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Abstract

We consider viscoelastic solids undergoing thermal expansion and exhibiting hysteresis effects
due to plasticity or phase transformations. Within the framework of generalized standard solids, the
problem is described in a 3D setting by the momentum equilibrium equation, the flow rule describing
the dependence of the stress on the strain history, and the heat transfer equation. Under appropriate
regularity assumptions on the data, a local existence result for this thermodynamically consistent
system is established, by combining existence results for ordinary differential equations in Banach
spaces with a fixed-point argument. Then global estimates are obtained by using both the classical
energy estimate and more specific techniques for the heat equation introduced by Boccardo and
Gallouét. Finally a global existence result is derived.

1 Introduction

We consider quasi-static boundary-value problems with internal variables which model viscoplasticity or
phase-transformations in shape memory alloys. In such models, the momentum equilibrium equation is
coupled to a flow rule, which is a constitutive relation describing the dependence of the stress on the
strain history. In the framework of generalized standard materials (see [HaN75]), the unknowns are the
displacement wu and an internal variable z and the flow rule consists in a differential inclusion involving
a dissipation potential. Such problems have been intensively studied during the last decade and exis-
tence results have been obtained by using either classical results for maximal monotone operators (see
[AIC04]) or specific techniques for rate-independent processes introduced in [MiT04, Mie05] and later on
developed in [FrM06, MiR06, MiR0O7, Mie07, MiPO7, MRSO08].

In this paper we are interested by the coupling of these problems with thermal effects. Indeed, plas-
ticity or phase transformations are inelastic processes leading to energy dissipation; the temperature
of the material increases and the change of temperature have also some influence on the mechanical
behavior. Hence thermal effects can not be avoided. Many references on this topic are available in the
engineering literature, where several computational methods are employed to obtain approximate so-
lutions (see for instance [AdSCC99, SrZ99, RR*00, CaB04, HWRO05]). More recently, especially suited
numerical schemes have been proposed and a rigorous proof of their convergence is established to so
called energetic solutions, which solve the problem only in a weak form (see [BaR08, Roul0, BaR11]).

The aim of this paper is thus to prove a global existence result for such problems in a more classical
sense by using a fixed-point argument. The model that we consider is based on the Helmholtz free
energy W (e(u), z,6), depending on the infinitesimal strain tensor e(u) = % (Vu+VuT) for the dis-
placement u : Q2x(0,7) — R3, where ()T denotes the transpose of a tensor, the internal vari-
able z : 2x(0,7) — Z, where Z is a finite dimensional real vector space, and the temperature
0 : Qx(0,7) — R. For simplicity, we will omit any dependence on the material point x € 2 and
t € [0, T] with T > 0. We assume that TV can be decomposed as follows

W(e(u), z,0) = Wi(e(u),z) — Wo(0) + 0Wa(e(u)). (1.1)



The above decomposition ensures that entropy separates the thermal and mechanical variables (see
(2.8)). Note that the last term in (1.1) will lead to coupling terms in the momentum equilibrium equation
and in the heat equation but not in the flow rule. For a more general setting the reader is referred to
[PaP11]. We make the assumptions of small deformations. The problem is thus described by the following
system

def

—div(cetlLe(i)) =€, 0ol = D)W (e(u), z,0), (1.2a)
OU(2) 4+ Mz +0in 30, oin =D, W(e(u), z,6), (1.2b)
¢(0)6 — div(k(e(u), z,0)V0) = Le(u):e(i) + 00, Wa(e(u)) + ¥(2) + Mz.2. (1.2¢)

We have denoted the dissipation potential by W, which is assumed to be positively homogeneous of
degree 1, i.e., ¥(yz) = y¥(z) for all v > 0. This assumption is commonly used in modeling hysteresis
effect in mechanics (see [MiT04, Mie05]). The viscosity tensors are denoted by I and M, ¢(#) is the heat
capacity and x(e(u), z, @) is the conductivity. We have used above the following notations: ("), D% and
0 denote the time derivative %, the i-th derivative with respect to z and the subdifferential in the sense
of convex analysis (for more details see [Bre73]). Moreover ej:e2 and z1.22 denote the inner product
of e; and ez in ngfn?* and z; and zo in Z. Observe that (1.2a), (1.2b) and (1.2c) are usually called the
momentum equilibrium equation, the flow rule and the heat-transfer equation, respectively.

The paper is organized as follows. We justify the thermodynamic consistency of our model and we
present some illustrative examples in Section 2. In Section 3 the mathematical formulation of the problem
in terms of displacement, internal variable and temperature is given. Then, using the classical enthalpy
transformation, another formulation is obtained. In Section 4, we establish existence and regularity re-
sults for the system composed by the momentum equilibrium equation and the flow rule for a given
temperature 6, and in Section 5, existence and regularity results for the enthalpy equation for any given
right-hand side are recalled. Then in Section 6, a local existence result for the coupled problem follows
by using a fixed-point argument. Finally, global energy estimates are obtained in Section 7, leading to a
global existence result for the system (1.2).

2 Mechanical model

2.1 Thermodynamic consistency

Starting from the Helmholtz free energy W, let us introduce the internal energy Wi, defined by

Win(e(u), z,0) £ W(e(u), z,0) + 0s. (2.1)
and the specific entropy s by using the so-called Gibb’s relation
5 = —DgW(e(u), z,6). (2.2)
Then the entropy equation
05+ div(j) =&, (2.3)

gives some balance between the heat flux j and the heat production due to the dissipation rate £. In
particular, we have

¢ = Le(u):e(w) +Mz.2 + ¥(2) > 0.
Furthermore we assume that the Fourier’s law for the temperature holds, namely

j = —k(e(u), z,0) V8.



We can check now that the second law of thermodynamics holds if # > 0. Indeed, under the classical
assumption that the system is thermally isolated, it is possible to divide (2.3) by 8 and due to the Green’s

formula, we get
/sdx_/ div(r(e(u )d _|_/ Lo(u’):c(d)—zMz‘.z—i-\I/(z') da
Q

_/ n(e(u),z,@)V@ V0 4 +/ e(u):e(u)—ZMz’.z’—l—\I/(z’) dz > 0.
Q Q

We differentiate Win(e(u), z, 8) with respect to time. By using the chain rule and (2.1), we obtain
Win(e(u), z,0) = DeuyW (e(u), z,0):e(w) + D. W (e(u), z,0).2 + 03. (2.4)

We integrate (2.4) over (2, then we use the Green’s formula and (2.3), we find
/ Win(e(u), 2, 0) dz = / Deguy W (e(w), 2, 0):(i)dz + / D.W (e(u), 2, 0.2 dz
Q Q Q

(2.5)
+ /Q(div(m(e(u), z,0)VO)+Le(i):e(t)+Mz.24+¥(2))dz.

On the one hand, we multiply (1.2a) by 7, and we integrate this expression over ) to get

/Q Dagu W (e(w), 2, 0):c(d) da + / e(i):e(it) da = / (ivdz. 26)

On the other hand, we multiply (1.2b) by Z and the definition of the subdifferential 0¥ (2) leads to the
following equality

/DZW(e(u),z,G).z'd:U—l—/Mé.éd:p—l—/ U(z)dz = 0. .7
Q Q

Q

We use (2.6) and (2.7) into (2.5), we obtain

/QVVin(e(u),z,H)d:U:/Qf-icdm—i—/m k(e(w), 2, 0)Vo-yda.

This means that the total energy balance can be expressed in terms of the internal energy, which is the
sum of power of external load and heat. Finally, from (2.2), we may deduce that

s = DgWo(0) — Wa(e(u)), (2.8)

and
Win(e(u), 2,8) = Wi(e(u), z,6) + 6DgWo(6) — Wo(6). (2.9)

Inserting (2.8) into (2.3), we may deduce the heat-transfer equation (1.2c) with the heat capacity given
by () = 6DZWy(6).

2.2 Examples of admissible constitutive models

Let us illustrate our setting by several examples coming from plasticity theory or three dimensional mod-
elization of phase transformations in shape memory alloys. For each of the following examples, the
assumptions introduced in Section 3 are satisfied, and thus the global existence result for the presented
systems follows from the abstract result obtained in the next sections.



2.2.1 Thermoviscoplasticity

We consider a viscoelastic solid in Kelvin-Voigt rheology involving plasticity and undergoing isotropic
thermal expansion. The Helmholtz free energy is given by (1.1) with

Wi(e(u), z) = 1E(e(u)—Bz2):(e(u)—B2)+H(2) and Wale(u)) = atr(e(u)).

Here the internal variable z belongs to a finite dimensional real vector space Z and B is a linear mapping
from Z to the space of deviatoric 3 X 3 tensors which associates to the internal variable z the plastic
strain epjast e Bz, o > 0 is the thermal expansion coefficient and H is the hardening functional. Then
the system (1.2) can be rewritten as

— div(E(e(u)—Bz)+abl+Le(u)) = ¢,
OV () + Mz — B'E(e(u)—Bz) + D, H(z) 3 0,
c(0)6 — div(k(e(u), z,0)V0) = Le(u):e(i) + abtr(e(w)) + ¥ () + Mz.2.

Note that | is the identity matrix and BTE(e(u)—Bz) is the linear mapping defined on Z by Z +
E(e(u)—Bz):BZ. We should confess here a lack of consistency in the notations. Indeed, we have B €
L(Z;R3X3), thus BT € L(R3X3: Z) while E(e(u)—Bz) € R3x3. Hence BTE(e(u)—Bz) has to
be understood as BTprojR§e§3 (E(e(u)—Bz) where prOle:Ea is the projection on R3X3 relatively to the

inner product of Rg’yﬁ?’.
Let us emphasize that several viscoplastic models fit this general description. Indeed the Melan-Prager

model corresponds to a kinematic linear hardening, i.e., a hardening functional H given by

VzeZ: H(z)=4Lzz

with a symmetric positive definite tensor L € L£(Z; Z) while the Prandtl-Reuss model corresponds to
H = 0. The choice of a rate-dependent plasticity flow rule (due to the viscous term M2 in (1.2b)) is

physically meaningful since we expect more dissipation in case of rapid change in the plastic strain (see
also [DDMO6] for a more detailed discussion when H = 0).

2.2.2 Phase transformations in shape-memory alloys

In order to gather in the same description both the three-dimensional macroscopic phenomenological
model for shape-memory polycrystalline material introduced by Souza et al [SMZ98] and later addressed
and extended by Auricchio et al [AuP02, AuP04], and so called mixture models, we consider

Wi(e(u), z) = 1E(e(u)—Bz2):(e(u)—B2)+H(2) and Wale(u)) = atr(e(u)).

Once again the internal variable z belongs to a finite dimensional real vector space Z, o > 0 is the
thermal expansion coefficient and H is the hardening functional. But now B is an affine mapping from Z
to the space of 3 X 3 deviatoric tensors and it can be decomposed as

Vze Z: Bz =Byz+ By,

with By € £(Z;R3X3) and By € R3%3. The problem (1.2) can be rewritten as

— div(E(e(u)—Bz)+abl+Le(u)) = ¢,
O (2) + Mz — BJE(e(u)—Bz) + D.H(z) 30,
c(0)6 — div(k(e(u), z,0)V0) = Le(u):e(i) + abtr(e()) + ¥ () + Mz.2.



In the Souza-Auricchio model, we have Z = R3X3, B = | z and the variable z describes the inelastic
part of the deformation coming from the martensitic phase transformations. Furthermore the hardening

functional Hgp takes the following form:
Hsa(2) = c1]z] + co)2)* + x(2),

where x : R3X3 — [0, 4-00] denotes the indicator function of the ball {z € R3X3 : |z,| < c3}
and the coefficients ¢;, © = 1, 2, 3, are positive real numbers. Note that c; is an activation threshold for
initiation of martensitic phase transformations, co measures the occurrence of hardening with respect to
the internal variable z, c3 represents the maximum modulus of transformation strain that can be obtained
by alignment of martensitic variants. We should regularize the hardening functional as in [MiP0O7] and we
replace Hsa(z) by H2A(2) by

£ —cC- 4
HEAR) £ e /PP + 3 17 + s

where 0 < § < 1.

In the mixture models, we have Z = RN_I, where NV is the total number of phases, including austenite
and all the variants of martensite (hence N > 2). The components of z and zy = 1 — szz_ll Zj, can
be interpreted as phase fractions and Bz is the effective transformation strain of the mixture given by

N-1 N-1
Bz = = Z ZkEk + (1— Z Zk>EN,
k=1 k=1

where EJ, is the transformation strain of the phase k. The hardening functional Hpix; is the sum of a
smooth part w(z) and the indicator function of [0, 1]N_1 (see [MiT99, Mie00, HaG02, GMHO02, MTL02,
GHHO7)).

This non-smooth part is regularized in the same way as previously and we consider a regularized hard-
ening functional H?° mixt diven by

el —Zz Zp— 4
Hr?ﬁlxt( Zw ) + Z (2 1_:_|ik|§) 1+) , 0<dix 1.

In both models, the rate-dependent flow rule is once again physically meaningful since we expect more
dissipation in case of rapid change in the crystalline structure of the material. Furthermore, it allows us
to avoid the usual gradient regularization for the internal variable.

3 Mathematical formulation

We consider a reference configuration ) C R3. We assume that Q) is a bounded domain such that

O is of class C2. We will denote by Rg’yﬁ?’ (respectively R3X ) the space of symmetric (respectively

deviatoric) 3 x 3 tensors endowed with the natural scalar product v:w = tr(va) and the corresponding

3x3
sym *

dev

def .
norm |v|? = v forall v, w € R In particular, we assume that

Wi(e(u), 2) = SE(e(u)—Bz):(e(u)—Bz) + H(z) and Wa(e(u)) = atr(e(u)),

where a > 0 is the thermal expansion coefficient, IE denotes the elastic tensor, H the hardening func-
tional and B is an affine mapping from the finite dimensional vectorial space Z to Rggf,g More precisely,
B is decomposed as follows

Vze Z: Bz ZByz + By, (3.1)



where By € L(Z,R3X%) and B; € R3X3. Given a function £ : Qx(0,7) — R3, we look for a

dev dev
displacement u : 2x(0,7) — R3, an internal variable z : Qx(0,7) — Z and a temperature

6 : Qx(0,T) — R satisfying the following system:

— div(E(e(u)—Bz)+abl+Le(w)) = ¢, (3.2a)
OV (%) + Mz — BJE(e(u)—Bz) + D.H(z) 30, (3.2b)
c(0)8 — div(k(e(u), z,0)VO) = Le(u):e(w) + abtr(e(w)) + W(z) + Mz.2, (3.2¢)

together with initial conditions
u(-,0) =u’, z(-,0)=2° 6(,0) =46 (3.3)

and boundary conditions
=0, VO, =0, (3.4)

U o

where 7 denotes the outward normal to the boundary 952 of ). We reformulate now the original problem
(3.2) in terms of enthalpy instead of temperature by using the so-called enthalpy transformation defined
as follows

0
gf) =0 = / c(s)ds. (3.5)
0

Note that ¢ is the unique primitive of the function ¢, which is supposed to be continuous, such that
g(0) = 0. Furthermore, we will assume that for all s > 0, ¢(s) > ¢ > 0 where ¢‘ is a constant. Hence
we deduce that g is a bijection from [0, co) into [0, o). We define

-1 .
w | g7 () ifY >0,
) = 3.6
) {0 otherwise, (3-62)
ke (e(u), z,0) & mlez0) (3.6b)

e(¢(9))

where g_l is the inverse of g. For more details on the enthalpy transformation, the reader is referred to

[Rou09] and the references therein. Then the system (3.2) is rewritten as follows

— div(E(e(u)—Bz)+a((V)I+Le(w)) = ¢, (3.7a)
O () + Mz — BJE(e(u)—Bz) + D, H(z) > (3.7b)
9 — div(k°(e(u), z,9) V) = Le(u):e(w) + ol ( ytr(e(w)) + W(2) + Mz.2, (3.7¢)
with boundary conditions
U, =0, k°VUIn,, =0, (3.8)
and initial conditions
u(70) :’LLO, Z('70) = Zov 19(70) =° :g(eo)' (3.9)

Usually, the identity (3.7c) is called the enthalpy equation. Since we have assumed that 0f) is of class
C2, Korn’s inequality holds, i.e., we have

3O > 0w € HY(Q) He(u)H%g(Q) > CKO’”HuH%{l(Q). (3.10)

The reader is referred to [KoO88, DuL76] for further details.



We introduce now the assumptions on the dissipation potential ¥, on the hardening function H, and on
the data |, I, ML, £, ¢ = ¢(6) and & = k(e(u), 2, 6).

The dissipation potential ¥ is assumed to be positively homogeneous of degree 1 and satisfies the
triangle inequality, i.e., we have

Vy>0Vze Z: U(yz) =~Y¥(2), (3.11a)
ICY >0Vz € Z: 0<U(z) <CY 2, (3.11b)
Vz1,20 € 21 U(z1422) < U(z1) + U(22). (3.11c)

Observe that (3.11a), (3.11b) and (3.11c) imply that ¥ is convex and continuous. We assume that the
hardening functional H belongs to CQ(Z; R) and satisfies the following inequalities

3cH M >0vze Z: H(z) > |z, (3.12a)
3cH > 0vze z: ID?H(z)| < CH. (3.12b)
Note that (3.12b) leads to

3CH > 0vz e Z2: D.H(2)| <CHO+|2]), |H(2)| < CHA+|2]?). (3.13)

The elastic tensor E : Q2 — c(ngfn?*, ngfn?)) is a symmetric positive definite operator such that
3 > 0vz € LQ(Q;Rg’yff) : CE”ZH%JQ(Q) < / Ez:zdz, (3.14a)

Q

Vigk=1,2,3: E(-), 2t e 12(0). (3.14b)

We suppose that IL. and M are symmetric positive definite tensors. This implies that

A, 0 > 0Ve e RIS+ e? < Lewe < CTJef?, (3.15a)
IM M > 0vze 2 Mz < Mz.z < CM)z)2 (3.15b)

We consider that £ is an external loading satisfying
(€ L0, T;L3(Q)). (3.16)

Finally, the heat capacity ¢ and the conductivity k¢ satisfy

¢:]0,00) — [0, 00) is continuous, (3.17a)
361 >23¢°> 090> 0: C(1460)" 71 < ¢(6), (3.17b)
K RIS X ZxR — R3S is continuous, (3.17¢)
3™ > 0V(e, 2,0) € Rg’yfng x ZxRYv e R : ke, z,0)v-v > |v)?, (3.17d)
30" > 0V(e, 2,9) e REE x Zx R : |(e, 2,0)| < C*. (3.17¢)

Let us give now some indications about the proof strategy. First, we establish a local existence result
for the coupled problem (3.7)—(3.9) by using a fixed point argument. More precisely, for any given 5 we
define § £ C(@) and we solve the system composed by the momentum equilibrium equation and the
flow rule (3.2a)—(3.2b), then we solve the enthalpy equation (3.7¢) with k¢ = k(e(u), z, C(ﬁ)) This
allows us to define a mapping

<;55’19: 9 — 0.



Our goal consists to prove that this mapping satisfies the assumptions of Schauder’s fixed point theorem.

To this aim, we consider a given ¥ € LI(0,T;LP(2)) with p > 1 and ¢ > 1. We define § = ((9).
Since ( is a Lipschitz continuous mapping from R to R, it follows that the mapping

6™ LI(0,T5 17 () — LU0, T; LP(2)),

9 0= (),
is also Lipschitz continuous. On the other hand, the inequality (3.17b) implies that
V0 € [0,00) : G((14+60)71—1) = g1(6) < 9(0).

Thus we obtain

Vi € [0,00) : 0 < (W) < G(W) = grt(9),

and
Vo ER: [C(9)] < (2 max(9,0)+1)5 — 1.

Clearly, we may infer that

VB e L B]VIER: (W) < (& max(0,0)+1)% —1< (& max(ﬁ,()))%. (3.18)

Therefore for all 8 € [1, 3] and for all ¥ € LI(0, T; LP(£2)), we have 6 = ((9) € L9(0, T; L°P(2))
with )
1 o~ 1
HHHLB@(O,T;LW(Q)) < (%) p HﬂHEé(QT;Lﬁ(Q))'

We assume that ¢ > 2 and p = 2 in the sequel. Note that if there is not any confusion, we will use simply
the notation X(€2) instead of X(£2;Y) where X is a functional space and Y is a finite dimensional real

vector space. We also use the notation Q, = Q x (0, 7) with 7 € [0, T7.

4 Existence, uniqueness and regularity results for the syst em composed
by the momentum equilibrium equation and the flow rule

We establish in this section existence and uniqueness results for the system composed by the momentum
equilibrium equation and the flow rule (3.2a)—(3.2b) when § = ((¥}) is a given data in a bounded subset
of L4(0,T; LP(2)) with ¢ € [7, 517] and p € [p, min(S1p, 6)]. More precisely, we prove that (P, )

— div(E(e(u)—Bz)+abfl+Le(w)) = ¢, (4.1a)
OV (2) + Mz — BJE(e(u)—Bz) + D.H(z) 30, (4.1b)
with initial conditions
u(-,0) =u°, z(-,0) = 2Y, 4.2)
and boundary conditions
Upg = 0, (4.3)

admits a unique solution. Some a priori estimates and regularity results for the solution of (P,,) are
also obtained. The key tool to prove the existence and uniqueness of a solution of (P, ) is to interpret
this system of Partial Differential Equations (PDE) as an Ordinary Differential Equation (ODE) for the
unknown function (u, z) in an appropriate Banach space.



Let us introduce some new notations. For any r > 1, let
V(4 R?) = {ue L2 (4 R?) : Vu e L'(Q;R>)},

and for any > 2, let
Vi R?) = {ue VI(RY)

We endowed V" (€2; R?) with the following norm

—0}.

Ujpg

vue VIR Jullyr(q) = llulliz@) + IVullir@)-
In the sequel, the notations for the constants introduced in the proofs are valid only in the proof.

Theorem 4.1 (Existence and uniqueness for ~ (P,.)) Let 6 be given in LI(0,T;LP(2)). Assume
that (3.11), (3.12), (3.14), (3.15) and (3.16) hold. Then, for any u°® € Vg(Q;R3) and for any z° €
LP(§); Z) the problem (4.1)-(4.3) possesses a unique solution (u,z) € Wh4(0,T;Vh(Q;R?) x
LP(Q; Z)). Furthermore, the image of any bounded subset of 1L4(0,7"; LP(£2)) by the mapping 6 +—
(u, ) is a bounded subset of W14(0, T'; VB (€, R3) x LP(€); Z)).

Proof. Let 77(Q) = L2(Q;R3)xLP(Q;R3X3) and WP(Q) = VE(Q; R?)xLP(Q; Z) be endowed
with the norms

N = (p1,2) € FP(Q) : HSOHfP(Q) = \\(901,902)\\@(9) = H<P1HL2(Q) + H(PZHLP(Q)7

and

Vi = (Y1, v2) € WP(Q) : [¢llwe(a) = (01, ¥2)llwe) = 191 llve(e) + W2l @)-

It follows that FP(£2) and WP (£2) are two Banach spaces. We introduce now the mapping A, g, defined
as follows

Agp, : WP(Q) — FP(Q),

def

(u,2) = = (0, E(e(u)~Boz)).

Since E € L*°(12), we infer that Ag g, is a linear continuous mapping from AP (2) to F7(§2). Besides
since L is a symmetric, positive definite tensor, classical results about PDE in Banach spaces imply that,
forall p = (p1,¢2) € FP(Q), there exists a unique u € V5 (€;R?), denoted by u = A, (i), such
that

Yo € D(Q) /Q Le(u):e(v)dz = /Q orvde + /Q poie(v)de,

and there exists CAp > 0, independent of ¢, such that

ullvr ) < Ca, (le1lliz)Flle2llir @) = Ca,llellzro)-

Hence A, is linear continuous from FP(f2) to V5(Q;R3) (for more details, the reader is referred to
[Val88]). It follows that (4.1a) can be rewritten as

U= Ap(wee) — Mp(Agr B, (1, 2)), (4.4)

with ¢z ¢ = (¢,EB;—a#l). Next we observe that the operator ¥ + M is strongly monotone on Z. It
follows that its inverse (8\11+M)_1 is a single-valued and C%M-Lipschitz continuous mapping from Z to
Z. We may conclude that (4.1b) can be rewritten as

5= (0U+M) " (BIE(e(u)—Bz)—D.H(z)).



It follows that the system (P,) is now given by the following ODE in WP (£2)
(U, 2) = Gp(u, 2) + (Ap(r),0), (4.5)
where G, : WP(Q) — WP(Q) is defined by
V(u,2) € WP(Q) : Gylu, 2) = (—Ap(Ar g, (u, 2)), (00 +M) ™ (Bg E(e(u)—Bz)~D. H(2))).

Assumptions (3.14b) and (3.12b) imply that G, is Lipschitz continuous on WP (). Indeed, let (u;, 2;) €
WP(Q), i =1, 2. We have

1Gp (11, 21)=Gp(uz, 22)llwe () = [1Ap(ArBo (41, 21)) = Ap( A Bo (42, 22)) Ve (o)
+ (0% +M) ™ (B E(e(u1)~Bz1)—(D:H (21))
—(0+M) ™! (B E(e(uz)~Bz2)— (D2 H (22))) 1o (0)

< Ch, Ot 5, (lur—uzllvr (o) +llz1—22llLr () + 7 D= H (21) =D H(22) | Lr (o

B Ellt,00
I ”O””c#(He(ul)—e(u2)”LP(Q)"‘”BOH l21=22]lLe(2))

def

where Ca; 5 = || A8, | cove (), 72 ())- B using assumption (3.12b), we infer that
ID.H (21)—D.H(22)|l1r(0) < CLllz1—22/l1e(0)

and there exists a constant Cgp > 0, depending only on the data, such that

1Gp(u1, 21)=Gp(u2, 22) e ) < Ca, (lur—uallvr)+llz1—22Lr @) -

Therefore we can apply Cauchy-Lipschitz existence theorem for ODE (see [Car90]) and we can conclude
that, for any u® € V5 (Q; R?) and 20 € LP(Q; R2*?), there exists a unique solution to (P,..) such that
(u,z) € WH(0, T; WP(Q)).

Let us establish now that the image of any bounded subset of L4(0, 7; LP(2)) by the mapping 6 —
(u, 2) is a bounded subset of W14(0, T; WP((2)). This result relies on Grénwall's lemma. Indeed,
observing that (0¥ +M)~1(0) = 0, we get

1(u(s8)s 2(58) = (1, 2%) (@) /ng 5 8))+ (Ap(ee0(- 5)), 0)llwe (o) ds
/Ilgp ,8)=Gp(u”, 2°) we(q) d8+/ 1Gp (1, 2°)+(Ap(pr0(-, 5)), 0) e () ds

éCgp/O (luCy 8)=ullva@) Iz 8)=2"luoey) ds + ¢(|Gp(u”, 2%) e (@)

+C, Bl oy | B 192]7) +CA,,/O (1€, 9) L2 @) +V3allo(:, ) lLo (e ) ds,

forall ¢ € [0, T]. Hence, we find

”(u(7 t)v Z('v t))_(u07 ZO)”WP(Q) < eXp(Cgpt) (t(ng(uO? ZO)HW”(Q)

t
1
+CApHEHL°°(Q)HBl|||Q|p)+/0 CAp(W('vS)HL?(Q)“‘\/gO‘He('aS)HLP(Q))ds)-
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Now we go back to (4.5). We observe that

(@), 20, 0) ey = 11Gp(ul, 1), 20, 1)+ (Ap(@ro (-, 1)), 0)lwr (@
< Cg, (llu, ) =u®va(e) +2(, 1) =2 o)) + 1Gp(w, 2%) e (o)
+C, (1, DIz +V3al0(, D)oo+ [l @ | B 12]7),

for aimost every ¢t € [0, T']. Besides there exists a generic constant C' > 0 such that
(%, 2)l|lLao,mswe ) < C(ng(uoaZO)||WP(Q)+||fHLq(0,T;L2(Q))+04H9||Lq(o,T;LP(Q))+1)-

This concludes the proof. O

We establish that the mapping ¥ — (u, z), where (u, z) is the unique solution of (P, ) when 6 = ¢(9),
is continuous from L7(0, T; LP(Q2)) to Wh4(0, T; VB (Q) x LP(Q)).

Lemma42 Assume that (3.11), (3.12), (3.14), (3.15) and (3.16) hold and u® € V‘S(Q R?) a
29 € LP(Q; Z). Then ¥ — (u, 2) is continuous from LI(0, T; LP(9)) into Wh4(0, T; VB (; R3) x
LP(Q; 2)).

nd

Proof. Let J; € L9(0,T;LP(2)) and for i = 1,2, we denote by 6; & ¢(0;) € L(0,T;LP(Q)) and
(u4, ;) the solution of the following system:

— div(E(e(u;)—Bz;)+ab;1+Le(1;)) = ¢, (4.6a)
oW (%) + Mz; — BJE(e(u;)—Bz) + D.H (%) 3 0, (4.6b)
together with initial conditions
ui(-,0) =u®,  z(-,0) = 2Y, 4.7
and boundary conditions

Since the mapping % : 9 > 6 = () is continuous from L7(0, T; LP(£2)) to LI(0,T; LP(9)),
we only need to check that the mapping 0 = ((9) — (u, z) is continuous from LI(0, T; L?(Q)) to
WH4(0, T; WP(£2)) where the notation VWP (£2) was introduced in the proof of Theorem 4.1.

With the same kind of computations as previously, we get
[(ur (1), 21 (5 8)) = (ua (-, ), 22(, 1)) e (2 /Ilgp u1(:,8), 21(:5))
_gp(UQ('73)7Z2('73))+(Ap(80€,91('7 ))70)_(AP(()05792('7 )) )HWP ds
< Co, [ (lurs)=uales) ooy + 1, 9) =22, 9luo(ey) ds
0

t
+V3Ch,a / 101, 8)—02(-, ) | Lo .
0

forall ¢ € [0,T]. We may consider the case where p = p = 2 and, by applying Grénwall's lemma, we
obtain

q—1
[(ur (-, t)—ua(-, t), 21 (- £) =22 (-, ) wr() < VBCa,crexp(Cg,t)t @ [|01—02lLa0.1o(02)

11



forall ¢ € [0, T']. Then we infer that

[[(1 (-, t)=t2(-, ), 21, ) = 22(- ) [wra) = 19p(wr (-, 1), 21 (-, 1))
—Gp(ua(-,t), z2(+ 1))+ (Ap(@ee, (1)), 0)— (As(pee, (5 1)), 0) lws )
< Cg, ([lur (- 1) =u2 (-, )llvr ) +Hl121 (1) =22(, 1) Lo ()
+V3Cx,allf1 (-, t)—02(-, 1) lLr (o

for almost every t € [0, T']. Hence, with ¢ = ¢, we get

s 1
(i1 i, 21— 22) |La o, swp()) < V3BCa,(Cg, exp(Cg, T) (%) 1 +1) (161 —0a|La(o,r:L7 ()

which allows us to conclude. O

5 Existence, unigueness and regularity results for the enth alpy equation

We recall in this section existence, uniqueness and some regularity results for the enthalpy equation.
More precisely, let us assume that ¥° € L2(Q) and f € L2(0,T; (H'(£2))"). Furthermore, let K¢ €
L>®(Q7; R2%3) be such that

sym

3¢ > 0w e R® : RB(z, t)vv > ¢ |v]? ae. (z,t) € Qr, (5.1a)
IO > 0: |R(x,t)| < C*° ae. (x,t) € Or. (5.1b)

We consider the following problem (Py)

9 — div(R°VY) = f, (5.2)
with initial conditions
9(0) = 9°, (5.3)
and boundary conditions
KV, = 0. (5.4)

The weak formulation is given by

Find ¥ : [0, T] — H(Q) such that (0) = 9¥° and for all £ € H'(2),

. 55
/ ¥ daH—/ rVY-VEda = / f&dzx in the sense of distributions. (5:5)
Q Q Q

Theorem 5.1 (Existence and uniqueness for  (Py)) Assume that the previous assumptions hold, then
the problem (5.2)~(5.4) possesses a unique solution ¥ € CO([0, T]; L2(2)) N L2(0, T; H(Q)) with
¥ € L2(0,T; (HY(2)"). Moreover we have

19(7)F2 0 +20“c/0 IV 120y At < exp(e T) (19°l1F 2+t IF I 20,7000 ()

forall 7 € [0, 7).
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Proof. The proof of existence and uniqueness of a solution is quite classical and can be found in [Lio68].
The estimate is straightforward and its verification is left to the reader. ]

Let us introduce the following functional space
WY E 19 € L2(0, T; HY(Q)) NL>°(0, T5L3(Q)) : ¥ € L2(0,T; (HY(Q)))},
endowed with the norm

V9 e WY 9]l = 19112 0,7511 (@)) + 19lLee 0,7:1.2(02)) + ”79”L2(0,T;(H1(Q)')-

Due to [Sim87], we know that W is compactly embedded in LZ(0, T; L?(12)). Note that the previous
estimate implies that there exists a generic constant C' > 0 such that the solution of problem (Py)
satisfies

19]lwo < C(I19°2 )+ Iz o ))) -

6 Local existence result

We provide in this section a local existence result for (3.7)—(3.9) by using a fixed-point argument. To this
aim, for any given 9 € LZ(0, T; L?(12)), we define #° £ k¢(e(u), z,6) and f = f? ﬁ}e(u):e(u) +
abtr(e(w))+W(2)+Mz.2in (Py), where (u, z) are the solutions of (P, ) with § = ((1J). We assume
that 90 € L2(Q), u® € VH(Q;R?) and 2° € LP(Q; Z) with p € [4, min(317,6)] and we choose
q = [1G. With the results obtained in Section 4, we infer that fg belongs to L2(0, T; L2(2)) and we
can define ¥ € CO([Q, T]; L2(€2)) N WY as the unique solution of (Py). Thus we can introduce the
fixed point mapping ¢”*? : ¥ +— o from LI(0, T; L (2)) to LI(0, T; LP()).

Proposition 6.1  The mapping ¢5’ﬂ is continuous from LI(0, T'; LP(€2)) to L(0, T; LP(Q2)).

Proof. This proof is quite similar to the proof of Proposition 6.1 in [PaP11]. Let (5n)neN be a converging
sequence of LI(0, T; LP(£2)) and let ¥, be its limit. We denote by ,, < ¢5vﬁ(5n) foralln > 0 and
Ve = ¢5”9(5*). Since (U, )nen is a bounded family of LZ(0, T'; LP(£)), the previous results imply that
(9 )nen is bounded in CO([0, T]; L2(2)) N WY, Then it follows that (1, )N is relatively compact in
L9(0,T;1LP(Q)) (see [Sim87]) and it is possible to extract a subsequence, still denoted by (9, )nen,

such that
¥, — O in L0, T; H(R)) weak,

Dy — 9 in L2(0,T; (HY(Q))) weak,
I — 0 in LI(0,T;LP()).

Let us define Vr = {w € C>([0,T7]) : w(T) = 0}. Hence we observe that for all n > 0, we have
Ve e HY(Q) Yw € Vr

~ [ Pttty drar + /Q RO, ) V() dr on

= [ @ 0@y dedt + / ()& ()w(0) de,
Or &
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with K¢, ke (e(un), Zn, 0pn) and (uy, 2zy,) solutions of (Py,) with 6,, = C(@n) Since (5n)n€N con-
verges to ¥, in L(0,T; LP(£2)), we infer from Lemma 4.2 that (wy, zn)neN cCONVerges to the so-
lution (ws, zx) of (Pyz) with 6, = ¢(J,) in WH4(0, T; VH(2) x LP(9)). Furthermore the mapping

¢"? : ) — 0 = ¢ (V) is Lipschitz continuous from LI(0, T; LP(€2)) to L(0, T; LP(2)), which implies
that it is possible to extract subsequences, still denoted by 6,,, ., , 2, such that

On,e(un), zn — Oy e(uy), ze ae. (z,t) € OQr.
Note that the continuity of the mapping k¢ gives
Ry, = KE(e(un), 2n,0n) — Ko = k°(e(ux), 2, 0+) ae. (x,t) € Qr,
and due to the boundedness assumption on k¢, with the help of Lebesgue’s theorem, we obtain

REVEw — REVEw in L2(0,T;L2(Q)).

Therefore it is possible to pass to the limit in all the terms of the left hand side of (6.1) to get
Ve e HY(Q) Yw e Vp: — W, t)€(x)w(t)dzdt —l—/ RV (x, t)VE(x)w(t)dadt
or or
— lim FIn (2, )€ (@) w(t) da dt + / 9°(2)¢ (2)w(0) dz.
Q

n—-400 Or

Since p > 4, we may deduce that the mapping 9 — f’g is continuous from LI(0, T’; Lﬁ(Q)N) to

L™(0,7;L™(2)) with % = % % < 2% < 2 and % = %4—% < 3. Indeed, for any ¥; in

L7(0,T; LP(2)), let (u;, z;) be the solution of (P,.) with 8; = ¢ (7;), i = 1, 2. We have

FO 92 — Le(ay g e (i —in) + (01 —09)tr(e(in))
+ Oéegtl’(e(?ll —ﬂg)) + \I’(Zl) — \I’(ZQ) + M(21+22).(21—22).
On the other hand, (3.11c) and (3.11b) imply
|W(2)—W ()| < CY|21—2].

The boundedness and the continuity properties proved in Theorem 4.1 and Lemma 4.2, rGespectiver,
allow us to deduce the desired result. Therefore, reminding that H!(Q) «— L6(Q) = (L5(Q2))’ with
continuous embedding, we may infer that

vge HY(Q)Vwe Vr: lim oz, D@ wt)dedt = | f (2, )é(@)w(t) dedt.
=T JQor Qr

We conclude that ¥ is solution of problem (Py) with the data k$ and fﬂ*. Moreover by uniqueness of
the solution, it follows that ¢ = ¥, and the whole sequence (¥, )N converges to ¥, = ((J.). O

We provide below that the mapping qﬁﬁ’ﬂ fulfills the other assumptions of Schauder’s fixed point theorem.
We begin by introducing some notations; let RO, RY > 0 be any given positive real numbers such that

max (||u[[yr), [°lLr@) < R® and |[9|Lero) < RY.
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Since § = ( (), itis clear that

B1pP—p

1 Bip—p ~ T def
H9||L€1(0,T;LP(Q)) < (%) Q| e ||19H5¢%(0,T;L5(Q)) <R'Z= (ﬁlRﬂ) ﬁl || srov

with ¢ = (1§ > 4. Thanks to results of Section 4, we may infer that there exists R/ = Rf(RO,
RY, €]l (0,712 (02))) > 0, depending on RY RY and [€1lr.00 (0,712 (2)) Such that

HfﬁHLQ/z(O,T;LPN(Q)) <R/

The results of Section 5 imply that there exists a generic constant C' > 0 such that

WHLM(ML%Q)) < C(”fﬁHL2(07'L2 YNl 20)
< oo =T | 7 Inar2 (010720 10 llL2 () < oo T Rf+H190”L2(Q )-

Nowlet0 < 7 < T and Wf be the following functional space
WY E 19 € L2(0, 7 H' () NL®(0, 75 L2(Q)) : 9 € L2(0,7; (HY(Q)))}.
Forany 9 € LI(0, 7; LP(R2))), we define its extension ey as follows

De(,1) = Ia,t) if (z,) €Qx [0,7],
ext\ s V) = 0 it (z,t)€Qx(r,T).

Therefore it is plain that 5@“ € L0, T;LP(Q)). Furthermore the mapping 9 5@“ is a contrac-
tion from L7(0, 7; LP(Q)) into Lq(O T;1P(Q)). For any ¥ € L7(0,7;1LP(Q2)), we define A )

as the restriction on [0, 7] of (bﬂ ’9( ext) It follows from Proposition 6.1 that qﬁf’ﬁ is continuous from
L7(0,7; LP(2)) to LI(0, 7; LP(Q)). Recalling that p = 2, for any ¥ € L7(0, 7; LP(2)), we have

||¢IM Mrao,mre@) = \Wg ()1 (0,7;L2(22))

= ([ 16 e Doy t) < 74167 Fend i rasany

and the previous estimates allow us to show that, for any RY > 0, there exists 7 € (07 T] such that qﬁf’ﬁ
maps the closed ball Bra(o -170)) (0, RY) into itself. Note that the image of Brao,r;1.59)) (0, RY)
by ¢”” is a bounded subset of W¥ and thus it is relatively compact in L7(0, T; LP(Q)). It follows that
the image of Bra(g..1.5()) (0, R”) by ¢2" is also relatively compact in LZ(0, 7; LP(€2)). Finally we
conclude that the problem (3.7)—(3.9) possesses a local solution (u, z, %) defined on [0, 7] such that
(u, z) € WH4(0,7; VE(Q) x LP(Q2)) and ¥ € WY.

We have to go back to the problem (3.2)—(3.4). First we observe that g and ( define a Cl-diﬁeomorphism
from (0, 00) to (0, 00) and any solution of (3.7)—(3.9) provides a solution of (3.2)—(3.4) as soon as the
enthalpy ¢ remains strictly positive. So we assume now that the initial enthalpy is strictly positive almost
everywhere on (2, i.e., there exists 9 > 0 such that

g(0°) =9° € 1L2(Q), ¢(0°x)) =°(z) > 9 >0 ae. z €. (6.2)

Therefore the Stampacchia’s truncation method allows us to provide a local existence result for the prob-
lem (3.2)—(3.4).
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Theorem 6.2 (Local existence result) ~ Assume that (3.11), (3.12), (3.14), (3.15), (3.16), (3.17) and
(6.2) hold. Then, for any u® € VH(Q;R?) and 20 € LP(; Z) with p € [4, min(31p,6)], there
exists 7 € (0, T such that the problem (3.2)—(3.4) admits a solution on [0, 7].
Proof. Let (u, z, %) be a solution of (3.7)—(3.9) on [0, 7'] . We prove now that

Yz, t) >0 ae. (z,t) € Q.
Let us define ¢ : [0, 7] — R such that

Wt € [0,7) : p(t) 2 P exp(—E by, 6.3)

CC

and let G € C*(R) be such that
() 3C¢ >0Vo e R: |G'(0)] < CF,
(i) G is strictly increasing on (0, 00),

(i) Vo <0: G(o) =

Moreover let I'(o) = [ G(s)dsforalloc € R, 9, = - + g and Z(t) = [, () dz. Itis plain
that ' € C2(R IR) and I'(o ) > 0 forall o > 0. Since 9,(0) = —9° +9 <0 almost everywhere on
(2, we may deduce that =(0) = 0. Observe that ¥ € Wﬁ and ¢ € C*([0,7];R), it follows that =

absolutely continuous and

E /G 75‘dac

/ G(9,)(div (RV) +Le(@):0(@)+adtr(e(i)) U (5)+ Mz.5 — ) dz

/G’ ROV, V0 dx—/G Jie(@)+aftr(e(i))+ 0 (2)+Mz.5— @) da,
for aimost every ¢t € [0, 7]. Using (3.15) and Cauchy-Schwarz’s inequality, we get

Le(@):e(t) + abtr(e(i)) > e(i)[2 — 3al0][e(i)| > & le(w)|? — C2WE,

But G'(¥,) > 0 and G(¥,) > 0 almost everywhere and (3.11b) and (3.17d) hold, so we have
L=t /G \9| +¢)dz ae. t € [0,7].

Furthermore § = ((¢}) and (31 > 2, thus with (3.18), we obtain

6] = 1C)] < /2 max(d,0)+1 — 1 < /22 max(,0) ae. (2,t) € Q.

Finally, observing that G'(1,) vanishes whenever ¢ > ¢, we infer that

E /G ) 2ch¢ cp—i—cp) dz =0 ae. te0,7].
We may deduce that Z(¢) < Z(0) = O for all t € [0, 7], and thus we have
F(79¢) <0 ae. (z,t) € 2x(0,7),

which, implies that
Uo=—U+¢ <0 ae (z,t)€Qx(0,7).

16



7 Global existence result

Let us begin this section with some a priori estimates for the solutions of the problem (3.7)—(3.9). The
result relies on an energy balance combined with Gronwall's lemma and on more specific techniques
for the heat equation introduced by Boccardo and Gallouét in [BoG89, BoG92]. Then, by a contradiction
argument, we will prove that the problem (3.2)—(3.4) possesses a global solution (u, z, ).

Proposition 7.1 (Global energy estimate) Assume that (3.11), (3.12), (3.14), (3.15), (3.16) and (3.17)
hold. Assume moreover that u’ € V(€ R3), 20 € LP(Q; Z) with p € [4, min(B:1p,6)] and ¥° €
L2(Q) such that (6.2) holds. Then, there exists a constant C' > 0, depending only on ([ (02),
HZOHHl(Q), ||190||L1(Q) and the data such that for any solution (u, z,v) of problem (3.7)—(3.9) defined
on [0, 7], 7 € (0, T, we have

ll1F200 7011 ) + 1217200 22020y + 112C P20y + 19C Py < C, (7.2)

for all 7 € [0, 7]. Furthermore, for any r € [1, %) there exists a constant C,. > 0, depending only on r

and 5 such that
HVﬂ”LT(O,T;LT'(Q)) <. (7.2)

Proof. On the one hand, we multiply (3.7a) by @ and we integrate this expression over Qz, with 7 € [0, 7],
to get

/ (E(e(u)—Bz)+abl+Le(d)):e(d)dedt = C-adzdt. (7.3)
Q5 QOF

On the other hand, by using the definition of the subdifferential OV (%) and (3.11a), we deduce from

(3.7b) that
/,

Adding (7.3) and (7.4), we obtain

(M2—BUE(e(u)—B2)+D, H(2)).2dz dt + / U (2) dzdt = 0. (7.4)
QF

F

%/QE(e(u(-,?))—Bz(',?)):(e(u(-,?))—Bz(-,?))dx+/ Le(w):e(w)dzdt

Oz

+ Mz‘.édxdt—k/ H(z(-,?))dx—i—/ abtr(e(w))dxdt (7.5)
Q= Q Q

+/ U(z)dadt =Cy* + | Cadzdt
Q5 Oz

7

where Cg* = 1 [ E(e(u®)—Bz°):(e(u®)—B2°) dz + [, H(2°) dz. Now we integrate (3.7c) over

Q-=. By taking into account the boundary conditions (3.8), we get

/Slﬂ(-,F)da::/Qﬁ(-,O)der/Q Le(i):e() dz dt

F

+ MZz.Z2dzdt +/

a@tr(e(ﬂ))dmdt—l—/ U (2)dxdt.
Qx Q5

Oz
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We multiply this last equality by % and we add it to (7.5). Thanks to (3.12a), we obtain

. /Q E(e(u(-, 7))~ Bz(-, )):(e(u(-, 7)) —~Bz(, 7)) dz + (. 7) 220

+§/ Le(u):e()dzdt + 3 Mé.;&dwdt—l—%/ (2)dzdt

Q~ ~

/19 F)dz < Oy +H|Q| + 3 /ﬁodzn / abtr(e(w))dzdt + C-udzdt.
7 Qr

By using (3.11b), (3.14a), (3.15a), (3.15b) and Cauchy-Schwarz’s and Korn’s inequalities, we find

E

el P)-B( ey + Py + % [ ey + 5 [ el
+%/ﬂ(-,?)dx§Cg’Z+EH]Q\ +%/190dw+%/ lle(@)|[72 (0 dt
Q

JL Korn
¢ / il dt + e / 122 dt + 222 / 10]122 gy

We estimate the last term by using (3.18), we have

/\|9||§2(Q)dt:/ ) Pdedt < (25 [ 107 deat,
0 Qx QF

forall 5 € [1,31]. Since 51 > 2, we get

E

L le(ul 7)—B(,7) 22y + 7 120, 7)oy / ()22 g i + & / B

4 [ 067 < Gl [ o / 013 g -+ 5252 /0 1911 ey

Since ¥(x,t) > 0 almost everywhere on Q. and ¢ € L°>°(0,T;L?(£2)), we may conclude that (7.1)
holds by using Gronwall's lemma.

Finally, we use the techniques introduced by Boccardo and Gallouét in [BoG89, BoG92] to obtain the last
estimate for the enthalpy 1. More precisely, let us consider the function i : R™ — [0, 1] defined by

Vs>0: h(s) £ 1~ with v > 0.

1
EEDN

This function h belongs to C!(R™; R) and is ~y-Lipschitz continuous on R*. We define H as the unique
primitive of h, which vanishes at s = 0, i.e., we have

S
Vs € RT : H(s) = / h(c)do.
0
We infer that h(19) € L2(0,7; H!(Q)) and thus may be used as a test-function in (3.7c). We obtain

o Dh(0) dzdt + / ] Ao A VIV dedt
:/ (Le(it):e(it)+ M54 U(2) +abtr(e()))h(9) dz dt.

F
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Observing that h(¢) € [0,1) almost everywhere in Q, the right hand side of this equation may be
estimated by using the same tricks as in Theorem 6.2. Indeed, we have

| / (L)) M2 2-40(2) +abtr(e(i)) h(9) ddi]

< /Q (Le(@):e(i) M2 54T (2)+3l6]je(i)]) dz dt

< | (3Le(a):e(a) +Mz.24+W(2)+22710)?) dadt

< 3CMe() 220 7200y + (CM+ G 2 20 mnacay) + G-I + SN e 071 (-
Using the previous estimate, we infer that, possibly modifying the generic constant 6’ we have

/H 7)) da + v / (1+ﬁ1§|1+vdxdt<0—|—/H190
Qr

Let 1 < r < 2. We can estimate fQNIVﬂ\T dx dt by combining the previous inequality with Holder’s
and Gagliardo-Nirenberg'’s inequalities. More precisely, we have

/Q|wrdmdt:/g %(Hﬁ)““”dxdt

(/; Hf%%?wd<ﬂ)2(/ (1+9)

0 (1+y)r 257"
r (4 [ rman) ([0 AT agyar)

2—7r

27‘dxd) ’ (7.6)

IN

and, for almost every ¢ € [0, 7], we have

[1+9(, D)l atnr/e-r () < CGN(Hl"H?(Ht)“Ll(Q)+“V19(’at)”L”"(Q))uul"i‘ﬁ(Ht)Hi;(;;))

. ~ . (7.7)
< Con(I9] + O (121+CHIVIC, )l )",

with a constant Cgn > 0 depending only on 7, -y and  and

o 2 H(—g) +1—p, 0<p<lL

We choose p = Using (7.1), we infer that there exists a constant C’m > 0, depending only on r,

° 1+v
~ and C' such that

(14y)r 2;T
!/|u+ﬂ DA
(Lb)r >€¥ (7.8)

S(ﬂ;“hNWﬂ+CV‘WMN+5HWW«¢mUmg@ = dt

< CT“/(l—I_HVﬁHLT 0.7 LT(Q)))

We insert (7.8) into (7.6) and we obtain

r(l1— )

oliorgon ¢ O (G | H(©%)da)?
VIVl e Zir gy (€2



% is increasing on R™ and tends to +o00 as s tends to 400, we may

conclude that HV@HLT 0 TLT(Q)) is bounded by a constant depending onIy on C and on the choice

Since the mapping s —

of r and ~. The two conditions (1+_w)r > u(———) + 1 — p with ,u = 1+

T § % — %’y < %. Hence, we can choose any r € [1, i) with a corresponding choice of v as
= %(%—T) > 0, and the conclusion follows. O

Remark 7.2 We can observe that, whenever cI > 0, the symmetry and the coercivity properties of
imply that there exist two real numbers C', Co > 0, depending only on By, By, ¢, ¢* and ”E”LOO(Q),
such that for almost every x € 2

Ve € R23 Vz € Z: E(e—Bz2):(e—Bz) + 2¢ |22 > C1(Je|*+|2*) — C

sym
In this case, possibly modifying 5 we will also get

~ =\ 112 ~\[12 ~
vF € [0,7] ¢ [lul D)@y + 12057 [Faq) < C
Once again using Gagliardo-Nirenberg’s inequality, we get

|’79H%&(0,7';L&(Q)) :/O Hﬂ(at)”ga(ﬂ))dt
i a1 an
< Con /O 196, DIk ) (196, 8) @)+ I VI )L ey) 7 dt,
with
L>p(l-H+1-4 0<p<1, and ai<r, 1<r<3

Using the results of the previous proposition, we get a global a priori estimate for 1 in La(~0, T La(Q)),
independently of 7. A possible choice for « is obtained when = = ﬁ(———) +l—p==~Llie,pn=
which yields a = %T’ € [3 —) With (3.18) we infer that, for any 31 > %, we can choose r e [l, é)
such that § = ((9) € LI(0,7;LP(Q)) with § = p = 1@ = 15 > 4. Moreover there exists a
generic constant Cy . > 0, depending only on the data and  such that

IS llLao,riey) = 10llLao,rra@y < (2 )"1 WHLQ orra) S Cors

for any solution (u, z, 8 = (1)) of problem (3.2)—(3.4) defined on [0, 7], 7 € (0, T.

Now let N
—9 p_7~4
R’ = 0197T|Q| 4P,

By using the notations of Section 6, let

B def B D def (7—7~4 B
RN ZRI(RY, R, |l ori2()): R = C(T 72 RI410°|12(),
R TTRY 4 1.

Then, we let ¢ = g and we may deduce from the results of Section 6 that there exists 7 € (0, 7] such

that ¢2” admits a fixed point in BL§(07T;L2(Q))(0, RY). Let us define
7 Zsup{r € (0,7 : ¢ admits a fixed point iBra(0.712(0)) (0, RY) }€(0, T].
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It is clear that problem (3.7)—(3.9) admits a global solution if and only if 7 = T'. Let us prove this
identity by a contradiction argument. First, we assume that 7 € (0,7") and we choose € € (0, 7).

The definition of 7 implies that there exists 7 € (T—e, 7] such that ¢ﬁ”9 admits a fixed point 1 =
¢27 () in Brao,r12(9)) (0, RY), i.e., the problem (3.7)~(3.9) possesses a solution (u, z,1)) defined
on [0, 7]. By combining the results of Proposition 7.1 together with the results of Section 6, it is easy to
get ||0HL‘7(O,T;L4(Q)) < R9 with 0 = C(ﬁ) and ¢ € LOO(O,T, L2(Q)) with ‘|’L9||LOO(O,T;L2(Q)) < Rgo

Define 7 € (0,7—7] and R & ((Rﬁ)‘j—T(Rgo)q)% > 0. Forany U € Bra(rr+712(0) (0, R?), we
define
Wz, t) if (x,t) € Qx[0,7],
Doa(,t) £ Iz, t) it (z,t) € Qx (1,747,
0 if (z,t) € Qx (7+7,T].

Clearly, we have

|’09XlHi§(0’T;L2(Q)) = Hﬂ”gﬁ(om[ﬂ(g)) + |’0“%5(7,7+?;L2(Q))

< 7(RL)7+ (R")? < (R")",

and the mapping ¥ — Uey is a contraction on LI(7, 747 LQ(Q)) Furthermore the definition of ¢¥»”
gives that the restriction of (bﬂ ?(Jex) on [0, 7] coincide with o ( ) = ¥ and we define 52’79(5) as the
restriction of qﬁﬁ’ﬁ( Jext) 10 [T, 7+7]. Note that the estimates obtained in Section 6 lead to ¢77 (Jey) €

L>°(0,T;L2()) and
. - N
167 (Vexe) oo (0,712 () < C(T 2@ RI(R®, R, 1€l Low (0.1:1.2(000)) 1P N2 ()

-2~ pB1—2 1

with R & ((Re)q+(ﬁ1)51 Y] o T 7m (Rﬁ)%)? Indeed, let us denote 6 = ( (Jey). We have

N C(ﬁ(x,t)) =0(x,t) if (z,t) € Qx[0,7],
0(x,t) £ { C(D(x, 1)) if (z,t) € Qx(1,7+7],
¢(0)=0 if (x,t) € Qx(r+7,T].

since ¥ € Li(7, 7 + 7; L2(Q)) we have ((9) € Li(r, 7+7; L4(2)) and with (3.18)

”C( )HL‘I (r,7+T;L4(Q)) = (%)ﬁl ‘Q’ 4ﬁ1 T qu HﬂHLq (1,7+7;L2(Q))

ﬁlﬁ

< (&) o)t T (R

Hence s )
Bl srasan = (| 100ugydt+ [ 16T gy ) < .

Now let 7o > 0 be such that
2 q—4 ~ ~
70 C(T % RN (R, R, ||€]l 10 0.1m1.20) 1 12 () < RY.

Note that the real number Ty does not depend on 7 and/or 7 and for all T € (0, min(7y, T — T)]

the mapping 52’19 admits a fixed point ¥ in the closed ball BLq(T,TJr;;Lz(Q))(O, Eﬁ). By construction of
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gz~519 the restriction of qS (Jex) to [0, 7-+7] is also a fixed point of gb + in BLq(O r4712(@)) (0, RY).
But we may choose € € (0, min(7, 79, T — 7')) suchthatT +7 > 7 — e+ 7 > T for some choice of
T € (e, min (7, T — 7")] , which gives a contradiction with the definition of 7.

Hence we can conclude that 7 = 1" and consequently the global existence result for (3.2)—(3.4) follows.

Theorem 7.3 (Global existence result)  Assume that (3.11), (3.12), (3.14), (3.15), (3.16) and (3.17) hold
and that 3; > 2. Then, for any u?€V3(Q; R?), 2°€L4(Q; Z) and 9°€L?(2) such that (6.2) holds,
the problem (3. 7) (3.9) admits a global solution (u, z,19) such that (u, 2)€WH(0, T; V(€ R3) x
LY(Q; 2)) with g € (4, 551) and ¥ € WY Furthermore 9(t, x) > 0 almost everywhere in (0, T") x
and (u, z,0 = (1)) is a solution of (3.2)~(3.4) on [0, T'].

Remark 7.4 If we consider a 2D setting, i.e., 2 C Rz, we can use the same arguments to prove a local
existence result. Furthermore, global estimates can be obtained in the same way as in Proposition 7.1
with now r € [1, %) Indeed, Gagliardo-Nirenberg’s inequality in R™, n = 2, leads to the condition

a2 h(Gg) +l-p 0<p<l

4

We can choose again 1 = ir 3 — —’y Reminding that v > 0, we may
consider any value of r € [1, 4) with a correspondmg vy = —(% — ). Then we infer that, for any solution

of the problem (3.7)—(3.9) defined on [0,7] C [0, 7], the enthalpy ) is bounded in L¥(0, 7, 1L8(Q))
independently of T, for any « such that

QY+~

L>p(i-4)+1-74, 0<p<l, and ap<r, l<r<it

It follows that a possible choice for ¢ is given by

2R

—A(-d)+1-i=

QU=

ie.u = % and a = 32—" € [%,2). Hence, for any 3; > 2, there exists r € [1, 3) andqg = p =

fra = ﬁl T > 4suchthat § = ((9) is bounded in L9(0, 7, 1P(Q)) independently of 7. Finally, by
a contradiction argument, we may conclude with a global existence result under the weaker condition
61> 2.
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