al., 2019), VS2 (He et al.,
2017b), Zn3V2O7(OH)2 (Chao et al., 2018), and NaV6O15/V2O5
(Lanlan et al., 2020). In addition, as shown in Figure 2D, the

V2O5/PPy composite cathode exhibits a high initial capacity
of 329 mAh g−1 at 1 A g−1 and a capacity retention of 94%
after 100 cycles, which is much higher than that of pristine
V2O5 cathodes (234 mAh g−1, 82%). Furthermore, long-term
cycling performance of the cathodes was evaluated, because it is
a key feature for practical applications. Even after 1000 cycles,
the batteries based on the V2O5/PPy composite cathode show
a reversible capacity of 174 mAh g−1 with a capacity retention
of 95%. In contract, pristine V2O5 cathodes exhibit a poor
cycling stability, with a specific capacity of only 93 mAh g−1

after 1000 cycles corresponding to a capacity retention of 62%
(Figure 2E). The strong capacity fading observed for pristine
V2O5 cathode is most probably be a result of V2O5 dissolution
during cycling, which is minimized with the PPy coating for
the V2O5/PPy composite. Moreover, such a high cycling stability
for the V2O5/PPy composite is better compared to the recently
reported literature on aqueous ZIBs with vanadium oxide-based
cathodes (Table 1). The high rate performance and stable long
cycle life of the V2O5/PPy composite cathode are ascribed to
the introduction of a conductive polymer PPy layer, which not
only increases the electronic conductivity but also reduces the
dissolution of V2O5 in the electrolyte.

The electrochemical kinetics of the V2O5/PPy composite
cathode was further investigated to understand the impressive
performance. Cyclic voltammetry (CV) was performed at various
scan rates from 0.1 to 1.0 mV s−1 (Figure 3A). The CV curves
show similar redox peaks in the voltage window of 0.3–1.6 V.
The characteristic peaks appeared at 0.5/0.7 V as well as 0.8/1.0 V,

FIGURE 3 | The electrochemical kinetics of the V2O5/PPy composite cathode. (A) CV curves at different scan rates. (B) Log(peak current) vs. log(scan rate) plots for
different peaks marked in (A). (C) Capacity contribution ratios at different scan rates. (D) GITT curves. (E) Evaluated diffusion coefficients of Zn2+.
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reflecting the redox processes in V2O5 that is consistent with
reported literature (Yang Y. et al., 2018; Zhang et al., 2018). The
capacity is regarded to be originated from two contributed parts:
a surface-controlled capacitive part and a diffusion-induced part,
as described in the literature (Ming et al., 2018):

i = avb (1)

In this equation, v is the scan rate, and a and b refer to
adjustable parameters. The b values range from 0.5 to 1.0.
Corresponding to b = 0.5, the observed capacity is fully diffusion-
induced. When the capacity is completely determined by a
surface-controlled capacitive part, the b value is close to 1.0. The
peak currents at different scan rates are plotted and fitted with a
linear function (Figure 3B). The b values are 0.51, 0.75, 0.61, and
0.64, which implies that the capacity of the V2O5/PPy composite
cathode is simultaneously influenced by both the capacitive
and diffusion processes. Furthermore, the capacity is divided
as a capacitive-controlled part (k1v) and diffusion-induced part
(k2v1/2) as described by the following equations:

i = k1v+ k2v1/2 (2)

or
i/v1/2

= k1v1/2
+ k2 (3)

The ratios of surface-controlled capacitive and diffusion-
induced parts with various scan rates are displayed in
Figure 3C. The surface-controlled capacitive contribution ratio
increases from 57% (0.1 mV s−1) to 92% (1.0 mV s−1),
indicating that the batteries possess fast charge-transfer kinetics.
The kinetics of the V2O5/PPy composite cathode is further
evaluated by galvanostatic intermittent titration technique
(GITT). The profiles in GITT curves of V2O5/PPy electrode
are well in coincidence with the galvanostatic charge–discharge
profiles (Figure 3D). The zinc-ion diffusion coefficient during
discharging–charging procedures for V2O5/PPy is 3.03 × 10−9–
1.46× 10−10 cm2 S−1 (Figure 3E), which is comparable to that of
the reported aqueous ZIBs based on the V2O5@CNT composite
and porous V2O5 nanofiber cathodes (Chen et al., 2019, 2020).

CONCLUSION

In this work, a surface-initiated polymerization strategy was
utilized to synthesize PPy-wrapped V2O5 nanowires. Owing to

the strong oxidizing property of V5+, the polymerization of the
pyrrole monomer could be initiated at room temperature. Due
to the introduction of the conductive PPy layer, the V2O5/PPy
cathode displayed a superior specific capacity and excellent
cycling stability. The outstanding electrochemical properties are
explained by the large ratio of a capacitive-controlled process
(92% at 1 mV s−1) and a fast zinc ion diffusion coefficient.
Considering the excellent electrochemical performance, coupled
with the safe and simple operation process of aqueous ZIBs, the
V2O5/PPy composite cathode holds great promise for practical
grid-level storage applications.
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